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RIGIDITY OF BUSEMANN CONVEX FINSLER METRICS

SERGEI IVANOV AND ALEXANDER LYTCHAK

Abstract. We prove that a Finsler metric is nonpositively curved in the sense
of Busemann if and only if it is affinely equivalent to a Riemannian metric
of nonpositive sectional curvature. In other terms, such Finsler metrics are
precisely Berwald metrics of nonpositive flag curvature. In particular in di-
mension 2 every such metric is Riemannian or locally isometric to that of a
normed plane. In the course of the proof we obtain new characterizations of
Berwald metrics in terms of the so-called linear parallel transport.

1. Introduction

The notion of nonpositive curvature in Riemannian geometry has two famous
generalizations to metric geometry due to Alexandrov and Busemann, respectively.
Alexandrov’s generalization is nowadays known as locally CAT(0) spaces. We refer
to [Bal95], [BH99] and the bibliography therein for a vast literature on the subject.
Busemann nonpositively curved spaces, also known as locally convex spaces, are a
larger class of metric spaces defined as follows (see e.g. [Pap14]):

Definition 1.1. A geodesic metric space (X, d) is Busemann convex if for every
pair of constant-speed geodesics γ1,2 : [a, b] → X the function t 7→ d(γ1(t), γ2(t)) is
convex on [a, b].

A metric space (X, d) is nonpositively curved in the sense of Busemann (Buse-
mann NPC for short) if every point in X has a Busemann convex neighborhood.

In more geometric terms, a geodesic metric space (X, d) is Busemann convex
if and only if for every geodesic triangle △abc in X , the distance between the
midpoints of its sides [ab] and [ac] is no greater than 1

2d(b, c).
Contrary to Alexandrov’s definition of nonpositive curvature, Busemann’s one

is satisfied by all normed vector spaces with strictly convex norms. Thus it can
be sensibly applied to Finsler metrics. In fact, Finsler metrics are one of the main
motivations in Busemann’s work [Bus48] where the definition is introduced. It is
natural to ask how this class of Finsler metrics can be characterized in differential
geometric terms. For discussions of this question, see [Bus48, §13], [KS68], the
introduction in [KVK04], [KR14] and Problem 35 in Z. Shen’s problem list [She09].

In this paper we settle this question. It turns out that the Busemann NPC
condition for (smooth and strictly convex) Finsler metrics has surprising rigidity
implications and very few metrics satisfy it.

For Riemannian manifolds the Busemann NPC condition is equivalent to non-
positive sectional curvature. Hence one can construct an open set of Riemannian
examples by perturbing any negatively curved metric. Indeed, if a perturbed metric
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tensor is sufficiently C2-close to the original one, then it is also negatively curved
and hence Busemann NPC. One might expect that in the Finsler case a similar prop-
erty holds and that one can construct many examples of Busemann NPC Finsler
metrics by varying negatively curved Riemannian ones. These expectations turn
out to be wrong as our main theorem shows:

Theorem 1. A Finsler manifold (M,F ) is Busemann NPC if and only if there
exists a nonpositively curved Riemannian metric g on M whose Levi-Civita con-
nection preserves the Finsler norm F .

The Finsler norm F in Theorem 1 is not assumed to be reversible. Strictly speak-
ing, non-reversible Finsler manifolds are not metric spaces since the distance lacks
symmetry. Nevertheless Definition 1.1 applies just as well, cf. [KVK04, Section 5].

In the language of Finsler geometry our result reads as follows:

Theorem 2. A Finsler manifold (M,F ) is Busemann NPC if and only if it is a
Berwald manifold of nonpositive flag curvature.

The definitions of Berwald metrics and flag curvature are given in Section 2.
Theorem 2 is essentially a reformulation of Theorem 1, their equivalence easily
follows from Szabó’s metrization theorem [Sza81]. The “if” direction of Theorem 2
is proved by Kristály, Varga and Kozma [KVK04], see also [KK06]. Results of
[KK06] also imply that if (M,F ) is Berwald and Busemann NPC, then it has
nonpositive flag curvature.

