ALMOST CONVEX SUBSETS
ALEXANDER LYTCHAK

ABSTRACT. We study almost convex subsets of spaces with
one-sided curvature bounds. We derive some characterisa-
tions and properties of sets of positive reach in Riemannian
manifolds.

1. INTRODUCTION

1.1. The aim. This paper is devoted to the study of the geometry
of nice subsets of nice metric spaces. The nice metric spaces we
have in mind are Riemannian manifolds or more generally spaces
with one-sided curvature bound in the sense of Alexandrov. The
nice subsets we are interested in are almost convex subsets in some
precise (parameter depending) sense. For each positive number
a we define the notion of a-convexity, such that the case a =
oo corresponds to convex subsets and the most interesting case
a = 2 describes subsets of positive reach in Riemannian manifolds,
that play an important role in the integral geometry, compare for
example [Hug98]. The class of subsets of positive reach is very big
and contains for example smooth submanifolds with boundaries,
for which the inner geometry was studied in a series of papers
of Alexander, Berg and Bishop (see [ABB87] and [ABB93]). In
spaces with one-sided curvature bound a-convex subsets for o = 2
are closely related to semi-convex functions, that play a major
role in the investigations of such spaces. In spaces with one-sided
curvature bounds we create in this way surrogates for submanifolds
and methods for studying them. Restricted to manifolds we obtain
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a geometric access to the geometry of non-smooth submanifolds
and of sets of positive reach.

1.2. The definitions. The idea is very simple. In order to study
the property of a subset Z of a metric space X we want first to
neglect the ambient geometry of X and to work only with the
induced metric d on Z. The following definition just says that Z
is convex up to order a.

Definition 1.1. Let C,a > 0,p > 0 be real numbers. Let (Z,d)
be a metric space. Denote by d? the inner metric induced by d.
We say that Z is (C, a, p)-geodesic if d(z,y) < pimplies d? (z,y) <
d(z,y)(1 4+ Cd*(x,y)). We say that a subset Z of a metric space
X is (C, a, p)-convex if 7 is (C, a, p)-geodesic with respect to the
induced metric.

Remark 1.1. In the definition the constant p plays the role of
the minimal distance between connected components of a locally
convex subset and can be neglected in local considerations. The
constant « is the most important one and describes the degree of
non-convexity. Finally the constant C' plays the role of the bound
of the second fundamental form for & = 2 and can be interpreted
similiary for general a.

Remark 1.2. The above definition is global, i.e. it requires the
fixed choice of constants C' and p for the whole space Z. It is easy
to extend the definition and to allow C' to grow and p to become
small if one goes to infinity in Z. We leave this extension to the
interested reader.

In general it is difficult to find geodesics in a space, it is often
easier to find midpoints and to observe that this and the complete-
ness garantuee the geodesicity of the space. On the other hand
geometric assumptions on the ambient space X (such as curvature
bounds) can be used to compare midpoints between two given
points with approximate midpoints, and therefore to relate the
geometry of almost convex subsets to the geometry of X. This
motivates the following definition:

Definition 1.2. Let C,a > 0,p > 0 be such that Cp* < 1. A

metric space X is called (C, a, p)-almost midpoint space if for all
2



xo,x1 € X with s = d(zg, 1) < p there is a point m € X with
d(x;,m) < 5(1+Cs%).

One sees immediately that a (C,a, p)-geodesic space is also
(C, o, p)-almost midpoint space. On the other hand we have:

Proposition 1.1. Let a,C' > 0, p > 0 be real numbers with Cp* <
1. If a > 0, then there are constants C,p depending only on C,p
and o such that each complete (C, a, p)-almost midpoint space is
(C, a, p)-geodesic.

The result does not hold for @ = 0, see however Lemma 3.2.

1.3. Almost convex subsets of manifolds. Comparing mid-
points to almost midpoints and using a metric interpretation of
Ch* maps we obtain:

Theorem 1.2. Let M be a smooth Riemannian manifold, 7 C M
a compact subset, 0 < a < 1. Then Z is (C,2a, p)-convex for
some C,p > 0, iff for some p,C > 0 each two points in Z at
distance s < p can be connected in Z by an arclength parametrized
Ch® curve of length smaller C's, whose C* norm is bounded by C.

This shows that the notion of 2a-convexity does not depend on
the Riemannian metric but only on the C® atlas of M. More-
over we obtain that geodesics in a C* submanifold of a smooth
Riemannian manifold are uniformly C'®. This result is a little
bit astonishing as far as the geodesics of an abstract manifold
with an a-Holder continuous Riemannian tensor do not have the
same regularity for « < 1 ([LY04],T.1.1). This provides the non-
embeddability result ([LY04],Cor.1.2) for such manifolds.

Theorem 1.3. Let M be a smooth Riemannian manifold, 7 a
compact subset of X. Then the following are equivalent:

(1) Z has positive reach;

(2) Z is (C,2, p)-convex for some C,p > 0;

(3) Z is a locally conver subset with respect to a Lipschitz con-
tinuous Riemannian metric.

The point (3) in the theorem above shows that sets of positive
reach are indeed closely related to convex subsets of Riemannian
manifold (despite the fact that their local topology may be very

complicated) not only in the sense of integral but also in the sense
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of metric geometry. It seems a difficult task to obtain a similiar
characterization of (C, a))-convex subsets for 0 < a < 2.

