RIGIDITY OF SPHERICAL BUILDINGS AND JOINS
ALEXANDER LYTCHAK

ABSTRACT. We prove a rigidity and a characterization result for
buildings and spherical joins using sets of antipodal points.

1. INTRODUCTION

1.1. Results and Motivation. The goal of this paper is the following

Main Theorem. Let X be a finite dimensional geodesically complete
CAT (1) space. If X has a proper closed subset A containing with each
x € A all antipodes of x, i.e. all points z € X with d(z,z) > 7, then
X is a spherical join or a building.

This theorem implies the following result announced in the title:

Corollary 1.1. Let X be a non-discrete spherical building or a spher-
ical join. If f : X — Y is a surjective 1-Lipschitz map onto a finite
dimensional geodesically complete CAT(1) space, then'Y is a spherical
building or a spherical join too.

The above theorem was mainly motivated by an attempt to better
understand the following deep rigidity result of Leeb ([Lee97]):

Theorem. Let H be a geodesically complete locally compact Hadamard
space. If the ideal boundary X of H equipped with the Tits metric is a
non-discrete irreducible spherical building, then H is an affine building
or a symmetric space.

The connection between our result and the theorem of Leeb is pro-
vided by the observation, that for each point z in a Hadamard space
H as above, there is a natural (logarithmic) surjective 1-Lipschitz map
f X — S.H from the ideal boundary X onto the link at x. Our
Corollary 1.1 implies at once that under the conditions of the theorem
of Leeb each link of H is itself a spherical join or a building. We hope
that our methods will provide a generalization and another proof of
the theorem of Leeb.

Another more direct motivation comes from the following theorem
of Eberlein ([Ebe96],p.340), that can be used to simplify the proof of
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the higher rank rigidity established in [Bal85] and [BS87] (see [Ebe96]
for a detailed exposition):

Theorem. Let H be a Hadamard manifold, X its ideal boundary. If
X contains a subset A, closed in the cone topology and involutive, then
the holonomy group of H is not transitive.

Involutive in the above theorem has essentially the same meaning
as the condition in the Main Theorem. The result of Eberlein and the
theorem of Berger and Simon imply that H is a product or a symmetric
space and therefore X is a building or a spherical join with respect to
the Tits metric ([Ebe96]).

One can get more precise statements about surjective Lipschitz maps
as far as buildings or spherical joins turn up. The spherical joins are
much easier to understand, namely

Corollary 1.2. Let X be a finite dimensional geodesically complete
CAT(1) space. Then X has a unique decomposition X = S'x G ...
G * X1 * .. x X;,, where G; are thick irreducible buildings and X; are
irreducible (i.e. indecomposable as a spherical join) but not buildings.

If f: X1 %Xy =Y is a surjective 1-Lipschitz map, where X, X,
andY are CAT (1) spaces and 'Y is geodesically complete, then'Y splits
as Y = f(X1) * f(X2). Moreover f is uniquely determined by the
restrictions of f to X1 and to X,.

On the side of buildings we first have a universal construction:

Corollary 1.3. For each finite dimensional geodesically complete C AT (1)
space X there is a building X with dim(X) < dim X and a bijective 1-
Lipschitz map ix : X — X universal in the following sense: For each
surjective 1-Lipschitz map f : X — Y to another finite dimensional
geodesically complete C AT (1) space Y the map f X Y given by
f: (iy)~" o foix is still surjective and 1-Lipschitz.

The building X arising from X in a functorial way is in fact not
really exotic. It is uniquely determined by the following properties:
ix : X = X is an isometry iff X is a building. X is discrete iff X is
neither a spherical join nor a building of dimension at least 1. Finally
the functor X — X respects spherical joins.

To complete the picture we have to describe how complicated surjec-
tive 1-Lipschitz maps between buildings can be. There are three basic
types of such maps, corresponding to (very coarse) different types of
Hadamard spaces.

(1) If G is discrete, then each surjective map f : G — X is 1-
Lipschitz. This describes the fact, that arbitrary C AT (1) spaces

can occur as links in negatively curved Hadamard spaces .
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(2) There are lots of foldings, i.e. surjective 1-Lipschitz maps f :
G — (1 between buildings of the same type. These essentially
combinatorial objects arise for example as natural (logarithmic)
maps of the boundary G of an affine building A onto the link
of a point z € A.

(3) Finally the most interesting maps are given as follows. Let H be
an irreducible symmetric space of higher rank, denote by G its
Tits building at infinity. Then the natural projection onto the
link (unit sphere in the tangent space) at a point x € H gives
us a bijective (!) 1-Lipschitz map of G onto a Euclidean sphere
of a dimension much bigger than that of G. This example can
be slightly generalized using isoparametric foliations.

We will prove in [Lyt] that each surjective 1-Lipschitz map f: G —
X of a building G onto a finite dimensional geodesically complete
C AT (1) space X is essentially built up of the three types listed above.
Here we only prove the much easier compact version, which has an
interesting application to the local structure of C' AT (k) spaces.

Corollary 1.4. Let G be a compact spherical building, f : G — Y a
surjective 1-Lipschitz map onto a geodesically complete CAT(1) space
Y. ThenY is a building of the same dimension.

The application we mentioned above is the following:

Corollary 1.5. Let X be a locally compact geodesically complete C AT (k)
space. If the link S, X s a building, then for each sequence x; € X
converging to x, the sequence of links Sy, subconverges in the Gromov-
Hausdorff topology to a building of the same dimension.

As Example 2.7 in [Nag00] shows, it is not possible to extend this
Gromov-Hausdorff stability to a topological stability, as it was done in
[Nag02] in the case of spheres.

1.2. The Idea and the Plan. The proof of the Main Theorem starts
with the observation that minimal symmetric subsets (i.e. subsets con-
taining all antipodes of each of its points) constitute an equidistant
decomposition of X. So we recover a well defined metric quotient (sub-
metry). Moreover a surjective 1-Lipschitz map between geodesically
complete CAT'(1) spaces defines a submetry between the correspond-
ing quotients. So we get a functor between the category of surjective
1-Lipschitz maps and the category of submetries. The main idea is now
that the category of submetries is very small and rigid, i.e. there are
very few submetries. Since on the other hand each C'AT(1) space has

a lot of surjective 1-Lipschitz maps, one gets the desired rigidity.
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The paper is organized as follows. After preliminaries given in Sec-
tions 2 and 3, we describe in Section 4 a characterization of buildings
and spherical joins, getting a direction in which one should work and
providing a proof of Corollary 1.4. In Section 5 we define the basic
functor, whose properties are studied in the subsequent sections. In
Section 10 we give the main argument of the paper, providing the in-
ductive proof of the main theorem under some technical assumptions
(always satisfied in the compact case). In Section 11 we use ultrafilter
techniques to complete the proof of the Main Theorem. Finally in Sec-
tion 12 we prove the remaining results mentioned in the introduction
up to Corollary 1.5 to be discussed in Section 13.

In the appendix we review several results of [Lyt01] about submetries
of Euclidean spheres, that are used in the proof.

1.3. Acknowledgments. It is a pleasure to express my gratitude to
Werner Ballmann for generous help and steady encouragement during
the work on this paper. I would like to thank Juan Souto, who has been
a great source of examples, counterexamples, remarks and suggestions
of all kinds. I am grateful to the anonymous referee for useful remarks.

2. PRELIMINARIES

2.1. Generalities. By S™ we shall denote the n-dimensional Euclidean
sphere with the usual round metric. We shall denote by d distances
in metric spaces. The m-truncated metric d™ on a metric space X is
defined by d™(z,z) = min{d(x, z),7}. A geodesic between z and z is
a curve 7 of length d(z,z) connecting = and z and parametrized by
the arclength. If this geodesic is unique, it will be denoted by xz. A
triangle in a metric space is a union of three geodesics closing up. A
space is called m-geodesic if each two points with distance less than m
are connected by a geodesic. A space X is geodesically complete if it
has more than one point and each geodesic of positive length in X can
be prolonged to a locally isometric embedding of the whole real line R.

2.2. Spherical Joins. By X; x X5 we denote the spherical join of
metric spaces X; and X, ([BH99],p.63). It consists of triples (21, x9,t)
with z; € X, ¢ € [0, 2], where distances are measured as in S* = S*«S".

The spaces X, X5 will be called factors of X; x X,. If a space can
be decomposed as a spherical join, it will be called a reducible space.
If the metric on X; is replaced by the w-truncated metric, the metric
on the spherical join remains unchanged. On the other hand (X;, d™)

are isometrically embedded into X; % X5 in a natural way.
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Maps f; : X; — Y, induce a spherical join map f = fi*fs : X1x Xy —
Y] % Y, extending f; and fs, that sends each geodesic between X; and
X, isometrically onto its image.

2.3. Submetries. Two subsets X7, X, of a metric space X are called
equidistant, if for each point z; € X; there is a point x;.1 € X,
with d(x1,z9) = d(X1, Xs). Two subsets X; and X, are called weakly
equidistant if for each z; € X; holds d(z;, X;11) = d(X;, X;;1) but the
distance is not necessarily realized.