We now discuss some implications of Theorems 1 and 2 and well-known features
of Berwald metrics. First, Theorem 1 implies that in a connected Busemann NPC
Finsler manifold all tangent spaces are isometric as normed vector spaces. This is
already a strong restriction on a Finsler metric.

Furthermore, if (M,F ) and g are as in Theorem 1 then the Finsler norm at every
point is invariant under the holonomy group of (M, g). Hence, if the holonomy group
acts transitively on the unit sphere then the Finsler structure must be Riemannian.
In dimension 2 the local holonomy group is either transitive or trivial, thus we have
the following (cf. [CS05, Corollary 4.3.5]):

Corollary 1.2. If a 2-dimensional connected Finsler manifold is Busemann NPC,
then it is Riemannian or locally isometric to a normed plane.

In general, recall that the Riemannian holonomy group is transitive unless the
metric locally splits as a product or is locally symmetric [Ber55]. This leads to a
classification of Busemann NPC Finsler metrics exactly as that of Berwald metrics
(see [Sza81] or [CS05, Theorem 4.3.4]) with additional requirements that the sym-
metric spaces involved are of non-compact type and the Riemannian factors are
nonpositively curved.

A Finsler norm F is preserved by the Levi-Civita parallel transport of a Rie-
mannian metric g if and only if F and g are affinely equivalent, that is if they have
the same geodesics up to affine reparametrizations (see e.g. [CS05, Theorem 4.1.3]).
Thus we have the following short reformulation of Theorem 1:

Corollary 1.3. A Finsler metric is Busemann NPC if and only if it is affinely
equivalent to a nonpositively curved Riemannian metric.

We mention that Finsler manifolds affinely equivalent to nonpositively curved
Riemannian symmetric spaces have recently turned up and played a prominent
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role in a series of papers of B. Leeb, M. Kapovich and J. Porti, see [KLP16] and
references therein.

Characterizations of Berwald spaces. Due to known results mentioned above,
in order to prove Theorem 1 it would suffice to show that every Busemann NPC
Finsler space is Berwald. However, we prove the “only if” part of Theorem 1
directly, bypassing Szabo’s metrization theorem. The proof requires very little
background from Finsler geometry, summarized in Section 2.

The proof consists of two steps. In the first step, contained in Section 3, we
observe that in a Busemann NPC Finsler space the linear parallel transport along
any geodesic preserves the Finsler norm. This follows from analysis of Jacobi fields
near points where they vanish.

The above mentioned linear parallel transport is defined in Section 2. Note that
this notion is different from the more commonly used “canonical parallel transport”,
which is usually non-linear. See e.g. [CS05, Chapter 4] where the two parallel
transports are considered together. The non-linear parallel transport is not used in
this paper beyond the comparison remarks in this introduction.

In the second step, contained in Proposition 4.2 (see Section 4), we prove the
following general fact about Finsler metrics: If the linear parallel transport of a
Finsler manifold (M,F ) preserves F , then F is Berwald. In the proof (see also
Proposition 4.1) we construct a Riemannian metric affinely equivalent to F . This
Riemannian metric is then used in the proof of Theorem 1 in Section 5.

Remark. We suggest the reader to compare Proposition 4.2 with well-known facts
about the canonical (non-linear) parallel transport: It always preserves the Finsler
norm, and it is linear if and only if the metric is Berwald. Proposition 4.2 “mirrors”
the last mentioned characterization with the linear parallel transport, which is by
definition linear but does not, in general, preserve the norm. Note that for Berwald
metrics the two parallel transports coincide, see [CS05, §4.3].

As a by-product, we obtain another characterization of Berwald spaces in terms
of the linear holonomy group naturally defined via the linear parallel transport.
Namely in Proposition 4.3 we prove the following: The closure of the linear holo-
nomy group of a Finsler metric is compact if and only if the metric is Berwald.

We mention that similar questions for the non-linear holonomy group (defined
via the non-linear parallel transport) were recently studied in [MN17].

