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Abstract. We prove that Riemannian foliations on complete contractible manifolds
have a closed leaf, and that all leaves are closed if one closed leaf has a finitely generated
fundamental group. Under additional topological or geometric assumptions we prove
that the foliation is also simple.

1. Introduction

In [Ghy84] E. Ghys proved very powerful approximation theorems for Riemannian foli-
ations on compact simply connected manifolds. As an important application he deduced
that for any Riemannian foliation on a rational homology sphere with leaf dimension
larger than one, all leaves must be compact rational homology spheres. Unfortunately,
his methods (and the powerful methods developed later in [HS90]) do not apply to
Riemannian foliations on complete non-compact Riemannian manifolds, essentially be-
cause Tischler’s Theorem ([Tis70]) applies to compact manifolds only. But complete
non-compact manifolds are very important in Riemannian geometry, most notably the
Euclidean space, whose Riemannian foliations have been studied in several papers (cf.
[GW01a], [GW01b]).

In this note, we use more abstract topological methods to prove a non-compact ana-
logue of the Theorem of Ghys on foliations of rational homology spheres mentioned
above. In order to formulate the result, we say that a topological space is rationally
contractible if all of its homotopy groups are torsion groups.

Theorem 1.1. Let M be a simply connected, rationally contractible, complete Riemann-
ian manifold and let F be a Riemannian foliation on M . Then there exists a closed leaf
which is rationally contractible. Moreover, if there exists a closed leaf with finitely gen-
erated fundamental group, then all leaves are closed and the quotient space M/F is also
rationally contractible.

The main examples of rationally contractible spaces, essentially the only class which
naturally appears in geometry, are contractible spaces. One might expect that, unlike
the case of spheres where Riemannian foliations with exceptional leaves do exist, Rie-
mannian foliations on contractible manifolds are simple foliations, i.e., they are given
by Riemannian submersions. We can verify this under additional finiteness assumptions
(cf. Appendix A for more about H-spaces):

Corollary 1.2. Let F be a Riemannian foliation on a complete, contractible Riemann-
ian manifold M . Then there exists at least one closed and rationally contractible leaf L.
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Its universal cover L̃ is a rationally contractible H-space. Moreover, for any field K,
the homology of L̃ with coefficients in K is finitely generated.

In addition, if the integral homology of L̃ is finitely generated, then the foliation F is
simple, with base M/F and all leaves being contractible.

The homotopy type of the leaf L in Corollary 1.2 seems to be extremely bizarre if
L is not contractible. If either the dimension or the codimension of F are small then
such objects cannot occur, and the foliation turns out to be simple, even in the general
rationally contractible case. The same conclusion can be drawn if F is cobounded, i.e.,
if the whole manifold M is contained in a tube of finite radius around one leaf. More
precisely, we deduce from Theorem 1.1:

Corollary 1.3. Let F be a Riemannian foliation on a complete rationally contractible
Riemannian manifold M . If F is cobounded then F has only one leaf. If the dimension
of the leaves of F is at most 3, or their codimension is at most 2, then F is a simple
foliation.

In fact, we expected that non-contractible manifolds with the topological properties
described for L in Corollary 1.2 do not exist at all. Unfortunately, this is not true, as
the following example due to William Dwyer shows.

Example 1.4. Consider the canonical map S3 → S3
Q from S3 to its localization at 0

(cf. [Hat]), and consider the homotopy fiber of this map, the torsionification T (S3).
Then, T (S3) is the loop space of the homotopy fiber of the map of the classifying
space BS3 = HP∞ to HP∞Q , its localization at 0. One verifies that T (S3) satisfies
all algebraic conclusions from Corollary 1.2 and is homotopy equivalent to a finite-
dimensional manifold.