For a decomposition of a space X in closed pairwise (weakly) equidis-
tant subsets {X;|i € Y} one can define a natural metric on the space
Y by d(i,j) = d(X;,X;). Then the natural projection § : X — Y
becomes a (weak) submetry, a notion invented in [Ber87]:

Definition 2.1. A (weak) submetry § : X — Y between metric spaces
is a map that sends for each x € X and r € R™ the closed (open) r-ball
around x onto the closed (open) r-ball around ().

On the other hand the fibers of each (weak) submetry § : X — Y
constitute a (weakly) equidistant decomposition of X. In a compact
space the distance between closed subsets is always realized, therefore
each weak submetry 6 : X — Y of a compact space X is a submetry.

A weak submetry 0 : X — Y is a 1-Lipschitz map. The composition
of two (weak) submetries is a (weak) submetry. If on the other hand
the (weak) equidistant decomposition of X defined by the fibers of a
(weak) submetry f : X — Y is finer than the decomposition defined by
another (weak) submetry h: X — Z then the natural map g : Y — 7
with go f = h is a (weak) submetry.

Two points x, z € X are called 0-near for a weak submetry 6 : X —
Y if d(z,2) = d(6(z),d(z)) holds. In this case each geodesic between x
and z is mapped isometrically onto a geodesic between §(z) and d(z).
Such geodesics in X are called horizontal or more precisely 0-horizontal.
A weak submetry is a submetry if and only if for each z € X and each
y in Y there is a point z in the fiber §*(y) that is §-near to z.

The reader will find more about submetries in [Lyt01]. Several results
about submetries of S™ used in the proof are collected in the appendix.

2.4. CAT(1) spaces. We assume the reader to be acquainted with the
theory of spaces with upper curvature bound. We refer to [BH99].

Definition 2.2. A metric space X is called CAT(1) if it is complete,
m-geodesic and each triangle with perimeter less than 27 is not thicker

than the corresponding triangle in the round sphere S2.
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If X is a CAT(1) space then X with the w-truncated metric is
CAT(1) too. Since we do not want to worry about points with dis-
tances bigger than 7, we may always truncate the metric and assume
that diameters of all CAT(1) spaces are at most 7. (Not necessary

in the inner metric!). If you are not happy about this truncation, see
Corollary 3.4.

2.5. Convex subsets. A subset C'in a CAT(1) space X will be called
convex if it is 7-convex, i.e. if for arbitrary points xi, x5 in C' with
d(x1,x2) < 7 the geodesic z1z5 is contained in C. If C' is closed it is
itself a C'AT' (1) space with respect to the induced metric. Let C' be a
closed convex subset in a CAT(1) space X, x € X with d(z,C) < 3.
Then there is a unique point p € C' with d(z,p) = d(x,C). For each
z € X with d(z,p) = d(z,2) + d(z,p) < § holds d(z,p) = d(2,C)
([BH99],p.178).

A (possibly degenerate) triangle in X is called spherical if it can be
isometrically embedded into S2. The 7-convex hull of such a triangle is
a convex subset of X isometric to the m-convex hull of a triangle in S2.
The following (lune) lemma is a fundamental tool in finding spherical
parts of CAT (1) spaces ([BB99],p.240).

Lemma 2.1. Let v, and 5 be geodesics of length ™ between x and z
in a CAT(1) space X. Then 7y and 2 span a spherical lune, i.e. the
union of v, and vy, can be isometrically embedded in S*.

2.6. Links. For each point z in a CAT(1) space X the link S, = S, X
at x is the completion of the space of geodesic germs furnished with
the angle metric ([BH99]). The link S, is itself a C AT (1) space. For
each z € X there is a natural (logarithmic) 1-Lipschitz map p, : X —
S, * S that sends z to south pole of S°, all points with distance at
least 7 to  are sent to the north pole of S° and each other point z € X
is sent to (v,t) where v is the starting direction of the geodesic xz and
t=d(z,z).

Definition 2.3. We will call a direction v € S, genuine, if it is the
starting direction of some geodesic.

By the definition of the link, the set S, of genuine directions is
dense in S,. In a geodesically complete space CAT(1) space X we
will denote by exp(rv) for v € S,,r € [0,7] the point ~(r) for some
geodesic « starting at x in the direction of v. By definition we have
pe(exp(rv)) = (v,r) € Sy x S°.

If X is compact and geodesically complete, then so is each link S,.

Moreover each direction of S, is genuine in this case. We will use
6



Definition 2.4. A geodesic v : [a,b] — X branches at v(b) if geodesics
1,72 ¢ [a, b+ €] — X exist, with 41 N, = 7. The angle between 7,
and 7, in S, will be called the branching angle (it may be 0).

2.7. Differentials. Let f : X — Y be a 1-Lipschitz map between
metric spaces. If for some x € X and all z € X one has d(f(x), f(2)) =
d(x, z), then each geodesic starting at = is mapped isometrically onto
its image and we get a naturally defined 1-Lipschitz differential D, f :
Sz X — Sj@)Y between the spaces of geodesic germs, if these spaces
are defined as in the previous subsection. Moreover if Y is a geodesic
space and each geodesic v in Y starting at y is the unique geodesic
between y and v(e) for a small €, then the surjectivity of f implies the
surjectivity of D, f.

Example 2.1. Let § : X — A be a submetry, x € X. Denote by N, the
set, of all points d-near to x. Then the restriction § : N, — A has the
property above.

Ezample 2.2. The canonical projection p, : X — S, * S° of a CAT(1)
space X has the property above. Keep in mind that X always has a
m-truncated metric (see Subsection 2.4).

2.8. Geometric dimension. The geometric dimension invented in
[K1e99] is the smallest function dim assigning to each C'AT(1) space
a number in [0, 00] such that dim(X) = 0 iff X is discrete and such
that for each z € X one has dim(X) > dim(S,) + 1. By [Kle99]
dim(X) is equal to the supremum of topological dimensions of com-
pact subsets K C X. In particular dim(}Y") < dim(X) for a convex
subset Y of X. For CAT(1) spaces X and Y we have dim(X xY') =
dim(X) + dim(Y) + 1. If X has finite dimension n + 1 then for some
x € X the link S, contains a sphere S™ ([Kle99]). Since small balls in
CAT(1) spaces are CAT(1), this implies that for each x € X there is
a sequence z; converging to x such that S,, contains a sphere S™ with
m = dim(S;;) < n.

If X is compact and geodesically complete, then X has finite geo-
metric dimension. It coincides with the topological and the Hausdorff
dimension ([Ots94]).

2.9. Buildings. We refer to [KL97],pp.134-146 for an excellent ac-
count on buildings. The results of this paper can be considered as
a continuation of the investigations of [CL0O1]. In order to recall them
we need:

Definition 2.5. A CAT(1) space X is called conical if for each z € X
there is an r > 0, such that the r-ball around z is isometric to the
r-ball around 7 in X = {Z} % S, X.
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Since a spherical join XY of C AT (1) spaces is geodesically complete
iff both factors X and Y are geodesically complete, the links of a conical
geodesically complete space are geodesically complete.

The next theorem proved in [CLO1] will be used in this paper.

Theorem 2.1. Let X be a connected conical CAT (1) space. If X is 1-
dimensional assume further, that the diameter of X in the inner metric
s w. If each link of X is a building then X is a building.

2.10. Surjective maps. A map f : X — Y between CAT(1) spaces
will be called an s.L.m. if it is 1-Lipschitz and surjective. The world
of CAT (1) spaces is full of surjective 1-Lipschitz maps. For example if
X is a geodesically complete C AT (1) space, © € X, then the natural
map p, : X — S, % S% is 1-Lipschitz and has a dense image S, % S°
(compare Definition 2.3). If in addition X is compact, then the map
Py X — S, xS%is an s.L.m.

For a compact geodesically complete CAT(1) space X we get by
induction on the dimension, that X admits an s.L.m. f : X — S™
for some m < dim(X'). Moreover taking the composition (f *id) o p, :
X — Spx8% — §m xS0 = 8™+l for an arbitrary s.L.m. f:S, — S™
and keeping in mind that our metrics are m-truncated we obtain:
Lemma 2.2. For each point x tn a compact geodesically complete
CAT(1) space X there is a number m = m(z) and an s.L.m. f* =
f: X — S™ with d(f(x), f(2)) = d(x, 2) for each z € X.

Remark 2.3. We will see in Section 13, that s.L.m. can be used to
replace the continuity of tangent spaces in locally compact geodesically
complete C AT (k) spaces.

3. ANTIPODES AND SYMMETRIC SUBSETS

3.1. Definitions and examples. Let X be a CAT(1) space. Two
points z,z in X with d(z,z) > 7 are called antipodes. The set of all
antipodes of z is denoted by Ant(z). For a subset A C X we put
Ant'(A) = Ant(A) = UyeaAnt(z). Inductively we define Ant/(A) =
Ant(Ant?~1(A)).

Remark that for A, B C X we have Ant’(AUB) = Ant’(A)UAnt’(B)
and A C B implies Ant?(A) C Ant/(B). Moreover for z,z € X the
inclusions x € Ant’(z) and 2 € Ant’(z) are equivalent.

Definition 3.1. For i = 1,2 we call a subset A of a CAT(1) space X
i-symmetric if Ant’(A) C A holds.