Beyond smoothness. We work only with smooth Finsler structures and the
smoothness is essential in our proofs. It would be interesting to extend some of
the results to non-smooth Finsler structures and more general metric spaces. In
particular Corollary 1.3 suggests the following questions.

Question 1: Given a Busemann convex metric space, is there a CAT(0) space
closely and naturally related to it?

Question 2: Let (X, d) be a geodesic space affinely equivalent to a Busemann
convex space (X, d0). Is it true that (X, d) must be Busemann convex as well?

In the slightly more general class of spaces with convex bicombings the first
question turns out to be of interest in relation with the theory of Gromov hyper-
bolic groups, see [Lan13]. Some examples showing that one cannot expect affine
equivalence, as in Corollary 1.3, are discussed in Section 6.

Metric spaces affinely equivalent to Riemannian manifolds are characterized in
[Lyt12] in a way similar to Szabó’s metrization theorem. In fact, every such space
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is a limit of smooth Finsler metrics affinely equivalent to the same Riemannian
one, see Theorem 1.4 and Lemma 4.1 in [Lyt12]. This and Corollary 1.3 imply
an affirmative answer to the second question above if (X, d0) is a smooth Finsler
manifold.

Acknowledgements. The authors thank David Bao, Martin Kell, Alexandru
Kristaly, Hans-Bert Rademacher, Jozsef Szilasi for helpful comments. Special
thanks are due to Urs Lang for a discussion which led to the examples in Sec-
tion 6. The first author was supported in part by the RFBR grant 17-01-00128-a
and by the Presidium of the Russian Academy of Sciences grant PRAS-18-01. The
second author was supported in part by the DFG grants SFB TRR 191 and SPP
2026.

2. Preliminaries

In this section we recall some basics in Finsler geometry and prove some auxiliary
facts. We follow the presentation in [Rad04], where most concepts are developed
from Riemannian point of view. We refer to [CS05] and [BCS00] for more exhaustive
exposition of Finsler geometry. We include proofs of some standard facts to keep
the paper accessible to readers not familiar with Finsler geometry.

Let (M,F ) be a Finsler manifold, with the usual smoothness and strict convexity
assumptions on the Finsler norm F : TM → R+. These assumptions ensure that F
determines a smooth geodesic flow on TM \ {0}. As mentioned in the introduction
we do not assume that F is reversible. We denote by dF the (non-symmetric)
distance function induced by F on M .

By a geodesic we always mean an affine geodesic, i.e., a constant-speed one.
Constant paths are not regarded as geodesics. Since all our considerations are
local, we may always assume that the manifold M is narrowed down to a small
open region where all geodesics are embedded.

For a nonzero v ∈ TM , we denote by γv the unique geodesic with initial data
γ̇v(0) = v. Note that γv(t) depends smoothly on v and t.

A Jacobi field along a geodesic γ is a variation field of a smooth family of
geodesics. We denote by J F (γ) the set of all Jacobi fields along γ.

We make use of several notions from Finsler geometry. They all can be defined
by means of osculating Riemannian metrics, see below.

2.1. Osculating Riemannian metrics. For every p ∈ M and v ∈ TpM \ {0}
there is a unique positive definite quadratic form gv on TpM such that gv and
F 2|TpM agree to second order at v. If V is a non-vanishing vector field on an open
set U ⊂ M , the family {gV (p)}p∈U of quadratic forms defines a Riemannian metric
gV on U . If γ is an embedded geodesic and V extends the velocity field of γ to a
neighborhood of γ, we call gV an osculating Riemannian metric for γ and denote it
by gγ . Note that gγ is uniquely determined at every point on γ but the extension
to a neighborhood is not unique.

We need the following property (see Lemma 4.4 and Proposition 5.1 in [Rad04]
or Chapter 8 in [She01]):

Lemma 2.1. Let γ be an embedded geodesic of (M,F ) and g = gγ an osculating
Riemannian metric for γ. Then γ is a geodesic of g with the same space of Jacobi
fields: J g(γ) = J F (γ).
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We comment that Lemma 2.1 is essentially a consequence of the fact that respec-
tive equations from calculus of variations involve only first and second derivatives
of a Lagrangian with respect to the velocity variable.