As was already mentioned our approach allows us to study the
inner geometry and topology of the sets of positive reach. As an
example we prove:

Proposition 1.4. Let M be a Riemannian manifold and Z C M
a subset of positive reach. The following are equivalent:

(1) Z is a C' submanifold;

(2) Z is a topological manifold;

(3) (Z,d?) is geodesically complete;

(4) Each tangent space T, Z is a Euclidean space.
Remark 1.3. Federer has proved in [Fed59] that a set of positive
reach that is a Lipschitz manifold must be a C''' submanifold.

1.4. Almost convex subsets in spaces with one-sided cur-
vature bounds. The notion of (C, «)-convexity is closely related
to semi-concave functions for &« = 2. The following lemma is
proved in [Lyt04c],Cor.1.9 (see Subsection 2.4 for the definition of
semi-concave functions and regular sub-level sets).

Proposition 1.5. Let X be a space with a one-sided curvature
bound. If Z = f1([t,00)) is a reqular sublevel set of a semi-
concave function f: X — R, then Z is a (C, 2, p)-almost midpoint
space for some C, p > 0 and therefore it is (C,2, p)-conver.

Actually, the last result is not only true for spaces with one-sided
curvature bounds but also for surfaces with an integral curvature
bound or manifolds with a Holder continuous Riemannian tensor
([Lyt04c)).

In the presence of an upper curvature bound this condition is
also necessary. Moreover in this case one can relate the geometry
of the subset to the geometry of a neighborhood:

Theorem 1.6. Let X be a CAT (k) space, Z a closed (C,2,p)-
convex subset. Then there are numbers r, A, \,t > 0 depending
only on k, C" and p, such that the distance function dz to the subset
Z is A-convex in the tubular neighborhood U = U,.(Z) of radius r
around Z. For each point x € U, there is a unique foot point p € Z

next to v and the map P? : U — Z is Lipschitz. Moreover its local
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Lipschitz point at x is bounded by 1 + A - d(x, Z). Finally Z does
not contained a closed geodesic (with respect to the inner metric)
of length smaller than i.

Remark 1.4. Some dimension dependant bounds on the (normal)
injectivity radius of a smooth submanifold of a Riemannian mani-
fold in terms of its second fundamental form (essentially equivalent
to the constant C' due to Theorem 1.2) was obtained in [Cor90]
and [She95]. Recently an optimal bound of  and i in the theorem
above was obtained in [AB04].

The restriction of each semi-concave function on X to 7 is semi-
concave with respect to the inner metric of Z. A closer look on
this object reveals:

Corollary 1.7. Let Z be a closed (C,2 + €, p)-convez subset of a
CAT (k) space X, for some p,e > 0. Then Z is locally conver.

Remark 1.5. The proof of this fact (Lemma 6.3) shows that there
is no meaningful analogue of the notion of quasigeodesics in spaces
with an upper curvature bound (compare [PP94],6.1).

Remark 1.6. In [Lyt04b] we prove that a subset Z as above is a
CAT (k) space with respect to the inner metric for some &(k, C').

Remark 1.7. For Riemannian manifolds the connection between
sets of positive reach and semi-concave functions was discovered
in [K1e80] and [Ban82].

The situation in spaces with a lower curvature bound is (as
usual) much more complicated. We cannot say much about the
geometry of (C, a)-convex subsets. The only thing we show in this
direction is that positive reach implies (C, 2)-convexity. Actually
the positive reach condition does no make much sense in spaces
with a lower curvature bound, since usually even points do not
have positive reach. The following definition seems to be more
appropriate:

Definition 1.3. Let X be space with a lower curvature bound,
r,e > 0. We say that a closed subset Z of X has e-almost reach r
if for each point x € X and each p in Z with d(z, Z) = d(z,p) <r
there is a point z € X with d(p,z) = d(Z,z) = r and such that
Zxpx < €.
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We prove:

Proposition 1.8. Let X be a proper space with lower curvature
bound k. Let r > 0,0 < € < 7 be given. Then there is some
C =C(k,r,e) and p = p(k,r,€), such that each closed subset Z in

X of e-almost reach r is (C, 2, p)-conver.

Remark 1.8. For manifolds this result (together with Theorem 1.3)
says that almost positive reach implies positive reach. We could
not find a direct argument for this fact.

1.5. The way. After preliminaries we discuss in Section 3 basics
about almost geodesicity and prove Proposition 1.1. In Section 4
we discuss implications of curvature bounds on almost midpoints.
In Section 5 a proof of Proposition 1.8 is given. In Section 6
we study (C, «)-embedded subsets in C AT (k) spaces. Finally in
Section 7 we study almost convex subsets in Riemannian manifolds
and prove Theorem 1.2, Theorem 1.3 and Proposition 1.4.

1.6. Aknowlegments. [ am grateful to Werner Ballmann for help-
ful comments. I would like to thank Joseph Fu for some expla-
nations about sets of positive reach and for bringing the papers
of Alexander, Berg and Bishop to my attention. I am grateful to
Stephanie Alexander for her interest in my work.

