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Motivation

Problem:

· given: a portfolio with d stocks

· wanted: the distribution function of the portfolio value

Solution: copulas

· multivariate probability distribution

· used to describe the dependence between random variables

→ used in quantitative finance to model and minimize tail risk and
portfolio optimization applications
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Introduction to copulas

Definition (Copula)
Let Ui ∈ [0, 1] be a standard uniform distributions with i ∈ {1, ..., d} and
d ∈ N.
The d−dimensional copula C(u) = C(u1, ..., ud ) : [0, 1]d → [0, 1] is a
distribution function that maps the unit hypercube into the unit interval.
Also the following three properties must hold:

1) If min{u1, ..., ud} = 0⇒ C(u1, ...ud ) = 0.
2) C(1, ...1, ui , 1, ..., 1) = ui ∀ i ∈ {1, ..., d}, ui ∈ [0, 1].
3) For all (a1, ..., ad ), (b1, ..., bd ) ∈ [0, 1]d with

ai ≤ bi ∀i ∈ {1, ..., d} we have

2∑
i1=1

...
2∑

id =1
(−1)i1+...+id C(u1i1 , ..., udid ) ≥ 0 (2.1)

with uj1 = aj and uj2 = bj ∀j ∈ {1, ..., d}.
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Rectangle inequality
Example
The rectangle inequality with d = 3 is

2∑
i1=1

2∑
i2=1

2∑
i3=1

(−1)i1+i2+i3C(u1i1 , u2i2 , u3i3)

=− C(a1, a2, a3) + C(a1, a2, b3) + C(a1, b2, a3)− C(a1, b2, b3)
+ C(b1, a2, a3)− C(b1, a2, b3)− C(b1, b2, a3) + C(b1, b2, b3)

=− (C(a1, a2, a3) + C(a1, b2, b3) + C(b1, a2, b3) + C(b1, b2, a3)
+ (C(a1, a2, b3) + C(a1, b2, a3) + C(b1, a2, a3) + C(b1, b2, b3))

≥ 0

Conclusion
→ P(a1 ≤ U1 ≤ b1, ..., ad ≤ Ud ≤ bd ) is non-negative for a random
vector (U1, ...,Ud ).
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Application of copulas

Proposition
Let F be a distribution function and let F← with
F←(u) = inf {x : F (x) = u} denote the generalized inverse.

(1) Quantile transform: If U ∼ U(0, 1) has a standard uniform
distribution, then P(F←(U) ≤ x) = F (x).

(2) Probability transform: If X has a continuous univariate distribution
function F , then F (X ) ∼ U(0, 1).

Proof.
Maybe later.
⇒ We can transform risks with a particular continuous distribution
function to have any other continuous distribution.
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(1) Quantile transform: If U ∼ U(0, 1) has a standard uniform distribution, then P(F←(U) ≤ x) = F (x).

(2) Probability transform: If X has a continuous univariate distribution function F , then F (X) ∼ U(0, 1).

Example
Let X have a standard normal distribution F

⇒ F (X ) is uniform by proposition (2).
Let G be a standard exponential distribution function
⇒ G←(u) = −ln(1− u) is the generalized inverse
Let Y be the transformed variable Y := −ln(1− F (X ))
⇒ P(Y ≤ v) = P(G←(F (X )) ≤ v) = G(v)
⇒ Y has a standard exponential distribution by proposition (1).
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Sklar’s Theorem

Sklar’s theorem, named after the American mathematician Abe Sklar,
provides the theoretical foundation for the application of copulas.

Theorem
Let F be a joint distribution function with margins F1, ...Fd . Then there
exists a copula C : [0, 1]d → [0, 1] such that, for all
x1, ..., xd ∈ R = [−∞,∞],

F (x1, ..., xd ) = C(F1(x1), ...,Fd (xd )). (3.2)

If all Fi ’s are continuous, the copula C is unique, otherwise C is uniquely
determined on RanF1 × ...×RanFd , with RanFi := Fi (R) being the range
of Fi .
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Example
Revision: Bernoulli distribution:

FX (X ) =


0, if x < 0,
1− p, if 0 ≤ x < 1,
1, if x ≥ 1

Let (X1,X2) have a bivariate Bernoulli distribution with

P(X1 = 0,X2 = 0) = 1
8 ,

P(X1 = 0,X2 = 1) = 2
8 ,

P(X1 = 1,X2 = 0) = 2
8 ,

P(X1 = 1,X2 = 1) = 3
8 ,

Basics of Copula Application of copulas

Svenja Griesbach



Bounds for a copula

Theorem
For every copula C(u1, ..., ud ) we have the bounds

max
( d∑

i=1
ui + 1− d , 0

)
≤ C(u) ≤ min(u1, ..., ud ).

Proof.
On board.
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Independence copula

Definition
Random vectors with
continuous distributions are
independent if and only if
their dependence structure is
given by the independence
copula

C(u1, ..., ud ) =
d∏

i=1
ui .
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Comonotonicity copula

Definition
The comonotonicity copula
is the Fréchet upper bound
copula from the last theorem:

C(u1, ..., ud ) = min(u1, ..., ud )
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Gauss copula

Definition
If Y ∼ Nd (µ,Σ) is a
multivariate normal random
vector, then its copula is a
so-called Gauss copula
which is given by

CGa
P (u)

=P(Φ(X1) ≤ u1, ...,Φ(Xd ) ≤ ud )
=ΦP(Φ−1(u1), ...,Φ−1(ud ))

with P being the correlation
matrix of Y .
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Thank you for your attention!

Basics of Copula

Svenja Griesbach


	Motivation
	Introduction to copulas 
	Application of copulas
	Specific copulas
	References