2.2. Linear parallel transport and Jacobi operator. An osculating Riemann-
ian metric gγ for a geodesic γ defines the following structures, which are in fact
independent on the choice of gγ (see [Rad04] or Lemma 2.3 below):

• The covariant derivative of a vector field W along γ, denoted by DγW :

(2.1) DγW (t) =
∇γ

dt
W (t)

where ∇γ is the Levi-Civita connection of gγ .
• The linear parallel transport along γ associated to this connection. It is a
family of non-degenerate linear maps between tangent spaces Tγ(t)M .

• The Jacobi operator Rγ , which is a family of linear operators on the tangent
spaces Tγ(t)M satisfying the Jacobi equation

(2.2) DγDγJ(t) = −Rγ(J(t))

for all Jacobi fields J along γ. Namely Rγ(w) = Rgγ (w, γ̇(t))γ̇(t) for all
w ∈ Tγ(t)M , where Rgγ is the Riemannian curvature tensor of gγ .

Our notation has γ rather than γ̇ in indices (cf. [Rad04]) since we are only interested
in vector fields along geodesics.

The following simple computation is used several times in the paper.

Lemma 2.2. Let γ = γv be a geodesic of (M,F ) and w ∈ Tγ(0)M . Define a Jacobi
field J along γ by

(2.3) J(t) =
d

ds

∣

∣

∣

s=0
γv+sw(t) ,

and let W be a Dγ-parallel vector field along γ (with respect to any osculating
Riemannian metric) with W (0) = w. Then

(2.4) J(t) = t ·W (t) +O(t3) , t → 0.

Proof. Fix an osculating Riemannian metric gγ for (2.1) and (2.2). For brevity, in
this proof we use notation X ′ for the covariant derivative DγX of a vector field X

along γ. From (2.3) we have J(0) = 0,

J ′(0) =
∇γ

dt

∣

∣

∣

t=0

d

ds

∣

∣

∣

s=0
γv+sw(t) =

d

ds

∣

∣

∣

s=0

d

dt

∣

∣

∣

t=0
γv+sw(t) = w ,

and J ′′(0) = −Rγ(0) = 0. The vector field X(t) := t · W (t) has the same value
and the same first and second covariant derivatives at t = 0, namely X(0) = 0,
X ′(0) = W (0) = w and X ′′(0) = 2W ′(0) = 0 since W is Dγ-parallel. Therefore
J(t)−X(t) = O(t3) as t → 0. �

Lemma 2.3. Let g1, g2 be two Riemannian metrics on M . Suppose that a path γ

is a geodesic for both g1 and g2 and the two metrics induce the same Jacobi fields
along γ, i.e. J g1(γ) = J g2(γ). Then g1 and g2 induce the same covariant derivative
and the same Jacobi operator along γ.

In particular, for a Finsler manifold (M,F ) and an F -geodesic γ, the operators
Dγ and Rγ are independent of the choice of the osculating metric gγ.
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Proof. We apply the computation from Lemma 2.2 to the Riemannian metrics gi.
The formula (2.4) determines the first order jet of W (t) at t = 0 in terms of the
Jacobi field J . Hence the space J = J gi(γ) determines (independently of the
metric) the set of vector fields W along γ such that DγW (0) = 0. Indeed, a vector
field satisfies DγW (0) = 0 if and only if there exists J ∈ J such that (2.4) holds.
Similarly, for every t0 ∈ R the set of vector fields W along γ satisfyingDγW (t0) = 0
is determined by J .

Thus the set of parallel fields along γ is determined by J and hence it is the same
set for g1 and g2. The parallel fields determine the covariant derivative Dγ . The
Jacobi equation (2.2), J and Dγ together determine the Jacobi operator Rγ . This
proves the first statement of the lemma. The second one follows by Lemma 2.1. �

With Lemma 2.3 at hand, one can define the covariant derivative Dγ and the
Jacobi operatorRγ along a Finsler geodesic γ as those of any osculating Riemannian
metric associated to γ. Note that with these definitions the first part of Lemma 2.3
applies to Finsler metrics as well. In particular, affinely equivalent Finsler metrics
induce the same covariant derivatives and the same Jacobi operators.

