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Building-like spaces

By

Andreas Balser∗and Alexander Lytchak∗∗

Abstract

We study convex subsets of buildings, discuss some structural fea-

tures and derive several characterizations of buildings.

1. Introduction

The main purpose of this paper is to investigate the structure of convex
subsets of spherical buildings. Such a convex subset X inherits from the am-
bient spherical building G the following fundamental property (see Subsection
4.1):

(∗) For each x ∈ X there is some (conicality radius) rx > 0, such that for
all y, z ∈ X with d(x, y) < rx the triangle xyz is spherical.

In order to study the geometry of X it seems natural to forget about the
ambient space G and to work directly inside X. Moreover it is reasonable
to investigate the slightly bigger (synthetically defined) class of all (complete)
CAT(1) spaces that satisfy the above property (∗) and have finite geometric
dimension. We call such spaces building-like.

Remark 1.1. The property (∗) can be regarded as a variant of a constant
curvature 1 condition lying between sphericality (i.e. between convex subsets of
Hilbert spheres) and local conicality (i.e. spherical complexes, see Subsection
3.2). Observe that local conicality has almost no implications on the topology
(compare [Ber83]), in contrast to the very special topology of building-like
spaces, see Theorem 1.1.

The first result describes the global topology of building-like spaces, char-
acterizes buildings among them and provides a synthetic approach to buildings.

Theorem 1.1. For a building-like space X of dimension n, the follow-
ing are equivalent:

1. X is a building;
2. X is geodesically complete;
3. Each point has an antipode;
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4. X contains an n-dimensional Euclidean sphere;
5. X is not contractible;
6. The radius of X is equal to π.

Moreover we show that if an n-dimensional building-like space X contains
an (n − 1)-dimensional Euclidean sphere then X is either a building or it has
radius π

2 .
Now we turn to the local geometry of building-like spaces and prove the

following structural results (see Section 6 for more details). Each building-
like space X has the same local dimension at all points, and a (topologically
and metrically) naturally defined (thick) decomposition in cells. The most
important feature of the building-like space X is the boundary ∂X, that can
be described (in analogy to convex subsets of Riemannian manifolds) by the
property that it is the largest subset of X whose complement is convex and
everywhere dense. The boundary is empty if and only if X is a building,
moreover the boundary has the following local description that is a differential
analog of Theorem 1.1:

Theorem 1.2. Let X be a building-like space, x ∈ X a point. The
following are equivalent:

1. x ∈ ∂X;
2. Some geodesic terminates in x;
3. There are small neighborhoods U of x, such that U \{x} is contractible;
4. The link Sx is not a building;
5. The link Sx is contractible.

Remark 1.2. In fact if X is a convex subset of a building G and not an
abstract building-like space, then all links are building-like (compare Subsection
4.3) and one can deduce Theorem 1.2 from Theorem 1.1. In this case x ∈ ∂X

if and only if ∂(Sx) is not empty.

We finish the investigation of the local structure of building-like spaces
by showing that spherical subsets of X can be extended up to the boundary
∂X. The corresponding result for spherical buildings is shown in [KL97, Prop.
3.9.1], for Euclidean buildings it is [BT72, Prop. 2.8.1]. However, our argument
(unlike the proof in [KL97]) gives a unified approach and remains valid in the
Euclidean and the hyperbolic situation (see Remark 1.4).

Proposition 1.3. Let X be a building-like space of dimension n. Let
C ⊂ X be a convex spherical subset. Then C is contained in an n-dimensional
spherical subset C̃, whose boundary ∂C̃ (as a spherical set) is contained in ∂X.

Now we discuss the local-global equivalence of our notion. The main result
of [CL01] shows that a CAT(1) space that is locally isometric to a building is
itself a building. This result has the following natural extension in the setting
of building-like spaces:

Theorem 1.4. Let X be a connected CAT(1) space of dimension at
least 2. If each point has a convex neighborhood which is (isometric to) a
building-like space, then X is building-like.
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The proof of [CL01, Thm. 4.1] provides the following extension of the well
known theorem of Cartan, saying that the universal covering of a complete
manifold with sectional curvature 1 is a Euclidean sphere.

Corollary 1.5. Let X be a complete geodesic space, such that each point
x ∈ X has a building-like neighborhood of dimension ≥ 3. Then the universal
covering X̃ of X is CAT(1), and therefore building-like.

In the proof of Theorem 1.2 we use a result (in which we leave the universe
of building-like and even that of locally conical spaces), that we consider to be
of independent interest.

Theorem 1.6. Let X be an n-dimensional CAT(1) space that has at
least one pair of antipodes. Assume that each pair of points x, y ∈ X with
d(x, y) ≥ π is contained in an n-dimensional sphere Sn. If X contains an open
relatively compact subset U then X is a building.

Remark 1.3. In dimension n = 1 the above result coincides with Theo-
rem 1.1. of [Nag04].

