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ALGEBRAIC NATURE OF SINGULAR RIEMANNIAN FOLIATIONS IN

SPHERES

MARCO RADESCHI AND ALEXANDER LYTCHAK

Abstract. We prove that singular Riemannian foliations in Euclidean spheres can be defined

by polynomial equations.

1. Introduction

Isoparametric hypersurfaces in Euclidean spheres have been studied by Cartan in the thir-

ties (cf. [7]) and then forgotten for a long period of time. Such hypersurfaces are natural and

very interesting generalizations of (orbits of) isometric cohomogeneity one actions on spheres. A

major step towards the understanding of isoparametric hypersurfaces has been done by Münzner

in [19], [20]. He proved a finiteness result controlling the topology of the hypersurfaces and an

algebraicity result building a bridge between geometry and algebra: any isoparametric hyper-

surface is given as the zero set of a polynomial equation. Starting from these results essentially

all isoparametric hypersurfaces have been classified by combining deep topological, geometric

and algebraic insights [1], [16], [24], [8], [11].

In the same way isoparametric hypersurfaces generalize isometric cohomogeneity one ac-

tions, singular Riemannian foliations generalize (orbit decompositions of) arbitrary isometric

actions on spheres. Besides the intrinsic interest in such objects, related to the study of Eu-

clidean submanifolds with special properties, singular Riemannian foliations in round spheres

describe local structure of singular Riemannian foliations in arbitrary Riemannian manifolds (cf.

[18]). Thus the understanding of singular Riemannian foliations in spheres is of major impor-

tance in the theory. Molino, not being aware of the existence of non-homogeneous isoparametric

foliations (cf. [13]), has conjectured that all singular Riemannian foliations in Euclidean spheres

are homogeneous. However, there is in fact a vast class of non-homogeneous examples (cf. [22]).

Despite this, all singular Riemannian foliations with closed leaves are of algebraic origin as our

main theorem shows:

Theorem 1.1. Let (Sn,F) be a singular Riemannian foliation with closed leaves. Then there

exists a polynomial map ρ = (ρ1, . . . ρk) : R
n+1 → R

k such that any leaf of F coinicides with

some fiber of ρ. The induced map S
n/F → R

k is a homeomorphism onto the image.
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Our result identifies the quotient space Sn/F as a semi-algebraic set and provides a related

finitely generated algebra of F -invariant polynomials (Proposition 4.2 below). This result opens

the way to algebraic methods in the theory of singular Riemannian foliations. Applications of

this approach will be discussed in a forthcoming paper.

As a direct consequence of Theorem 1.1 we deduce:

Corollary 1.2. Let (Sn,F) be a singular Riemannian foliation with closed leaves. Then any

leaf of F is a real algebraic subvariety of the Euclidean space R
n+1.

We would like to mention a recent result of a similar spirit and origin. For a submanifold

L ⊂ S
n being a leaf of a singular Riemannian foliation imposes a severe restriction on the set

of focal vectors in the normal bundle νL of any leaf L, [6], [4]. A slightly related restriction on

the set of focal vectors of a submanifold is imposed by the assumption of the tautness of the

submanifold, cf.[10], [9], [26]. All isoparametric hypersurfaces are taut (cf. [15]) and thus the

recent result of Q.Chi that all taut submanifolds of the Euclidean space are algebraic [10], can

be seen as a different generalization of Münzner’s theorem.

A fundamental tool in the proof of Theorem 1.1 is the control of the averaging operator, a

replacement of the averaging with respect to the Haar measure:

Definition 1.3. Let (Sn,F) be a singular Riemannian foliation. For f ∈ L2(Sn) the average

of f with respect to F is the function [f ] ∈ L2(Sn) defined at almost every p ∈ S
n by

(1.1) [f ](p) =

 

Lp

f =
1

vol(Lp)

ˆ

Lp

f

where the integral is taken with respect to the induced Riemannian volume on the leaf Lp

through p.