Ezample 3.1. In S™ each subset is 2-symmetric. A subset A C S™ is
1-symmetric iff it is invariant under the multiplication with —1, for

that reason the name.
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Each 1-symmetric subset is also 2-symmetric. If A is 2-symmetric,
then Ant(A) is 2-symmetric and A U Ant(A) is 1-symmetric. If each
point z € X has at least one antipode, then A C Ant?(A) for each
subset A of X. In this case for an ¢-symmetric subset A holds A =
Ant’(A). Moreover a 2-symmetric subset is 1-symmetric iff it. contains
at least one antipode of each of its points.

Unions and intersections of i-symmetric subsets are i-symmetric.
Each subset A of X is contained in a unique smallest i-symmetric
subset, given by AU Ant’(A4) U Ant*(A)....

Definition 3.2. For i = 1,2 we will denote for a point z € X by A’
the minimal ¢-symmetric that contains z.

Since z € AL and z € A’ are equivalent, the spaces A’ define a
decomposition of X into minimal i-symmetric subsets. A subset A is
i-symmetric iff it is a union of some A’. For each z € X the set A2 is
either 1-symmetric or A} has the disjoint decomposition Al = A2 U A2.

The following example shows that in non-geodesically complete spaces
lots of symmetric subsets may exist.

Example 3.2. If X has diameter less than 7 then each subset is 1-
symmetric, i.e. AL = {z} for each x € X. If X is an interval of length
less than 27 then the midpoint is a 1-symmetric subset.

However too big spaces do not have symmetric subsets:

FEzample 3.3. Let X be a CAT(1) space. Assume that X has two points
Ty, T2, such that for each z € X and some j = 1,2 holds d(z;, z) > «.
Then Al = Ant(z;) U Ant(z;) = X. From this we see A} = X for
each z € X, i.e. X has no proper 1-symmetric subsets. Points x, z9
as above always exist if X is not connected or if X has diameter > 27
in the inner metric.

Now we describe symmetric subsets in buildings and spherical joins.

Ezxample 3.4. Let X = G be a thick irreducible building ([KL97],p.134),
A = A(G) the Coxeter simplex of G, W the corresponding Weyl
group, # : G — A the canonical projection that maps each cham-
ber of G isometrically onto A. In this case the sets A’ were considered
in [KLI7],p.140. Tt was proved, that for each z € G the subset A2
intersects each chamber of G (it follows directly from the wellknown
fact, that for each pair of chambers there is a chamber opposite to both
of them). On the other hand one easily shows by induction on j, that
A2 = UAnt¥(z) is mapped by 6 on a unique point in A.

Ezxample 3.5. Let X =Y % Z be a reducible space, 2o = (yo, 20, o) and
x1 = (y1, z1,t1) points in X. Then x; € Ant(xg) iff y; € Ant(yo), 21 €
Ant(zp) and t; = ty. If each point y € Y resp. z € Z has at least one
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antipode, then an inductive argument shows that x; € Aio holds if and
only if y; € A12/0’ z1 € A2 and t; = t,.

Before going on to geodesically complete spaces we state the trivial
Lemma 3.1. Let f: X — Y be a surjective 1-Lipschitz map between
CAT (1) spaces. Then arbitrary preimages of antipodes are antipodes.

The images of i-symmetric subsets are i-symmetric.

3.2. First rigidity. Let now X be a geodesically complete C AT(1)
space. For x,z in such a space X with d(z,z) < 7 we can find an
antipode Z of x with 7 = d(z, Z) = d(z, 2) +d(Z, z). The whole rigidity
is based on the following easy remark:

Lemma 3.2. Let A be a subset in a geodesically complete C AT(1)
space X, v € X, z € Ant(z). Then d(z,Ant(A)) < d(z, A). In the
case of equality one gets d(x,z) = m in the inner metric of X and for
each point p € A with d(x, A) = d(z,p) the equality d(x,p)+d(p,z) =7
holds, i.e. xpz is a geodesic.

Proof. For each p € A we get d(z,p) > d(z,2) — d(z,p) > 7 — d(z,p).
So we find an antipode p € Ant(p) C Ant(A) with d(z,p) < d(z,p).
The equality statements follow from the proof. O

By induction this lemma implies d(z, Ant’(A4)) < d(z, A) for each
A C X and z € Ant’(z). We obtain
Lemma 3.3. Let X be a geodesically complete CAT (1) space, A C X
an i-symmetric subset, v € X, z € AL. Then d(z, A) = d(x, A) holds.
If one distance s realized, then so is the other. In particular the closure
of an i-symmetric subset is i-symmetric. Moreover if d(x, A) = d(z,p)
for some p € A, then for each antipode T of x holds d(x, p)+d(p,Z) = 7.

An easy consequence is

Corollary 3.4. Let X # S° be geodesically complete. If X has a proper
2-symmetric subset then X has diameter w in the inner metric.

Proof. If such a space X # S° is non-connected, then for each v € X
holds Ant?(x) = X. Thus we may assume that X is connected. Let
x,z in X satisfy d(z,2) = m 4+ € > 7 with respect to the inner metric.
Then A2 contains the e-ball around z. If A2 # X, there must be a
point z € X \ A2 and some z € A2 with d(z, A2) < d(z,z) < e. Thus
we would get d(z, A2) < d(z, A%) in contradiction to Lemma 3.3. [

If the spaces X and Y are geodesically complete, symmetric subsets
are much more rigid under surjective 1-Lipschitz maps.

Lemma 3.5. Let f : X — Y be an s.L.m. between geodesically com-

plete spaces, x € X an arbitrary point, A an i-symmetric subset of X.
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Then d(x, A) = d(f(z), f(A)) holds. If the distance between f(x) and
f(A) is realized then the distance between x and A is realized too. In
particular f~'(f(A)) = A holds and the set A is closed if and only if
the set f(A) is closed.

Proof. Assume the contrary and choose a point p € A with r =
d(f(p), f(z)) < d(z,A). Choose an antipode y of f(p) and let z € X
be a preimage of y. Then d(y, f(z)) > 7 —r and so d(z,z) > m — r.
Now take an antipode z of z with d(2,z) < r. Due to z € Ant?*(p) C A
we arrive at a contradiction. The equality statements follow from the
proof. O

A direct important corollary is:

Corollary 3.6. Let f : X — Y be an s.L.m. between geodesically
complete spaces and let A, B C X be i-symmetric subsets. Then A and
B are (weakly) equidistant iff the images f(A) and f(B) are (weakly)
equidistant. Moreover d(A, B) = d(f(A), f(B)).

4. TWO IMPORTANT SPECIAL CASES

Before we give a first characterization of reducible spaces and build-
ings, we will prove the following folklore lemma:

Lemma 4.1. Let Cy,Cy be closed convex subsets of a CAT (1) space
X. Assume that for arbitrary x; € C; holds d(xy,x2) = 5. Then the
natural map f : Cy x Cy — X sending the geodesic between xy € Cy
and xo € Cy isometrically to the geodesic between xy and x5 in X is an

1sometric embedding.

Proof. Take two points y = (x1,29,t) and § = (21, 22,5) in C; * Cs.
If d(x1,21) > 7 or d(xg,22) > 7 then from the lune lemma we con-
clude that y and ¢ are mapped by f isometrically. So we may assume
d(x;, z;) < . Let v; be the geodesic between x; and z; in C;. Restrict-
ing f we may assume C; = ;. In this case 7, * 75 is a convex subset
of S and therefore it has curvature bounded below (!) by 1. From the
main result of [LS97] we see that f is 1-Lipschitz.

Since triangles in X with all vertices on y; or v, are spherical by
Toponogov, all geodesics in 7y, * v, that start in v, or in v, are mapped
isometrically onto their images. As in Subsection 2.7 we get a differen-
tial Dy, f 1 Sy (71%72) — Sz, X. Moreover Sy, (v1%72) = {v}*72, where
v is the starting direction of 71, and for each w € v C Sy, (71 * 72)
one has § = d(v,w) = d(D,, f(v), D,, f(w)). Since Lemma 4.1 is cer-
tainly true in the case C; = {v} (again by Toponogov), we see that the

differential Dy, f : Sy, (71 * 72) — Si, X is an isometric embedding.
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Now in the triangle z;2of(7) C X the lengths of the sides are the
same as in the spherical triangle x;227. Due to the considerations above
the angles at z; also coincide. Thus the triangle x5 f(y) is spherical

by Toponogov. This implies d(y, ) = d(f(y), f(7))- O

In a spherical join Z = X %Y both factors X and Y are closed
convex and l-symmetric. On the other hand the existence of such
subsets characterize reducibility:

Proposition 4.2. Let C be a non-trivial closed convexr 1-symmetric
subset in a geodesically complete C AT (1) space X. Then X splits as
X = CxPol(C), where Pol(C) is the set of all x € X with d(z,C) > 7.

Proof. For each z € X and z € C with d(z,2) > 7 we can choose
an antipode Z € Ant(z) C C with d(z,z) < m — d(x, z). This implies
that C'is $-dense in X and for each x € Pol(C') and each z € C holds
d(x,z) = 5. Moreover for 21,25 € Pol(C) the lune lemma says that
the triangle x,x52 is spherical for each z € C'. From this we conclude
that Pol(C') is convex.

