Basics of Copula

Seminar on "Quantitatives Risikomanagement: Theorie und Praxis in der Versicherungsbranche"

Svenja Griesbach

1st of June 2018

Basics of Copula Svenja Griesbach

Motivation

Problem:

- \cdot given: a portfolio with d stocks
- \cdot wanted: the distribution function of the portfolio value

Basics of Copula Svenja Griesbach

Motivation

Problem:

- \cdot given: a portfolio with d stocks
- \cdot wanted: the distribution function of the portfolio value

Solution: copulas

- \cdot multivariate probability distribution
- \cdot used to describe the dependence between random variables

Motivation

Problem:

- \cdot given: a portfolio with d stocks
- \cdot wanted: the distribution function of the portfolio value

Solution: copulas

- \cdot multivariate probability distribution
- \cdot used to describe the dependence between random variables
- \rightarrow used in quantitative finance to model and minimize tail risk and portfolio optimization applications

Basics of Copula Svenja Griesbach

Table of contents

- \cdot Introduction to copulas
- \cdot Application of copulas
- \cdot Specific coplas

Basics of Copula Svenja Griesbach

Definition (Copula)

Let $U_i \in [0,1]$ be a standard uniform distributions with $i \in \{1,...,d\}$ and $d \in \mathbb{N}$.

The *d*-dimensional **copula** $C(u) = C(u_1, ..., u_d) : [0, 1]^d \rightarrow [0, 1]$ is a distribution function that maps the unit hypercube into the unit interval. Also the following three properties must hold:

Definition (Copula)

Let $U_i \in [0,1]$ be a standard uniform distributions with $i \in \{1,...,d\}$ and $d \in \mathbb{N}$.

The *d*-dimensional **copula** $C(u) = C(u_1, ..., u_d) : [0, 1]^d \rightarrow [0, 1]$ is a distribution function that maps the unit hypercube into the unit interval. Also the following three properties must hold:

1) If $min\{u_1, ..., u_d\} = 0 \Rightarrow C(u_1, ...u_d) = 0.$

Definition (Copula)

Let $U_i \in [0,1]$ be a standard uniform distributions with $i \in \{1,...,d\}$ and $d \in \mathbb{N}$.

The *d*-dimensional **copula** $C(u) = C(u_1, ..., u_d) : [0, 1]^d \rightarrow [0, 1]$ is a distribution function that maps the unit hypercube into the unit interval. Also the following three properties must hold:

1) If
$$min\{u_1, ..., u_d\} = 0 \Rightarrow C(u_1, ..., u_d) = 0.$$

2) $C(1, ..., 1, u_i, 1, ..., 1) = u_i \forall i \in \{1, ..., d\}, u_i \in [0, 1].$

Definition (Copula)

Let $U_i \in [0,1]$ be a standard uniform distributions with $i \in \{1,...,d\}$ and $d \in \mathbb{N}$.

The *d*-dimensional **copula** $C(u) = C(u_1, ..., u_d) : [0, 1]^d \rightarrow [0, 1]$ is a distribution function that maps the unit hypercube into the unit interval. Also the following three properties must hold:

1) If
$$min\{u_1, ..., u_d\} = 0 \Rightarrow C(u_1, ...u_d) = 0.$$

2) $C(1, ...1, u_i, 1, ..., 1) = u_i \forall i \in \{1, ..., d\}, u_i \in [0, 1].$
3) For all $(a_1, ..., a_d), (b_1, ..., b_d) \in [0, 1]^d$ with $a_i \leq b_i \forall i \in \{1, ..., d\}$ we have

$$\sum_{i_1=1}^2 \dots \sum_{i_d=1}^2 (-1)^{i_1+\dots+i_d} C(u_{1i_1},\dots,u_{di_d}) \geq 0$$
 (2.1)

with $u_{j1} = a_j$ and $u_{j2} = b_j \ \forall j \in \{1, ..., d\}$.

