
AFFINE IMAGES OF RIEMANNIAN MANIFOLDS

ALEXANDER LYTCHAK

Abstract. We describe all affine maps from a Riemannian man-
ifold to a metric space and all possible image spaces.

1. Introduction

A map f : X → Y between metric spaces is called affine if it
preserves the class of linearly parametrized minimizing geodesics. If
X is a geodesic metric space then a continuous map f is affine if and
only if it sends midpoints to midpoints. A map is called locally affine
(another word is totally geodesic) if the restriction of the map to some
neighborhood of any point is affine. Basic examples of (locally) affine
maps are (locally) isometric embeddings, rescalings and projections to
a factor in a direct product decomposition.

Affine maps arise naturally in questions related to super-rigidity (see
the explanations and the literature list in [Oht03]), in the study of
Berwald spaces in Finsler geometry ([Sza81]), in the study of product
decompositions ([FL08]) and in the study of isometric actions on non-
positively curved spaces ([AB98]). It seems to me to be of independent
interest, to understand to what extent the geodesics determine the
metric of a given space.

We give a complete description of all affine maps f : M → Y where
M is a smooth Riemannian manifold and Y an arbitrary metric space.
First, an important special case of the main result:

Theorem 1.1. Let M be a connected complete smooth Riemannian
manifold. There is a locally affine map f : M → Y to some metric
space that is not a local homothety if and only if the universal covering
of M is a product or a symmetric space of higher rank.

Here, we say that a map f : X → Y is a local homothety if, for any
point x ∈ X, there is some neighborhood U of x and a non-negative
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number a, such that for all x1, x2 ∈ U the equality d(f(x1), f(x2)) =
a · d(x1, x2) holds true. If X is connected then the number a does not
depend on the point x. If a = 0 then the map is a constant map. In
the non-degenerate case a > 0, after a rescaling of the space, such map
is locally an isometric embedding.

For the formulation of the main theorem we will need two definitions.

Definition 1.2. A Riemannian submersion f : M → M1 between
smooth Riemannian manifolds will be called flat if the fibers are totally
geodesic and the horizontal distribution is integrable.

A Riemannian submersion f : M →M1 between complete Riemann-
ian manifolds is flat if and only if the lift to the universal coverings
f̃ : M̃ → M̃1 is the projection map of a direct product decomposition
M̃ = M̃1×M2 → M̃1. Another useful formulation is that a Riemannian
submersion f : M → M1 is flat if and only if the tangent distribution
of the fibers is a parallel distribution ([Vil70] or [Sak96]).

Definition 1.3. Let (M, g) be a Riemannian manifold. We will call a
function | · | : TM → R a holonomy invariant Finsler structure if the
restriction of | · | to each tangent space TpM is a (possibly not smooth
or not strictly convex) norm and if |v1| = |v2| for any two vectors
related by the holonomy along some piece-wise smooth curve. For a
holonomy invariant Finsler structure | · | we will call the identity map
Id : (M, g)→ (M, | · |) an admissible change of metric.

Note that an admissible change is a bi-Lipschitz map. Clearly, ho-
lonomy invariant Finsler structures are in one-to-one correspondence
with norms | · | on a fixed tangent space TpM that are invariant under
the action of the holonomy group Holp. We refer to Subsection 4.3 for
more information about such norms.

Now we can state the main result:

Theorem 1.4. Let M be a complete Riemannian manifold. Then any
locally affine map f : M → Y to a metric space Y is a composition
f = fi ◦ fa ◦ fp of the following factors:

(1) The map fp : M → M1 is flat Riemannian submersion onto a
smooth complete Riemannian manifold M1;

(2) The map fa : (M1, g) → (M1, | · |) is an admissible change of
metric;

(3) The map fi is a locally isometric embedding.

Moreover, any map f of this kind is locally affine.

This global theorem is a consequence of the following local version
of this result. To state it we recall the following notation from [Oht03].
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Let f : M → Y be a locally affine map defined on a Riemannian
manifold M . For a tangent vector v to M we denote by γv the geodesic
in the direction of v and by |v|f the velocity of the image geodesic f ◦γv.
Now the local result reads as follows:

Theorem 1.5. Let M be a smooth Riemannian manifold and let f :
M → Y be a locally affine map. Then | · |f is a continuous family of
semi-norms on the tangent bundle of M that is invariant under the
parallel translation.