The operator f → [f ] is the orthogonal projection from L2(Sn) onto the closed linear

subspace L2(Sn,F) of all representatives of square integrable basic function. Recall, that a

function is called basic (with respect to F) if it is constant on any leaf of F . Much less obvious

are the smoothness properties of the average function near singular leaves. A very closely

related problem has been solved in [21] for the averaging operator of a regular Riemannian

foliation with non-closed leaves. In our case the smoothness is preserved, too:

Theorem 1.4. Let (Sn,F) be a singular Riemannian foliation with closed leaves. If f ∈ L2(Sn)

has a smooth, respectively polynomial representative then so does the averaged function [f ].

This result implies that the ring of basic polynomials is finitely generated, Proposition 4.2,

and provides enough basic polynomials to deduce Theorem 1.1.

The averaging operator is defined for any Riemannian manifoldM and singular Riemannian

foliation F with compact leaves. If the singular foliation F is given by leaf closures of some

regular Riemannian foliation G on M , then our averaging operator with respect to F coincides

with the averaging operator with respect to G, as defined in [21]. Thus, Theorem 1.4, Theorem

3.3 and [21] give rise to the hope that the the following question has an affirmative answer:
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Question 1.1. Let F be a singular Riemannian foliation with compact leaves on a complete

Riemannian manifold M . Does the averaging operator f → [f ] send smooth functions to

smooth functions?

The proof would require a deeper understanding of the structures of the singularities of a

singular Riemannian foliation, in particular the behavior of the mean curvature vectors of reg-

ular leaves in a small neighborhood of singular leaves. No problems arise if the mean curvature

field is basic in the regular part of F , a very well known condition in the analysis of Riemannian

foliations (cf. [21] and the literature therein). In this case the answer to the question above is

indeed affirmative (Theorem 3.3).

Acknowledgements. The authors would like to thank Miguel Domı́nguez-Vázquez, Ken

Richardson and Wolfgang Ziller for helpful comments on a previous version of this paper.

2. Preliminaries

Let M always denote a Riemannian manifold and let F always denote a singular Rie-

mannian foliation on M with compact leaves, i.e., a decomposition of M as a disjoint union of

compact smooth submanifolds Lp, called the leaves of F , such that the leaves are equidistant,

and such that smooth vector fields everywhere tangent to the leaves span all tangent spaces to

the leaves. We refer the reader to [18], [3] and the literature therein for introductions to the

subject. Note that the assumption that all leaves are compact makes further usual assumptions

on M like compactness or completeness irrelevant.

The manifold M decomposes as a locally finite union of strata, which are smooth subman-

ifolds of M . There is exactly one open and dense stratum, the principal stratum of M , denoted

by M0. The restriction of F to M0 is given by a Riemannian submersion with compact fibers

π : M0 → B0 onto some Riemannian manifold B0. For a point p ∈ M we denote by H(p) the

mean curvature vector of the leaf Lp through p. By κ we denote the dual 1-form κ(v) := 〈v,H〉.

Note that κ is a smooth form on M0. But be aware, that κ is definitely non-smooth at singular

leaves (indeed, ‖H‖2 explodes quadratically as one approaches a singular point, [5, Prop. 4.3]).

We say that F has basic mean curvature if the form κ is a basic 1-form on the regular part

M0, hence if the smooth horizontal vector field H on M0 is the horizontal lift of a vector field

on B0.

The union M1 of all strata of codimension at most 1 consists only of leaves of maximal

dimension. The restriction of F to M1 is thus a regular Riemannian foliation, and either

M1 = M0 (which is always the case, if M is simply connected), or the restriction of F to M1 is

not transversally oriented. In the former case, M1 has a double cover M ′

1 such that the lift F

to M ′

1 has only principal leaves.