By Lemma 4.1 we get a natural isometric embedding i : C'«xPol(C) —
X. However for each x € X \ (C U Pol(C)) we can take the unique
projection z of x to C' and extend the geodesic zx up to a point in
Pol(C') (Subsection 2.5). This shows that the set Pol(C') is not empty

and that the embedding i is surjective. O

We are already in position to discuss rigidity of spherical joins and
to prove the second part of Corollary 1.2:

Proposition 4.3. Let K, K, be arbitrary CAT(1) spaces and X a
geodesically complete one. Then for each s.L.m. f: K = K1 x Ky = X
the space X splits as X = f(Ky) x f(K3). Moreover f splits as f x fo
where f; is the restriction f : K; — f(K;).

Proof. Let K; be the set K; with a discrete metric. The images f(K;)
are 1-symmetric subsets, in particular each K; has more than one point.
Then the space K = K, = K> is geodesically complete. Replacing K;
by K, we may assume that the space K is geodesically complete.
From Corollary 3.6 we derive that f(K;) are closed 1-symmetric sub-
sets of X' with d(f (K1), f(K3)) = 5. Since f is 1-Lipschitz, each point
from Pol(f(K)) must be in f(K3). We get Pol(f(K,)) = f(K3). Asin
the proof of Proposition 4.2 we see that f(K;) and f(K3) are convex.
Now we can apply Proposition 4.2. Finally the splitting of f is trivial
by construction. O

Proposition 4.2 has a nice special case. If a point z in a geodesically

complete C AT (1) space X has only one antipode Z, then for each z € X
12



must hold d(z, 2)+d(z, %) = 7. We get Ant(Z) = {z}. Therefore {z, T}
is a closed convex and 1-symmetric subset of X. Proposition 4.2 implies
X = {z,z} * Pol({z,Z}). Form this one directly arrives at

Corollary 4.4. Let X be a geodesically complete CAT(1) space. The
set S of all points in X which have only one antipode is closed, 1-
symmetric and conver and X splits as X = S * Pol(S).

Remark 4.1. It is easy to see that in the factor S each triangle is
spherical and so S is isometric to the unit sphere in some Hilbert space.

Proposition 4.5. Let X be a geodesically complete finite dimensional
CAT(1) space. If for each x € X the set Ant(x) is discrete, then X is
a building.

Proof. If X is not connected, it must be discrete. If X contains two
points x, z with d(z,z) > 7 in the inner metric, then z must be an
isolated point and X cannot be connected. Thus we may assume that
X is connected and has diameter 7 in the inner metric.

Given x € X choose an antipode z of x. Since x is an isolated point
in Ant(z), we can find an r > 0 such that the ball of radius 3r around
x contains no other points of Ant(Z). For each z from the r-ball around
x the geodesic Tz prolonged to an antipode of £ must end in x. For
each 2y, z5 in the r-ball around z the triangle xz, 25 is spherical, due to
Lemma 2.1. Therefore X is a conical space.

We proceed by induction over the dimension of X. In dimension
1 we are done by Theorem 2.1. If a point v € S, has a sequence of
antipodes w; converging to w, then the points z; = exp(rw,) converge
to z = exp(rw) and z; are all antipodes of exp((m — r)v), providing a
contradiction. By induction all links are buildings and we are done by
Theorem 2.1. O

Now we are already in position to prove Corollary 1.4:

Proof. Since G is a building the set of antipodes Ant(z) is discrete for
each € G. But G is compact and so Ant(z) must be finite. Due to
Lemma 3.1 the set Ant(y) is finite for each y in Y. By Proposition 4.5
the space Y must be a building. Since f is 1-Lipschitz, the Hausdorff
dimension of Y is not bigger than dim(G). On the other hand we will
see in Proposition 6.1 that each chamber of GG is mapped isometrically
by f. Therefore dim(G) = dim(Y). O
13



5. THE FUNCTOR

5.1. Spaces. From now on let X be a geodesically complete C'AT (1)
space. For a point x € X we denote by B. the closure of A’. By
Lemma 3.3 it is an ¢-symmetric subset. Moreover

Corollary 5.1. For z,2 € X holds d(B.,z) = d(B., B) = d(z, BY).
Especially © € B. and z € B are equivalent.

We see that each set B is a minimal closed i-symmetric subset of
X. Much more important is that the sets B! constitute a weakly
equidistant decomposition of X. So we get two corresponding weak
submetries 0% = §° : X — A%. The decomposition in the subsets B2
is finer than the decomposition defined by the subsets B!, so the weak
submetry 6! must factorize as % 0 82, where 6% is a submetry from A2
to AL, whose fibers have at most two elements.

As in Example 3.3 we see that for a non-connected geodesically com-
plete space X # SO holds A% = {pt}. If X is connected then A% is
connected too. Since the fibers of 42 : AZ — AL have at most two
elements, we get

Lemma 5.2. For X # S° the following statements are equivalent:

(1) X has a nontrivial closed 1-symmetric subset;
(2) X has a nontrivial closed 2-symmetric subset;
(3) A% contains more than one point;
(4) AL contains more than one point.

We can now reformulate our Main Theorem as follows:

Theorem 5.1. For an irreducible finite dimensional geodesically com-
plete CAT (1) space X holds A% = {pt} unless X is a building.

We describe now the shape of some AY. For X = S" we have
A%, = S™ Al, is the projective space RP".

By Example 3.4 we see that for a thick irreducible building G the
canonical projection 6 : G — A coincides with the map §? : G — AZ.
Further one easily sees, that AL is equal to A if the Weyl group W
of G contains the element —Id. If it is not the case, then A/ is the
quotient of A under the natural isometric operation of Zy = {—1d, Id}.

A very pleasant property of A? is the compatibility with spherical
joins. Namely for a reducible space X =Y % Z one derives from Ex-
ample 3.5 the equality A% = A2 x A%. Especially for a thick reducible
building G its Weyl polyhedron is still canonically isometric to A%,

To simplify the notations we will call two points x, z in X i-near if
they are 6%-near, i.e. if d(z,z) = d(B., B%) holds. A geodesic will be
called i-horizontal, if it is §%-horizontal.

14



Ezxample 5.1. In S™ each point is 2-near to each other point. In a
spherical join X = Y % Z each point y € Y is 1-near to each point
z € Z. A point zy = (yo, 20,t) is 2-near to x; = (y1,21,t1) with
0 <to,t1 < 5 iff yo is 2-near to y; and 2 is 2-near to z1.

Example 5.2. In a thick spherical building G two points are 2-near to
each other iff they are contained in the same chamber.

5.2. Maps. Let now X and Y be geodesically complete spaces. Con-
sider an s.L.m. f: X — Y. By Corollary 3.6 the sets f(B.) constitute
a weakly equidistant decomposition of Y in i-symmetric closed subsets
and d(f(B.), f(BY)) = d(B., B!) holds. So we get a weak submetry
0% Y — Ak. Since the decomposition of Y in subsets f(B}) is coarser
than the decomposition of Y in minimal closed i-symmetric subsets,
the weak submetry 8% must factorize over 6} and so it defines another
weak submetry AZJ} : AL — A’ In this way the following commutative
diagram arises, in which all maps but f are weak submetries.

x—1 -y

&l y la@
. T A )
Ay =— Ay

The map 6% sends a point y € Y to the set B, where  is an arbitrary
preimage of y. If g : Y — Z is another s.L.m. then A% o Al = Al
holds. So far we have defined a functor from the category of s.L.m. to
the category of weak submetries.

Assume now that X admits an s.L.m. f: X — S™. For two points
z,z € X the images f(B%) and f(B’) are closed weakly equidistant
subsets in S™. Since S™ is compact, these subsets must be equidistant.
By Corollary 3.6 the subsets B. and B! are equidistant too. In this
case the weak submetries §° : X — A% are submetries. Moreover a
new application of Corollary 3.6 gives us, that for such an X and an
s.L.m. g: X — Y to another geodesically complete space Y the maps
oy 1 Y — Ay are submetries.

Moreover we get (see appendix or [Lyt01],p.47) the following result:

Proposition 5.3. If X admits an s.L.m. f: X — S™ then A% is the
base of the submetry 0 : S™ — AL.. Therefore A is a compact finite
dimensional Alexandrov space with curvature bounded below by 1. For
each point q € A there is an € > 0, such that in each direction of
S,(AY) starts a geodesic of length at least e.

A direct consequence is:
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Corollary 5.4. For each point x in a space X as above there is an € =
e(x) > 0, such that for each T € B and each point z with d(T,2) < €
that is 1-near to T the following holds: z lies on a 1-horizontal geodesic
of length € starting at x. If z is 2-near point to T then a starting part
of the geodesic Tz is 1-horizontal.

6. ALMOST NEAR POINTS

The last statement of Lemma 3.3 motivates the following

Definition 6.1. Let X be a CAT(1) space, zg,x; € X. We will

say that x; is almost near to xy if for each antipode z of zy holds

d(xg, 1) + d(z1, ) = 7.

Ezxample 6.1. From Lemma 3.3 we conclude that i-near points in geodesi-
cally complete spaces are almost near. The notion of almost near points

can be considered as an unstable approximation of the notion of 2-near
points. As the following example shows, to be almost near is a much

weaker condition.

Ezxample 6.2. Let X be a hemispherix ([BB99],p.236), i.e. the Eu-

clidean sphere S? with finitely many hemispheres attached along great

circles H;, such that the intersection of all H; is empty. The main re-

sult of this paper says that different points in X are never 2-near. In

contrast a lot of almost near points exist. Namely the circles H; divide

S in convex regions C; and one easily shows that each two points in

the same region C; are almost near.

