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LORENTZ MEETS LIPSCHITZ

CHRISTIAN LANGE, ALEXANDER LYTCHAK, CLEMENS SÄMANN

Abstract. We show that maximal causal curves for a Lipschitz
continuous Lorentzian metric admit a C1,1-parametrization and
that they solve the geodesic equation in the sense of Filippov in this
parametrization. Our proof shows that maximal causal curves are
either everywhere lightlike or everywhere timelike. Furthermore,
the proof demonstrates that maximal causal curves for an α-Hölder
continuous Lorentzian metric admit a C1,α

4 -parametrization.

1. Introduction

Causality theory is a very active part of mathematical general rel-
ativity and Lorentzian geometry, see the current comprehensive re-
view [Min19b]. Recently, in several works [FS12], [CG12], [KSSV14],
[Min15], [Säm16], [BS18], [Min19a], [GKSS20] the theory was extended
to the setting of non-smooth Lorentzian and Lorentz-Finsler manifolds
and towards a synthetic theory [KS18, AGKS19, AHCPS20, CM20],
where there might not be a differentiable or manifold structure, anal-
ogous to length or Alexandrov spaces in metric geometry. Moreover,
issues of low regularity came into focus lately, as they arise in the study
of the cosmic censorship conjecture, in particular the (in-)extendibility
of spacetimes [Sbi18, GL17, GL18, GLS18, GKS19, LO19a, LO19b,
MS19, Sbi20].

The regularity class of C1,1 for the Lorentzian metric turned out
to mark a transition between the classical theory and low regularity
phenomena. In this regularity, classical results concerning geodesics,
causality theory and singularity theorems, remain valid, see [KSS14,
Min15, KSSV14, KSSV15, KSV15, GGKS18, SS18], whereas for lower
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regularity differences occur [CG12, GKSS20] and concepts diverge. In
particular, the notions of maximal curves and geodesics (solutions to
the geodesic equations) no longer coincide.
If the metric is C1 then solutions to the geodesic equation still exist

but might not be unique. Nevertheless, in the recent work [Gra20] Graf
establishes the Hawking and Penrose singularity theorems in this regu-
larity class and along the way shows that in a (globally hyperbolic) C1-
spacetime any two causally related points are connected by a maximal
C2-geodesic. Building on these results, Schinnerl [Sch20] proved that
in a C1-spacetime any maximal curve is of C2-regularity and possesses
a parametrization solving the geodesic equation. The latter result of
Graf and the one of Schinnerl also follow from our work.
Within the low-regularity regime Lipschitz continuous Lorentzian

metrics play an especially important role as they cover physically most
relevant cases: e.g. spacetimes where there is a loss of regularity on a
hypersurface such as shell-crossing singularities, thin shells of matter,
and surface layers, cf. [BH03, SSV17, Lak17], or impulsive gravitational
waves in the so-called Rosen form, see [GP09, Ch. 20], and especially
[PSSŠ15, PSSŠ16], where the Filippov solution concept was employed
to establish C1-regularity of geodesics.
Below this regularity many fundamental statements in causality the-

ory finally cease to hold, e.g. the future of a point need not be open
[GKSS20], the push-up principle fails and, most surprisingly, there are
Hölder spacetimes where the boundary of a lightcone has positive mea-
sure (so-called causal bubbles) [CG12, Ex. 1.11]. On the other hand,
several fundamental properties of the causality theory have been veri-
fied in continuous spacetimes, [CG12, Säm16, Min19a]. Various other
questions concerning causality theory and properties of maximal curves
in Lipschitz continuous Lorentzian manifolds have been formulated in
[SS18]. The aim of this article is the resolution of most of these ques-
tions.

1.1. Statement of results. All results discussed in the paper are of
local nature, thus we will formulate them only for the case of globally
hyperbolic Lorentzian manifolds (cf. [Säm16]).
Given a globally hyperbolic Lorentzian manifold (M, g) with a Lip-

schitz continuous metric, a causal (Lipschitz continuous) curve γ :
[a, b] → M is called maximal if it maximizes the Lorentzian length
among all causal curves connecting its endpoints. Our main result for
such curves reads as follows.
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Theorem 1.1. Let γ be a maximal curve in a Lipschitz continuous
Lorentzian metric. Then γ admits a parametrization making it a C1,1-
curve. Moreover, in this parametrization, γ is a solution of the geodesic
equation in the sense of Filippov.

If the Lorentzian metric is assumed to be C1 then solutions of the
geodesic equation in the sense of Filippov are exactly solutions of the
geodesic equation in the classical sense and are automatically C2. Thus,
for C1-regular Lorentzian metrics our results recover [Gra20, Prop. 2.13]
and [Sch20].
The proof of Theorem 1.1 shows that for timelike maximal curves,

their parametrization with constant Lorentzian velocity satisfies the
conclusion of Theorem 1.1, thus provides a solution of the geodesic
equation in the sense of Filippov.
Due to a recent result by Graf and Ling ([GL18, Thm. 1.1]) for a

Lipschitz continuous Lorentzian metric any maximal curve is either
lightlike or timelike almost everywhere. We strengthen this result, see
Proposition 9.1, and provide an independent proof of it:

Proposition 1.2. Let γ : I → M be a maximal curve for a Lipschitz
continuous Lorentzian metric. Then γ can be parametrized in a C1,1

way, and either γ′(t) is lightlike for all t, or γ′(t) is timelike for all t.

We mention that the proof does not rely on the push-up principle,
established for Lipschitz continuous Lorentzian metrics in [CG12]; in
fact, the push-up principle can be easily deduced from Proposition 1.2.

1.2. Additional comments. We would like to mention a few related
statements. First, a direct adaptation of the proof of Proposition 7.2
reveals the following (probably non-optimal) statement:

Proposition 1.3. Maximal curves for an α-Hölder continuous Lorentz-
ian metric admit a C1,α

4 -parametrization.

The second comment is concerned with the optimality of the C1,1-
regularity in Theorem 1.1, whose unclear status was pointed out in
[SS18]. In a fixed chart, in which the metric is Lipschitz continuous,
the maximal curves do not have to be of class C2. Indeed, we can
start with the Minkowski metric g0 on R

2 and pull it back by a C1,1-
diffeomorphism φ : R2 → R

2 such that the preimage γ∗ := φ−1(γ) of
the y-axes γ is not C2. Then, γ∗ is a maximal curve in the metric
φ∗(g0), and γ∗ is not C2.
The following question also surely has a negative answer, but a proof

would require some considerable amount of new analytic ideas, similar
to [DK81], [Sv76] in low regularity: Given a C0,1-Lorentzian metric g
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on U ⊂ R
n, does there exist some coordinates around any point, in

which the metric is still C0,1 and all maximal curves are of class C2?
The third remark concerns the regularity of solutions of the geodesic

equation in the sense of Filippov, see [Fil88], [SS18] and Section 3
for a discussion of the corresponding concepts. The following general
statement shows that the second part of Theorem 1.1 implies the first
and thereby also answers a question posed in [SS18].