From the very special case of Theorem 1.6 for compact spaces we derive
an unpublished result of Kleiner:

Corollary 1.7. Let X be a locally compact CAT(0) space of dimen-
sion n. If each pair of points is contained in a flat

�
n, then X is a building.

Observe that local compactness is necessary: Consider a (complete, geo-
desic) CAT(1) space Y of dimension 1 and diameter π. If Y is not a building,
then neither is the Euclidean cone CY , although it satisfies the assumptions of
Corollary 1.7, except for local compactness. Suitable spaces Y exist, e.g. the
spaces from [Nag04, Prop. 1.2].

Remark 1.4. We would like to emphasize that most of the results dis-
cussed above can be word by word transferred from the CAT(1) to the CAT(0)
and to the CAT(−1) setting. For the corresponding notion of Euclidean (resp.
hyperbolic) building-like spaces, that include convex subsets of locally conical
Euclidean (resp. hyperbolic) buildings (in contrast to spherical building-like
spaces discussed above) all the local results mentioned above hold true (except
Theorem 1.1). The boundary of such a (Euclidean or hyperbolic) building-like
space is empty if and only if the space is geodesically complete. In the Euclidean
case (but certainly not in the hyperbolic) this is enough to deduce that such a
space is a Euclidean building. The corresponding statements of Theorem 1.4
resp. Corollary 1.5 are valid in all dimensions in the Euclidean and hyperbolic
cases.

Our investigations were mainly motivated by the question if a group that
operates on a building by isometries and fixes some non-trivial convex subset
must have a fixed point. We refer to [BL05] for an answer in small dimensions
and to [KL06] for a complete answer to the closely related question about
groups operating by isometries on symmetric spaces or Euclidean buildings.
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Now we describe the structure of the paper: In Section 3 basic properties
of spherical subsets of CAT(1) spaces are discussed that may also be of inde-
pendent use. These results are used in Section 6, the heart of this paper, where
the local structure of building-like spaces is discussed in detail and Theorem 1.2
is shown. In Section 5 we present the proof of Theorem 1.4. Section 4 and Sec-
tion 7 are independent of the rest and contain the proofs of Theorem 1.1 and
Theorem 1.6. The reader only interested in these results may skip the rest.

We would like to thank Juan Souto for useful comments on a previous
version.

2. Preliminaries

2.1. Notations
By

�
n resp. Sn we denote the Euclidean space resp. the Euclidean sphere

of dimension n. By d we denote distances in metric spaces, by Br(x) we will de-
note the closed ball of radius r around x. Geodesics are always parametrized by
arclength. For a point x in a metric space X we set radx(X) := supz∈X d(x, z).
The radius of X is defined by rad(X) := infx∈X radx(X).

By X ∗ Z we denote the spherical join of X and Z ([BH99, pp. 63]).

2.2. CAT(1) spaces
A complete metric space will be called CAT(1) if each pair of points with

distance < π is connected by a geodesic and all triangles of perimeter less than
2π are not thicker than in S2. We refer to [BH99, ch. II]. A CAT(1) space
is geodesically complete if each geodesic can be prolonged to an infinite local
geodesic. A subset C of a CAT(1) space is convex (more precisely π-convex) if
all points in C with distance < π are joined by a geodesic in C.

In a CAT(1) space X we will denote by Sx = SxX the link at the point
x. For each point x ∈ X there is a natural 1-Lipschitz (logarithmic) map
px : X → Sx ∗ S0, where x is sent to a pole of S0 and the distances to x are
preserved. We refer to [Lyt05].

By dim(X) we denote the geometric dimension of X studied in [Kle99].
The easy proof by induction of the following lemma can be found in [BL05]:

Lemma 2.1. Let X be an n-dimensional CAT(1) space, and let S ⊂ X

be an embedded Sn. Then for each x ∈ X there is an antipode y ∈ S, i.e. a
point satisfying d(x, y) ≥ π. Therefore we have rad(X) ≥ π.

This result implies that if in an n-dimensional CAT(1) space X each point
is contained in some Sn, then X is geodesically complete.

2.3. Buildings
We refer to [KL97, sect. 3] for an account on spherical buildings. In the

proofs below we will use some characterizations of buildings among finite dimen-
sional geodesically complete CAT(1) spaces derived in [Lyt05] and in [CL01].
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3. Spherical parts of CAT(1) spaces

3.1. Spherical subsets
We call a subset T of a CAT(1) space X spherical if T admits an isometric

embedding into a Hilbert sphere. A convex subset T of a CAT(1) space X

is spherical if and only if for every choice of three points x1, x2, x3 ∈ T , the
triangle x1x2x3 is spherical.

Lemma 3.1. Let X be a CAT(1) space. Assume that T1, T2 are convex
spherical subsets of X. If for all z1, z2, z3 ∈ T1 ∪ T2 the triangle z1z2z3 is
spherical, then the convex hull of T1 ∪ T2 is spherical too.