2. PRELIMINARIES AND NOTATIONS

2.1. Notations. By R" we denote the FEuclidean n-dimensional
space. By M? we denote the two-dimensional simply connected
Riemannian manifold with constant curvature &.

We shall denote by d the distance in metric spaces. For a subset
A of a metric space X we denote by d, the distance function to
the set A. By B,(A) resp. U,(A) we denote the set of all points
x € X with ds(z) = d(z, A) < r resp. d(z,A) < r. By tX we
denote the space X with the metric scaled by the factor .

For a curve v in X we denote its length by L(y). A geodesic
or more precisely an X-geodesic is an isometric embedding of an
interval in X. We call X a geodesic space if each two points in
X can be connected by a geodesic. A subset Z of a metric space

X is called convex if Z is geodesic with respect to the induced
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metric. A metric space X is proper if its closed bounded subsets
are compact. A midpoint between two points xg,x; in a metric
space X is a point m with d(m,z;) = $d(xo,z,) for i =0, 1.

2.2. Holder differentials. Let 0 < o < 1 be a real number. A
map f : U — R™ of an open subset U C R” is called C** if it is
C! and the differential Df : U — L(R™,R™) is locally a-Hdlder,
i.e. for each compact subset K of U there is a constant C'(K') such
that for all =,y € K and all unit vectors v € R" the inequality
|Dyf(v) — D, f(v)| < Clz — y|* holds.

The following lemma allows a metric approach to C»® maps.
We refer to [CH70],L.2.1 for an easy proof.

Lemma 2.1. Let f : U — R™ be a map. Then f is CY iff for each
compact subset K of U, there is some C' > 0 such that for each x
in K and all small h € R™ one has |f(z+h)—2f(x)+ f(x—h)| <
C’|h|1+o‘.

For Ch* manifolds M and N and a family F of maps f; : U; —
N defined on open subsets U; C N is called locally uniformly C*
if it is locally uniformly Lipschitz and for relatively compact charts
in M and N the constant C' of Lemma 2.1 can be chosen uniformly
for all f; € F. We refer to [LY04] for more on this subject.

2.3. Spaces with a curvature bound. We say that a complete
geodesic space X is a CAT (k) space resp. has curvature > &,
if all triangles in X are not thicker resp. not thinner than the
corresponding triangles in M2, We refer to [BH99] and [BBIO1]
for the theory of such spaces.

2.4. Semi-concave functions. We refer to [PP94],/AB03] and
[Lyt04c] for the theory of semi-concave functions. A function f :
R — R is called A-concave if f(t) + A\t? is a concave function. A
locally Lipschitz map f : X — R of a geodesic space X is called
A-concave if the restriction of f onto each geodesic is A-concave.
A map f: X — Ris called A\-convex if —f is (—\)-concave.

A 1-Lipschitz map f : X — R is A-convex if and only if, for all
points xy,x; € X and each midpoint m between xy and z; one
has f(wo) + f(z1) — 2f(m) > —2Ad(xo, 21)*.
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A map f : U — R defined on an open subset U of X is called
semi-convex (concave), if each point x € U has a neighborhood V'
such that f is A-convex on each geodesic in V' for some A = (V).
Ezxample 2.1. A map f : R* — R is semi-concave and semi-convex
iff f is of class Cb'.

The absolute gradient of function f : U — R at the point z € U
is given by |V, f| = max{(),limsupj_m%}. Let f: U —
R be a A-concave function. We say that the sublevel set U, :=
f7H([t, 00)) is (C,r)-regular if for each z € X with f(z) < t and
d(z,Us) < r one has |V,f| > C. The sublevel set U; is called
regular if it is (C, r)-regular for some C,r > 0.

2.5. Riemannian manifolds. We refer to [BN93] for the theory
of spaces with two-sided curvature bounds. We will denote by
M, ; . the class of all complete manifolds with curvature bounded
from below resp. from above by —k resp. by k and injectivity
radius bounded below by > i. If you do not know [BN93] just
assume that all manifolds in question are smooth (or at least C?
with a C? Riemannian tensor).

2.6. Positive reach and unique footpoints. Recall from [Fed59]:

Definition 2.1. A closed subset Z in a metric space X is said to
have UF P (unique footpoint property) if for all z € X there is a
unique point z € Z with d(z,x) = d(Z, z).
Definition 2.2. We say that a closed subset Z in a proper geodesic
space X has reach p > 0, if for each z € X \ Z, each p € Z with
d(z,p) = d(z,Z) < p there is some y € X with p = d(p,y) =
d(p, ) +d(z,y) = d(y, Z).

Federer observed in [Fed59] that a subset Z of a smooth Rie-
mannian manifold has reach > r iff the subset Z has the unique
foot point property in the tubular neighborhood U,.(Z) around Z.

2.7. Ultralimits. When dealing with non-proper spaces we will
use ultralimits of a sequence of pointed metric spaces (X;, x;) that
we will denote by lim,, (X;, z;). We refer to [BH99] or [Lyt04a] for
more on ultralimits. If you do not like this concept just assume

that all spaces are proper and replace the ultalimit by a limit in the
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Gromov-Hausdorff topology. An ultralimit is always a complete
space and an ultralimit of inner metric spaces is a geodesic space.