Proposition 1.4. For any Lorentzian metric g of class C0,1 on an open
domain U ⊂ R

n, any solution γ : [0, 1] → U of the geodesic equation
in the sense of Filippov is of class C1,1.

Moreover, the C1,1-norm of γ is bounded in terms of the C0,1-norm
of g and the Euclidean length of γ. The proof of this proposition is
a direct consequence of a classical result by Filippov [Fil88, Thm. 7.8]
and holds true for any pseudo-Riemannian metric g (see also [Ste14]).
The first half of Theorem 1.1 is the analog of the corresponding

regularity statement for shortest curves in Riemannian metrics, [LY06],
and its proof follows the ideas in [LY06]. The proof that maximal
curves in C0,1-Lorentzian metrics are Filippov-geodesics is an extension
of the classical ”first variation” argument and transfers literally to the
Riemannian case (even with some technical issues disappearing). It
shows that any shortest curve in a Riemannian C0,1-metric solves the
geodesic equation in the sense of Filippov.
Note, however, that solutions of the geodesic equation in the sense of

Filippov are neither uniquely defined nor have any extremality proper-
ties, even in the Riemannian case, unless the regularity of the metric
g is assumed to be C1,1, see [Har50, HW51]. In particular, solutions to
the geodesic equations need not be maximal (on any subinterval) nor
unique and maximal curves need not be unique, neither.
It seems to be a challenging question to understand the geodesic flow

in Lorentzian (or Riemannian) metrics of low regularity, cf. [Amb08],
[KLP17]. Finally, it appears to be possible to use our Theorem 1.1
to extend the singularity theorem of Hawking to the setting of C0,1-
Lorentzian metrics (this will be explained in a forthcoming article).

1.3. Structure of the text. After introducing notations and conven-
tions in Section 2, we discuss properties of solutions of geodesic equa-
tions in the sense of Filippov, prove Proposition 1.4 and show that the
class of Filippov geodesics is stable under pointwise convergence in Sec-
tion 3. In Section 4 we show that a maximal curve solves the geodesic
equation, if it is already known to be timelike, C1,1 and parametrized
with constant Lorentzian velocity.
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In Section 5 we state a version of a result of [CH70], [LY06] showing
that the property of (not) being a C1,α-curve in a Euclidean space can
be characterized in terms of the deviations of the curve from the chords
connecting points on the curve.
In Section 6 we provide a quantitative version of the triangle inequal-

ity in Minkowski space, which to the best of our knowledge seems be
a completely new result.
In the next sections we fix a chart and show that all maximal curves

in this chart are C1,1. The basic idea, going back to the Riemannian
situation analyzed in [CH70] and [LY06], is that if the maximal curve
were too far from a chord, then the chord would have longer Lorentzian
length than the maximal curve. One of the arising difficulties is that,
a priori, the Euclidean chord does not need to be causal.
In Section 7 we prove Proposition 1.3, relying on the quantitative

triangle inequality. Here we compare the Lorentzian length of the curve
and the chord with respect to the Minkowski metric of a fixed point
on the chord, and then estimate the error terms arising from the non-
constancy of the Lorentzian metric. Also in the Riemannian case, this
estimate is too coarse to obtain the optimal C1,1-regularity, for Lipschitz
continuous metrics. However, for the rest of the argument we actually
only need that maximal curves are C1.
In Section 8 we consider maximal curves whose tangent vectors are

timelike everywhere. We compare the lengths of the curve and its
chords by estimating the differences of Lorentzian velocities with re-
spect to varying Minkowski metrics. Also this part follows the Rie-
mannian case in [LY06], and supplies us with the C1,1-regularity for
uniformly timelike maximal curves.
In Section 9 we prove Proposition 1.2 and finish the proof of the

main theorem for timelike maximal curves.
In the final section 10 we show that any lightlike maximal curve can

be obtained as a limit of maximal curves which solve the geodesic equa-
tion. By stability, it shows that any maximal curve solves the geodesic
equation in the sense of Filippov and an application of Proposition 1.4
then finishes the proof of the main theorem.

2. Notation and conventions

We use the convention that a Lorentzian metric g has signature
+ − − − . . . and a vector v ∈ TpM is causal if gp(v, v) ≥ 0 (v 6= 0),
timelike if gp(v, v) > 0, null or lightlike if gp(v, v) = 0 (v 6= 0) and
spacelike if gp(v, v) < 0 or v = 0. Corresponding Lorentzian norms are

denoted as |v|p :=
√

|gp(v, v)|. A locally Lipschitz continuous curve
5



γ : I → M is timelike/causal/lightlike if γ̇ is timelike/causal/lightlike
almost everywhere.
On the Euclidean space R

n we denote by ‖ · ‖ the Euclidean norm.
We denote the standard Minkowski product on R

n as 〈·, ·〉,

〈u, v〉 := utvt − uT
x vx ,

where we denote for a vector w ∈ R
n by wt ∈ R its first and by

wx ∈ R
n−1 its last (n − 1) coordinates. The Euclidean scalar product

will never appear in this text. Otherwise we follow the conventions
used in [CG12, GKSS20].
A Lorentzian C0,1-manifold denotes a smooth manifold M with a

fixed smooth atlas and a Lorentzian metric g whose coordinates in any
chart are Lipschitz continuous.
Most of the time we work locally on an open set U ⊂ R

n. In such a
chart we denote the Lipschitz constant of g as L:

|gx(v, w)− gy(v, w)| ≤ L · ‖x− y‖ ,

for all unit vectors v, w ∈ R
n and all x, y ∈ U .

By making the chart smaller and the Lipschitz constant larger, if
needed, we can always assume that for any point x ∈ U the chart
U can be changed, so that gx coincides with the standard Minkowski
product 〈·, ·〉, (while keeping the Lipschitz constant L for g).
Making the chart U smaller we can assume that the first coordi-

nate vector T is future directed timelike. More precisely, we may as-
sume that the first coordinate t(u) := ut as function on R

n grows with
velocity at least 1

2
on any future directed causal curve γ : I → U

parametrized by Euclidean arclength, i.e.