Proof. The last observation implies that it is enough to prove the result
in the case where T1 and T2 are of dimension ≤ 2. One sees easily that there
is an isometric embedding I : T1 ∪ T2 → S5. Set Yi = I(Ti). Due to [LS97,
Thm. A] the inverse f = I−1 : (Y1 ∪ Y2) → X has a 1-Lipschitz extension
to the convex hull Y of Y1 ∪ Y2. Remark that f maps geodesics connecting
points in Y1∪Y2 isometrically onto their images and we only have to show that
f : Y → f(Y ) is an isometry. This reduces the statement to the case where T1

and T2 are 1-dimensional. In this case the proof can be finished in the same
way as in [Lyt05, L. 4.1], where the special case d(x1, x2) = π

2 for all xi ∈ Ti is
covered.

We have T1 = ab, T2 = cd, and x ∈ ac, y ∈ bd. Let ā, b̄, . . . be the elements
in Y mapped to a, b, . . . , resp. We want to show that d(x, y) = d(x̄, ȳ).

Since ∆(a, b, d) is spherical, we have d(a, y) = d(ā, ȳ), and now it suffices

to show that ∆(
−→
ab,

−→
ad,−→ac) ⊂ Sa is spherical. Let m be an interior point of

cd. Since the triangle ∆(a, b,m) is spherical, triangle rigidity implies the claim
about Sa.

3.2. Locally conical spaces
The following definition from [CL01] is a generalization of the concept of

a simplicial complex, which was discussed e.g. in [Bal90]:

Definition 3.1. Let X be a CAT(1) space. We call X locally conical if
for each x ∈ X there is an rx > 0, such that for all y, z ∈ Brx

(x) the triangle
xyz is spherical. The maximal rx > 0 with this property is called the conicality
radius at x.

Remark 3.1. A simplicial space in the sense of [Bal90] is locally conical.
It is possible to prove the converse if X is geodesically complete.

The above condition is equivalent to the requirement that Brx
(x) is canon-

ically (via px) isometric to a convex subset of {x} ∗ Sx. Observe that a closed
convex subset of a locally conical space is locally conical.

3.3. Very spherical subsets
The following property was studied in [Lyt05] under the additional as-

sumption of geodesic completeness:
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Definition 3.2. We say that points x, y in a CAT(1) space X are close
if for each z ∈ X the triangle xyz is spherical. We say that a convex subset
T ⊂ X is very spherical in X if each pair of points of T are close.

Remark that a convex subset T ⊂ X is very spherical if and only if for all
z ∈ X it is mapped isometrically under the logarithmic map pz : X → SzX∗S0.
A very spherical subset is spherical. For very spherical subsets T1, T2 of X, the
convex hull of T1 and T2 in X is a spherical subset by Lemma 3.1. The closure
of a very spherical subset is very spherical and the union of a chain of very
spherical subsets is very spherical too. Hence every very spherical subset is
contained in a maximal one.

Lemma 3.2. Let T be a finite-dimensional very spherical subset of X.
Let m be an inner point of the spherical convex set T . If q ∈ X is close to m,
then the convex hull of q and T is very spherical.

Proof. The convex hull C of q and T is spherical by Lemma 3.1. Let z

be arbitrary. Under the map pz the subset T is mapped (isometrically) onto
a spherical subset T̄ ⊂ Sz ∗ S0. Set m̄ := pz(m) and q̄ := pz(q). We have
d(q,m) = d(q̄, m̄) since q and m are close. Let x1 ∈ T be arbitrary. Choose
x2 ∈ T such that m is an inner point of x1x2. Set x̄i := pz(xi). Now in the
triangle x̄1x̄2q̄ we have d(x̄i, q̄) ≤ d(x, q), d(x̄1, x̄2) = d(x1, x2) and d(q̄, m̄) =
d(q,m). Since the triangle x1x2q is spherical, we obtain from the CAT(1)
property in Sz ∗ S0, that d(x̄i, q̄) = d(xi, q) (and the triangle x̄1x̄2q̄ must be
spherical). Since C is spherical and x1 was arbitrary, this shows that C is
mapped isometrically onto its image by pz. Since z was arbitrary, this shows
that C is very spherical.

The proof of the following lemma is provided by the fact that a triangle
xyz is spherical if and only if for some m on xy the triangles xmz and ymz are
spherical and ∠m(x, z) + ∠m(y, z) = π.

Lemma 3.3. Let xmy be a geodesic in X. Assume that m is close to x

and to y. Then x is close to y if and only if SmX splits as S0 ∗ Y , where the
sphere S0 consists of the starting directions of mx and my.

4. Building-like spaces

4.1. Basics
We recall the basic definition from the introduction:

Definition 4.1. Let X be a CAT(1) space. We will say that X is
building-like if it has finite dimension and each point x has a neighborhood
Brx

(x) consisting of points close to x, i.e. for all y ∈ Brx
(x) and each z ∈ X

the triangle xyz is spherical.