Proposition 6.1. Let X be geodesically complete. If a point xq is
almost near to xy then for each z € X the triangle xqx,z is spherical.
Therefore xqy is almost near to xy. Moreover for each s.L.m. f: X —
Y onto another geodesically complete space Y, the points xy,x1 are
mapped isometrically and f(xo) and f(x;) are almost near in Y.

Proof. If d(z,x¢) > 7 then we are done by Definition 6.1. If d(z, zy) <
7, we can choose an antipode z of 2y with d(xg, z) + d(z,2) = 7. Since
xo and x; are almost near, xorix is a geodesic of length 7 and from
Lemma 2.1 we deduce that xyx,z is a spherical triangle.

For an antipode y of f(x,) take a preimage = of y. Then z is
an antipode of zy and we get 7 < d(f(xo),y) < d(f(zo), f(x1)) +
d(f(x1),y) < d(xo,z1) + d(x1,z) = 7. This implies the rest. O

From Proposition 6.1 we conclude, that if  and exp(rv) are almost
near for some r € (0,7) and a genuine direction v € Sy, then exp(rv) is
uniquely defined. Especially the geodesic zz between two almost near
points z and z cannot branch. Moreover each point m on xz is almost

near to x and to z. On the other hand we have:
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Lemma 6.2. Let xmz be a geodesic. If x and m are almost near and
if the geodesic does not branch, then x and z are almost near too.

Proof. Let & be an antipode of x. Then xmz is a geodesic of length
7. Since it cannot branch up to the point z, it must contain z. Hence
d(z,z) + d(z,z) = 7 holds. 0O

Almost near points give us many long geodesics in the links:

Lemma 6.3. Let z,2z be almost near points in X, let v € S, be the
starting direction of zz. Let w be a genuine direction in S,. If d(v,w) <
7 then the geodesic n between v and w can be continued until an antipode
v of v, such that for all t € [0, 7] the direction n(t) is genuine.

Proof. Take zy = exp(ew) and an antipode Z of z with d(z,z) +
d(z29,2) = m. Since z and z are almost near, zxZ is a geodesic that
spans together with zzyZ a spherical lune. The link of this spherical
lune at x is the geodesic 7. 0

Corollary 6.4. Let z,z € X,v € S, be as above. For each w € Ant(v)
there is a sequence of genuine directions w; € Ant(v) converging to w.

7. NICE SPACES

The following definition is motivated by Lemma 2.2.

Definition 7.1. We call a geodesically complete C AT (1) space X nice,
if for each x € X there is some n = n(z) and an s.L.m. f = f*: X —
S™ with d(f(z), f(z)) = d(z, z) for each z € X.

Recall that we stick to the convention diam(X) = 7. If one does
not like this convention, the above definition should be modified to
d(f(x), f(2)) = min{m,d(z, 2)}. Using Proposition 4.3 we see
Lemma 7.1. A reducible space X = X1 * X5 is nice iff the factors X;
and Xo are nice.

Directly from Definition 7.1 and Proposition 6.1 we get

Lemma 7.2. Let X be a nice space, x,x9,x1 € X. If xq and x1 are
almost near, then there is ans.L.m. f : X — S* that maps the spherical
triangle xxox, 1sometrically.

For the induction step in the proof of Theorem 5.1 we will need the
following statement, whose assumptions are related to Lemma 6.3:

Proposition 7.3. Let X be a nice space. Assume that a link S, has a
decomposition S, = H, x V,, such that all directions in H, are genuine
and such that for each genuine direction v € V, and each h € H, the

geodesic between h and v in S, consists of genuine directions. Then one
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can find an s.L.m. f: X — H, xS satisfying d(f(x), f(2)) = d(x, 2)
for each z € X.

Proof. Take an s.L.m. f*: X — S™ from Definition 7.1. As in Subsec-
tion 2.7 we get a natural differential D, f : S; — Sy = S™ ! which is
a 1-Lipschitz map with D, f(S,) = S"'. By Lemma 4.3 the map D, f
splits as D, f = f" x f”, where f" resp. f? is the restriction of D, f
to H, resp. to V. Moreover the image f*(V}) is a factor S’ of S™ 1.
Therefore the map g = idx f* : HyxV, — H,+S'is an s.L.m. of S, onto
H, xS'. Moreover the restriction of ¢ to the set of genuine directions is
still surjective. The composition (g*id)op, : X — SpxS% — H,xS'% SO
is an s.L.m. with the desired properties. 0]

8. HORIZONTAL SPACES

We are going to investigate the structure of the submetries 5;} in
this section. All proofs are provided by pushing the problems forward
to S™, by special s.L.m. and then using results about submetries of
Euclidean spheres stated in the appendix.

We will fix nice spaces X,Y (see Definition 7.1) and an s.L.m. f :
X — Y. To restrict the number of indices we will only consider the
case i = 1 and write 67 for 5}. For a point y € Y we will denote by
NJ C Y the set of all points d¢-near to y. A direction v € S, will
be called d¢-horizontal if a short 0;-horizontal geodesic starts in this
direction. The set of all d;-horizontal directions will be denoted by
HJ C S,Y. In the case f = id : X — X we recover the notion of
1-near points. We will write N, = N and H, = H.

Remark 8.1. By definition each dy-horizontal direction is genuine.

If g : Y — Z is another s.L.m., then ds-near points are sent by g
to dg0p-near points, i.e. g(Nyf) C Ngg(ong. In particular 1-near points
in X are sent by f : X — Y to d;-near points. For each z € X we
get a natural 1-Lipschitz map D, f : H, — H;(m), called the horizontal
differential of f at x. We will prove in this section that HJ is a factor
of S, and the 1-Lipschitz map D, f : H, — ij(m) is always surjective.

Since ds-near points in Y are l-near, they are almost near by Ex-
ample 6.1. By Proposition 5.3 for each v € HJ the geodesic of length
e = €(y) in the direction of v is ds-horizontal. The set N/ is closed.
Therefore HJ is closed too.

Lemma 8.1. The set NJ 18 convex.
18



Proof. For yi,y, € NJ let ¢ be a point on the geodesic y,y,. By
Lemma 7.2 we can find an s.L.m. ¢ : Y — S™, that maps the tri-
angle yy vy isometrically. The points g(y) and g(y2) are 6405 -near to
g(y). Since N;’(Oy’; is convex (see Lemma 14.1), the point g(t) is also
dgop-near to g(y). From d(t,y) = d(g(y), g(t)) we see that y is ds-near
to t. U

This implies the convexity of HJ .

Lemma 8.2. For x € X, z € Ant(x), let v be a geodesic from x to z,
with in- resp. outcoming direction v € S, resp. w € S,. If v € Hy,
then for each genuine direction w € Ant(w) holds w € H,.

Proof. The point x; = exp(ev) is near to x and antipodal to z; =
exp(ew). We see d(B! ,B!) =d(B) ,B}) = d(z,,7) = d(z, 2). O

z1) 1’

Lemma 8.3. If H, is 1-symmetric, z € Ant(x), then H, is 1-symmetric
and there is a natural tsometry I,, : H, — H,.

Proof. For each v € H, there is a unique geodesic v between z and =,
starting in the direction v. Let w € S, be the incoming direction of
7. Choose a genuine direction @w € Ant(w). By Lemma 8.2 we know
w € H,. Since H, is 1-symmetric, the direction w must be horizontal
too. Applying Lemma 8.2 again we see that all genuine antipodes of
v in S, are horizontal. Since H, is closed we get by Corollary 6.4 that
H, is 1-symmetric.

Sending the horizontal direction v to the horizontal direction w, gives
us by the lune lemma the desired isometry 1., : H, — H,. O

By induction on j we get:
Corollary 8.4. If for x € X the space H, is 1-symmetric, then for
each z € AL = UAnt? () the subset H, C S, is 1-symmetric. Moreover
H, and H, are isometric.

Lemma 8.5. Let x € X, y = f(x). Then HJ is 1-symmetric in S, iff
H, is 1-symmetric in S,. In this case the restriction f : N, — Ngf and
the horizontal differential D, f : H, — Hgf are surjective.

Proof. Let H, be l-symmetric, v € HJ, and let w € Ant(v) be a
genuine direction. Set y; = exp(ev), 71 = exp((m — ¢)w). Choose a
preimage z; € X of g;. We have d(6(x),0(%1)) = d(d;(y),d7(71)) =
d(y,y1), since y; is dp-near to y. Thus d(z, z;) <7 —d(x,y;). But f is
1-Lipschitz, hence d(z;,z) = d(7;,y) and the geodesic xZz; is mapped
by f isometrically onto yg;. Choose z; € Ant(z;) with d(z1,2) = e.
Then 6(z1) = 6(z1) = d¢(y1) = 07(y1). Hence 2y is 1-near to x. Since
H, is 1l-symmetric a starting part of the geodesic xZ; is horizontal.
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Then the image of this part is d¢-horizontal. Therefore w € HJ and
w € D, f(H,). Hence (applying Corollary 6.4) H; is 1-symmetric and
D.f : H, — HJ is surjective.