(t ◦ γ)′ ≥ 1

2

almost everywhere. In particular, any causal curve γ in U parametrized
by arclength is a bilipschitz curve with bilipschitz constant 2. Our
Lorentzian manifold M and therefore also all charts will always be
assumed globally hyperbolic (cf. the proof of [SS18, Thm. 2.2]).
By L(γ) = Lg(γ) we denote the Lorentzian length of a causal curve

γ : I → M :

L(γ) =
∫

I

√

g(γ′(t), γ′(t)) dt .

A causal curve γ : I → M is called maximal if its Lorentzian length
is maximal among all causal curves with the same endpoints. Any
subcurve of any maximal curve is maximal.
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3. Filippov geodesics

3.1. Filippov geodesics, their regularity and stability. Let M
be a Lorentzian manifold with Lorentzian metric g of class C0,1. Then
there exists a unique Levi-Civita connection ∇g on M . This connec-
tion assigns to any pair of locally Lipschitz vector fields X, Y a locally
bounded vector field ∇g

XY so that the usual rules (torsion freeness and
metric property) are satisfied, see, for instance, [Hon14].
In any chart U ⊂ R

n the Levi–Civita connection differs from the
directional derivative DY (X) by a tensor Γ, called the Christoffel sym-
bol, which is a bounded symmetric (1, 2)-tensor on U .
The usual Koszul formula provides a formula for Γ via the partial

derivatives of g, which exist almost everywhere on U . More precisely,
the value of Γ is defined in all points in which g is differentiable.
Let U be a chart as in Section 2. We say that a curve γ : I → U

is a (Filippov-) geodesic if γ′ exists almost everywhere, is absolutely
continuous, and γ is a solution of the differential equation

γ′′(t) + Γγ(t)(γ
′(t), γ′(t)) = 0

in the sense of differential inclusions of Filippov [Fil88], [SS18]. This is
the case if for almost every t ∈ I the point −γ′′(t) is contained in the
essential convex hull

Γ̂γ(t)(γ
′(t), γ′(t)) :=

⋂

δ>0

⋂

µ(N)=0

K(δ, N),

where µ is the Lebesgue measure on R
n×R

n and K(δ, N) is the closed
convex hull

K(δ, N) := co{Γx(w,w) : (x, w) ∈ (U × R
n) \N ;

‖(x, w)− (γ(t), γ′(t))‖ < δ} .
Due to the continuity of Γx(v, v) in the second variable v for al-

most all x ∈ U , it suffices in the definition of the essential convex
hull Γ̂γ(γ

′, γ′) to consider subsets N with µ(N) = 0 of the form N =
N0 × R

n.
The notion is invariant under smooth changes of coordinates and

therefore, we can unambiguously talk about Filippov-geodesics in the
Lorentzian manifold M , by requiring that the intersection of the curve
with any chart is a Filippov-geodesic in this chart.

Remark 3.1. Filippov-geodesics are invariant under C2-changes of coor-
dinates. However, it is not clear to us if Filippov geodesics are invariant
under C1,1-changes of coordinates, the most natural class in the context
of C0,1-metrics.
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We can now provide:

Proof of Proposition 1.4. The statement is local, thus we may assume
that the neighborhood U is small enough as in Section 2, in particular,
g is globally Lipschitz continuous on U . Let γ : [0, 1] → U be a solution
of the geodesic equation in the sense of Filippov. Then γ′ is absolutely
continuous, in particular, ‖γ′(t)‖ is bounded by some constant C1.
For almost every x ∈ U the Christoffel symbol Γx has a norm (as

a bilinear map) bounded by a constant C2 depending on the Lipschitz
norm of g. Hence, for almost all x ∈ U and all t ∈ [0, 1] we have

‖Γx(γ
′(t), γ′(t))‖ ≤ C2

1 · C2 .

Thus the same bound is true for any convex hull of vectors of the
form Γx(γ

′(t), γ′(t)). The definition of being a solution of the geodesic
equation now implies for almost all t ∈ [0, 1]

‖γ′′(t)‖ ≤ C2 · C2
1 .

Thus γ′(t) is Lipschitz continuous and γ is of class C1,1. �

As the proof shows, the C1,1-norm of γ depends only on the Lipschitz
constant of g and an upper bound on the velocity ‖γ′‖ of γ. Thus, due
to the next observation, the C1,1-norm is even controlled by the length:

Lemma 3.1. Let γ : [a, b] → U be a solution of the geodesic equation
in the sense of Filippov. Then, for all t ∈ [a, b], we have

‖γ′(t)‖ ≤ eCr − 1

C
· 1

b− a
,

where C is some constant depending only on U and where r denotes
the Euclidean length of γ.

Proof. By the form of the geodesic equation, the C1,1-curve γ satisfies
for almost all t ∈ [a, b] the differential inequality

‖γ′′(t)‖ ≤ C · ‖γ′(t)‖2 ,
where the constant C > 0 depends only on the Lipschitz constant of
the Lorentzian metric g.
Thus, the Lipschitz continuous non-negative function s(t) := ‖γ′(t)‖

satisfies almost everywhere

|s′(t)| ≤ C · s2(t) .
If s(t) 6= 0, this is equivalent to

∣
∣
∣
∣

(
1

s(t)

)′∣∣
∣
∣
≤ C .
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Thus, on the open set of points t at which s is positive, the functions
1

s(t)
is C-Lipschitz continuous. By continuity, either s is constantly

equal to 0 or s(t) > 0, for all t.
In the first case, γ is constant and the conclusion clearly holds. In

the second case, the function 1
s(t)

is C-Lipschitz continuous on [a, b].

Let, in the second case, s assume its maximum s0 on [a, b] at the point
t0. Setting ǫ := 1

s0
, we get

1

s(t)
≤ ǫ+ C · |t− t0| ,

s(t) ≥ 1

ǫ+ C · |t− t0|
.

Thus, we can estimate the Euclidean length of γ as

r =

∫ b

a

s(t) dt ≥
∫ b

a

1

ǫ+ C · |t− t0|
dt ≥

∫ b

a

1

ǫ+ C · (t− a)
dt =

=
1

C
· (log(C(b− a) + ǫ)− log(ǫ)) =

1

C
· log(1 + C · (b− a)

ǫ
) .