3. ALMOST CONVEXITY

3.1. Basics. We start with:

Definition 3.1. For 0 < r < 1 we call a point m an r-almost mid-
point between points zy and x; in a metric space X, if d(z;, m) <
d(xo, 1) (1 + ) holds.

For r = 0 we get usual midpoints. Observe that d(z;,m) <
d(xg, x1). Under rescaling of the metric r-almost midpoints remain
r-almost midpoints. Moreover r-almost midpoints converge to r-
almost midpoints under an ultraconvergence of spaces.

Recall Definition 1.1 and Definition 1.2 from the introduction.
We immediatly see:

Lemma 3.1. If X is (C,«, p)-geodesic then the completion of X
is also (C, «, p)-geodesic. For t > 0 the space tX is (t*C, a,tp)-
geodesic. If (X;, x;) is a sequence of (C;, «, p;)-geodesic spaces with
C; - C < oo and p; — p > 0, then the ultralimit (X,z) =
lim, (X;, z;) is (C,a, p)-geodesic. A direct product of (C,«,p)-
geodesic spaces is (C, «, p)-geodesic.

Moreover in all the statements one can replace (C, c, p)-geodesic
by (C, a, p)-almost midpoint.
FEzample 3.1. The set of all closed (C,«, p)-convex subsets of a
given proper metric space Z is closed in the pointed Hausdorff
topology.
Ezxample 3.2. If X is (C, a, p)-geodesic for some a > 0 then for
each sequence x; € X and each sequence t; — 0 the blow-up
limw(éX, x;) is a geodesic space.
FEzample 3.3. Let X be a (C,a, p)-geodesic space. Then for all
0 < o < aand each C'" > 0 there is some p' = p/'(C, a, p,C', &) >
0 such that X is (C',/, p')-geodesic.
Ezample 3.4. Let X be a (C,a, p)-geodesic space. Each convex
subset of X with respect to the inner metric d¥ is a (C,«, p)-
geodesic space with respect to the induced metric. In particular
this holds for each d*-geodesic.
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FEzample 3.5. Let X be a (C,«q, p)-geodesic space. Let Z be a
(C',a!, p')-convex subset of (X,d¥). If a,a’ > 0 then an easy
computation shows that Z is a (C"”, 3, p")-convex subset of X for
some constants C”, p” > 0, where 8 = min{a, o'}.

Example 3.6. Let X be a geodesic metric space, C X the Euclidean
cone over X. Then X considered as the unit sphere in C'X is a
(1,2, p)-embedded, for some sufficiently small p, as one sees by an
easy computation in the Euclidean plane. The constant C' = 1 is
certainly not optimal (see [ABO04]).

The next example shows that in Banach spaces a subset can be

(C, a)-convex for each o > 0 and some C' = C(«) > 0 without
being locally convex (compare Corollary 1.7).
Ezample 3.7. Consider the vector space R? with the norm given
by |(z1,z2)| = |z1| + |z2]. Let f :]0,1] — R" be a monoton C*
function with f(0) = 0, f(1) = 1 and such that all derivatives
vanish at 0. The graph 7(t) = (¢, f(t)) parametrized by the length
is a geodesic. For 0 < t < 1 set y(—t) = (—t, f(t)). The curve
v : [=1,1] — R? consists of two geodesics glued together at the
origin. The trace I' of 7 is not convex, however for arbitrary big
a one can find C, p > 0, such that T" is (C| «, p)-convex.

3.2. Connectivity. We are going to study connectivity proper-
ties of (C, e, p)-almost midpoint spaces.

Lemma 3.2. For C < 1, let X a be complete (C,0, p)-almost
midpoint space. Then arbitrary points xq,x1 with s = d(xg,x1) <
p in X can be connected by a continuous curve. In particular
connected components of X have distance > p from each other.

Proof. Consider some C-almost midpoint m between x, and x;
and denote it by T Choose C-almost midpoints T1 Tesp. s
between x, and T resp between ! and z;. Contlnulng in this

fashion we define for each dyadic number 0 <t=3% <1a point

z; € X. By induction on n we see d(zm , Tms1) < %
on

Thus the map f : D — X of the dyadic numbers D C [0, 1] given
by f(t) = z; is uniformly continuous and since X is complete, it
can be extended to a continuous map f : [0,1] — X connecting
zo and z. O
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Remark 3.8. From the proof we actually can deduce that the curve
f:10,1] — X defined above is ¢-H6lder and satisfies d(f(z), f(z))

sd(z, z)? with ¢ = % It is easy to show that the existence
of such curves between arbitrary points xq, x; with d(xg,z1) = s <

p is also sufficient for being (C,0, p)-geodesic with C' = 2179 — 1.

IN

3.3. Connectivity, o > 0. The case a > 0 is much more inter-
esting. First an easy observation. Let € > 0,a < 1 be given. By
taking logarithms of both sides we observe, that for each natural
n the inequality ]/, (1 + ea’) < eTa holds. This implies:
Lemma 3.3. For each 1 > a > 0 there is some € > 0, such that
for all 0 < a < a and all e < € we have []; (1 +ea’) <1+ £<.