Remark 1.1. It is important to stress, that we consider all geodesics to
be parametrized affinely. A related, but much harder problem, is the
study of projective maps. These are homeomorphisms f : X → Y
between metric spaces that preserve geodesics as subsets, disregarding
their parametrization. The class of such maps is often considerably
larger and, usually, much more difficult to determine. Even if X and Y
are Riemannian manifolds, the classification is not completely known.
We refer the reader to the following two important contributions to
this subject of projective maps: [Mat07] and [Sza86].

The results of this paper generalize previous works [Vil70], [Sza81],
[Oht03] and [HL07]. Vilms classifies in [Vil70] all affine maps between
smooth Riemannian manifolds. Szabo extended in [Sza81] this result to
bijective maps between smooth Riemannian and smooth Finsler man-
ifolds providing a characterization of all Berwald spaces. On the other
hand, Ohta ([Oht03]) studied maps from a Riemannian manifold to
(locally uniquely geodesic) metric spaces and proved that such maps
are compositions of affine maps to continuous Finsler manifolds and
isometric immersions. However, one cannot combine results of [Oht03]
and [Sza81], since the Finsler metric obtained is only continuous (even
point-wise) and the Finsler geometric method used in [Sza81] cannot
work.

Our proof is a self-contained combination and simplification of ideas
used in [Oht03] and [HL07]. We hope, that our proof may lead to an
understanding of affine maps on singular non-positively curved spaces.

The paper is structured as follows. In Section 2 we recall the proof
of the semi-continuity of the the semi-Finsler structure | · |f . In Section
3, the core of the paper, we prove Theorem 1.5. In Section 4 we recall
basics about invariant norms and Finsler structures. Finally, in Section
5 we prove Theorem 1.1 and Theorem 1.4.
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2. Basics

2.1. Setting. Let M be a Riemannian manifold and let f : M → Y
be a locally affine map to a metric space Y . We will denote by d the
distance in M and by d̄ the distance in Y . In this and in the next
section we are going to deal with local questions only. Thus we may
replace M by a small strictly convex open neighborhood U of a given
point x. If U is sufficiently small then f : U → Y is affine. By the
definition of | · |f , for any geodesic γv : [a, b] → U and all s, t ∈ [a, b]
we have d̄(f(γv(s)), f(γv(t))) = |s − t| · |v|f . From this we deduce
|λv|f = |λ| · |v|f for all λ ∈ R.

In this section we are going to prove that f is locally Lipschitz and
that |·|f is a continuous family of semi-norms. With a minor additional
assumption it has been proved in [Oht03]. For the convenience of the
reader, we recall and slightly simplify Ohta’s proof.

2.2. Lipschitz continuity. We start with

Lemma 2.1. The map f is continuous.

Proof. We fix p ∈ U and are going to prove the continuity at the point
p. In order to do so, it is enough to show that the homogeneous function
| · |f is bounded on the unit sphere in T 1

pM ⊂ TpM .

Choose vi ∈ T 1
pM to be the vertices of a regular simplex ∆. Set

xi = expp(εvi) , for sufficiently small ε > 0. Let A0(ε) be the union of all
xi. Let Ak(ε) be the set of all points that lie on a shortest geodesic be-
tween some pair of points in Ak−1(ε). The sets Kε := 1

ε
exp−1

p (An−1(ε))
converge in the Hausdorff topology to the boundary ∂∆ of ∆. Thus Kε

does not contain the origin for small ε. On the other hand, Kε contains
a small continuous perturbation of ∂∆. Thus Kε carries a non-trivial
homology class of Hn−1(TpM \ {0}). Therefore, Kε intersects all rays
starting from the origin. Thus, for sufficiently small ε, the compact
set An−1 := An−1(ε) does not contain p, but it intersects any geodesic
starting from p.

Set l = max{d̄(f(p), f(xi))}. By induction on k and the triangle
inequality, d̄(f(p), f(x)) ≤ 2kl for all x ∈ Ak. Since An−1 is compact,
the number ρ = d(p,An−1) is positive. Thus for any x ∈ An−1 we
get d̄(f(p), f(x)) ≤ Cd(p, x) with C = 2k · l/ρ. Since An−1 intersects
any geodesic starting in p, we deduce that | · |f is bounded by C on
T 1
pM . �

Lemma 2.2. The map | · |f is continuous and f is locally Lipschitz
continuous.
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Proof. Choose vectors vn ∈ TpnU converging to v ∈ TpU . Set xn =
exp(vn);x = exp(v). Then xn converges to x and by continuity of f ,
the images f(pn) converge to f(p) and the images f(xn) converge to
f(x). Thus |vn|f = d̄(f(pn), f(xn))→ d̄(f(p), f(x)) = |v|f .