Therefore,

eCr − 1 ≥ C · (b− a)

ǫ
Recalling that 1

ǫ
is the maximum of ‖γ′‖ completes the proof. �

As a consequence we derive:

Corollary 3.2. Let γi : [a, b] → U be a sequence of causal curves
converging pointwise to γ : [a, b] → U . If all curves γi are Filippov-
geodesics then so is γ.

Proof. By our assumption on U , all causal curves in U have Euclidean
length bounded by a uniform constant r0. By Lemma 3.1, this implies
that all γi have uniformly bounded first derivatives. As has been shown
in Proposition 1.4, this implies that the curves γi are uniformly C1,1.
Then, the pointwise convergence implies that γi converges uniformly to
γ and γ′

i converges uniformly to γ′. Therefore we obtain the conclusion
by applying stability theorems for solutions of differential inclusions
[Fil88, Cor. 1, Ch. 2, §7, p. 77]. �

4. First variational formula

In the remainder of this section we are going to prove the following
statement. The proof is the standard variational argument, known as
“first variation formula of length” or the du Bois-Reymond trick. The
only non-classical point in the proof is to carry out all arguments not for
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a single variation but for a “full-dimensional” family of variations. This
allows us to use the properties of the Levi-Civita connection, which in
our setting are valid only almost everywhere.

Proposition 4.1. Let g be a Lipschitz continuous Lorentzian metric
on a domain U ⊂ R

n. Let γ : [0, 1] → U be a C1,1-timelike maximal
curve with constant Lorentzian speed |γ′(t)|g. Then γ solves the geodesic
equation in the sense of Filippov.

Assume that the statement is wrong. We then find a Lebesgue point
t0 ∈ I of the L∞-function γ′′ : I → U , a negligible set N ⊂ U
(containing the set of all points where g is not differentiable) and
some δ > 0 such that the following holds true. The closed convex
hull K of the set of all vectors of the form Γx(v, v) with (x, v) ∈
Bδ(γ(t0), γ

′(t0)) \ (N × R
n) does not contain −γ′′(t0). Thus we find

a unit vector h and some ǫ > 0 such that

(4.1) gx0
(h, γ′′(t0) + k) > ǫ

for all k ∈ K, where x0 = γ(t0). In fact, (4.1) holds for all h in a small
nonempty open set O. Shrinking O we can assume that all h ∈ O are
linearly independent of γ′(t0).
Reparametrizing γ and changing coordinates, we may assume that

t0 = 0, γ(0) = 0 and that γ is parametrized on an interval [−r, r] for
some small r. We further assume that g0 is the standard Minkowski
product on R

n. By continuity of γ′ we may further assume that the
inequality (4.1) holds for all k of the form Γx(γ

′(t), γ′(t)), where t ∈
[−r, r] and x in Bδ(0) \N are arbitrary.
In the following we can and will assume that supu1,u2∈U ‖u1−u2‖ < 1.

Let H be a hyperplane containing h and transversal to γ′(0). Since 0
is a Lebesgue point of γ′′, we have for all small r0 > 0

(4.2)

∫ r0

−r0

‖γ′′(t)− γ′′(0)‖ dt ≤ ǫ

8L
· r0,

where L is the Lipschitz constant of g.
We fix such an r0 and choose a smooth function f : [−r0, r0] → [0, 1]

vanishing only in ±r0 with f(t) ≥ 1/2 on [−r0/2, r0/2]. For a small
neighborhood W of 0 in H , we consider the map F : W× [−r0, r0] → U
given by

F (w, t) = −f(t) · w + γ(t) .

For any w ∈ W , the curve γw(t) := F (w, t) has the same endpoints
as γ. By assumption |γ′(t)|g is a positive constant. Hence, if W is small
enough, then all curves γw are timelike.
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The map F is a C1,1-diffeomorphism onto the image outside the
boundary points γ(±r0). For sufficiently small W the map

w → Lw := L(γw) :=
∫ r0

−r0

√

g(γ′
w(t), γ

′
w(t)) dt

is Lipschitz continuous.
We can follow the classical computation for the first derivative of the

length, cf. e.g. [O’N83, Prop. 10.2] or [Gro02, Ch. 3]. We see that for
almost all small w ∈ W the derivative ∂

∂s
|s=ρLsw exists for almost all

small ρ and can be computed by the usual formula

∂

∂s

∣
∣
∣
∣
s=ρ

Lsw =

∫ r0

−r0

f(t)g(w, ṽ′ρw(t) + Γγρw(t)(ṽρw(t), γ
′
ρw(t)))dt

where ṽρw(t) :=
γ′

ρw(t)

|γ′

ρw(t)| .
We claim that for almost all w ∈ O this expression is positive for

almost all small ρ > 0 (and we only consider such ρ with ρ · O ⊂ W ).
Indeed for such w we have

∂

∂s

∣
∣
∣
∣
s=ρ

Lsw ≥
∫ r0

−r0

f(t)g(w, ṽ′0(0) + Γvρw(t)(ṽρw(t), γ
′
ρw(t)))dt

− L
(
∫ r0

−r0

‖ṽ′0(t)− ṽ′0(0)‖ dt−
∫ r0

−r0

∥
∥ṽ′ρw(t)− ṽ′0(t)

∥
∥ dt

)
.

By continuity of ṽ′ρw(t) in ρ (at times of existence) and the constant
Lorentzian speed |vt| of γ, the integrand of the last term can be made
smaller than ǫ/16|vt| by choosing ρ small enough. The second term can
be estimated with (4.2). Hence

∂

∂s

∣
∣
∣
∣
s=ρ

Lsw ≥ 1

2|vt|

∫ r0/2

−r0/2

g
(
w, ṽ′0(0) + Γvρw(t)(γ

′
ρw(t), γ

′
ρw(t))

)
dt−C

r0ǫ

|vt|

with C < 1
2
. By Lipschitz continuity of g and boundedness of Γ the

same estimate holds for g0 instead of g, if we choose r0 much smaller
than ǫ. By continuity in ρ and our choice of w we obtain

∂

∂s

∣
∣
∣
∣
s=ρ

Lsw ≥ r0ǫ

2|vt|
− C

r0ǫ

|vt|
> 0

for almost all sufficiently small ρ > 0. Thus, Lρw = L(γρw) > L(γ) for
almost all sufficiently small ρ, in contradiction to the maximality of γ.
This finishes the proof of Proposition 4.1.
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5. C1,α curves

The following lemma is a variant of [CH70, Lem. 2.1], modified for
our purposes.