Now we are going to show Proposition 1.1:

1
Proof of Proposition 1.1. Set a = (@)0‘ Choose € = €(a) <
as in Lemma 3.3. Let now s < p be such that e = C's* < €.
Let x9, x1 be arbitrary points in X with d(xg,z1) = s. For each
m

dyadic number ¢ = & with odd m we define as in the proof of

Lemma 3.2 a point z; as an r-almost midpoint between Tmpr and
Tmoy with 7 = C’d(xm+1 T 1)% For n € N denote by d, the

maximum of the distances d(:z:;g , :Em+1) The construction implies
dp < Ut(14Cdo ).

As in Lemma 3.2 we know d, < s(l;f)n. Now we see d, <
Yy (14 Cd2 ) < Ydyoi(1+ Cs(BE2))m). Set a = (1),
From the above 1nequahty we get by induction: d, < 2,1(1 +

a")(1+ea™")...(1 4+ €a). By Lemma 3. 3 we obtain 2"d,, < s(1 +

12_Ea) =s(1+ 21(”:3 ). Hence setting C' = 2% we see, that the curve

f is s(1 + C's®)-Lipschitz. O

Remark 3.9. The proof shows that C' depends linearly on C.
Finally we discuss a useful extension of Proposition 1.1:

1
2

Lemma 3.4. Let X be a complete metric space, C,p > 0, >
f > 0. Assume that for all xy, 1 € X with s = d(xy, 1) < p there
is a CsP-almost midpoint m € X between xy and | satisfying
d(xg,m) + d(x1,m) < s(1+ Cs®). Then X is (C,a, p)-geodesic
for some C,p > 0.
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Proof. The already common construction using almost midpoints
gives us for points zp,x; € X with s = d(zg,21) < p an L-
Lipschitz curve f : [0,1] — X connecting 2 and x, with L <
2s and such that for each n and each odd m < 2" one has
d(f(5=), F(5)) +d(f(3), f(55E))

< d(f(%), f(%) (1 + Cd((57), £(50))7)-

To estimate the length of this curve we denote by ¢, the partial
sum 2 d(f (%), f(50))-

From above we get tn41 < t,+CY2_ d(f(%), f(2))*. Now
we can estimate the last sum by Ct,(55)* = CN’tnso‘(Z%)”. Thus we
derive t,11 < t,(1 +C~’s°‘(2%)”). Applying Lemma 3.3 and arguing
as in the proof of Proposition 1.1 we can estimate the length of
the curve f by s(1 + C's®). O

4. ALMOST MIDPOINTS UNDER GEOMETRIC ASSUMPTIONS

4.1. Constant curvature. The subsequent estimations follow from
the trigonometry in the space form M?2.

Lemma 4.1. For each sufficiently small € > 0, there is some D =
D(e) > 0, such that for each triangle xyz in MY with sidelengthes
lzy| = a, |xz| = b, |yz] = ¢ of perimeter a+b+c < D the following
estimations for the midpoint m of the side xy do hold:
(1) If k = —1 and d(m, 2) < ea then b+ ¢ < a(1 + 4€?);
(2) If k =1 and b,c < 5(1 +¢), then d(z,m) < 5\/¢;
(3) If k =1 and Lyxz > % then ¢® > a® + b* — €b?.
(4) If k = —1 and Zyxz < § then ¢ < a® + b* + €b®.
(5) If k = =1 and Lyxz < § — p for some p > 0 then there is
a constant K = K(p) > 0, such that ¢* < a* + b* — Kab

4.2. Curvature bounds. Lemma 4.1 allows us now to compare
almost midpoints with midpoints in space with curvature bounds.
Namely rescaling and using comparison triangles one directly gets
from Lemma 4.1(1)-(2) the next two corollaries:

Corollary 4.2. For each k € R there is some p > 0 such that

for points xq, 1 with d(xg,x1) < p in a space with curvature > K,

each midpoint m between xy and x, and each point m satisfying
12



d(m,m) < rd(xg,x1) one has d(zo,m) + d(xy,m) — d(zo,z1) <
4r2d(zo, z1) if v is small enough.

Corollary 4.3. For each k € R there is some p > 0 such that for
points xg, 1 in a CAT(k) space X with d(xq,x1) < p, all smallr,
each r-almost midpoint m and the midpoint m between xy and x
we have d(m,m) < gd(xo,m).

4.3. Manifolds. In spaces with a lower and an upper curvature
bound Corollary 4.2 and Corollary 4.3 hold true. In particular it
is the case for each manifold M € M, .

5. LOWER CURVATURE BOUND

We are going to prove Proposition 1.8 in this section. Let X
be a space with curvature > k. Let Z be a closed subset of X.
Assume first that for some C, p,a > 0 and all zy, 21 € Z with s =
d(xg, 1) < p there is a midpoint m € X between z, and z; and
a point m € Z with d(m,m) < Cs'*®. Then from Corollary 4.2
and Lemma 3.4 we see that Z is a (C, 2a, p)-convex subset of X
for some C, p > 0 depending only on p, C, x and a.

Proof of Proposition 1.8. Rescaling X we may assume that the
curvature bound is —1. Let zp,z; be points in Z with 2s =
d(z0,21) < €(r) << r. Let m a midpoint between z, and z.
Let m be a point on Z with d(m,m) = d(Z,m). Choose a point
x € X with d(z, Z) = d(z,m) =r and Zzxmm < p.