Any singular Riemannian foliation given by an isometric group action has basic mean

curvature. For a general manifold M and a general inhomogeneous foliation this condition

may not hold. However, in the case M = R
n+1 or M = S

n any singular Riemannian foliation

has basic mean curvature, since in this case the distance to the focal points determines the

eigenvalues of the second fundamental form, see [4, Cor. 4.6].
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If F is a singular Riemannian foliation on S
n there is a natural extension of F to a singular

Riemannian foliation CF on R
n+1. The leaves of the cone CF of F are the images of leaves of

F under the natural dilations x → r · x, for r ∈ [0,∞).

3. Smoothness of the averaging operator

3.1. Measurable properties. Let (M,F) be a singular Riemannian foliation with compact

leaves. Let M0 be the principal stratum as above. Since M \M0 has measure 0 we can restrict

ourselves to M0 in all question which concern only almost everywhere properties of functions,

in particular, when dealing with integrable and square-integrable functions. The subsequent

considerations can be found in a much more general situation in [21], thus we only sketch the

arguments.

Applying Fubini’s theorem to the Riemannian submersion π : M0 → B0 we see that for

any locally integrable function f ∈ L1
loc(M), the restriction of f to almost any fiber of π (i.e. a

leaf of F) is integrable. Moreover, for any compact subset of K of B0 we have the equality

ˆ

π−1(K)

f =

ˆ

K

(

ˆ

π−1(q)

f

)

dvolB(q)

Thus the averaging map f → [f ] is well defined for any f ∈ L1
loc(M). We identify L2(M)

with L2(M0). From the above formula and the inequality of Cauchy-Schwarz we deduce (cf.

[21]) that for any f ∈ L2(M0) the average [f ] defined by Equation 1.1 is indeed an element of

L2(M0). Moreover, we see that the averaging operator has norm 1, hence
´

M
f2 ≥

´

M
[f ]2. By

definition, the averaging operator is linear. For any function f ∈ L2(M0) = L2(M) the average

function [f ] is constant on almost all leaves, hence it has a basic representative. On the other

hand, if f is constant on almost all leaves then [f ] = f in L2(M0). The kernel of the averaging

operator consists of all functions g ∈ L2(M0) whose average on almost any leaf is zero. In this

case, for any basic function f ∈ L2(M0) the product f · g still has average 0 on almost all leaves

and therefore
´

M
f · g = 0. Hence the kernel of the averaging operator [·] is orthogonal to its

image. This shows that [·] is indeed the orthogonal projection from L2(M) onto the subset

L2(M,F) of all functions in L2(M) which have a basic representative.

3.2. Commuting operators. Let us now assume that F has basic mean curvature H . Denote

as above by κ the corresponding basic smooth 1-form on M0. Note that for any smooth function

f : M0 → R the average function [f ] : M0 → R is a smooth basic function. The smoothness

is evident, since in M0 the leaves depend smoothly on the point. Indeed, the smoothness

statement is a trivial case of [21]. Using our assumption on the mean curvature we are going to

conclude that the average operator (on the principal part M0) commutes with basic horizontal

derivatives and with the Laplacian.

First we claim:

Lemma 3.1. Let X be a smooth, basic horizontal vector field on M0 and let f be a smooth

function. Then [X(f)] = X([f ]).
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Proof. Both sides are linear in f and clearly agree on smooth basic functions. Thus it suffices

to prove the equality for all smooth functions f with [f ] = 0, since any function f is the sum

of [f ] and f − [f ].

Denote by ω the volume form of the leaves, well defined up to a sign. The mean curvature

describes the infinitesimal volume change along the flow of X , hence the Lie derivative of the

measures ω along the vector field X is given by LX(ω) = −κ(X) · ω ([14, Proposition 4.1.1]).

Since κ is basic, the function κ(X) is constant along each leaf. Thus for any function f with

[f ] ≡ 0 and any p ∈ M0 we have

0 = X(0) = X
(

ˆ

Lp

fω
)

=

ˆ

Lp

X(f)ω +

ˆ

Lp

fLX(ω) =

ˆ

Lp

X(f)ω − κ(X)(p)

ˆ

Lp

fω

The last summand vanishes by assumption, hence
´

Lp
X(f) = 0. The above equation implies

[X(f)] = 0 = X [f ]. �

From the previous Lemma we are going to deduce that the averaging operator commutes

with the Laplacian (cf. [21], Propositions 4.1 and 4.3).