First of all we observe that spherical buildings are building-like. Namely
for each point x in a building G there is some rx > 0 such that for each
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y ∈ Brx
(x) the points x and y are contained in some Weyl chamber of the

building. Now for each other point z ∈ G this chamber and z are contained in
some apartment, hence the triangle xyz is spherical.

Observe now that the class of building-like spaces is stable with respect
to spherical joins. Much more important is that a closed convex subset of a
building-like space is building-like, in particular convex subsets of buildings are
building-like.

The definition implies that a building-like space is locally conical. From
Lemma 3.3 we see that in a building-like space X the maximal rx satisfying
the condition of Definition 4.1 coincides with the conicality radius at x from
Definition 3.1 (see also Lemma 4.1 below).

Example 4.1. Directly from the definition we see that a 0-dimensional
CAT(1) space is always building-like. It is a building if and only if it has at
least two points.

Example 4.2. Using Theorem 1.1 one easily derives the following char-
acterization of 1-dimensional building-like spaces: Let X be a CAT(1) space
of dimension 1. Then X is building-like if and only if X is a building or X

is a locally conical metric tree of diameter ≤ π. In the latter case we have

rad(X) = diam(X)
2 ≤ π

2 .

Lemma 3.3 directly implies the next

Lemma 4.1. Let γ = xy be a geodesic in a building-like space X, such
that for each inner point m on γ the link Sm splits as Sm = S0 ∗ Zm, with
S0 = {γ+

m, γ−

m}. Then x is close to y.

We finish the basics with some remarks about antipodes. Namely from
Definition 4.1 we deduce that if x and z in a building-like space X are antipodes
(i.e. satisfy d(x, z) ≥ π), then d(x, z) = π and for each y ∈ Brx

(x) the broken
line xyz is in fact a geodesic. In particular the set Ant(x) of all antipodes of x

is discrete and if it is not empty, then X contains an isometric copy of S0 ∗Sx.

4.2. Characterization of buildings
We turn to Theorem 1.1:

Proof of Theorem 1.1. The step (4) → (3) is given by Lemma 2.1.
Assume (3). Let γ : [−t, 0] → X be a geodesic with γ(0) = x. Set

y = γ(−ε) for some ε < rx. Choose an antipode z of y. There must be a
geodesic from y to z starting in the direction of γ and since γ cannot branch
between y and x, we see that yxz is a geodesic. Therefore γ does not terminate
in x and X is geodesically complete.

The implication (2) → (1) follows from [Lyt05, Prop. 4.5], which says that
a finite dimensional geodesically complete space X must be a building if the
set of antipodes of each point x ∈ X is discrete.

(1) → (4) is clear.
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The implication (1) → (5) is well-known, since the homology of an n-
dimensional spherical building is non-trivial in dimension n. On the other
hand if a point x ∈ X has no antipodes, then the contraction along geodesics
starting at x shows that X is contractible, hence (5) implies (3).

Finally (3) → (6) is clear and (6) → (3) is shown in Corollary 6.3.

4.3. Type bounds
It seems to be difficult to distinguish between properties of abstract buil-

ding-like spaces and convex subsets of buildings. The only advantages of the
existence of an ambient building we found is stability under ultralimits and
building-likeness of the links. We make this more precise:

Definition 4.2. Let W be a finite Coxeter group. We call a space X

building-like of type bounded by W if X admits an isometric embedding onto
a convex subset of a building G of type W .

If the type of X is bounded by W then so is the type of each convex subset
and of each link Sx of X. Moreover if Xi is a sequence of building-like spaces
of type bounded by W , then so is the ultralimit limω Xi.

5. Local-Global Equivalence

Before we are going to study the local structure of building-like spaces
in detail we prove Theorem 1.4, showing that the global property of being
building-like is in fact a local one:

Proof of Theorem 1.4. By local conicality and Lemma 4.1 it is enough
to show that for arbitrary points x, z ∈ X and a geodesic η starting at z the
triangle xyz is spherical if y = η(ε) and ε > 0 is small enough.

First, we assume that d(x, z) < π. The case d(x, z) ≥ π can be eas-
ily deduced afterwards using the fact that the links are connected due to the
assumption dim(X) ≥ 2 and Theorem 1.2.

We can cover the geodesic γ = xz by finitely many convex open building-
like subsets. Choosing ε small enough, we may assume that the geodesic γ̄ = xy

is contained in the union of these subsets. More precisely we can find points
x = x0, x1, . . . , xn = z on xz and x = y0, y1, . . . , yn = y on xy such that for all
i the points xi, xi+1, yi, yi+1 are contained in some open convex building-like
subset Ui.