Let on the other hand HJ be 1-symmetric, v € H,. Let w = D, f(v).
Consider y; = exp(ew) and an antipode 7; of 3. A starting part of the
geodesic yy, is ds-horizontal. So for each preimage z of y; a starting
part of xZ is horizontal. Since the starting direction of yy; is antipodal
to w, the starting direction of xZ is antipodal to v. Thus each v € H,
has an antipode © in H,.

Let v; € Ant(v) be another genuine direction. Since exp(ev;) and
exp(ev) are both contained in Ant(exp((m — €)v)) we get d(exp(evy)) =
d(exp(ev)). Therefore exp(evy) is 1-near to x. Thus v; € H, and using
Corollary 6.4 we see that the set H, is 1-symmetric. O

Consider now an s.L.m. g : X — S™. The set g(Al) is a dense subset
in the fiber g(B,) of the submetry d, : S® — Ax. From the appendix
or [Lyt01],p.48 we derive that for some point a = g(z) € g(Al) the
dg-horizontal space HY C S,S™ is a sphere. From Lemma 8.5 we see
that H, is 1-symmetric. Taking together the assertions of Lemma 8.5

and Corollary 8.4 we get:

Proposition 8.6. For each x € X the horizontal space H, is a closed
conver 1-symmetric subset of S,. For each z € AL the spaces H, and
H, are isometric. If f : X — Y is an s.L.m., then the d;-horizontal
space H}{(I) is closed conver and 1-symmetric too. The horizontal dif-

ferential D,f : Hy — HJ is an s.L.m..
Finally we show

Lemma 8.7. Fach horizontal space H, is a (maybe trivial) factor of
Sz. Moreover H, is a nice space. The same is valid for H}{(I)

Proof. From Lemma 6.3 and the fact that H, is convex and 1-symmetric
we derive that H, is geodesically complete. Moreover using Lemma 6.3
and the fact that the set of genuine directions is dense in S, we
can repeat the proof of Proposition 4.2 and get the splitting S, =
H, « Pol(H,).

To prove that H, is nice take an arbitrary v € H, and consider the
point z = exp(ev). Consider the s.L.m. f = f*: X — S™ as in
Definition 7.1. The horizontal differential D,f* : H, — H}{(I) is an
s.L.m. of H, onto a sphere. Moreover since for each w € H, the points
x and x,, = exp(ew) are almost near, the triangle zzz, is mapped
isometrically. This proves d(D,f?(v), D, f*(w)) = d(v, w).
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Since Hgf is a closed convex 1-symmetric subset of the geodesically
complete space H, we can apply Proposition 4.2 and Lemma 7.1. [

9. GEODESICS IN HORIZONTAL DIRECTIONS

Let X be a nice space. Using the fact that we know, what happens in
horizontal direction of a submetry of a Euclidean sphere, we are going
to study what happens in horizontal directions of X.

Lemma 9.1. For x € X, v € H,, let v be a geodesic of length m
starting in the direction of v. Then for some numbers 0 = t; < ty <
... <ty =m, the points y(t;) and y(t;+1) are near.

Proof. Take an s.L.m. f: X — S™ that maps 7 isometrically onto its
image. The starting direction of f(v) at y = f(z) is the d-horizontal
direction w = D, f(v). By Lemma 8.7 all horizontal spaces H/ of the
submetry d; : S™ — Ax are spheres. Due to Lemma 14.3 the image
f(7) consists of finitely many d¢-horizontal geodesics. Then the same
is true for ~. O

Now we make the statement of the last lemma uniform. To do so
remark that for v € S,, w € B2, 0 <t < 7 and arbitrary geodesics 7
resp. < starting at x in the direction v resp. w one has n(t) € Bz(t).
(This holds in all geodesically complete C AT (1) spaces).

Lemma 9.2. Let x € X, v € H, be given. Then for some 0 = t; <
ty < ... < ty = m, each direction w € B? and each geodesic v in the
direction w the points y(t;) and v(t;11) are 1-near.

Proof. For an arbitrary geodesic n starting in the direction v and each
t < m holds n(t) € B,2y(t). If n(t) and n(s) are 1-near, then the points
v(t) and ~(s) are 1-near too. O

We are going to describe branchings in horizontal directions:

Lemma 9.3. Let v be a geodesic starting in a horizontal direction
v € Hy. If v branches in a point y = ~(t), then the branching has a
positive angle, i.e. the incoming direction w € H, of v has in H, more
than one antipode.

Proof. Each antipode w of w is a horizontal direction, therefore the
point exp(ew) is uniquely defined. If @ was the only antipode of w,
could not branch in y. O

For v € H, we denote by b(v) the maximal number ¢ < 7, such
that = and exp(b(v)v) are almost near. By Lemma 6.2 this is the first

branching time of the geodesic starting in the direction v.
21



Lemma 9.4. The function b : H, — R™ defined above is constant on
B2 for each v € H,.

Proof. For w € Ant(v), v € Ant(w), set z; = exp(tv), zo = exp(tv) and
choose zZ = exp((m — t)w). The isometry I, ;0 I;,, : H,, — H,, defined
in Lemma 8.3 sends the incoming direction of xz; to the incoming
direction of xz,. By Lemma 9.3 the geodesic xz; branches in z; iff x2,
branches in z,. This implies by induction over j that the function b is
constant on A2 = UAnt% (v).

If directions w,, € H, converge to w and b(w,) converge to t, then
exp(b(wy)wy) converge to exp(tw) (by Proposition 6.1). Since the set
of points almost near to x is closed, we derive ¢ < b(w).

Therefore b(w) > b(v) for each w € B2. Since for w € B? we also
have the reversed inclusion v € B2, we get the equality. O

10. THE PROOF FOR NICE SPACES

We assume that Theorem 5.1 is true for all spaces of dimension at
most n—1 and prove it for nice spaces of dimension n. Before embarking
on the proof we make some easy remarks. The next lemma is motivated
by Remark 10.1 below and will be the final point in the proof.

Lemma 10.1. Let C' C S™ be a compact convexr subset, ¢ € C. For
w € S,C we denote by I(w) the length of the mazimal geodesic qq in C
that starts in direction w. Then [ is a continuous function on S,C.

Let C C S™ be a hemisphere {pt} = S™ 1, q € C an arbitrary point,
H c S,C a totally geodesic sphere. Then the function | cannot be
constant on H and smaller than 5.

Remark 10.1. If Z is a spherical join Z = Z; % ... x Z;, of irreducible
factors for which Theorem 5.1 is true, then A% is a m-convex subset
of an m-dimensional sphere for some natural number m. For z €
Z,v € H, let ¢ = 6%(z) and w = D,0%(v) € S,A?. Then I[(w) is the
maximum of all ¢, such that the points exp(tv) and x are 2-near. From
the knowledge of Theorem 5.1 it is not difficult to derive, that this
quantity [(w) is equal to b(v), for the function b defined in Lemma 9.4.

The next lemma follows directly from Example 5.1

Lemma 10.2. Let Y be a space with A2 = {pt}, Z=Y %« S*, 2 € Z.
For a point z € (Y US¥) holds that each geodesic starting in a direction
v € H, does not branch before 5. If z does not lie in Y U Sk, then
the horizontal space H, is a k-dimensional sphere and this sphere is
mapped by the horizontal differential of 6% : Z — A% = {pt} = Sk
1sometrically onto its image.
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Let now 2 € Z = 74 %« Zy % ... x Z} be a point with more than one
antipode in Z and assume that the spaces 7, are nice and Theorem 5.1
is true for them. For some i = 1,...,k the inequality d(z,Z;) < §
must hold and the projection of z on this Z; must have more than one
antipode. For each j # ¢ we map the space Z; by an s.L.m. to a
Euclidean sphere S™i, and so we get an s.L.m. f: Z — S™ x Z;, such
that the point f(z) has more than one antipode.

Let finally GG be a thick irreducible non-discrete building, z € G. We
can find a wall L of codimension 1 and a point x € L, such that the
geodesic zx branches in . Then the image of z under p, : G — S°* S,
has more than one antipode and AZE = {pt} *S’. We just have proved:

Lemma 10.3. Assume that for irreducible factors of a mice space Z
the conclusion of Theorem 5.1 holds. Let z € Z a point with more than
one antipode. Then there is ans.L.m. f:Z — S™xY with A% = {pt},
such that f(z) has in S™ =Y more than one antipode.

Now we come to the core of the proof. We assume that Theorem 5.1
is true in dimensions smaller than n and consider a nice irreducible
n-dimensional space X with a proper closed symmetric subset. Since
A% is not trivial, each horizontal subspace H, is not empty.

First we assume that each horizontal subspace H, C S, is a build-
ing. Let x € X be an arbitrary point, z # = a point 2-near to x.
Assume that the set of antipodes of z is not discrete and let z; — x
be a non-constant convergent sequence in Ant(z). For each j we have
d(z,%;) =7 — d(z,x) and geodesics 2Z; converge to zZ. Since the ge-
odesic 2Z branches only in finitely many points, we can replace Z; by
a subsequence and assume that the intersection of each geodesic 2Z;
with 2Z is the same geodesic zz,. Then the starting directions v; € S,
of zox; are different from the starting direction v of zpz (Lemma 9.3).
Since the horizontal directions v; and v are antipodes of the incoming
direction of zzp and v; converge to v, we get a contradiction to the
assumption that H,, is a building. Therefore Ant(x) is discrete and by
Proposition 4.5 the space X is a building.