Introduction to copulas

Rectangle inequality

Example

The rectangle inequality with d = 3 is

$$\begin{split} &\sum_{i_1=1}^2\sum_{i_2=1}^2\sum_{i_3=1}^2(-1)^{i_1+i_2+i_3}C(u_{1i_1},u_{2i_2},u_{3i_3}) \\ &= -C(a_1,a_2,a_3)+C(a_1,a_2,b_3)+C(a_1,b_2,a_3)-C(a_1,b_2,b_3) \\ &+ C(b_1,a_2,a_3)-C(b_1,a_2,b_3)-C(b_1,b_2,a_3)+C(b_1,b_2,b_3) \\ &= -(C(a_1,a_2,a_3)+C(a_1,b_2,b_3)+C(b_1,a_2,b_3)+C(b_1,b_2,a_3) \\ &+ (C(a_1,a_2,b_3)+C(a_1,b_2,a_3)+C(b_1,a_2,a_3)+C(b_1,b_2,b_3)) \\ &\geq 0 \end{split}$$

Rectangle inequality

Example

The rectangle inequality with d = 3 is

$$\begin{split} &\sum_{i_1=1}^2\sum_{i_2=1}^2\sum_{i_3=1}^2(-1)^{i_1+i_2+i_3}C(u_{1i_1},u_{2i_2},u_{3i_3}) \\ &= -C(a_1,a_2,a_3)+C(a_1,a_2,b_3)+C(a_1,b_2,a_3)-C(a_1,b_2,b_3) \\ &+ C(b_1,a_2,a_3)-C(b_1,a_2,b_3)-C(b_1,b_2,a_3)+C(b_1,b_2,b_3) \\ &= -(C(a_1,a_2,a_3)+C(a_1,b_2,b_3)+C(b_1,a_2,b_3)+C(b_1,b_2,a_3) \\ &+ (C(a_1,a_2,b_3)+C(a_1,b_2,a_3)+C(b_1,a_2,a_3)+C(b_1,b_2,b_3)) \\ &\geq 0 \end{split}$$

Conclusion

 $ightarrow P(a_1 \leq U_1 \leq b_1,...,a_d \leq U_d \leq b_d)$ is non-negative for a random vector $(U_1,...,U_d)$.

Basics of Copula Svenja Griesbach Introduction to copulas

Proposition

Let F be a distribution function and let F^{\leftarrow} with $F^{\leftarrow}(u) = inf\{x : F(x) = u\}$ denote the generalized inverse.

Basics of Copula Svenja Griesbach

Proposition

Let F be a distribution function and let F^{\leftarrow} with $F^{\leftarrow}(u) = inf\{x : F(x) = u\}$ denote the generalized inverse. (1) Quantile transform: If $U \sim U(0, 1)$ has a standard uniform

distribution, then $P(F^{\leftarrow}(U) \leq x) = F(x)$.

Proposition

Let *F* be a distribution function and let F^{\leftarrow} with $F^{\leftarrow}(u) = inf\{x : F(x) = u\}$ denote the generalized inverse. (1) Quantile transform: If $U \sim U(0, 1)$ has a standard uniform

distribution, then $P(F^{\leftarrow}(U) \leq x) = F(x)$.

(2) Probability transform: If X has a continuous univariate distribution function F, then $F(X) \sim U(0, 1)$.

Proposition

Let F be a distribution function and let F^{\leftarrow} with $F^{\leftarrow}(u) = inf\{x : F(x) = u\}$ denote the generalized inverse. (1) Quantile transform: If $U \sim U(0, 1)$ has a standard uniform distribution, then $P(F^{\leftarrow}(U) \le x) = F(x)$.

(2) Probability transform: If X has a continuous univariate distribution function F, then $F(X) \sim U(0,1)$.

Proof. Maybe later.