Following [CS05], we use the term linear parallel transport for the parallel trans-
port operator induced by Dγ and refer to Dγ-parallel vectors fields as linearly
parallel vector fields along γ.

2.3. Flag curvature. The flag curvatureKF (v, σ) of a Finsler manifold (M,F ) is a
function of a point p ∈ M , a plane (i.e., two-dimensional linear subspace) σ ⊂ TpM ,
and a direction v ∈ σ\{0} in that plane. It can be defined as the sectional curvature
Kg(σ) of an osculating Riemannian metric g = gγ for the geodesic γ = γv. From
the Riemannian Jacobi equation one sees that

(2.5) KF (v, σ) = Kg(σ) =
g(Rγ(w), w)

|v ∧ w|2g

for any vector w ∈ σ such that v and w are linearly independent, where

|v ∧ w|2g = g(v, v)g(w,w) − g(v, w)2.

The formula (2.5) and Lemma 2.3 imply that the definition does not depend on the
choice of the osculating metric g. If the metric F is Riemannian, then KF (v, σ)
equals its sectional curvature at σ, in particular it does not depend on v.

Consider the Jacobi operator Rγ at p = γ(0). By symmetries of the Riemannian
curvature tensor, this operator on TpM is symmetric with respect to the inner
product induced by g = gγ . Hence it has only real eigenvalues. By (2.5), the flag
curvature of (M,F ) is nonpositive if and only if these eigenvalues are all nonpositive
for every p and γ. Since Jacobi operators of affinely equivalent metrics coincide,
this implies the following:

Lemma 2.4. Let F1 and F2 be affinely equivalent Finsler metrics and the flag
curvature of F1 is nonpositive. Then the flag curvature of F2 is nonpositive as well.

2.4. Berwald metrics. Berwald metrics are a special class of Finsler metrics that
can be defined in many equivalent ways, see [BCS00, Ch. 10] and [CS05, Ch. 4]. A
definition convenient for our purposes is the following. A Finsler manifold (M,F )
is Berwald if and only if there exists a symmetric affine connection on M such that
the geodesics of F are also geodesics of this connection.
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By Szabó’s metrization Theorem [Sza81], this affine connection can be realized
as the Levi-Civita connection of a Riemannian metric. Thus a Finsler metric is
Berwald if and only if it is affinely equivalent to a Riemannian metric.

Finally, we need the fact that if the Levi-Civita connection of a Riemannian
metric g preserves a Finsler norm F , then F and g are affinely equivalent (and
hence F is Berwald). See e.g. [CS05, Lemma 4.1.5] for a proof. Alternatively,
one can verify directly that in this case the Euler-Lagrange equation for Finsler
geodesics is satisfied by Riemannian geodesics. This is easy to see in the Riemannian
exponential coordinates at the point in question.

3. An implication of Busemann convexity

The aim of this section is the following

Lemma 3.1. Let (M,F ) be a Busemann NPC Finsler manifold and γ : (a, b) → M

a geodesic. Then the linear parallel transport along γ preserves F , i.e., for every
linearly parallel vector field W along γ the function t 7→ F (W (t)) is constant.

Proof. The statement is local, thus we may assume that γ is contained in a Buse-
mann convex open subset of M .

First observe that for every Jacobi field J along γ, its norm F (J(t)) is a convex
function of t. Indeed, let {γs} be a geodesic variation of γ whose variation field
is J . By Busemann convexity, for every s the function fs(t) = dF (γ(t), γs(t)) is

convex. Hence so is the limit function lims→0
fs(t)
s

= F (J(t)).
Now let W 6= 0 be a linearly parallel vector field along γ. Note that F (W (t)) is

a smooth function of t. Assuming that 0 ∈ (a, b), Lemma 2.3 implies that there is
a Jacobi field J along γ such that

J(t) = t ·W (t) +O(t3) , t → 0 .