The Lipschitz constant of f at p is bounded by the supremum of | · |f
on the unit sphere in TpU . Thus, the continuity of | · |f implies the
Lipschitz continuity of f . �

2.3. Finsler structure. Now we claim:

Lemma 2.3. The function | · |f restricted to any tangent space TpU is
a semi-norm.

Proof. One can follow the proof in ([Oht03]). Another short proof goes
as follows. The function | · |f coincides with the metric differential
defined by Kirhcheim ([Kir94]) for any locally Lipschitz continuous
map from a manifold to a metric space. Kirchheim proved that this
metric differential is a semi-norm at almost all points. By continuity
of | · |f on TU , in our case this is a semi-norm at all points. �

3. Main argument

We are going to use the notations and assumptions from the last
section. In this section we are going to prove that the semi-norms | · |f
are invariant under parallel translations along arbitrary piecewise C1

curves in U . Approximating such a curve by a geodesic polygon in
the the C1-topology and using the fact that parallel transport behaves
continuously with respect to such approximations, we deduce that it
is enough to prove that the semi-norms are parallel along any geodesic
polygon. Therefore, it is enough to prove that | · |f is parallel along any
geodesic γ in U .

Thus let us fix a geodesic γ : [−a, a] → U parametrized by the
arclength. Set p = γ(0) and denote by Pt : TpM → Tγ(t)M the parallel
transport along γ.

We call a vector h ∈ TxU regular if for all v ∈ TxU

lim
t→0

|h+ tv|f + |h− tv|f − 2|h|f

t
= 0

A vector h ∈ TxU is regular if and only if the semi-norm |·|f : TxU →
R is differentiable at h. By the Theorem of Rademacher almost all
vectors in TxM are regular. Note that h is regular if and only if rh is
regular, for all real non-zero r.

We call a vector h ∈ TpU good if, for almost all t ∈ [−a, a], the
vector ht = Pt(h) is a regular vector (in Tγ(t)U). Applying Fubini’s
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theorem we deduce that almost all h ∈ TpU are good. By continuity,
it suffices to show that for any good vector h, the function l(t) = |ht|f
is constant. Since Pt and | · |f are positively homogeneous, we may
assume after rescaling that exp(ht) ∈ U exists for all t ∈ [−a, a].

Lemma 3.1. The function l(t) is Lipschitz continuous.

Proof. For all t, s ∈ (−a, a), by the triangle inequality ||ht|f − |hs|f | =
|d̄(f(γ(t)), f(exp(ht)) − d̄(f(γ(s), f(exp(hs)))| ≤ d̄(f(γ(t), f(γ(s)) +
d̄(f(exp(ht), f(exp(hs)).

The parallel transport and the exponential map are smooth and f
is Lipschitz continuous, thus we can estimate ||ht|f − |hs|f | from above
by A · |t− s|, for some A > 0. �

Since l(t) is Lipschitz continuous, it is enough to prove that the
derivative of l(t) is 0 almost everywhere. Thus, it suffices to prove that
if ht0 is regular and if the derivative l′(t) exists at t0, this derivative
must be zero. To prove this claim, we may assume without loss of
generality (reparametrizing γ) that t0 = 0 and that this derivative is
non-negative. Thus, we have reduced our task to proving the following
claim:

Proposition 3.2. Let γ be a geodesic starting in p. Let h be a regular
vector in TpU . Let ht be the parallel translates of h along γ and let the
function l(t) = |ht|f be differentiable at 0. Then l′(0) ≤ 0.

Proof. Again, we may assume that exp(ht) exists for all t. Assume
l′(0) = 2δ > 0. Then, for all small positive t, we have |ht|f ≥ |h|f + δt.

Denote by ηt the geodesic ηt(r) = exp(rht). Set xt,r := ηt(r) and
p = x0,0 = γ(0). Finally, set µt,r := exp−1

p (xt,r) ∈ TpU . The triangle
inequality gives us

d̄(f(xt,r), f(xt,−r) = 2r|ht|f ≤ d̄(f(p), f(xt,r)+d̄(f(p)), f(xt,−r) = |µt,r|f+|µt,−r|f

Therefore
2r|h|f + 2rδt ≤ |µt,r|f + |µt,−r|f

Denote by vr ∈ TpM the derivative vr := d
dt
|t=0µt,r. The proof of the

following differential geometric lemma will be given below.