Lemma 5.1. Let γ : [a, b] → R
n be a bilipschitz curve parametrized by

arclength. Let 0 < α ≤ 1 be fixed. Then the following are equivalent:

(1) The curve γ is C1,α.
(2) There exists some C ≥ 1 such that for all 0 ≤ h ≤ 1

C
and all

intervals [t, t+h] ⊂ [a, b] the image of the restriction γ([t, t+h])
is contained in the tube BC·h1+α([γ(t), γ(t+h)]) of radius C ·h1+α

around the linear segment between γ(t) and γ(t + h).

Proof. If γ is C1,α, then there exists some C > 1 such that for all small
h and all r ∈ [t, t+ h] we have (see [LY06, Lemma 2.1])

‖h · γ′(r)− (γ(t)− γ(t− h))‖ ≤ C · h1+α .

Dividing by h and integrating from t to r we deduce

γ(r) = γ(t) +
r − t

h
· (γ(t+ h)− γ(t)) + q(r) ,

where ‖q(r)‖ ≤ C ·h1+α. Since q(r) bounds the distance to the segment
between γ(t) and γ(t+ h), this proves that (1) implies (2).
Assume (2) and let L denote the biLipschitz constant of γ, i.e. |t2 −

t1| ≤ Ld(γ(t1), γ(t2)). Set X = γ([a, b]) and ǫ := h/L. Consider
arbitrary points x1, x2 ∈ X with ‖x1 − x2‖ ≤ ǫ.
Considering the projection of the part X ′ of γ between x1 and x2

onto the segment [x1, x2] we find a point p in X ′ which is projected
onto the midpoint m between x1 and x2. By assumption d(p,m) ≤
C · d1+α(x1, x2).
By Pythagoras, we deduce that for i = 1, 2

d(xi, p) ≤
1

2
d(x1, x2) · (1 + 4C2d2α(x1, x2))

By [Lyt05, Proposition 1.1] and [Lyt05, Theorem 1.2] there exists some
ǭ > 0 such that all pairs of points in X at distance less than ǭ are
connected in X by a C1,α-curve parametrized by arclength. Since γ is
injective, this curve must coincide with γ, thus finishing the proof. �

6. Quantitative triangle inequality

Recall that vectors u, v ∈ C+ in the positive causal cone

C+ = {v = (vt, vx) ∈ R× R
n = R

n+1 | 〈v, v〉 ≥ 0, vt > 0}
12



of the standard Minkowski space (Rn+1, 〈·, ·〉) with Minkowski product

〈u, v〉 = utvt − uT
x vx and norm |v| =

√

|〈v, v〉| satisfy the reversed
triangle inequality

(6.1) |u+ v| ≥ |u|+ |v|
as well as the reversed Cauchy-Schwarz inequality 〈u, v〉 ≥ |u| |v|, see
e.g. [O’N83, Prop. 5.30]. Here we describe a quantitative version of the
reversed triangle inequality:

Lemma 6.1. For A = 1
10

and for all u, v ∈ C+, the inequality

(6.2) |u+ v|2 ≥ |u+ v| (|u|+ |v|) + A ·D2

holds, where D is the Euclidean distance from u and v to the Euclidean
line spanned by u+ v.

Proof. By (6.1) we can suppose that u and v are linearly independent.
By homogeneity and by the O(n)-invariance in the spatial part of Rn+1

we can assume that n = 2 and that

u = (t, x, y), v = (1, z, 0)

with 0 ≤ t ≤ 1 , 0 ≤ z ≤ 1 and x2+y2 ≤ t2. Using the Cauchy-Schwarz
and the reversed triangle inequality we compute

|u+ v| − |u| − |v| = |u+ v|2 − (|u|+ |v|)2
|u+ v|+ |u|+ |v|

≥ 〈u, v〉 − |u| |v|
|u+ v|

≥ 〈u, v〉2 − |u|2 |v|2
2 |u+ v| 〈u, v〉

=
(t− xz)2 − (t2 − x2 − y2)(1− z2)

2 |u+ v| 〈u, v〉

=
(tz − x)2 + y2(1− z2)

2 |u+ v| 〈u, v〉 .

We also observe that for such u and v

D2 =
‖u× v‖2

‖u+ v‖2
=

(tz − x)2 + y2(1 + z2)

‖u+ v‖2
≥ (tz − x)2 + y2(1 + z2),

because ‖u+ v‖ ≥ 1. We deduce that

(6.3)
|u+ v|2 − |u+ v|(|u|+ |v|)

D2
≥ (tz − x)2 + y2(1− z2)

(tz − x)2 + y2(1 + z2)
· 1

2(t− zx)
13



For fixed t, z, x, the term on the right is monotone decreasing in y2.
Thus, we may assume that y2 is as large as possible, y2 = t2−x2. Then

(tz − x)2 + y2(1− z2) = (t− zx)2

and the right hand side of (6.3) is at least

t− zx

(tz − x)2 + (t2 − x2)(1 + z2)
≥ 1

2
· t− zx

|tz − x| + (t− x) · 2 · 2 .

Since t− zx ≥ |tz − x| and t− zx ≥ t− x we arrive at

|u+ v|2 − |u+ v|(|u|+ |v|)
D2

≥ t− zx

10 · (t− zx)
=

1

10
.

This finishes the proof. �

We can now easily derive the following conclusion:

Corollary 6.2. For any compact set S of Lorentzian bilinear forms
λ : Rn × R

n → R
n there exists a constant A = A(S) such that for any

λ ∈ S the following holds true:
If γ : [a, b] → R

n is an λ-timelike curve, if w is the vector γ(b)−γ(a)
and if D denotes the maximal Euclidean distance of a point on γ from
the Euclidean line through γ(a) and γ(b), then

(6.4) |w|λ ≥ Lλ(γ) +
A ·D2

|w|λ
Proof. Any λ in S can be brought by a bounded linear transforma-
tion to the standard Minkowski product. By compactness, all these
transformations change the Euclidean norm (and thus the distance D
appearing in the formula) by a uniformly bounded factor. Thus it suf-
fices to prove the statement for the standard Minkowski product 〈·, ·〉.
We first observe that in Minkowski space all chords of a timelike curve

are timelike as well. Now, by homogeneity, we can assume γ(a) = 0.
We consider the point u on γ with maximal distance to the line through
0 and γ(b) = w. Then for v = w−u we can apply Lemma 6.1, to deduce

|w| ≥ |u|+ |v|+ AD2

|w| .