Moving xi along γ, we may assume that for each xi the directions γ+ and
γ− define a factor of Sxi

for 0 < i < n (by local conicality, the points where
this is not true are discrete in γ). Making ε smaller we may assume that yi is
close to xi inside of Ui. Moving yi on γ̄ we may assume that γ̄+ and γ̄− define
a factor of Syi

for 0 < i < n.
The triangle xx1y1 is spherical since x1, y1 are close. Assume by induction

that xxiyi is spherical. Our assumption on the link at yi implies that we can
glue the spherical triangle xiyiyi+1 to obtain a spherical triangle xxiyi+1. Sim-
ilarly, we can glue the spherical triangle xixi+1yi+1, so the triangle xxi+1yi+1

is spherical. For i + 1 = n we get the result.
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6. Local structure

In this section let X be a fixed building-like space of dimension n.

6.1. Simple remarks on the links
Let x ∈ X be a point, γ : [0, r] → X a geodesic starting at x in the

direction v ∈ Sx. From the local conicality of X at x we derive that for all
small t (for t < min{r, rx}) the link Sγ(t)X has the form Sγ(t)X = S0 ∗ Z,
where S0 = {γ+, γ−} and Z is canonically isometric to Sv(Sx).

Assume now that γ can be prolonged beyond x to a geodesic γ : [−r, r] →
X and let w ∈ Sx be the incoming direction of γ. Then Sx contains an iso-
metrically embedded Sv(Sx) ∗ {v, w}. Moreover Sv(Sx) = Sw(Sx). To see this
observe that v and w are antipodes in Sx. Each direction in Sv(Sx) corresponds
to a direction in Sγ(t)X, orthogonal to γ. Since X is building-like at γ(t), this
direction gives a germ of spherical triangle with one side γ(−t)γ(t). This tri-
angle defines a geodesic in Sx from v to w starting at the given direction of
Sv(Sx). Now the conclusion follows from the lune lemma ([BB99, L. 2.5]).

6.2. Regular points
We will call a point x in X regular if Sx = Sn−1. The set of all regular

points will be denoted by R := R(X). If x ∈ R is arbitrary, then Brx
(x) is

isometric to a convex subset C of the sphere Sn and we have SxC = Sn−1.
In particular C contains a neighborhood of x in X. Hence the subset R(X) is
open in X and locally isometric to Sn. Due to Lemma 4.1 each convex subset
of R is a very spherical subset of X.

We are going to prove that R(X) is dense in X. The next lemma is in fact
true in arbitrary locally conical spaces.

Lemma 6.1. Let X be a building-like space with dim(X) = n. Let
C ⊂ X be a convex subset with dim(C) = dim(X). Then there is a point x ∈ C

with SxC = SxX = Sn−1.

Proof. In dimension n = 1 the statement follows directly from local con-
icality. Let n > 1 be arbitrary. Choose q ∈ C with dim(SqC) = n − 1. Due
to [Kle99, Thm. B.3] there must be a point z 6= q with z ∈ C ∩ Brq

(q) and
dim(SzC) = n−1. Then for each inner point y of the geodesic γ = qz we deduce
dim(SyC) = n − 1, since there is a natural isometric embedding SzC → SyC.

However SyC and SyX split as S0 ∗Z resp. S0 ∗ Z̃, (S0 = {γ+, γ−}). Thus in a

small neighborhood of y the set X̃ (resp. C̃) of points ȳ ∈ X (resp. ȳ ∈ C) with
∠y(ȳ, q) = π

2 is a convex subset of X of dimension n−1. Arguing by induction,

we find a point x ∈ C̃ arbitrarily close to y with SxX̃ = SxC̃ = Sn−2. The
local structure of X near y implies SxC = SxX = Sn−1.

We deduce

Proposition 6.2. Let X be a building-like space of dimension n. Then
for each x ∈ X holds dim(Sx) = n − 1. Moreover R(X) is dense in X.
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Proof. R is open and non-empty by Lemma 6.1. Let T be an open convex
subset of regular points and x ∈ X. Due to Lemma 3.1 the convex hull C of
x and T is spherical. We get dim(Sx) ≥ dim(SxC) ≥ dim(S) − 1 = n − 1.
Applying Lemma 6.1 to an arbitrarily small neighborhood of x we obtain the
second statement.

6.3. Easy applications
Let X be a building-like space of dimension n again. The remark at the

end of Subsection 4.1 and the implication (4) → (1) of Theorem 1.1 show that,
if X is not a building, then no regular point x ∈ R(X) can have an antipode
in X. The next result finishes the proof of Theorem 1.1:

Corollary 6.3. If X is not a building, then rad(X) < π.

Proof. Choose a regular point x ∈ X. For small ε > 0 the ball Bε(x)
consists of regular points. If for some z ∈ X we had d(z, x) > π − ε, then
we could prolong the geodesic zx inside the ball Bε(x) (using Lemma 2.1) and
obtain an antipode z̄ of z in Bε(x). Since z̄ is regular, we would deduce that
X is a building.

Thus if X is not a building we obtain rad(X) ≤ π − ε.

The following result is mentioned in the introduction:

Lemma 6.4. Let X be as above. Assume that X contains a Euclidean
sphere S of dimension n − 1. Then either X is a building or the radius of X

is π
2 .