Lemma 3.2. If ∆ denotes the Laplacian on M0 then ∆[f ] = [∆f ] for any smooth function

f : M0 → R.

Proof. Fix a point p ∈ M0, consider an orthonormal frame {X1, . . . Xk, V1, . . . Vn−k} in a neigh-

borhood of p where the Xi are basic and the Vi are vertical.

Define the basic, resp. vertical Laplacians ∆h,∆v as

∆hf =

k
∑

i=1

(XiXi(f)−∇Xi
Xi(f)) ∆vf =

n−k
∑

i=1

(ViVi(f)−∇Vi
Vi(f))

The operators ∆v, ∆h do not depend on the choice of the vertical and horizontal frames, and

moreover ∆ = ∆h+∆v is the usual Laplacian. Hence it suffices to prove the following identities:

∆h[f ] = [∆hf ](3.1)

∆v[f ] = [∆vf ].(3.2)

Since the O’Neill tensor is skew-symmetric we see ∆hf =
∑

iXiXi(f)−∇h
Xi

Xi(f). Hence

∆h is a sum of compositions of derivatives along basic horizontal fields. But the averaging

operator [·] commutes with derivations along basic horizontal fields by Lemma 3.1. This implies

Equation (3.1).

On the other hand, consider the operator ∆l(f) :=
∑n−k

i=1

(

ViVi(f)−∇v
Vi
Vi(f)

)

which is

just the Laplacian along the leaves of the restriction of f to the leaves. By definition

∆l(f) = ∆v(f) +
n−k
∑

i=1

∇h
Vi
Vi(f) = ∆v(f) +H(f)

Due to Lemma 3.1, the derivation along the basic field H commutes with [·]. Moreover, since

the Laplacian of a constant function is 0 and since the integral of the Laplacian of any function

on any compact manifold is 0, we get for any smooth function f : M0 → R

∆l[f ] ≡ 0 ≡ [∆lf ]
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In particular, ∆l commutes with the averaging operator as well. This implies Equation (3.2). �

3.3. Boot-strapping to smoothness. Under the assumptions above we are going to prove

now that for any smooth function f : M → R, the smooth average function [f ] : M0 → R has

a smooth extension to M .

Theorem 3.3. Let F be a singular Riemannian foliation with compact leaves on a Riemannian

manifold M . Assume that F has basic mean curvature. Then for any smooth function f : M →

R the average function [f ] ∈ L1
loc(M) has a smooth representative.

Proof. For any smooth function f : M → R, denote by [f ] : M0 → R the smooth representative

of the averaged function defined at every point of M0 by (1.1). We claim that [f ] has a smooth

extension to M1, the union of all strata of codimension at most 1. (This is again a special

case of [21]). Indeed, either M1 = M0, or the lift F ′ of F to a double cover M ′

1 of M1 has

only principal leaves. Since the averaging in M ′

1 with respect to F ′ commutes with the deck

transformations of the cover M ′

1 → M1, we obtain the smoothness of the lift of [f ] to M ′

1 and

therefore the smoothness of [f ] on M1. Note, that since F is a regular foliation on M1 the mean

curvature field H extends to a smooth vector field on M1. Moreover, Lemma 3.1 and Lemma

3.2 remain true for smooth functions on M1.