Assume now that for some x € X the space H, is not a building. By
induction H, has a non-discrete factor F' with A% = {pt}, i.e. for each
v € F holds B?> = F. By Lemma 9.4 there is a number ¢ = b(v) such
that the first branching of each geodesic starting in a direction w € F
occurs exactly at the time .

Assume ¢ > 7. Then for each w € F' the point z, = exp(Jw) is well
defined and almost near to x by Lemma 6.2. Denote by Z the set of all
points of the form z,, w € F. For wy,wy € F the triangle xz,, 2y, is

spherical, so the set 7 is convex and closed. For z € Z and z € Ant(z2)
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holds d(Z,7) = m — d(z,z) = § and since F' is a 1-symmetric subset
of H,, we see that Z lies in Z. Therefore Z is a proper closed convex
1-symmetric subset of X. By Proposition 4.2 we see that Z is a factor
of X and X is reducible. Contradiction.

The rest is devoted to the proof that the case £ < 7 cannot occur.

Since F'is not discrete we can choose a non-isolated point v € F" and
a sequence of distinct points v, € F converging to v. Set z = exp(tv),
z; = exp(tv;) and let w € H, be the incoming direction of zz. By
Lemma 9.3 the direction w has more than one antipode in H, C S,.
Since H, is nice by Lemma 8.7 and has dimension less than n, we can
use Lemma 10.3 and find an s.L.m. g: H, — S™xY with A2 = {pt},
such that g(w) has in S™ %Y several antipodes.

Consider now the map f* : X — H, * S’ constructed in Proposi-
tion 7.3 and the composition f = (¢g*id)o f* : X — H, x S' —
Y & §mtiHl

The images §; = f(z;) and § = f(z) are different by construction.
Moreover for y = f(x) the geodesic yy branches in §. By Proposi-
tion 8.6 we know that D, f : H, — Hgf is an s.L.m. and by Proposi-
tion 4.3 the factor F' of H, is mapped by D, f onto a factor F of HJ.
Since Hgf is a factor of H,, the image F is also a factor of H,. Moreover
since y; # y (and since z; is almost near to x), the sequence D, f(v;)
converging to D, f(v) is not constant. Thus F is not discrete!

So far we have constructed an s.L.m. f: X — Z =Y x5 with
the following properties. The space A% = A%, * A% is a hemisphere
S® % {pt}. At the point y = f(z) there is a non-discrete factor F =
D, f(F) of H,, such that for a direction ¥ = D, f(v) € F the geodesic
7 starting in the direction of ¥ branches at the time ¢ < . Moreover
there are real numbers 0 = t; < ty < ... < t;, = m, such that for each
w € F and each geodesic 1 in the direction w, the points n(t;) and
n(tiz1) are 2-near (Lemma 9.2).

Set ¢ = 0%(y). Since the geodesic in the direction of o branches before
%, the point y is not contained in Y US* C Y % 5% Due to Lemma 10.2
the space F is mapped by the differential of §2 isometrically onto a non-
discrete totally geodesic sphere T in S,(A%). The function / defined in
Lemma 10.1 (the distance to the boundary of A%) can assume on T
only the values 1, ...., tx. Since T is connected and [ continuous, it must
be constant ¢; on T Since the geodesic in the direction ¥ branches at
the time ¢ < 7, the value [, must be smaller than 7. Contradiction to
Lemma 10.1.

This finishes the proof of Theorem 5.1 in the case of nice spaces.
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11. ULTRATRICK

The reader will find more detailed information about ultralimits for
instance in [BH99],p.78 and [KL97],pp.131-133.

11.1. Ultralimits. Let w be a fixed non-principal ultrafilter on the
set of natural numbers. It allows us to choose for a sequence (z,) in
a compact space X a point lim,, z,, € X among the limit points of the
sequence. Moreover it allows to build ultralimits of metric spaces and
Lipschitz maps. Let namely (X, z;) be a sequence of pointed metric
spaces. Then (X, z) = lim, (X}, z;) consists of all sequences (z;) with
uniformely bounded d(z;, z;), where z; is a point in the space X;. The
metric on this set X is defined by the pseudo-metric d((z;), (2;)) =
limw(d(zj, Z]))

Remark 11.1. If all the spaces X; have uniformly bounded diameters,
then the choice of the base point z; € X; does not play a role in the
construction.

An ultralimit (X, z) of CAT (k) spaces (Xj,z;) is a CAT (k) space,
that is geodesically complete if so are all the spaces X.

A sequence f; : (Xj,x;) — (Y},y;) of L-Lipschitz maps induces an
L-Lipschitz map f = lim,, f; : lim, X; — lim,, Y} defined by f((z;)) =
(fj(x;)). If the diameters of the spaces are uniformly bounded and the
maps f; : X; — Y; have dense images, then the ultralimit f = lim,, f;
is surjective.

11.2. Ultraproducts. For a space X we denote by X% its ultraprod-
uct X = lim, X; with the constant sequence X; = (X, z), where x
is an arbitrary point. We remark, that the ultraproduct X“ does not
depend on the choice of the point € X. The space X has a natural
isometric embedding in X¥ given by z — (2, 2,...) € X¥. This embed-
ding is onto iff X is proper. For a subset A C X we get a closed subset
A¥ C X¥ whose intersection with X is the closure of A in X.

11.3. Remarks on geometric dimension. An important result of
[K1e99] is that the geometric dimension is the greatest number n,
such that for some points xg, x1,...,x, in X the barycentric simplex
S(xo, 1, .., x,) defined in [Kle99] is non-degenerate.

Lemma 11.1. Let (X;,x;) be a sequence of CAT (1) spaces of dimen-
sion < r. Then the ultralimit (X, z) = lim, (X}, z;) has also dimension
at most r.

Proof. Let gy, xq,...,x, be points in X such that the barycentric sim-

plex S(zg,x1,...x,) is not degenerate. Let z; be given by a sequence
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2 € X;. Consider for each j the simplex S(z], 21, ..., 7). The defini-
tion of barycentric simplices directly implies that lim,, S(23, 21, ..., zﬁl)
is exactly the simplex S(xg,...x,). If all the simplices S(zJ, 27, ..., 22)
were degenerate, then the simplex S(xg, z1, ...x,) would be degenerate
too. 0]

Since X is isometrically embedded in X“ we obtain
Corollary 11.2. Let X be a CAT (1) space. Then dim(X) = dim(X%).

Remark 11.2. By rescaling the spaces we see, that the last two results
are true for arbitrary C AT (k) spaces.

11.4. Splittings and buildings. We show now that if the conclusion
of Theorem 5.1 is true for X then it is true for X.

Lemma 11.3. Let XY, Z be CAT (1) spaces with dim(X) = dim(Y" *
Z) =n < oo. Let an isometric embedding i : X — Y % Z be given. If
X s geodesically complete then X NY and X N Z are not empty.

Proof. Assume that XNY is empty. Then for each y € Y and z € Z the
geodesic yz may contain at most one point of X, otherwise the geodesic
completness of X would imply y € X. Let K be a compact subset of X
with topological dimension n. Then the projection of K onto Z is well
defined and injective. Its image in Z is a compact set of topological
dimension n, therefore Y * Z has dimension at least n + 1. 0]

As a consequence we get:

Corollary 11.4. Let X be a geodesically complete finite dimensional
CAT(1) space. If X, splits as X, =Y % Z then X is reducible too.

Proof. By Lemma 11.3 we know that X NY and X N Z are not empty.
Thus X NY is a proper closed convex 1-symmetric subset of X. By
Proposition 4.2 the subset X NY is a factor of X. O

Lemma 11.5. Let X be a geodesically complete CAT (1) space. Then
X is a building iff X¥ is a building.

Proof. Assume that X* is a building. Then X is a convex subset of X¥
with dim(X) = dim(X%) = n. Thus X contains a point x whose link
S, X contains a sphere S™~!. If 7 is an antipode of z in X then X must
contain the sphere S™ defined by z, 7z and S"~!' € S,. By [KL97],p.145
we know that X is a building.

Assume now that X is a building. The submetry 6 : X — A induces
a submetry 8 : X* — A. For each sequence of isometrically embedded

S™ in X we get an isometrically embedded S™ in X“. We see that
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each two points of X* lie in an isometrically embedded S™ and from
[KL97],p.139 we derive that X“ is a building. O

The next lemma shows that we do not lose the assumptions under
taking ultraproducts.

Lemma 11.6. Let X be a geodesically complete CAT(1). If A C X is
1-symmetric, then AY C X% is 1-symmetric.

Proof. For © = (z;) € A¥ consider a point z = (z;) € Ant(z). By
definition lim, d(z;,z;) > . If for some j the point z; is not in A
then d(z;,z;) < m. For such j choose a point z; € Ant(x;) C A with
d(z;,Zj) = m —d(z;, ;). For other j set z; = z;. The point (z;) € X¥
is contained in A and coincides with (z;) in X¥. O

11.5. Ultraproducts are nice.

Lemma 11.7. Let X be a CAT(1) space of dimension k, that contains
an isometrically embedded S*. Then X admits a 1-Lipschitz retraction
p: X — SF.