Proposition

Let F be a distribution function and let F[←] with
F[←](u) = inf {x : F(x) = u} denote the generalized inverse.
(1) Quantile transform: If U ~ U(0,1) has a standard uniform distribution, then P(F[←](U) ≤ x) = F(x).

(2) Probability transform: If X has a continuous univariate distribution function F, then $F(X) \sim U(0, 1)$.

Proof.

Maybe later.

 \Rightarrow We can transform risks with a particular continuous distribution function to have any other continuous distribution.

(1) Quantile transform: If $U \sim U(0, 1)$ has a standard uniform distribution, then $P(F^{\leftarrow}(U) \leq x) = F(x)$.

(2) Probability transform: If X has a continuous univariate distribution function F, then $F(X) \sim U(0, 1)$.

Example

Let X have a standard normal distribution F

(1) Quantile transform: If $U \sim U(0, 1)$ has a standard uniform distribution, then $P(F^{\leftarrow}(U) \leq x) = F(x)$.

(2) Probability transform: If X has a continuous univariate distribution function F, then $F(X) \sim U(0, 1)$.

Example

Let X have a standard normal distribution $F \Rightarrow F(X)$ is uniform by proposition (2).

(1) Quantile transform: If $U \sim U(0, 1)$ has a standard uniform distribution, then $P(F \leftarrow (U) \le x) = F(x)$.

(2) Probability transform: If X has a continuous univariate distribution function F, then $F(X) \sim U(0, 1)$.

Example

Let X have a standard normal distribution $F \Rightarrow F(X)$ is uniform by proposition (2). Let G be a standard exponential distribution function

(1) Quantile transform: If $U \sim U(0, 1)$ has a standard uniform distribution, then $P(F \leftarrow (U) \leq x) = F(x)$.

(2) Probability transform: If X has a continuous univariate distribution function F, then $F(X) \sim U(0, 1)$.

Example

Let X have a standard normal distribution F $\Rightarrow F(X)$ is uniform by proposition (2). Let G be a standard exponential distribution function $\Rightarrow G^{\leftarrow}(u) = -ln(1-u)$ is the generalized inverse

(1) Quantile transform: If $U \sim U(0, 1)$ has a standard uniform distribution, then $P(F \leftarrow (U) \leq x) = F(x)$.

(2) Probability transform: If X has a continuous univariate distribution function F, then $F(X) \sim U(0, 1)$.

Example

Let X have a standard normal distribution F $\Rightarrow F(X)$ is uniform by proposition (2). Let G be a standard exponential distribution function $\Rightarrow G^{\leftarrow}(u) = -ln(1-u)$ is the generalized inverse Let Y be the transformed variable Y := -ln(1 - F(X)) $\Rightarrow P(Y \le v) = P(G^{\leftarrow}(F(X)) \le v) = G(v)$

(1) Quantile transform: If $U \sim U(0, 1)$ has a standard uniform distribution, then $P(F \leftarrow (U) \leq x) = F(x)$.

(2) Probability transform: If X has a continuous univariate distribution function F, then $F(X) \sim U(0, 1)$.

Example

Let X have a standard normal distribution F $\Rightarrow F(X)$ is uniform by proposition (2). Let G be a standard exponential distribution function $\Rightarrow G^{\leftarrow}(u) = -ln(1-u)$ is the generalized inverse Let Y be the transformed variable Y := -ln(1 - F(X)) $\Rightarrow P(Y \le v) = P(G^{\leftarrow}(F(X)) \le v) = G(v)$ $\Rightarrow Y$ has a standard exponential distribution by proposition (1).

Sklar's Theorem

Sklar's theorem, named after the American mathematician Abe Sklar, provides the theoretical foundation for the application of copulas.

Sklar's Theorem

Sklar's theorem, named after the American mathematician Abe Sklar, provides the theoretical foundation for the application of copulas.