For this Jacobi field J and t > 0 we have

(3.1) F (J(t)) = F (t ·W (t)) +O(t3) = t · F (W (t)) +O(t3) , t → 0+.

In particular F (J(t)) = t · F (W (0)) + o(t) as t → 0+. Since F (J(t)) is a convex
function, it follows that F (J(t)) ≥ t · F (W (0)) for all t ≥ 0. This and (3.1) imply
that

F (W (t)) ≥ F (W (0))−O(t2) , t → 0+ ,

hence F (W (t))′t=0 ≥ 0.
Similarly, for the Jacobi field −J and t < 0 we have

F (−J(t)) = −t · F (W (t)) +O(t3) , t → 0− ,

and therefore F (−J(t)) ≥ −t · F (W (0)) for all t ≤ 0. These relations imply that

F (W (t)) ≥ F (W (0))−O(t2) , t → 0− ,

hence F (W (t))′t=0 ≤ 0. Thus F (W (t))′t=0 = 0.
Shifting the parameter of γ we deduce that the derivative of F (W (t)) vanishes

everywhere on (a, b). Therefore F (W (t)) is constant. �
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4. Linear parallel transport and Berwaldness

In this section we prove three characterizations of Berwald metrics in terms of
the linear parallel transport. The proof of Theorems 1 and 2 in the next section
uses Proposition 4.2, which in its turn refers to Proposition 4.1.

Proposition 4.1. Let (M,F ) be a Finsler manifold. Let g be a smooth Riemannian
metric on M such that the linear parallel transport (determined by F ) along any F -
geodesic preserves g. Then g is affinely equivalent to F , in particular F is Berwald.

Proof. Let ∇ denote the Levi-Civita connection induced by g. For p ∈ M and
v ∈ TpM \ {0} define κ(v) ∈ TpM by

κ(v) =
∇

dt

∣

∣

∣

t=0
γ̇v(t)

where γv is, as usual, the F -geodesic with γ̇v(0) = v. That is, κ(v) is the Riemann-
ian second derivative of γv. Note that κ(v) depends smoothly on v. We need to
show that every geodesic of the Finsler manifold (M,F ) is a geodesic in (M, g).
Thus, it suffices to prove that κ(v) = 0 for all p and v.

Let W be a linearly parallel vector field along γv and w = W (0). We claim that

(4.1)
d

ds

∣

∣

∣

s=0
κ(v + sw) = 2 ·

∇

dt

∣

∣

∣

t=0
W (t) .

To prove this, we use the Riemannian exponential coordinates with respect to g

at p to identify a small neighborhood U of p with an open subset of Rn = TpM .
By means of coordinates we also identify vector fields along γv with R

n-valued
functions of t. Recall that the Levi-Civita connection coefficients in exponential
coordinates vanish at the origin. Hence in these coordinates we have

(4.2) κ(v) =
d2

dt2

∣

∣

∣

t=0
γv(t)

and
∇

dt

∣

∣

∣

t=0
W (t) =

d

dt

∣

∣

∣

t=0
W (t).

Differentiating (4.2) yields

d

ds

∣

∣

∣

s=0
κ(v + sw) =

∂3

∂s∂t2

∣

∣

∣

(s,t)=(0,0)
γv+sw(t) =

d2

dt2

∣

∣

∣

t=0
J(t)

where J is the Jacobi field along γv defined by (2.3), see Lemma 2.2. By the relation
J(t) = t ·W (t) +O(t3) from Lemma 2.2, the right-hand side can be rewritten as

d2

dt2

∣

∣

∣

t=0
J(t) =

d2

dt2

∣

∣

∣

t=0
(t ·W (t)) = 2 ·

d

dt

∣

∣

∣

t=0
W (t) = 2 ·

∇

dt

∣

∣

∣

t=0
W (t) .

This finishes the proof of (4.1).