Proof. Let x ∈ S be a point. Since x has an antipode y in S, we see that X

contains the isometrically embedded subset Sx ∗{x, y}. Therefore Sx is an (n−
1)-dimensional building-like space that contains an (n− 2)-dimensional sphere
SxS. Hence, an inductive argument shows that X contains an n-dimensional
spherical hemi-sphere H whose boundary sphere is S. Let m be the midpoint
of this hemisphere. Assume that radm(X) > π

2 . Since the set of regular points
is dense in X we find a regular point x with d(x,m) > π

2 . Consider the geodesic
xm. By Lemma 2.1 we find a direction v ∈ Sn−1 = SmH that is antipodal to
the starting direction of mx. Therefore we can prolong the geodesic xm inside
H and find an antipode of x in H. This implies that X is a building.

6.4. Regular directions
Before we embark on the proof of Theorem 1.2 we will make some addi-

tional remarks about regular points. The picture will be completed in Subsec-
tion 6.6.

Definition 6.1. We call the starting direction v ∈ Sx of a geodesic γ

regular if for all sufficiently small ε the point γ(ε) is regular.

Observe that the direction v = γ+ ∈ Sx is regular if and only if Sv(Sx) =
Sn−2. Due to Proposition 6.2 the set of regular directions Rx in Sx is open
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and dense. Moreover Rx is locally isometric to Sn−1, in particular it is locally
compact. Using the second observation in Subsection 6.1 we see that if x is an
inner point of the geodesic γ, then γ+ ∈ Sx is regular if and only if the opposite
direction γ− is regular.

6.5. Boundary
In this subsection we are going to prove Theorem 1.2. We start with a

(technical) definition of the boundary:

Definition 6.2. A point x in a building-like space X will be called an
inner point of X, if it is an inner point of a geodesic connecting regular points.
The set of all inner points will be denoted by X0, its complement by ∂X.

Remark 6.1. X0 is in general not open in X, however it is open with
respect to the natural weak topology, see Lemma 6.11.

Lemma 6.5. Let X be an n-dimensional building-like space. Then a
point x ∈ X is an inner point of X if and only if there is an n-dimensional
convex spherical subset T that contains x as an inner point (of T ).

Proof. Assume that x is an inner point of the geodesic y1y2 with regular
points y1y2. Then small neighborhoods Ui of yi are very spherical. Hence x is
an inner point of the convex hull of U1 and U2 that is spherical by Lemma 3.1.

On the other hand let x be an inner point of T . By Proposition 6.2 the
set R(X) ∩ T of regular points lying in T is dense in T . Since it is also open
and locally convex, one easily finds points y1, y2 ∈ T ∩ R such that x lies on
the geodesic y1y2.

Using Lemma 2.1 we immediately conclude:

Corollary 6.6. A point x is an inner point if and only if no geodesic
terminates in x. In particular X has no boundary if and only if it is a building.

Now let x ∈ X be an inner point, let γ : [0, ε′) → Brx
(x) be a geodesic

starting at x. Choose T as in Lemma 6.5 and prolong γ to a geodesic γ : [−r, ε′)
inside T . We see that a small neighborhood V of y = γ(−r) in T and γ(ε′′)
(for ε′′ < ε′) span a spherical subset of X. This shows that one can find an n-
dimensional spherical convex subset T ′ containing γ[0, ε] (for ε < ε′). Repeating
this argument we see that for each geodesic η : (−ε′, ε′) → Brx

(x) with η(0) = x

there is an n-dimensional convex spherical subset T ′′ that contains η[−ε, ε].
Now we are going to prove:

Lemma 6.7. A point x is an inner point of X if and only if Sx is a
building.

Proof. Let x be an inner point. Denote by V ⊂ Sx the set of all directions
in which a geodesic starts. By definition, V is dense in Sx; furthermore, V is
convex because of the locally conical structure of X. By the last observation,
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each pair of antipodes v, w ∈ V is contained in an (n − 1)-dimensional sphere
Sn−1 ⊂ V ⊂ Sx. This implies that V is geodesically complete (Lemma 2.1).

Unfortunately we cannot apply Theorem 1.6, since V may not be complete.
To circumvent this difficulty, consider the ultraproduct V ω = Sω

x . This is a
(complete) CAT(1) space of dimension n − 1 and each pair of antipodes of
V ω are still contained in some Sn−1 (due to the geodesic completeness of V ).
Now Sx contains the (non-empty) open locally compact subset Rx of regular
points. Let T ⊂ Rx be open and relatively compact. Then T is also an open
and relatively compact subset of V ω. From Theorem 1.6 (which is proved
independently in section 7), we deduce that V ω is a building. Hence Sx is a
convex subset of a building with rad(Sx) = rad(Sω

x ) = π. Thus Sx itself is a
building by Theorem 1.1.

Assume now that Sx is a building. Since each convex dense subset in a
building is the whole building, we see that in each direction v ∈ Sx a geodesic
starts. Choosing a finite number of directions in Sx whose convex hull is a
sphere of dimension n − 1, we deduce from local conicality that x is contained
in a spherical n-dimensional subset. Hence x is an inner point.