We have tried to keep the presentation as simple as possible. Using more results from
the theory of H-spaces and equivariant cohomology, one can slightly improve the above
statements. Namely, one can show that in Corollary 1.2, the universal covering L̃ is a
loop space and not only an H-space. In Theorem 1.1 one can conclude that all leaves are
rationally contractible, also in the non-finitely generated case. However, new insights
are needed to answer the following questions in full generality:

Question 1.5. Under the assumptions of Theorem 1.1, is it true that all leaves are closed,
even if the fundamental groups of the leaves are not finitely generated?

Question 1.6. Is it true that every Riemannian foliation on a complete contractible
Riemannian manifold is simple?

The finiteness assumption in Corollary 1.2 can be verified if the curvature is non-
negative. More precisely, in this case a variant of the soul construction can be used to
reduce the problem to the cobounded case, so that Corollary 1.3 applies:

Theorem 1.7. Every Riemannian foliation on a complete contractible Riemannian
manifold of non-negative sectional curvature is simple.

We would like to mention that the above results were not known even for the Euclidean
space with its flat Euclidean metric (cf. [GW09], p. 148). Only in this flat case, we have
a short direct proof of Theorem 1.7 using [Bol07] instead of Theorem 1.1. We present
this proof in Subsection 4.4, for the sake of completeness. This proof would also provide
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an independent approach to Theorem 1.7 avoiding Theorem 1.1, once the following
geometric question that generalizes [Bol07] could be settled (cf. Lemma 4.1):

Question 1.8. Let M be a complete non-negatively curved manifold with soul S. Let F
be a singular Riemannian foliation on M with closed leaves and compact quotient. Is
it true that the projection M → M/F factorizes through the Sharafutdinov retraction
M → S?

We have not found a geometric proof of Theorem 1.1 under the natural assumption
that M has non-positive (even constant negative!) curvature, the main geometric source
of contractible manifolds. Under the additional assumption that (M,F) is invariant
under a large group of isometries, a short proof of the simplicity of the foliation is given
in [L09]. We would like to formulate:

Question 1.9. Is Theorem 1.7 true in non-positive curvature?

Finally, we would like to mention that Theorem 1.7 reduces the classification of Rie-
mannian foliations on Euclidean space to the case of simple foliations, i.e., metric fi-
brations in terms of [GW01a], [GW01b]. In [GW01a] such fibrations were shown to be
homogeneous if the leaves have dimension at most 3. In [GW01b] the homogeneity in
all dimensions has been claimed, however, this paper contains a serious gap in Section 3
as Stefan Weil has pointed out (cf. [Wei10]). We could validate the proof only under the
additional assumption that the foliation is substantial in the terminology of [GW01b].
Thus the following basic question about Riemannian foliations seems to be open in its
full generality:

Question 1.10. Is any Riemannian foliation on the Euclidean space homogeneous?

The paper is structured as follows. In Section 2 we recall Molino’s construction
that describes leaf closures of Riemannian foliations. We obtain a fibration relating
the topology of leaf closures to the equivariant cohomology of a natural action of the
orthogonal group (Proposition 2.4). Then we derive a simple criterion forcing one leaf
or, under a finiteness assumption, all leaves to be closed (Proposition 2.7). In Section
3, we present the proof of Theorem 1.1, modulo topological statements about H-spaces
and equivariant cohomology that are proven at the end of the paper. In Section 4, we
show how Corollary 1.2, Corollary 1.3 and Theorem 1.7 follow from Theorem 1.1 and
provide a short geometric proof of Theorem 1.7 for Euclidean spaces. In Appendix A
we recall the Theorems of Hopf and Borel about finite H-spaces and present a minor
extension to a non-finite situation. In Appendix B we recall some basic facts about
equivariant cohomology and prove a small generalization of a well-known result relating
ranks of isotropy groups to the Krull dimension of equivariant cohomology rings.

Acknowledgements. We thank William Dwyer for providing Example 1.4.