Set a = d(m,m),b = d(z,m). For i = 0 or for i = 1 we
have Zzmz; < 5. Since r = d(z,7) < d(x,z) we get from
Lemma 4.1(4): r*> < b*+s*+es?. On the other hand Lemma 4.1(5)
and the assumption Zzmm < p give us b*> < r?2 + a?> — Kar, for
some K = K(p).

Altogether we get a> — Kar + (1 + €)s> > 0, hence ar < K.
Therefore a < Cs? with C = £. Thus d(m,m) < Cs? and the
argument preceeding the proof shows that the subset Z is (C, 2, p)-
convex in X. U

6. UPPER CURVATURE BOUND

13



6.1. Arbitrary o > 0. Let X be a CAT (k) space. By rescaling
we may and will assume k = 1. Let Z be a (C, 2« p)-convex subset
of X. We will assume from now on that all points in question have
distances << p and forget about p. Consequently we will write
(C, 2a)-convex instead of (C, 2a, p)-convex.

Let v:[0,a] = Z be a (Z,d?)-geodesic. Observe that v is also
(C,2a)-convex in X. Set z; = y(t). We have |t — s| > d(zy, z5) >
|t — s](1+ C|t — 5]**). From the comparison triangle of Toz;zs; we
derive for the angle at zy: Zz,z079 < Kt for a fixed K. This
implies, that v has a unique initial direction v € C,,X and for
some constant K and all small ¢ the angle between v and the initial
direction of the X-geodesic xgx; is at most Kt*. This implies, that
the angle between each two Z-geodesics vy, 7, starting at z € Z is
well defined and coincides with the angle between these two curves
in X.

We will show now that there are no small closed geodesics in Z:

Lemma 6.1. Let Z C X be as above. Let v : tSt — (Z,d?) be an
isometric embedding of a circle. Then t > €(C') > 0.

Proof. Consider v as a map v : [0, 2nt] — Z with v(0) = y(27t) =
x. Let n be the X-geodesic between x and 7(7t). Denote by
nt € C,X the starting direction of n and by v+ € C,X resp.
v~ € C,X the starting resp. the ending direction of . From
above we get /(v ,v") = m and Z(y%,nt) < K(7t)®. Hence
mt > (Kye. O

Remark 6.1. Assume now in addition that X is proper and geodesi-
cally complete. Then C,X is naturally isometric to T, X = x4
for each sequence ¢; — 0. In this case Zg(fi) coincides with the clo-
sure of the cone C'V in T, X over the set V' of all starting directions
of Z-geodesics. Hence the tangent space 7,7 C T, X is well de-
fined. Remark that 7,7 coincides with the tangent cone T, 7 at x
to Z when Z is considered with the inner metric. By Example 3.2
the tangent cone 1,7 C T,X is a convex subcone of T, X. It is
easy to deduce as in [Lyt04a],10.5 that a (C, 2«)-embedded subset

of a proper geodesically complete C AT (k) space X is geometric
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with respect to the inner metric, i.e. the first formula of variation
holds in (Z,d?).

6.2. The case o > 2 and semi-concave functions. Let X be
a CAT (k) space, Z a (C,2)-convex subset. First we are going to
investigate the behavior of semi-concave functions on X restricted
to Z. Let namely f : X — R be an L-Lipschitz and A-concave
function. Let 7 be an arbitrary (sufficiently short) Z-geodesic.
Then v is (C,2)-convex too. Let ¢,s be in the interval of defi-
nition of v and let m be the X-midpoint between () and ~(s).

Then using Corollary 4.3 we see that for m = (%) one has

d(m,m) < YCd((s),1(t))%. Hence f(m) > f(m) — Ld(m,m) >
f(v(t));f(v(S)) +A(s— )2 — @L(s — 1)
We have proved:

Lemma 6.2. Let X be a CAT(k) space, Z a (C,2)-embedded
subset and assume that (Z,d?) is locally geodesic. Let f: X — R
be a semi-concave function. Then the restriction f of f to (Z,d%)
15 semi-concave too. More precisely iof f is L-Lipschitz and \-

concave at x then f is A — @L—concave at x.

Remark 6.2. The assumption that (Z,d?) is locally geodesic is
satisfied if X is a proper space. In [Lyt04b] we show that it is
always fulfilled.

Assume now « > 2 and let Z be a (C, a)-convex subset of a
CAT (k) space X. Replacing X by its ultraproduct X* and Z by
Z° C X*“ we may assume that (Z,d?) is a geodesic space (this step
is superficial if X is proper). The subset Z is (e, 2, p)-embedded
for each € > 0 and sufficiently small p = p(€) (due to Example 3.3).
The last lemma shows that each L-Lipschitz semi-convex function
f restricted to Z is still semi-convex. Moreover if f is A-convex
then the restriction of f to Z is again A-convex. Therefore to prove
Corollary 1.7 it is enough to verify the following

Lemma 6.3. Let v be a curve parametrized by the arclength in
a CAT (k) space X. If the restriction of each A-convex function
f: X — R onto v is still A-convezx, then v is a local geodesic.