Lemma 3.3. In the above notations one has limr→0(||vr−v−r||/r) = 0.

Given this lemma, it is easy to derive a contradiction: We find and
fix a small r with |vr − v−r|f ≤ δr/4. By definition, µt,±r = (±r) · h+
t · v±r + o(t). Thus |µt,−r|f ≤ |− rh+ t · vr|f + δrt/2, for small t. Hence
|µt,r|f + |µt,−r|f ≤ |r · h+ t · vr|f + |rh− t · vr|f + δrt.

By assumption, h is regular. Thus |rh+ tvr|f + |rh− tvr|f = 2|rh|f +
o(t). For small t, this contradicts to |µt,r|f+|µt,−r|f ≥ 2r|h|f+2rδt. �
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It remains to provide:

Proof of Lemma 3.3. Let η = η0. Denote by Y the Jacobi field Y (r) =
d
dt
ηt(r) along η. Let Vr be the Jacobi field Vr(s) := d

dt
|t=0expp(

µt,r

r
s).

By construction, Y ′(0) = 0, Vr(0) = 0 and Vr(r) = Y (r). Finally,
V ′r (0) = d

dt

µt,r

r
= vr

r
. Thus, we only need to prove that |V ′r (0) + V ′−r(0)|

converges to 0, as r goes to 0. Since the Jacobi field (Vr + V−r) has
value 0 at the point 0, it suffices to prove that |(Vr + V−r)(r)| = o(r).

In fact we have ||Y (t) − Y (0)|| ≤ Ct2 and ||Vr(t) − tV ′r (0)|| ≤ Ct2

for all |t| ≤ r and some C independent of r. Together this gives us
||V−r(r) + V−r(−r)|| ≤ Cr2 and ||Y (r)− Y (−r)|| ≤ Cr2. Together this
gives us ||V−r(r)+Vr(r)|| ≤ Cr2. This finishes the proof of Lemma 3.3,
Proposition 3.2 and Theorem 1.5. �

4. Remarks on invariant norms

In this section we collect some elementary observation, probably well
known to experts, for which we could not find a reference.

4.1. Invariant norms. We recall a few definitions. A semi-norm on
a finite-dimensional vector space V is a non-negative, homogeneous,
convex function q : V → [0,∞). It is called a norm if q(v) > 0 for all
v 6= 0. It is called a Minkowski norm, if q is smooth outside the origin
and the Hessian D2

xq is positive definite at all points x 6= 0. The second
condition is equivalent to the requirement that q can be expressed as
q = q0 + q1, where q0 is a scalar product and q1 is a norm.

For two norms q1, q2 on V there is some L ≥ 1 with q1 ≤ L · q2 and
q2 ≤ L · q1. The distance |q1 − q2| between q1 and q2 is defined to be
the infimum of log(L) taken over the set of all such L. The topology
on the set of norms defined by this distance function coincides with the
Hausdorff topology on the set of convex centrally-symmetric bodies. It
is well known that the set of Minkowski norms is dense in the set of all
norms.

Lemma 4.1. Let V be a Euclidean space and let G be a closed subgroup
of the orthogonal group. Then the set of G-invariant Minkowski norms
is dense in the set of all G-invariant norms.

Proof. Let q be a G-invariant norm. Choose some small ε > 0. We find
a Minkowski norm q1 with |q1 − q| ≤ ε. Let q2 be the norm obtained
from q1 by the averaging procedure, i.e., q2(x) =

∫
G
q1(gx)dµ(g), where

µ is the unit volume Haar measure on G. Then q2 is a G-invariant
Minkowski norm and we still have |q−q2| ≤ ε, since q isG-invariant. �
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Lemma 4.2. Let V,G be as above. If G acts transitively on the unit
sphere then the only G-invariant norms are multiples of the given Eu-
clidean norm. If G does not act transitively on the unit sphere then
there are non-Euclidean G-invariant Minkowski norms.