Proof of Theorem 1.2. (1) ↔ (2) is Corollary 6.6, and (1) ↔ (4) is the
previous lemma.

Let x ∈ X be a boundary point. Then some geodesic yx cannot be ex-
tended beyond x. Thus the contraction along geodesics starting at y gives a
contraction of U \ {x}, where choosing y arbitrarily close to x we may choose
U to be an arbitrarily small neighborhood of x.

On the other hand if x is an inner point of X, then the ball Brx
(x) is

a convex part of the building Sx ∗ S0. Remark that Brx
(x) contains an n-

dimensional spherical convex subset containing x. This subset defines a non-
trivial element in the local (n− 1)-dimensional homology group at x (compare
[KL97, sect. 6.2]). This shows that U \ {x} cannot be contractible for small
neighborhoods of x.

Finally (5) → (4) is clear and (2) implies that the link Sx has radius smaller
than π (as in the proof of Corollary 6.3), hence (2) → (5).

The next results show that the boundary discussed above has the descrip-
tion announced in the introduction. First, we show that X0 is convex, in fact
even more is true:

Lemma 6.8. Let x be an inner point of X, γ : [0, s) → X a geodesic
starting at x. Then γ consists of inner points of X. In particular X0 is convex.

Proof. The observation preceding Lemma 6.7 shows that the set I of
numbers t with γ(t) ∈ X0 is open in [0, s). Let t ∈ (0, s) be a boundary
point of I. Then for ε < rγ(t), the point γ(t − ε) is contained in a convex
n-dimensional spherical subset T and this T together with γ(t + ε) span an
n-dimensional spherical subset containing γ(t). Thus t ∈ I, in contradiction to
the openness of I.

Since each convex dense subset of a building-like space X must contain all
regular and therefore all inner points, we conclude
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Corollary 6.9. ∂X is the largest subset of X whose complement is con-
vex and everywhere dense.

6.6. Regular points revisited
Now we are going to investigate the combinatorial structure of X. The next

lemma shows that maximal very spherical subsets of X define a decomposition
of X in cells.

Lemma 6.10. Let C be a maximal very spherical subset of X. Denote
by C0 the set of inner points of C as a spherical set. Then C0 is open in X.
Moreover it is a connected component of R(X).

Proof. Let m ∈ C0 be arbitrary. If C0 does not contain a neighborhood of
m, then we can find a point x close to m that is not in C0. Due to Lemma 3.2
the convex hull of x and C is a very spherical subset of X in contradiction to
the maximality of C. Since C0 is open it is certainly contained in R. Therefore
we only have to show that C \C0 does not contain regular points. Assume that
x is such a point. Then a neighborhood of x is very spherical and therefore we
will find points m ∈ C0 and x′ ∈ X \C that are close. Using Lemma 3.2 again
we get a contradiction to the maximality of C.

Remark 6.2. From Theorem 1.2 it is easy to deduce that a point x ∈ X is
a regular point if and only if it has a neighborhood homeomorphic to a manifold.
This shows that the decomposition in maximal very spherical subsets is natural
also from the topological point of view.

Lemma 6.11. Let C be a maximal very spherical subset of X. Then
the intersection X0 ∩ C is open in C. For x ∈ X0 ∩ C some neighborhood of x

in C is isometric to an open subset in some Coxeter chamber.

Proof. Let x be a point in X0∩C. We know that Sx is a building and that
in each direction v ∈ Sx a geodesic starts. This shows that SxC is a maximal
chamber of the building SxX. This chamber is a convex hull of finitely many
points, hence for a small number ε in each direction v ∈ SxC a geodesic of
length at least ε starts. This and Lemma 6.8 show that X0 ∩ C is open in C

and that the ε-ball around x in C is isometric to the ε-ball around x in the
Coxeter chamber SxC ∗ {x}.

Remark 6.3. From this and well known facts about Coxeter groups in
spheres it is easy to see that if a maximal very spherical subset C of X is
contained in X0, then C is a spherical join C = C1 ∗C2 ∗ · · · ∗Ck, where each Ci

is either 1-dimensional or isometric to the Coxeter chamber of an irreducible
Coxeter group.

The following lemma is a weak equivalent of the statement that the simpli-
cial structure defined by the decomposition in maximal very spherical subsets
is thick. We leave the easy proof to the reader.
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Lemma 6.12. Let C be a maximal very spherical subset of X, x ∈ C a
point. If SxC = {v} ∗ Sn−2 is a hemisphere, then either x is a boundary point
of X and C is a neighborhood of x, or SxX = T ∗ Sn−2, where the discrete set
T has more than two points. Moreover x is contained in at least 3 cells in the
latter case.

6.7. Maximal spherical subsets
This subsection is devoted to the proof of Proposition 1.3.
We start with a criterion when a spherical subset is not maximal:

Lemma 6.13. Let C be a spherical subset of X, m a point of C, and
y be a point close to m. Let v be the initial direction of my. If the convex hull
H of v and SmC is spherical, then the convex hull of C and y is spherical.