Proof. For k = 0 the statement is clear. For k£ > 0 we choose a point x
in the given S¥ ¢ X. Then S,X contains S*¥~! = S,S* and therefore
dim(S,X) = k£ — 1. By induction we find a 1-Lipschitz retraction
r:S, — S¥1=5,X. Now take the composition (1 * id) op, : X —
S X % 8% — (S,S%) x SO = SF, O

Lemma 11.8. Let X be a finite dimensional geodesically complete
CAT(1) space. Then its ultraproduct X*“ is a nice space.

Proof. Let the point z be given by a sequence (z;) in X. Replacing x;
by a point Z; with d(z;,Z;) — 0 we may assume (see Subsection 2.8)
that each link S, contains a sphere S™ with m; = dim(S,,). Consider
an s.L.m. q; : S;; — S™ and the compositions f; = (g; * id) o p,, :
X — Sy, %S0 — S™i % SO The maps f; are by construction 1-Lipschitz
and have dense images. Moreover d(f(x;), f(2)) = d(xj,2) for each
z € X. The map f® = f = lim, f; : X — lim,, S™T! = Slimom;+1
has all the needed properties. 0]

11.6. Happy ending. Let now X be an n-dimensional geodesically
complete CAT(1) space with a proper closed 1-symmetric subset A.
Then A is a proper closed i-symmetric subset of the nice n-dimensional
space X“. In the last section we proved that X* is a building or
a spherical join. Lemma 11.5 and Corollary 11.4 imply now that X
itself is a building or a spherical join. This concludes the proof of

Theorem 5.1.
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12. CONCLUSIONS

Let X be a finite dimensional geodesically complete C' AT (1) space.
Let X = S'« Gy #...x G+ X; ... X,, be a decomposition of X
where G; are thick irreducible buildings and X are irreducible but not
buildings. Then A% = S'x A(G) * ... x A(G) * {pt}... * {pt} where
A(G;) is the Weyl simplex of the building G;.

We see that a decomposition of X as above determines a decomposi-
tion of the space A% in a spherical join of irreducible factors. Since such
a decomposition of a convex subset of a sphere is unique, we just have
finished the proof of Corollary 1.2. Moreover from the description of
the space A% we see that the canonical weak submetries 62 : X — A%
are indeed submetmes.

Let X = Sl*Gl* G *Xl* .xX,, beasin Corollary 1.2. Consider
the building X defined as X = S« Gy ... * G * X1 * ... x X,,, where
X] is the set X; with a discrete metric. This is a building satisfying
dim(X) < dim(X). Moreover the underlying sets of X and X are the
same and the identity id : X > Xisa bijective 1-Lipschitz map.

From Example 5.1 we see, that points are 2-near in X if and only
if they are 2-near in X. Since each geodesic in the building X con-
sists of finitely many horizontal parts, we see that the metric don X
can be defined in the following natural way: d(z, z) = inf(d(zo, z1) +
d(xy,22) + ... + d(zp_1,2,)) where x = zy, 21, ...,x, = z run through
finite sequences of points in X such that z; and x;,, are 2-near.

For an s.L.m. f : X — Y pairs of i-near points in X are mapped
1sometr1cally to i-near points in Y. This implies that f considered as a
map f X — Y is still 1-Lipschitz, providing a proof of Corollary 1.3.

13. LOCAL STRUCTURE OF C' AT (k) SPACES

We start with a quite general construction valid in arbitrary C AT (k)
spaces. Let namely (X;,x;) be a sequence of pointed C' AT (k) spaces
and let (X,z) = lim,(X;, x;) be their ultralimit. Consider arbitrary
points y,z # x in X. Choose y;,2; € X; such that (y;) = y and
(2;) = z holds. Let v; resp. w; be the starting direction in S, of the
geodesic x;y; resp. x;z;. Let finally v resp. w be the starting direction
in S, X of xy resp. of xz.

From lim, (z;z;) = xz and lim,, (z;y;) = xy and the CAT (k) property
we obtain d(v,w) > limy, d(v;, w;) ([BH99],p.185). Therefore sending
the direction v to the sequence (v;) € lim,,(S,,) we obtain a well defined
1-Lipschitz map F' to the space lim,(S,,) defined on the set of all

genuine directions in S,. Moreover this map does not depend on the
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choice of the point z and the sequence (z;). Extending the map to the
completion S, of the set of all genuine directions we see:

Lemma 13.1. Let (X, z) = limy,(X;, x;) be an ultralimit of CAT (k)
spaces. Then there is a natural (up to w) 1-Lipschitz map F : S X —

Assume now in addition that each space X; is geodesically complete.
Then for each sequence v; € S,. X; of genuine directions we can choose
a point z; = exp(rv;) with a fixed positive r. Considering the point z =
(z;) € lim, (X, ;) = (X, z) we see, that (v;) € lim,(S;,) is contained
in the image of the map F'. Since the set of genuine directions is dense
in S;, we obtain:

Lemma 13.2. If in Lemma 13.1 all the spaces (X;, ;) are geodesi-
cally complete, the map F : S, — lim,(S;,) defined in Lemma 13.1 is
surjective, hence F' is an s.L.m.

The most interesting consequences of the above lemma arise in the
locally compact case:

Proposition 13.3. Let (X, z) be a locally compact geodesically com-
plete C AT (k) space, (x;) a sequence in X converging to x. Then there
is a well defined surjective 1-Lipschitz map p : Sy — lim,, (S, X).

Proof. Apply Lemma 13.2 to the ultralimit (X, z) = lim, (X, z;). O

Under the assumptions of Proposition 13.3 we see, that lim,(S,,X)
is compact and therefore the spaces S,, X subconverge to lim, (S,, X)
in the Gromov-Hausdorff topology. Now Corollary 1.5 follows directly
from Corollary 1.4.
Remark 13.1. Easy examples show that Proposition 13.3 need not hold
in the non locally compact case.

Finally we want to give an extension of Proposition 13.3, that will
be used in a forthcoming paper to study singular points in C AT (k)
spaces.

Proposition 13.4. Under the assumptions of Proposition 13.3 assume
in addition that x; # x and that the starting directions v; € S, of the
geodesics xx; converge to a direction v € S,. Then there is a natural

s.L.m. F”:S,(S,X)*S% — lim,(S,, X).

Proof. Set t; = d(x,x;). Then the rescaled spaces (iX, x) converge

in the Gromov-Hausdorff topology to the tangent cone T, X = CS,

([BH99)), that is the Euclidean cone over S,. Under this convergence

the points x; converge to the point v € S, C C(S;). The result follows

now from Lemma 13.2 and the fact S,(C'S;) = S,(S;) * S°. O
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14. Appendix

We recall some results about submetries of spheres from [Lyt01],pp.45-
50 and sketch their proofs.

If § : S — A is a submetry, then A is an Alexandrov space of
Hausdorff dimension < n and curvature bounded below by 1 (this can
be found in [BGP92], p.16). One shows first

Lemma 14.1. For each x € S™ the set N, of points near to x is a
conver set.

To see this denote by F' the fiber of 4 through z. By definition we
have N, = NzepNyz, where N, ; = {z € S"|d(z,2) < d(z,z)}. But in
the sphere S™ each set N, ; is a hemisphere, in particular it is convex.

Playing with convex sets one deduces that each fiber of ¢ is a set of
positive reach in the sense of [Fed59], i.e. for each y € A there is an
e > 0, such that for each direction v € SyA there is a geodesic 7 of
length € in A starting in y in the direction of v. In other words for each
r € F =6 (y), and each d-horizontal direction w € S, the geodesic
in the direction of w remains d-horizontal at least for the time e.

For another direct proof of this fact we refer to [Lyt04],p.11.

Each set of positive reach F' contains a C'%! submanifold U that is
open and dense in F' ([Fed59] or [Lyt04],p.3). We get:

Lemma 14.2. Each fiber F' of 0 contains an open dense subset U, such
that for each x € U the set of d-horizontal directions is a sphere.

Let finally 6 : S™ — A be a submetry, such that all horizontal spaces
are spheres. For x € S™ and a d-horizontal direction v € S, S™ let v be
the geodesic in the direction of v. For some ¢; > 0 the points y(0) = x
and y(t1) are d-near. Let ¢t; maximal with this property. Since the set
of horizontal directions at y(¢;) is a sphere, we find some t5 > t; such
that y(to) and y(t;) are 6-near. Choose t; maximal. Continuing in this
fashion we get a sequence 0 < t; < ty < .... It is possible to prove that
t; cannot converge to a finite number. To see this assume the contrary,
i.e. assume t; — t. Then one easiely sees from the definition of quasi-
geodesics (we refer to [PP94]), that the image d oy : [0,¢] — A is a
quasi-geodesic in A. This quasi-geodesic 7 has an incoming direction in
7(t). Since in this direction a geodesic starts (here we use that the fiber
through 7(¢) has positive reach), our quasi-geodesic must coincide with
this geodesic ([PP94],p.8). This implies that y[t — €, ] is a d-horizontal
geodesic for some ¢ > 0, in contradiction to the maximality of the
choices of t;. We have proved:
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Lemma 14.3. Let § : S™ — A be a submetry, such that all horizontal
spaces are spheres. Then for each geodesic v starting in a horizon-
tal direction, the segment v([0,7]) consists of finitely many horizontal

geodesics.
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