Theorem

Let F be a joint distribution function with margins $F_1, ... F_d$. Then there exists a copula $C : [0, 1]^d \rightarrow [0, 1]$ such that, for all $x_1, ..., x_d \in \mathbb{R} = [-\infty, \infty]$,

$$F(x_1, ..., x_d) = C(F_1(x_1), ..., F_d(x_d)).$$
(3.2)

Basics of Copula Svenja Griesbach

Sklar's Theorem

Sklar's theorem, named after the American mathematician Abe Sklar, provides the theoretical foundation for the application of copulas.

Theorem

Let F be a joint distribution function with margins $F_1, ... F_d$. Then there exists a copula $C : [0,1]^d \to [0,1]$ such that, for all $x_1, ..., x_d \in \mathbb{R} = [-\infty, \infty]$,

$$F(x_1, ..., x_d) = C(F_1(x_1), ..., F_d(x_d)).$$
(3.2)

If all F_i 's are continuous, the copula C is unique, otherwise C is uniquely determined on $RanF_1 \times ... \times RanF_d$, with $RanF_i := F_i(\overline{\mathbb{R}})$ being the range of F_i .

Basics of Copula Svenja Griesbach

Example

Revision: Bernoulli distribution:

$$F_X(X) = \begin{cases} 0, & \text{if } x < 0, \\ 1 - p, & \text{if } 0 \le x < 1, \\ 1, & \text{if } x \ge 1 \end{cases}$$

Let (X_1, X_2) have a bivariate Bernoulli distribution with

$$P(X_1 = 0, X_2 = 0) = \frac{1}{8},$$

$$P(X_1 = 0, X_2 = 1) = \frac{2}{8},$$

$$P(X_1 = 1, X_2 = 0) = \frac{2}{8},$$

$$P(X_1 = 1, X_2 = 1) = \frac{3}{8},$$

Basics of Copula Svenja Griesbach

Bounds for a copula

Theorem

For every copula $C(u_1, ..., u_d)$ we have the bounds

$$max\left(\sum_{i=1}^{d}u_i+1-d, \ 0
ight)\leq C(u)\leq min(u_1,...,u_d).$$

Proof. On board.

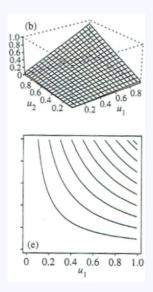
Basics of Copula Svenja Griesbach

Independence copula

Definition

Random vectors with continuous distributions are independent if and only if their dependence structure is given by the **independence copula**

$$C(u_1,...,u_d)=\prod_{i=1}^d u_i.$$



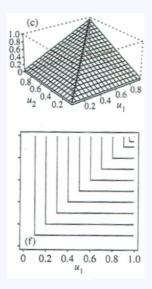
Specific copulas

Comonotonicity copula

Definition

The **comonotonicity copula** is the Fréchet upper bound copula from the last theorem:

$$C(u_1, ..., u_d) = min(u_1, ..., u_d)$$



Specific copulas

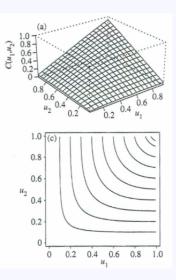
Gauss copula

Definition

If $Y \sim N_d(\mu, \Sigma)$ is a multivariate normal random vector, then its copula is a so-called **Gauss copula** which is given by

$$C_P^{Ga}(u) = P(\Phi(X_1) \le u_1, ..., \Phi(X_d) \le u_d) = \Phi_P(\Phi^{-1}(u_1), ..., \Phi^{-1}(u_d))$$

with P being the correlation matrix of Y.



Basics of Copula Svenja Griesbach Specific copulas

References

- A.McNeil, R.Frey, P.Embrechts: *Quantitative Risk Management: Concepts, Techniques and Tools*, 2015
- P.Embrechts, F.Lindskog, A.McNeil: *Modelling Dependence with Copulas and Applications to Risk Management*, 2003

Basics of Copula Svenja Griesbach References

Thank you for your attention!

Basics of Copula Svenja Griesbach