Proof. Observe that C is mapped isometrically by pm : X → Sm ∗ S0.
Since every triangle myq for q ∈ X is spherical, we find that {y} ∪ C is

mapped isometrically (by pm) into the spherical set H ∗ S0. This implies that
for all x1, x2 ∈ C, the triangle yx1x2 is spherical. Hence, the convex hull of C

and y is spherical by Lemma 3.1.

Proof of Proposition 1.3. Since the closure and a union of a chain of
spherical subsets is spherical, we may assume that the spherical subset C of X

is maximal; we have to prove that it has dimension n and that ∂C ⊂ ∂X.
Let m ∈ ∂C be an inner point of X. Then SmX is a building, hence

(by induction or due to [KL97, Prop. 3.9.1]) SmC ( Sn−1 ⊂ SpX, which is a
contradiction to the maximality of C by the previous lemma (since for an inner
point of X a geodesic starts in all directions).

Assume now that C has dimension smaller than n (the same argument as
above implies that C must be contained in ∂X in this case). Pick an inner
point m of C. Similar to the proof of Lemma 6.1, one shows that one can find
another inner point m̄ of C, such that Sm̄C is a (non-trivial) spherical join
factor of Sm̄X. This shows the existence of a vector v as in the lemma above
and therefore a contradiction to the maximality.

7. Appendix

Here, we are going to prove Theorem 1.6 and Corollary 1.7:

Proof of Theorem 1.6. By the assumptions X contains at least one iso-
metrically embedded Sn. Due to Lemma 2.1 each point has an antipode and is
therefore contained in a sphere of maximal dimension. Hence, X is geodesically
complete and has diameter π.

We proceed by induction on dimension. In dimension 0 there is nothing to
be done. If X is reducible, i.e. if it has a non-trivial decomposition X = Y ∗Z,
then one easily sees, that the assumptions of the theorem are fulfilled for the
spaces Y and Z, which have dimension smaller than X. By induction we obtain
that Y , Z and therefore X = Y ∗ Z are buildings. Hence we may assume that
X is irreducible.
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Let U be an open relatively compact subset of X. Since X is geodesically
complete, U contains an open subset Ũ homeomorphic to a manifold (compare
for example [Ots97]). The dimension of Ũ is at most dim(X) = n and since
each point of Ũ is contained in some Sn, we see that dim(Ũ) = n and that Ũ

is locally isometric to Sn.
Consider the set O of all points x ∈ X that have a neighborhood isometric

to an open subset of Sn. This set is open by definition and we have just seen
that it is non-empty. If O is the whole set X then X is isometric to the sphere
Sn, hence we may assume O 6= X.

Let x ∈ O be arbitrary, y ∈ X a point with d(x, y) = π. Let S = Sn be a
sphere of maximal dimension that contains x and y. Since x ∈ O, the sphere
S contains a ball Br(x) ⊂ O ⊂ X for some small r > 0. We are going to show
that S contains Br(y).

Let ȳ ∈ Br(y). Due to Lemma 2.1 we may continue the geodesic ȳy inside
S and obtain an antipode x̄ of ȳ in S. We have d(x, x̄) = d(ȳ, y) ≤ r, hence
x̄ ∈ O. So there is a spherical neighborhood U of x̄. Since S is a sphere in X

containing x̄, we have U ⊂ S.
If we assume U to be a maximal connected spherical neighborhood of x̄,

we have U ⊃ Br(x). Hence, the geodesic segment x̄x can be extended to a
geodesic x̄xȳ, implying that xȳy is a geodesic too. In particular, ȳ ∈ S.

Thus S contains a neighborhood of y, and y is in O. This shows that the
complement T = X \O is closed and contains all antipodes of all of its points.
Since T 6= X and X is irreducible we may apply the main result of [Lyt05],
which says that the existence of such a subset in an irreducible geodesically
complete space X implies that X is a building.

In the proof of Corollary 1.7, we use the appropriate definition of local
conicality in the CAT (0) setting.

Proof of Corollary 1.7. Lemma 2.1 shows that X is geodesically complete.
Since X is proper, the sequence (tX, x) converges for t → ∞ to the tangent cone
CSx in the Gromov-Hausdorff topology and from Theorem 1.6 we immediately
obtain that each link is a spherical building. By [CL01] it is enough to prove
that X is locally conical.

Let x ∈ X be arbitrary. Then for some r > 0 each n-dimensional Euclidean
�

n = F ⊂ X with d(x, F ) < r must contain x, since otherwise we would obtain
a flat F̄ =

�
n in the Euclidean cone CSx that does not contain the origin and

this would contradict dim(CSx) ≤ n.
Hence for all y, z ∈ Br(x) each maximal flat through y and z must contain

x, thus the triangle xyz is flat. Therefore X is locally conical.
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