Now we forget about coordinates and introduce some shortcut notation. We
write 〈·, ·〉 instead of g(·, ·) and denote by X ′(t) the Levi-Civita derivative (induced
by g) of a vector field X(t) along a path.

Since g is preserved by the linear parallel transport, for any linearly parallel
vector fields X and Y along γv, the inner product 〈X(t), Y (t)〉 is constant, hence

(4.3) 0 =
d

dt
〈X(t), Y (t)〉 = 〈X ′, Y 〉+ 〈X,Y ′〉 .
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Note that γ̇v is linearly parallel along γv. For X = Y = γ̇v and t = 0 the identity
(4.3) boils down to

(4.4) 〈κ(v), v〉 = 0.

Fix w ∈ TpM and letW be the linearly parallel vector field along γv withW (0) = w.
We replace v by v + sw in (4.4) and differentiate with respect to s using (4.1):

0 =
d

ds

∣

∣

∣

s=0
〈κ(v + sw), v + sw〉 = 〈2 ·W ′(0), v〉+ 〈κ(v), w〉 .

On the other hand, plugging X = W and Y = γ̇v into (4.3) we see that

0 = 〈W ′(0), v〉+ 〈w, κ(v)〉 .

The last two equations together imply that 〈κ(v), w〉 = 0. Since w was arbitrary in
TpM , we conclude that κ(v) = 0. This finishes the proof of the proposition. �

We now deduce the main ingredient of the proofs of Theorems 1 and 2.

Proposition 4.2. Let (M,F ) be a Finsler manifold. Suppose that the linear parallel
transport along any geodesic preserves the Finsler norm F . Then there exists a
Riemannian metric on M affinely equivalent to F . In particular F is Berwald.

Proof. Consider a smooth Riemannian metric g on M whose value gp at every
p ∈ M is canonically determined by the norm Fp := F |TpM , where “canonically”
means that any linear isometry between normed spaces (TpM,Fp) and (TqM,Fq)
takes gp to gq. See [MT12] for a possible construction of such g.

Since the linear parallel transports are linear and preserve F , they also preserve g.
The claim now follows from Proposition 4.1. �

Our next result generalizes Proposition 4.2. In order to state it we need the
notion of linear holonomy group, defined as follows. Let (M,F ) be a Finsler mani-
fold. For a piecewise geodesic path γ : [a, b] → M denote by Pγ the linear parallel
transport along γ. Recall that Pγ is a linear isomorphism from Tγ(a)M to Tγ(b)M .
Fix a point p ∈ M and let GL(TpM) denote the group of linear self-isomorphisms
of TpM . The linear holonomy group LHp(M,F ) is the subgroup of GL(TpM) gen-
erated by maps of the form P−1

γ2
◦Pγ1

where γ1 and γ2 are piecewise geodesic paths
starting at p and having a common end point. (The definition is so cumbersome
because linear parallel transports in opposite directions are in general not inverse
to each other.)

Proposition 4.3. Let (M,F ) be a connected Finsler manifold and p ∈ M . Then
the closure of the linear holonomy group LHp(M,F ) in GL(TpM) is compact if and
only if F is Berwald.

Proof. Let H = LHp(M,F ). If F is Berwald then by Szabó’s metrization theorem
the linear parallel transport is the Levi-Civita parallel transport of some Riemann-
ian metric. Thus H preserves an inner product on TpM and is therefore contained
in the corresponding orthogonal group, which is compact.

On the other hand, if the closure of H is compact then there exists an H-
invariant inner product gp on TpM . For every x ∈ M , pick a piecewise geodesic
γ connecting p to x and define an inner product gx on TxM as the push-forward
of gp by the linear parallel transport Pγ . Since gp is H-invariant, the resulting
Riemannian metric g = {gx}x∈M is well-defined and it is preserved by the linear
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parallel transport along any F -geodesic. It is easy to see that g is smooth. By
Proposition 4.1 it follows that F is a Berwald metric. �

5. Proof of the theorems

We can now collect the harvest and prove Theorems 1 and 2.
The “if” part of Theorem 2 follows from the main result of [KVK04]. To prove

the “if” part of Theorem 1, let g be a Riemannian metric on M of nonpositive
sectional curvature whose Levi-Civita connection preserves the Finsler norm F .
Then F is Berwald and affinely equivalent to g (see Section 2.4). Now Lemma 2.4
implies that F has nonpositive flag curvature. Hence, by the “if” part of Theorem 2,
(M,F ) is Busemann NPC.