2. General structure of leaf closures

2.1. Riemannian foliations and leaf closures. A foliation F on a Riemannian man-
ifold M is called a Riemannian foliation if any geodesic normal to a leaf remains normal
to all leaves it intersects. (Thus, in terms of [Mol88], we always assume that the Rie-
mannian metric is bundle-like with respect to the foliation). If the Riemannian metric
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is complete, the only case which appears in this text, this implies (and is essentially
equivalent) to the fact that all leaves are equidistant, i.e., the distance function to any
leaf is constant on any other leaf. We refer to [Mol88] and will assume some aquaintance
with Riemannian foliations.

Let F be an (n − k)-dimensional Riemannian foliation on a complete n-dimensional
Riemannian manifold M . For any leaf L of F , the closure L̄ is a smooth submanifold
and these leaf closures define a decomposition F̄ of M , called a singular Riemannian
foliation. The quotient M/F̄ is a metric space, which is compact if and only if F is
cobounded.

The restriction of F to any leaf closure L̄ is a Riemannian foliation with dense leaves.
Riemannian foliations with dense leaves have been described completely in [Hae88]. As
a special case of his description we will use:

Lemma 2.1. Let L̄ be the closure of the leaf L of the Riemannian foliation F . If
π1(L̄) is a torsion group then L̄ = L. If π1(L̄) is abelian then there is a homomorphism
h : π1(L̄)→ Rl with dense image, where l is the codimension of L in L̄. Moreover, the
lift of F to the universal cover of L̄ is a simple foliation with quotient space Rl.

We will use the following easy observation several times along the paper.

Proposition 2.2. Assume that the foliation F has a closed contractible leaf L. Then
F is simple.

Proof. For any leaf L1 in a neighborhood of L there is a canonical projection L1 → L
which is a covering map. Since L is simply connected this covering map must be a
diffeomorphism. Hence L is a principal leaf. Since the principal leaf is closed all other
leaves are closed as well and any other leaf L2 is finitely covered by L. Since L is
contractible, L2 is the classifying space of its fundamental group. But the classifying
space of any non-trivial finite group is infinite-dimensional. Hence the fundamental
group of L2 is trivial. Thus all leaves are principal leaves, which just means that F is a
simple foliation. �

2.2. Molino’s construction. In this subsection, we briefly recall the Molino bundle,
but refer to [Mol88], [Ghy84], [Hae88] and [GT10] for more details.

Let F be an (n − k)-dimensional Riemannian foliation on a complete n-dimensional
Riemannian manifold M . Assume that F is transversally oriented. We consider the
principal G = SO(k)-fiber bundle π : M̂ → M of oriented transverse orthonormal
frames, called the Molino bundle. The foliation F admits a canonical lift to a G-
equivariant, (n−k)-dimensional Riemannian foliation F̂ on M̂ . Molino showed that the

closures of the leaves of F̂ constitute a G-equivariant simple Riemannian foliation
¯̂F ,

which is therefore given by a Riemannian submersion ρ : M̂ → W := M̂/
¯̂F . We denote

the typical fiber of this submersion, i.e., the homeomorphism type of the closures of
leaves of F̂ , by N .

The action of G on M̂ descends to an action of G on W in such a way that ρ becomes
a G-equivariant fiber bundle. The quotient space W/G is canonically identified with the

space of leaf closures of F , i.e., W/G = M/F̄ . Let N0 be a leaf of
¯̂F , hence a point in

W . Denote by GN0 the isotropy group of the point {N0} ∈ W , which is just the set of

all elements in G sending the submanifold N0 ⊂ M̂ to itself. The action of GN0 on N0

is free and the quotient space N0/GN0 is the closure L̄0 of a leaf L0 of F . The action
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of GN0 on the submanifold N0 ⊂ M̂ has orbits transversal to F̂ . Therefore we conclude
from the preceding considerations:

Lemma 2.3. With the notations above, if l denotes the codimension of F̂ in N0, then
dim(GN0) ≤ l, and equality holds if and only if the projection L̄0 of N0 is a closed leaf
of the original foliation F .