Next, we claim that [f ] has a locally Lipschitz extension to M . Consider an arbitrary point

p ∈ M . It is enough to find a neighborhood U of p in M such that [f ] : U ∩M1 → R is Lipschitz

continuous. In order to do so, consider an open F -saturated pre-compact neighborhood V of p

in M . Since f is smooth and V̄ compact, f must be K-Lipschitz on V for some K > 0. Hence,

for any unit basic horizontal vector field X on V1 := V ∩ M1 we have |X(f)| ≤ K. Due to

Lemma 3.1, we deduce that
∣

∣X([f ])
∣

∣ ≤ K on V1. Since [f ] is basic, its gradient field is basic

as well and we deduce that [f ] : V1 → R is locally K-Lipschitz. Consider now a small convex

ball U ⊂ V around p in M . Since M \M1 has codimension at least 2 in M , any pair of points

in U1 := U ∩ M1 can be connected in U1 by a smooth curve of length arbitrary close to the

distance between these points. Integrating along this curve we deduce that [f ] : U1 → R is

K-Lipschitz continuous. This finishes the proof of the claim.

The function ∆f is smooth as well as f . Due to the previous claim, the functions [f ], [∆f ]

are both locally Lipschitz in M . If we proved that [f ] ∈ C2 for any smooth function f and

that ∆[f ] = [∆f ] on the whole of M , then a standard bootstrap argument would prove the

smoothness of [f ]. Since the complement Y = M \M1 of the regular stratum has codimension

≥ 2 in M , the following analytic Proposition 3.4 together with Lemma 3.2 provides exactly

what we need, thus finishing the proof of the Theorem. �

Proposition 3.4. Let M be an n-dimensional Riemannian manifold and let Y be a closed

subset of M with vanishing (n − 1)-dimensional Hausdorff measure. Assume that u, g are

locally Lipschitz functions on M such that ∆u = g on M \Y in the sense of distributions. Then

the function u is of class C2. Moreover, ∆u = g on M .

Proof. The question is local and we may restrict to a small open ball B around a given point

in M . In this ball we can solve the Dirichlet problem and find a map u1 in the Sobolev class
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H1,2(B), with ∆u1 = g in B. Since g is Lipschitz continuous, elliptic regularity gives us

u1 ∈ C2(B). If we can prove that the locally Lipschitz function u2 = u− u1 is harmonic in B,

then the regularity of u would follow from the regularity of u1 and u2.

Since u and u1 are in the Sobolev space H1,2(B), so is their difference u2. Hence the

Laplacian ∆u2 is a distribution in the Sobolev space H−1,2(B). By assumption this distribution

has its support on Y ∩ B. Since Y has vanishing (n − 1)-dimensional Hausdorff measure, it

follows from [17, p. 16] and [2, p. 70] that the only distribution in H−1,2(B) with support in

Y is 0. Therefore, ∆u2 = 0 on B. �

4. Homogeneous basic polynomials

In this section, we consider a singular Riemannian foliation F with compact leaves on a

round sphere Sn. Consider the induced foliation CF on the Euclidean space V = R
n+1 invariant

under canonical dilations. By [4], both foliations have basic mean curvature and the results

from the previous section, show that for a smooth function f : V → R its averaged function [f ]

is smooth as well. Since the leaves of CF through points in S
n coincide with the corresponding

leaves of F , the average of f |Sn with respect to F is just the restriction of [f ] to the sphere Sn.

The following observation together with Theorem 3.3 finishes the proof of Theorem 1.4:

Proposition 4.1. If f : V → R is a homogeneous polynomial, [f ] is a homogeneous polynomial

of the same degree.

Proof. A smooth function f : V → R is a homogeneous polynomial of degree m if and only if

(4.1) f(rx) = rmf(x)

holds true for all x ∈ V and r ∈ [0,∞), as one can see from the Taylor expansion. Since the

foliation CF is invariant under dilations, equality (4.1) for the function f implies the same

equality for the average function [f ]. Thus the result follows from Theorem 3.3. �

Consider now the ring R[V ]b of basic polynomials on V with respect to CF . This is a

subring of the ring R[V ] = R[x1, ...., xn+1]. Since the average [·] : R[V ] → R[V ]b preserves the

degree, we see that R[V ]b is homogeneous: For any polynomial p ∈ R[V ]b, the homogeneous

summands of p are again in R[V ]b.