15



Proof. Assume again that £ = 1 and set x = y(a) and y = ~(b)
where |b—a| < e << 7. Let [ be the X-geodesic between x and
y. We consider the distance function f = d; : X — R and the
restriction f : [a,b] — R of d; to 7. The distance function to the
convex subset [ in the CAT(1) space X satisfies d] > —2d; (in
the weak sense, when restricted to a geodesic) at all points with
distance < € to [. Thus we get f” > —2f. On the other hand we
have f(a) = f(b) = 0. A standard comparison argument shows
that [b—a| < e implies that f must be constant 0. Thus [ coincides
with ~. 0

6.3. Geometric properties. We are going to prove Theorem 1.6
in this subsection.

Proof of Theorem 1.6. Thus let X be a CAT (k) space and Z a
closed (C,2)-convex subset. As usual we assume that x = 1.

In the first step we are going to show that X locally has the
unique foot point property. Let ry << p be sufficiently small,
x € X a point with ry = d(x, Z). Let z, be a sequence in Z with
d(x,z,) — 19. Assume that z, is not a Cauchy sequence. Then
we find subsequences py, ¢, with d(z,p,) < ro+ + and d(z,¢,) <
ro +% and s, = d(pn,qn) > € for all n. Let m € X be the
midpoint between p, and ¢,. From the comparison triangle we
get by Lemma 4.1(3): d(z,m)? < (ro + =)* — (2)? + €%s2.

Take now a point m in Z with d(m, m) < C's2. We see d(x, m) <
d(z,m)+d(m,m) < ro++— % +C's2. If ry has been chosen such
that 4—:,0 > (' we get a contradiction to d(z, Z) =r.

Thus z, must be a Cauchy sequence. This shows that the map
P?%: B,,(7) — Z that sends a point z € B,,(Z) to the point p in
Z with d(z,p) = d(z, Z) is well-defined and continuous.

Remark 6.3. Let Z C X be as above. Then the ultraproduct X*
is again a CAT' (k) space and Z¥ C X* is (C, 2)-convex. Remark
that the restriction of dzo to X C X% coincides with d; and
the restriction of the projection P%" : B, (Z*) C X¥ — Z“ to
B, (Z) C X coincides with PZ.

Now we are going to show that the projection PZ is in fact

much better than just continuous. Using the above remark we
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may assume that (Z,d”) is geodesic. Take 7y << p as above. Let
x € X be a point with d(z,Z7) = r << ry. Let y € X be another
point with a = d(x,y) << r. Set p = P%(x) and ¢ = P?(y). We
have to estimate s = d(p,q). Consider a Z-geodesic v between p
and ¢g. Let 7 be the X-geodesic between p and ¢ and let 7; resp.
12 be the geodesics between p and = resp. between ¢ and y.

By the very definition of the projection we get Z(y*, 7)) > 2
and Z(y,m3) > Z. From Subsection 6.1 we derive Z(y*,7%) <
5 — Ks.

Now by comparing of the quadrangle ¥, 7,1, with the corre-
sponding quadrangle in the round sphere M? we obtain d(z,y) >
s — 4K sr if r is small enough. Hence a > s(1 — Ar) for some
A = A(C). This shows that the Lipschitz constant of PZ at the
point z is not bigger than (1 + A - d(x, Z)).

Let 7 > 0 be such that PZ is a well defined L-Lipschitz function
in B,.(Z), for some constant L = L(C'). We are going to show that
the distance function dz is semi-convex in U, (7).

Again we assume that 7 is geodesic. The question is local. Con-
sider points x,¥y,p,q and the curves v and % as in the last step.
Let mg be the midpoint of the X -geodesic between x and y, m the
midpoint of 4 and m the midpoint of v. We have d(mg, m) <
5(d(z,p) + d(y,q)) + 2d(z,y)*>. Moreover we have d(m,m) <
Cd(p, q)* < LCd(z,y)?. This shows dz(mg) < d(mg,m) < 1(dz(z)+
dz(y))+(2+LC)d(x,y)?. Thus the function dy is (14 2C)-convex
in U,(2).

Observe finally the semi-concave function —d; has Z as a reg-
ular sublevel set. This recovers the statement of [K1e80], if X is a
Riemannian manifold and finishes the proof of Theorem 1.6. [

Remark 6.4. The same argument as in the first step of the above
proof shows that for all sufficiently small » = r(C, k) > 0 for each
xz € X and all 2y, 2z € B,(x) each (C,2)-midpoint between z and
2z is contained in B,(z). Hence the intersection of each (C,2)-
convex subset Z with B,(z) is again (C, 2)-convex, moreover this
intersection is a convex subset of (Z,d?).
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7. DIFFERENTIABLE PROPERTIES

7.1. Basics. From now on let n,i, k be fixed and let M,,;, be
the space of Riemannian manifolds as in Subsection 2.5. Let M €
M, be a fixed manifold. Let finally 0 < a < 1 be a fixed
number.

From Corollary 4.2 and Corollary 4.3 we deduce that a subset
7 C M is (O, 2a, p)-convex iff for some p > 0 and some C' > 0 all
points g, z; € Z with s = d(xg, 1) < p there is a point m € Z
such that for the distance to the midpoint m € M between xy and
x1 one has d(m,m) < Cs'*e.