Proof. The first statement is clear. To prove the second statement we
proceed as follows. If G acts irreducibly, consider any orbit Gp and
let C be its convex hull. If G acts reducibly, we consider orthogonal
G-invariant subspaces V1, V2 ⊂ V with V1 ⊕ V2 = V , and let C be the
convex hull of the union of the unit spheres S1 ⊂ V1 and S2 ⊂ V2. In
both cases we obtain a G-invariant convex body that is not strictly
convex. Its symmetrization around the origin and the norm q defined
by the symmetrized body is still G-invariant and not strictly convex.
Due to the previous lemma, we find a G-invariant Minkowski norm qn
arbitrary close to q. Since q is non-Euclidean, qn is non-Euclidean as
well, at least for large n. �

4.2. Holonomy group. For simplicity, we will restrict ourselves to
the complete case. Thus let (M, g) be a complete smooth Riemannian
manifold. Let p ∈M be a point and let H and H0 denote the holonomy
group Holp and its identity component respectively. The tangent space
V = TpM splits under the action of H0 in a uniquely defined way as
V = V0⊕V1⊕...⊕Vi, where the action ofH on V0 is trivial and the action
on Vi, i ≥ 1 is irreducible and not trivial. Moreover, this decomposition
determines the unique direct product decomposition of the universal
covering M̃ of M ([Sak96]). By the uniqueness of this decomposition
up to permutation, the action of H preserves this decomposition of V ,
possibly up to a permutation of summands. In particular, if H0 acts
reducibly then the closure H̄ of H acts non-transitively on the unit
sphere.

If the action of H0 on the unit sphere is irreducible, then either it acts
transitively on the unit sphere or the space M is a locally symmetric
space of rank at least two, with irreducible universal covering, due to
the theorem of Berger-Simons ([Sim62]). In this case, each element of
H acts as the differential of a local isometry, thus it preserves the type
of a vector in its Weyl chamber. Hence, the action of H̄ on the unit
sphere is non-transitive as well.

We conclude:

Lemma 4.3. Let M be a complete Riemannian manifold. Let p ∈ M
be a point, V = TpM and let H be the holonomy group at the point p.
Then the following are equivalent:

(1) H does not act transitively on the unit sphere V 1 of V ;
8



(2) The closure of H does not act transitively on V 1;
(3) There are non-Euclidean Minkowski norms on V invariant un-

der H;
(4) The universal covering of M is either a direct product or a

symmetric space of higher rank.

4.3. Description of invariant norms. In this subsection we are go-
ing to provide a description of (Minkowski) norms invariant under the
action of a continuous holonomy group. Since these statements are not
used in the rest of the paper we will omit some details.

Thus letM be a Riemannian manifold and assume that the holonomy
group H = Holp is connected (this happens, for instance, if M is
complete and simply connected). Then (due to the theorems of Berger-
Simons an de Rham) the action of H on V = TpM is polar, i.e., there
is a linear subspace Σ of V that intersects all orbits of H with all
intersection being orthogonal. The stabilizer N(Σ) acts on Σ as a
finite Coxeter group W . Then each H-invariant norm q on V restricts
to a W -invariant norm q̄ on Σ. We have:

Proposition 4.4. The restriction q → q̄ is a bijection between the set
of H-invariant norms on V and W -invariant norms on Σ. Moreover,
q is a Minkowski norm if and only if q̄ is a Minkowski norm.

Proof. If q is a (Minkowski) norm then so is its restriction to any sub-
space, in particular q̄. On the other hand, each W -invariant function q̄
extends to a unique H-invariant function q on V . Now, if q̄ is a norm
then so is q, due to [HT01], p. 107. Moreover, if one can represent q̄
as a sum q̄0 + q̄1 of a scalar product and a norm, then, averaging, we
may assume that q̄0 and q̄1 are W -invariant as well. Thus they extend
to an H-invariant scalar product and norm q0 and q1 with q = q0 + q1.
Finally, an H-invariant function is smooth if and only if its restriction
to W is smooth ([Dad82]). Smoothing q̄ at the origin, we deduce, that
q̄ is smooth in Σ \ {0} if and only if q is smooth in V \ {0}. Thus q is
a Minkowski norm if and only if q̄ is. �

We illustrate this result by two examples:

Example 4.1. Let M is a symmetric space and let F be a maximal
flat through a point p. Let W be the group of all isometries of M
that fix p and leaves F invariant. Then the set of parallel (smooth)
Finsler structures is in one-to-one correspondence with the set of all
W -invariant (Minkowski) norms on TpM .