Since straight lines in Minkowski space maximize Lorentzian length,
we have L(γ) ≤ |u|+ |v|, and this finishes the proof. �

14



7. First step to regularity

We now embark on the proof of Theorem 1.1. The statement is local
and we will restrict from now on to a chart U as in Section 2.
We will need to compare Lorentzian lengths with respect to different

Lorentzian metrics and will rely on the following observation, a direct
analog of [LY06, Lemma 3.1]. The proof is obtained by integration.

Lemma 7.1. Let ε > 0 be sufficiently small and let g1, g2 be Lorentzian
metrics on U such that |g1(v, v) − g2(v, v)| < ε for all points in U
and all unit vectors v. Let γ : [0, δ] → U be a curve parametrized by
Euclidean arclength which is causal with respect to g1 and g2. Then the
Lorentzian lengths of γ with respect to g1 and g2 can be compared as
|L1(γ)− L2(γ)| ≤ δ · √ε.

In this section we are going to prove

Proposition 7.2. Any maximal curve γ : I → U in U parametrized
by Euclidean arclength is C1, 1

4 .

Proof. Assume the contrary. By Lemma 5.1 we find for any arbitrarily
large C > 0, an arbitrarily small h > 0, some subinterval [t, t+ h] ⊂ I,
and some point q on γ([t, t + h]) such that

(7.1) D ≥ Ch1+ 1

4 ,

where D denotes the Euclidean distance from q to the Euclidean line
between γ(t) and γ(t+ h).
The vector

u :=
γ(t+ h)− γ(t)

h
satisfies ‖u‖ ≤ 1 since γ is 1-Lipschitz.
We consider the restriction γt,h = γ|[t,t+h] and the curve γ̃ = γ̃t,h :

[0, h] → U given by γ̃(s) := γ(t)+ s ·u. The curve γ̃ has the same end-
points as the maximal curve γt,h. A contradiction proving Proposition
7.2 will be provided by showing that for C ≥ C(L) large enough the
curve γ̃ is timelike and has larger Lorentzian length than γt,h.
We may assume that t = 0, that γ(t) = 0 ∈ U and that g0 is the

standard Minkowski product g0 = 〈·, ·〉, see Section 2. We set γh := γt,h.
We consider the auxiliary Lorentzian products on R

n given by

gh(v, w) = 〈v, w〉+ 4 · L · h · vt · wt ,

where as before vt denotes the first coordinate of v ∈ R
n.

Then, for all x in R
n with ‖x‖ ≤ h and for all unit vectors v ∈ R

n

we have

(1) |gx(v, v)− gh(v, v)| ≤ 5Lh, and
15



(2) if gx(v, v) > 0 then gh(v, v) > 0,

compare [CG12, Thm. 1.15]. In particular, any g-causal curve in the
ball Bh(0) ⊂ R

n is gh-causal.
Hence, the curve γh is timelike with respect to the Minkowski product

gh. Thus also u and the straight segment γ̃ are gh-timelike.
Note that all our auxiliary Lorentzian products gh are contained in

a compact set of Lorentzian products, fixed independently of h. Thus,
we find a constant A > 0 such that the conclusion of Corollary 6.2 is
valid for all such gh, and so we deduce:

(7.2) Lgh(γ̃) = |γ(h)− γ(0)|gh = h · |u|gh ≥ Lgh(γ) +
A ·D2

h · |u|gh
.

Inserting D ≥ C · h1+ 1

4 , we obtain

|u|gh ≥
√
A ·D
h

≥
√
A · C · h 1

4 .

Thus, for all x ∈ Bh(0) we have

gx(u, u) ≥ AC2 · h 1

2 − 5L · h ≥ 1

2
AC2 · h 1

2

for all sufficiently small h. Therefore the curve γ̃ is g-timelike. More-
over, we have

L(γ̃)− L(γh) =(Lgh(γ̃)− Lgh(γh))

+ (L(γ̃)− Lgh(γ̃)) + (Lgh(γh)− L(γh))
︸ ︷︷ ︸

=:R

.

By Lemma 7.1, we deduce that the absolute value of R is at most
2
√
5Lh

3

2 . Since γ is maximal , L(γ̃) − L(γh) ≤ 0. Applying (7.2), we
find a constant C1 > 0 such that

AD2

h|u|gh
≤ C1 · h

3

2

AD2 ≤ C1 · h
5

2 · |u|gh
Since |u|gh ≤ 2 we deduce that D ≤ C2 · h1+ 1

4 for some constant C2

(independent of γ, t and h), and thus a contradiction, if C has been
chosen large enough. This finishes the proof. �

Easily adapting the arguments we provide

Proof of Proposition 1.3. The proof follows literally as above by re-
defining gh as

gh(v, w) = 〈v, w〉+ 4 · L · hα · vt · wt ,
16



and replacing 1
4
by α

4
in (7.1). �

8. Regularity away from lightlike vectors

In this section we prove, again following [LY06]:

Theorem 8.1. Let γ : I → U be a maximal causal curve parametrized
by Euclidean arclength. If |γ′(t)|g > 0 for all t ∈ I, then γ is C1,1.

Proof. The statement is local and we may assume that I is compact.
By continuity of γ′, Proposition 7.2, we find some e > 0 such that
|γ′(t)|g > 2 · e, for all t ∈ I. Restricting γ to a sufficiently small
subinterval, we see that all linear segments between points on γ are
timelike curves.
Assume that γ is not C1,1. Relying on Lemma 5.1 and arguing as in

the proof of Proposition 7.2, we arrive at the following situation. For
an arbitrarily large C > 0 we find an arbitrarily small h > 0 with the
following property. The restriction of γ to an interval [a, a + h] ⊂ I
contains a point at distance

(8.1) D ≥ C · h2

from the linear segment η connecting γ(a) and γ(a + h). We may
assume without loss of generality that a = 0 and γ(0) = 0 ∈ U .
Denote by u the Euclidean unit vector

u :=
γ(h)− γ(0)

‖γ(h)− γ(0)‖
and let the hyperplane H denote the g0-orthogonal complement of u
in R

n. Since u is timelike, the hyperplane H consists of g0-spacelike
vectors. Moreover, by compactness, we find some constant C1 > 0,
depending only on e, such that

−g0(w,w) ≤ C1 · ‖w‖2

for all w ∈ H . By continuity of g, we may assume, adjusting C1, that
also for all x ∈ R

n with ‖x‖ ≤ h and all w ∈ H we have the inequality

(8.2) − gx(w,w) ≤ C1 · ‖w‖2

Consider the unique parametrization η : [0, h] → U of the linear
segment η such that

v(t) := γ(t)− η(t)

is g0-orthogonal to u. In other words, η(t) is the g0-orthogonal projec-
tion of γ(t) onto the line spanned by u.