We are going to prove Theorem 1.2 for the manifold M.

Proof of Theorem 1.2. Consider two points xg,x; in Z with s =
d(xg, 1) < p << i. Let v be the M-geodesic between x, and z;
and denote by mn its midpoint. Consider the open ball U = U (m).
With respect to the distance coordinates it can be conidered as an
open ball in R® with a Lipschitz continuos Riemannian metric.
Observe that the Euclidean distance on this ball is L-Bilipschitz
to the M-distance, where L is some fixed constant. (Choosing
the ball small one can assume that the constant is very close to 1).
Since the M-geodesics are uniformly C! we see (from Lemma 2.1)
that ||m — 2321 || < Cys? for some fixed constant Cy (that depends
only on n, K, ).

Assume that xg, x; are connected by curve v : [0,¢] — Z parametrized
by the arclength with ¢ < C's whose C'® norm is bounded by C.
From Lemma 2.1 we derive ||y()— 2224 | < C#'+*. Hence we ob-
tain d(m,y(5)) < Cs't® for some fixed C. Hence if such a curve
exists for each pair of points in Z we obtain that Z is (C,2«)-
convex.

Assume now that 7 is (C, 2a)-convex. Choose sufficiently close
points xg,r; € Z and consider a Z-geodesic connecting them.
This geodesic is also (C,2a)-convex. For the midpoint m of this
geodesic we derive from Corollary 4.3 d(m,m) < Cs't®. Again
from Lemma 2.1 we derive that this geodesic must be C'b* with

some fixed bound on the C'® norm. 0
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Let M be again a manifold in M = M,,;.; Z C M a closed
subset. We are going to establish the equivalences of Theorem 1.3

Proof of Proposition 1.3. By [Fed59] positive reach is equivalent to
the local uniqueness of foot points (it follows directly from the ge-
odesic completness and the existence of a lower curvature bound).
Thus due to Proposition 1.8 and Theorem 1.6 the conditions (1)
and (2) are equivalent. Due to [LY04] geodesics with respect to a
Lipschitz continuous Riemannian metric are uniformly C''. Hence
by Theorem 1.2 (3) implies (1).

Assume (2). By Theorem 1.6 for some constant A > 0 and
some small 7 > 0 the foot point projection P* : B,(Z) — Z
is locally Lipschitz and the Lipschitz constant at z € B.(Z) is
bounded by 1+ A-d(x, Z). Consider on M the Riemannian metric
g (conformally equivalent to the metric ¢) given by g, = (1+2A-
d(x,Z))gs. The metric is by definition Lipschitz continuous and
coincides with ¢ on Z.

By d we will denote the metric on M induced by g. Let zg, z;
be points in Z with d(xg,z;) < §. Let v be a geodesic between
these two points with respect to the Riemannian metric g. If
we choose r small enough we may assume that v is contained in
B.(7Z). Consider the curve ¥ = P%(y).

We see [/(t)]; = [7()], < (0oL + A~ d(2(t), 2)). On the
other hand one has |7/(t)|, < mh’(t)b. Hence |7'(t)|3 <

%h’(t)b. Since v is a geodesic with respect to g, this
inequality implies d((t), Z) = 0 for all ¢. Thus v = 7, therefore

Z is locally convex with respect to § and we have (3). O

Finally using the main result of [Lyt04b] we are going to prove
Proposition 1.4 now:

Proof of Proposition 1.4. We may assume that Z is connected.
The subset Z is (C,2)-convex for some C' > 0, hence due to
[Lyt04b] we know that 7 is a C AT (k) space for some k depending
only on the bounds of the curvature of M and on C.
(1) certainly implies (2). The implication (2) — (3) holds in
arbitrary C AT (k) spaces, because in a non-geodesically complete
19



CAT (k) some point & has arbitrary small neighborhoods U, such
that U \ {z} is contractible (compare [BH99]).

In a proper geodesically complete C' AT (1) space each tangent
cone is geodesically complete too. Since tangent cones 71,7 to a
subset of positive reach Z are convex subsets in T, M (compare
[Fed59] or Remark 6.1) and since the only geodesically complete
convex subsets of a Euclidean space are Euclidean spaces, we see
that (3) implies (4).

Assume (4). Then Z is geodesically complete, since otherwise
some link S, Z (= the unit sphere in the tangent cone T,7) must
be contractible, that is not the case for unit spheres in Euclidean
spaces. Let D be the maximal dimension of tangent spaces T,7.
The set U of all points x € Z where the tangent space 1,7 is a D-
dimensional Euclidean space is open in Z and it is a C''! submani-
fold of M, due to [Fed59]. On the other hand in a proper geodesi-
cally complete C' AT (k) space Z the links vary semi-continuously in
the following sense: if z; converge to x in Z, then there is a (natu-
ral) surjective 1-Lipschitz map p : S, — lim(S,,). This shows that
if S;, are D-dimensional Euclidean spheres, then S, cannot be a
Euclidean sphere of dimension smaller than D. Thus the subset
U is also closed in Z. Since we assumed Z to be connected, we
derive U = Z. 0
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