Hilbert’s proof of finite generation of the rings of invariants (cf. [25, p. 274]) applies to

our situation:

Proposition 4.2. The ring R[V ]b of basic polynomials is finitely generated.

Proof. By Hilbert’s Basis Theorem, the ideal I in R[V ] generated by the subring R[V ]b+ of basic

polynomials of positive degree, is finitely generated (as a module over R[V ]). Thus we can find

homogeneous basic polynomials ρ1, . . . ρk of positive degrees which generate I as an ideal.

We now prove that R[V ]b = R[ρ1, . . . ρk] as a ring, proceeding by induction on the degree.

Assume that all q ∈ R[V ]b of degree smaller than m are contained in R[ρ1 . . . ρk], and consider
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some homogeneous p ∈ R[V ]b of degree m. Since p ∈ R[V ]b+ ⊂ I, we can find polynomials

a1, . . . ak ∈ R[V ] such that

p =
∑

aiρi.

Moreover, we may assume that each ai is homogeneous of degree smaller than m. We apply

our averaging operator to this equation and obtain

p =
∑

[ai]ρi.

By induction, the basic polynomials [ai] are contained in R[ρ1, . . . ρk]. Therefore, p is contained

in R[ρ1, . . . ρk] as well. �

There are plenty of basic polynomials:

Proposition 4.3. The ring of basic polynomials separates different leaves of CF .

Proof. Given two leaves Lx, Ly, consider a smooth function f (a bump function) which is

constant 1 in Ly and constant 0 in Lx. By the theorem of Weierstrass, there exists a polynomial

P : Rn+1 → R such that |f − P | < ǫ on the compact set Lx ∪ Ly. Then [P ](x) ∈ (−ǫ, ǫ),

[P ](y) ∈ (1− ǫ, 1 + ǫ), therefore, [P ] separates Lx, Ly. �

The following result finishes the proof of Theorem 1.1:

Proposition 4.4. In the notations above, let ρ1, ..., ρk be generators of the ring R[V ]b of basic

polynomials. The map ρ = (ρ1, . . . ρk) : R
n+1 → R

k descends to a homeomorphism of Rn+1/F

onto its image.

Proof. Since any coordinate ρi of ρ is basic, the map ρ descends to a map ρ∗ : Rn+1/F → R
k.

Since the basic polynomials separate points and ρi generate the ring of all basic polynomials, the

map ρ∗ : Rn+1/F → R
k is a bijection onto its image. In particular, the non-empty fibers of ρ

coincide with leaves of CF , thus ρ is proper and so is ρ∗. Therefore, the map ρ : Rn+1/F → R
k

is a homeomorphism onto the image. �

—————————————————–
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6. M. M. Alexandrino and D. Töben, Equifocality of singular Riemannian foliations, Proc. Amer. Math. Soc.

136 (2008), 3271–3280.
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19. H.-F. Münzner, Isoparametrische Hyperflächen in Sphären, Math. Ann. 251 (1980), 57–71.
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23. H. Rummler, Quelques notions simples en géométrie Riemannienne et leurs applications aux feuilletages

compacts, Comment. Math. Helv. 54 (1979), 224– 239.

24. S. Stolz, Multiplicities of Dupin hypersurfaces, Invent. Math. 138 (1999), 253–279.

25. H. Weil, The classical groups (2nd edition), Princeton University press (1997).

26. S. Wiesendorf, Taut submanifolds and foliations, J. Diff. Geom. 96 no. 3 (2014), 457–505.

(Radeschi) Mathematisches Institut, WWU Münster, Germany.

E-mail address: mrade 02@uni-muenster.de

(Lytchak) Mathematisches Institut, Cologne, Germany.

E-mail address: alytchak@math.uni-koeln.de

http://arxiv.org/abs/1102.1704

	1. Introduction
	2. Preliminaries
	3. Smoothness of the averaging operator
	4. Homogeneous basic polynomials
	References