17



The curves η and v are well-defined and C1, 1
4 . Moreover, v(0) =

v(h) = 0. By the uniform continuity of v′, for an arbitrarily small
ρ > 0, the inequality

‖v′(t)‖+ ‖v(t)‖ < ρ

holds true for all t ∈ [0, h] once h has been chosen small enough, com-
pare [LY06, Lemma 2.1].
For sufficiently small h (and thus, sufficiently small ρ), this implies

(8.3)
1

2
< ‖η′(t)‖ < 2 and |η′(t)|γ(t) > e .

Now we can estimate for all h small enough:

|η′(t)|η(t) − |γ′(t)|γ(t)

= |η′(t)|η(t) −
√

|η′(t)|2γ(t) + 2gγ(t)(η′(t), v′(t)) + gγ(t)(v′(t), v′(t))

≥ |η′(t)|η(t) − |η′(t)|γ(t) −
gγ(t)(η

′(t), v′(t))

|η′(t)|γ(t)
− gγ(t)(v

′(t), v′(t))

2 |η′(t)|γ(t)

≥ −2L · ‖v(t)‖ −
∣
∣gγ(t)(η

′(t), v′(t))
∣
∣

e
− gγ(t)(v

′(t), v′(t))

2e
.

Here we have used
√
1 + x ≤ 1 + x

2
for x > −1 in the first inequality

and the L-Lipschitz continuity of g in the second inequality.
We estimate the second and third summand separately. In order to

deal with the second term, we observe that for a unit vector w ∈ H :
∣
∣gγ(t)(u, w)

∣
∣ ≤ L · ‖γ(t)‖ ≤ L · t

due to g0(u, w) = 0, the Lipschitz continuity of g and the 1-Lipschitz
continuity of γ. Therefore,

−
∣
∣gγ(t)(η

′(t), v′(t))
∣
∣ ≥ −2L · t · ‖v′(t)‖ .

Estimating the third summand by (8.2) we find

|η′(t)|η(t) − |γ′(t)|γ(t) ≥ −2L ‖v(t)‖ − 2L

e
· t ‖v′(t)‖+ C1

2e
‖v′(t)‖2

Now we integrate over [0, h] and use the maximality of L(γ) to deduce
that the integral of the right hand side form 0 to h is non-positive.
Thus, for a constant C2 > 0 (depending only on e and L)

(8.4)

∫ h

0

‖v′(t)‖2 dt ≤ C2

∫ h

0

(‖v(t)‖+ ‖v′(t)‖ t) dt .
18



Since v(0) = v(h) = 0 we use integration by parts to deduce
∫ h

0

‖v(t)‖ dt = −
∫ h

0

(‖v(t)‖)′ · t dt .

Thus, using |(‖v(t)‖)′| ≤ ‖v′(t)‖ we obtain
∫ h

0

‖v′(t)‖2 dt ≤ 2C2 ·
∫ h

0

‖v′(t)‖ · t dt .

We apply Cauchy-Schwarz to deduce
(∫ h

0

‖v′‖2
)2

≤ 4C2
2

(∫ h

0

‖v′‖2
)

·
(∫ h

0

t2 dt

)

=
4

3
C2

2 · h3 ·
∫ h

0

‖v′‖2 .

Thus, we obtain

4

3
C2

2h
3 ≥

∫ h

0

‖v′‖2 ≥ 1

h
·
(∫ h

0

‖v′‖
)2

≥ 1

h
· v20 ,

with v0 = maxt∈[0,h] ‖v(t)‖. Thus, ‖v(t)‖ ≤ 2C2 · h2 for all t ∈ [0, h].
This provides a contradiction with (8.1) and finishes the proof of

Theorem 8.1. �

9. Timelike maximal curves

The following result proves and strengthens Proposition 1.2.

Proposition 9.1. Let γ : [0, r] → U be a maximal curve parametrized
by Euclidean arclength. If L(γ) = 0 then |γ′(t)|g = 0 for all t.
If L(γ) > 0 then γ is C1,1. Moreover, for all t ∈ [0, r],

(9.1) |γ′(t)|g ≥ K · L(γ)
r

> 0 ,

where the positive constant K depends only on U . The curve γ ad-
mits parametrizations with constant Lorentzian velocity and any such
parametrization solves the geodesic equation in the sense of Filippov.

Proof. By Proposition 7.2, γ is C1. If L(γ) = 0 then |γ′(t)|g = 0, for
almost all t ∈ [0, r]. By continuity of γ′, this equality holds for all t.
Assume L(γ) > 0. Let [a0, b0] ⊂ [0, r] be such that |γ′(t)|g > 0, for

all t ∈ [a0, b0]. By Theorem 8.1, the restriction γ : [a0, b0] → U is C1,1.
For any interval [a, b] ⊂ R and a non-decreasing Lipschitz function

f : [a, b] → [a0, b0] the reparametrization

γ̃ = γ ◦ f : [a, b] → U

has constant Lorentzian velocity ℓ > 0 if and only if

(9.2) f ′(t) =
ℓ

|γ′(f(t))|g
,
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for almost all t ∈ [a, b]. This is a differential equation for f which has
a unique maximal solution with f(a) = a0. Integrating we see that
f(b0) = b if and only if

ℓ · (b− a) = L(γ|a0,b0]) .
The function f ′(t) is Lipschitz. Hence f and, therefore, γ̃ are C1,1.
Due to Proposition 4.1, γ̃ solves the geodesic equation in the sense

of Filippov. Applying Lemma 3.1, for all t ∈ [a, b],

f ′(t) = ‖γ̃′(t)‖ ≤ eCr0 − 1

C
· 1

b− a
,

where the constant C = C(U) > 0 depends only on the Lipschitz
constant of g and where r0 = b0 − a0 denotes the Euclidean length of
γ|[a0,b0]. Inserting into (9.2), we observe for all t0 ∈ [a0, b0]

|γ′(t0)|g ≥ ℓ · (b− a) · C

eCr0 − 1
=

Cr0
eCr0 − 1

· 1

r0
· L(γ|[a0,b0]) .