Example 4.2. Let M = M1 × M2 be the product of two irreducible
not locally symmetric spaces. For p ∈M , choose any unit vector e1 in
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TpM1 and e2 in TpM2. Then one can choose Σ to be the plane generated
by e1 and e2. The group W has 4 elements and is generated by the the
reflections ei → −ei.

5. The conclusion

5.1. The if part. We are going to prove Theorem 1.4. First we would
like to see that each map as described in the theorem is locally affine.

A composition of continuous locally affine map is locally affine. A
locally isometric embedding is locally affine. A flat submersion is locally
given by a projection onto a direct factor, thus it is locally affine as
well. Therefore, it suffices to prove that an admissible change of a
metric is locally affine. We are going to reduce the statement to the
smooth case, where the result is known (cf. [Sza81]).

Thus let (M, g) be a smooth complete Riemannian manifold and let
| · | be a holonomy invariant Finsler structure. Fix a point x ∈ M .
Aproximate the norm | · | on TpM by Minkowski norms | · |n norms on
TpM invariant under the holonomy group Holp (Lemma 4.1). Extend
each norm | · |n to a smooth holonomy invariant Finsler structure on
M . Due to [Sza81], the identity map Id : (M, g)→ (M, | · |n) is affine.
Since minimizing geodesics in the smooth Finsler manifold (M, | · |n)
are locally unique, all (M, | · |n) geodesics are images of (M, g) geodesics
(i.e., the map Id : (M, | · |n)→ (M, g) is affine as well). We find some
L such that the identity Id : (M, g) → (M, | · |n) is L-bilipschitz, for
all n. We find some strictly convex ball V of radius r around x, such
that any geodesic between points of V that is not contained in V has
length at least 4Lr. It follows, that any (M, g)-geodesic contained in
V is a minimizing geodesic in (M, | · |n), for all n. Since minimizing
(!) (M, | · |n) geodesics converge to minimizing (M, | · |) geodesics,
we deduce that Id : (V, g) → (V, | · |) sends minimizing geodesics to
minimizing geodesics. The linear parametrization of the geodesics is
clear by approximation (or by the fact that geodesics are auto-parallel).

5.2. Decomposition of f . Let M be a complete Riemannian mani-
fold and let f : M → Y be a locally affine map. Due to Theorem 1.5,
the function | · |f defines a parallel family of semi-norms. For each
q ∈ M , we set Vq = {v ∈ TqM ||v|f = 0}. Since the semi-norms are
parallel this is a parallel distribution.

Assume first that M is simply connected. Then by the theorem
of de Rham this distribution q → Vq is the vertical distribution of a
projection fp : M = M1 ×M2 → M1 onto a direct factor. The map

f factors through fp as f = f̂ ◦ fp. Moreover, f̂ coincides with the

restriction of f to any horizontal slice M1 × {x2}. Thus f̂ is again
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affine, and the semi-norm | · |f̂ coincides with the restriction of | · |f . By
the definition of Vq, this semi-norm is a norm. Thus on M1 we have an
admissible change of metric (M1, g)→ (M1, | · |f ) and the induced map
fi : (M1, | · |f )→ Y is by definition of ·|f a local isometry.

Assume now that M is not simply connected. Consider the lift f̃ of
f to the universal covering M̃ . Consider a horizontal slice M ′

1 in M̃ .

The restriction of f̃ to this slice is locally bi-Lipschitz. On the other
hand this restriction factors through the canonical projection of the
slice M ′

1 to M . This implies that the leaves of the integral distribution
Vq in M are closed submanifolds that define a Riemannian submersion
fp : M → M1 for some manifold M1 covered by M ′

1. It is clear that
the Riemannian submersion fp is flat. The rest follows from the simply
connected case.

5.3. Proof of Theorem 1.1. To prove Theorem 1.1, first let M be
locally irreducible and not locally symmetric of higher rank. Let f :
M → Y be a locally affine map. Due to Theorem 1.5 and Lemma 4.3,
at each point p ∈M , the semi-norm | · |f on TpM is either constant 0 or
a positive multiple of the metric g, the multiple not depending on the
point. Thus the map f either sends the whole manifold M to a point
or rescales distances in any small neighborhood of any given point by
the constant number a.

If, on the other hand, M is either locally reducible or locally sym-
metric of higher rank, then there is an admissible change of metric to
a non-Euclidean (smooth) Finsler structure. This change is certainly
not a local homothety, but it is a locally affine map by Theorem 1.4.
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