Now we prove the “only if” implications of the theorems. Let (M,F ) be a
Busemann NPC Finsler manifold. Then by Lemma 3.1 the linear parallel transport
preserves F . Therefore, by Proposition 4.2 the Finsler metric F is Berwald and
affinely equivalent to a Riemannian metric g.

It remains to prove that g has nonpositive sectional curvature and F has non-
positive flag curvature. This can be seen from results of [KK06] but for reader’s
convenience we give a short proof here.

First let us show that F has nonpositive flag curvature. Suppose the contrary.
Then, as explained in Section 2.3, for some geodesic γ the Jacobi operator Rγ has
a positive eigenvalue at p = γ(0). Let w ∈ TpM be a nonzero vector such that
Rγ(w) = λw, λ > 0. Consider the Jacobi field J along γ with the initial conditions
J(0) = w and DγJ(0) = 0. Let J(t) ∈ TpM be the image of J(t) in TpM under

the linear parallel transport along γv. Then J
′

(0) = DγJ(0) = 0 and

J
′′

(0) = DγDγJ(0) = −Rγ(J(0)) = −λw .

Since the linear parallel transport preserves F , we have F (J(t)) = F (J(t)) for all t.
Therefore

F (J(t))′′t=0 = F (J(t))′′t=0 = −λ · F (w) < 0 ,

contrary to the fact that F (J(t)) is a convex function (see the proof of Lemma 3.1).
This contradiction shows that F has nonpositive flag curvature and finishes the
proof of Theorem 2.

Now Lemma 2.4 and the affine equivalence of F and g imply that g has nonpos-
itive sectional curvature. This finishes the proof of Theorem 1.

6. Non-smooth examples

In this section we describe two simple examples of Busemann convex spaces not
affinely equivalent to any CAT(0) space. Both examples are constructed from a
plane V with a strictly convex non-Euclidean norm.

The first example X1 arises from V by attaching a ray at the origin.
The second example X2 is the double branched cover of V with branching locus

the origin 0 ∈ V . We give X2 the naturally induced length metric. Note that X2

is biLipschitz to the Euclidean plane.
It is not difficult to see that X1 and X2 are Busemann convex. Assume now that

there exists a space Z and an affine bijection F : Xi → Z for i = 1 or i = 2, hence
F sends constant speed geodesics to constant speed geodesics.

Every ray in V starting at the origin can be continued inX1 to an infinite geodesic
by the attached ray in X . Thus, in the case of X1, any ray in V is stretched by the
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same factor as the attached ray. Hence all rays in V through the origin are stretched
by the same factor. The metric on the punctured plane Z0 = F (V \ {0}) is affinely
equivalent to the flat Riemannian manifold R

2 \ {0}. Due to [Lyt12, Theorem 1.5],
the metric on Z0 must come from a constant norm on V . In particular, parallel rays
in V must be stretched by F by equal factors. We conclude that F must stretch
all distances by the same factor. Thus, F is a dilation and Z cannot be CAT(0).

Every pair of rays γ1,2 in X2 starting at the origin can be continued to infinite
geodesics by the same ray γ3. Therefore, also in case of X2, the map F must stretch
all rays through the origin by the same factor. Using [Lyt12, Theorem 1.5] as above,
this again implies that F is just a dilation and Z cannot be CAT(0).

However, in both cases there is a natural CAT(0) metric on the spaces X1,
X2 which arises in the same way as X1,2 from the Euclidean plane V0 instead of
V . These CAT(0) metrics have the same unparametrized geodesics as the original
metrics and are affinely equivalent to the original metric outside the branching
locus.
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