Note that Cr0
eCr0−1

is decreasing in r0. Thus, for all t0 ∈ [a0, b0],

(9.3) |γ′(t0)|g ≥ K · L(γ|[a0,b0])
r0

,

where the constant K = K(U) denotes K = Crmax

eCrmax−1
and rmax is the

maximal Euclidean length of causal curves in U (which is bounded by
twice the diameter of U).
It remains to prove that the set T of all times t ∈ [0, r] with |γ′(t)|g =

0 is empty. Assuming the contrary and using L(γ) > 0, we find a
subinterval [a1, b1] ⊂ [0, r] such that |γ′(t)|g is positive for all t ∈ (a1, b1)
and vanishes at one of the boundary points a1 or b1.
We let [a0, b0] ⊂ (a1, b1) converge to [a1, b1]. Applying (9.3) to the

intervals [a0, b0], we find a uniform positive lower bound on |γ′(t)|g
for all t ∈ (a1, b1). By continuity, this positive bound is valid at the
boundary points a1 and b1 as well. This contradiction finishes the
proof. �

Remark 9.1. As the proof shows the constant K can be chosen arbi-
trarily close to 1, if U is chosen sufficiently small.

10. Final arguments

Now we are in position to finish the proof of Theorem 1.1. The
remaining control of lightlike curves is obtained by a limiting argument,
independently discovered in [Sch20]:
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Proof of Theorem 1.1. All statements of the theorem are local. Thus
we may restrict to a sufficiently small chart U satisfying the assump-
tions of Section 2.
We call a causal curve γ in U tame if γ is maximal and admits a C1,1-

parametrization solving the geodesic equation in the sense of Filippov.
We need to prove that all maximal curves are tame. Due to Proposition
9.1, all maximal curves of positive Lorentzian length are tame.
We first claim that any pair x, y ∈ U of causally related points is

connected by a tame curve. Without loss of generality let y be in the
future of x. We find a sequence yn converging to y, such that y and
yn are related by a future directed timelike curve. Then x and yn are
related by future directed causal curves of positive Lorentzian length.
By global hyperbolicity of U we find a maximal curve γn in U connect-
ing x and yn. The curve γn satisfies L(γn) > 0. By Proposition 9.1,
we can parametrize γn on the interval [0, 1] with constant Lorentzian
speed, so that it solves the geodesic equation in the sense of Filippov.
By global hyperbolicity of U and the uniform bound on velocities

provided by Lemma 3.1, the curves γn converge pointwise, after choos-
ing a subsequence, to a future directed causal curve γ : [0, 1] → U
connecting x and y. Due to Corollary 3.2, this limiting curve γ is
tame.
Let now γ be an arbitrary maximal curve in U . When parametrized

by Euclidean arclength, the curve γ : [0, r] → U is C1 by Proposition
7.2. If L(γ) > 0 then γ is tame by Proposition 9.1.
Thus we may and will assume L(γ) = 0. For any natural m > 1

and 0 ≤ i ≤ m, consider points xi = γ( i
m

· r) subdividing γ into m
pieces of equal length. By the above, we find for any i = 0, ..., m− 1 a
tame curve γi

m connecting xi and xi+1. Consider the concatenation γm
of the curves γi

m for i = 0, ..., m − 1. The curve γm is a causal curve
connecting x = γ(0) and y = γ(r).
Clearly, for any parametrizations of the curves γm with uniformly

bounded speed, the curves subconverge pointwise to a reparametriza-
tion of γ. Hence, due to Lemma 3.1 and Corollary 3.2, in order to prove
that γ is tame, we only need to verify that all curves γm are tame.
Since γ is maximal and L(γ) = 0, any causal curve connecting x and

y is maximal. In particular, γm is maximal. By Proposition 7.2, γm
is C1 when parametrized by Euclidean arclength. By construction, all
γi
m admit parametrizations solving the geodesic equation in the sense

of Filippov.
Any affine reparametrization of a C1,1-curve solving the geodesic

equation in the sense of Filippov is again a solution of the geodesic
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equation. Due to Lemma 3.1, we can find such parametrization, hav-
ing any prescribed positive Euclidean velocity at the starting point.
We now start with any parametrization γ0

m : [0, t1] → U solving the
geodesic equation and proceed by induction on i, to find a parametriza-
tion γi

m : [ti, ti+1] → U solving the geodesic equation and such that
‖(γi

m)
′(ti)‖ = ‖(γi−1

m )′(ti)‖.
The arising concatenation γ̃m : [0, tm] → U is a reparametrization of

the C1-curve γm with the following properties. The restriction of γ̃m to
any of the subintervals [ti, ti+1] is C1,1 and solves on this subinterval the
geodesic equation in the sense of Filippov. At the boundary points ti
the incoming and the outgoing directions of γ̃m have the same norms.
Moreover, since γm is C1, these incoming and outgoing directions are
parallel vectors, hence they coincide.
Therefore, the derivative γ̃′

m is continuous. Since γ̃′
m is Lipschitz

continuous on the subintervals [ti, ti+1], the derivative γ̃′
m is Lipschitz

continuous on all of [0, tm]. Thus, γ̃m is a C1,1-curve. Clearly, γ̃m solves
the geodesic equation almost everywhere on any interval [ti, ti+1], hence
almost everywhere on the whole interval of definition [0, tm].
This shows the tameness of γm and finishes the proof. �
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[CG12] Piotr T. Chruściel and James D. E. Grant. On Lorentzian causality
with continuous metrics. Classical Quantum Gravity, 29(14):145001,
32, 2012.

[CH70] Eugenio Calabi and Philip Hartman. On the smoothness of isometries.
Duke Math. J., 37:741–750, 1970.

22



[CM20] Fabio Cavalletti and Andrea Mondino. Optimal transport in lorentzian
synthetic spaces, synthetic timelike ricci curvature lower bounds and
applications. preprint, arXiv:2004.08934 [math.MG], 2020.

[DK81] Dennis M. DeTurck and Jerry L. Kazdan. Some regularity theorems in
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of Mathematics, University of Toronto, Canada.

E-mail address : clange@math.uni-koeln.de, alytchak@math.uni-koeln.de,

clemens.saemann@utoronto.ca

25


	1. Introduction
	1.1. Statement of results
	1.2. Additional comments
	1.3. Structure of the text

	2. Notation and conventions
	3. Filippov geodesics
	3.1. Filippov geodesics, their regularity and stability

	4. First variational formula
	5. C1, curves
	6. Quantitative triangle inequality
	7. First step to regularity
	8. Regularity away from lightlike vectors
	9. Timelike maximal curves
	10. Final arguments
	References