2.3. Relation to equivariant cohomology. For the G-spaces M̂ and W as above, we
denote their Borel constructions by M̂G := M̂×GEG and WG = W ×GEG, respectively
(cf. [AP93] and Appendix B below). By functoriality, we obtain a natural fibration

ρG : M̂G → WG with typical fiber N . Since G acts freely on M̂ , we obtain a fibration
EG → M̂G → M̂/G = M with contractible fiber EG, which implies that M and M̂G

are homotopy equivalent. Using the above notation we then have:

Proposition 2.4. The Borel construction M̂G of the Molino bundle M̂ is homotopy
equivalent to M , and the fibration M̂G → WG has fiber N .

The foliation F is closed if and only if F̂ is closed. In this case the quotient space
B = M/F is a Riemannian orbifold and M → B a generalized Seifert fibration. The

leaves of F̂ are diffeomorphic via the projection π : M̂ →M to the regular leaves L of F .
Moreover, the Borel construction WG in Proposition 2.4 coincides by definition with
Haefliger’s classifying space B̂ of B ([Hae82], Section 4). In particular, the projection

WG = B̂ → B = W/G induces an isomorphism on rational (co)homologies.

2.4. The simply connected case. We now assume that the complete Riemannian
manifold M is simply connected. Then the Riemannian foliation F is transversally
oriented and we have the whole structure described in the previous two subsections.
Moreover, the leaf closures N of F̂ have abelian fundamental group. In addition, the
stabilizer GN0 of any point N0 ∈ W has trivial adjoint representation. In particular, its
identity component is a torus [GT10, Lemma 4.6]. We claim:

Lemma 2.5. With the notations above, let T be the connected component of GN0. Then
the map π1(T )→ π1(N0), induced by sending T to an orbit of the action of T on N0 is
an injection.

Proof. Consider the lift of the action of T on N0 to the action of the universal cover T̃
on Ñ0. By Lemma 2.1, the foliation F̂ lifts to a simple foliation on Ñ0 with quotient Rl.
Since the action of T preserves the foliation and is transversal to it, we get an almost
free isometric action of T̃ on Rl. Thus this action of T̃ on Rl must be free.

Hence the action of T̃ on Ñ0 is free as well. This directly implies that the kernel of
the map π1(T )→ π1(N0) is trivial. �

Let l denote the codimension of F̂ in its closure
¯̂F . Because N is the fiber of the

fibration M̂G → WG with simply-connected total space, π1(N) is abelian. Due to
Lemma 2.1, we have a homomorphism h : π1(N) → Rl with a dense image. Hence,
π1(N) ⊗ Q is a Q-vector space of dimension at least l. If π1(N) is finitely generated,
and the dimension of π1(N)⊗Q is l then the image of h would be a lattice in Rl, hence
it could not have a dense image, unless l = 0. We have shown:
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Lemma 2.6. We have the inequality H1(N,Q) ≥ l. In case of equality, either l = 0
and the foliation F is closed, or the group π1(N) is not finitely generated and satisfies
π1(N)⊗Q = Ql.

Combining this lemma with Lemma 2.3 we obtain:

Proposition 2.7. For any N0 ∈ W we have the inequality dim(GN0) ≤ dim(H1(N0,Q)).
If equality holds then N0 projects to a closed leaf of F . If, in addition, π1(N0) is finitely
generated then the foliation F is a closed foliation.

3. The main argument

We now give a proof of Theorem 1.1, modulo some auxiliary topological results which
will be proven in the appendices. We continue to use the notation introduced in the
previous section, and assume that M is simply-connected and rationally contractible.

Consider the fibration M̂G → WG with fiber N . The space M̂G is simply connected,
hence so is WG and the space N is abelian, i.e., its fundamental group is abelian and
acts trivially on higher homotopy groups ([Hat02], p. 419, Exercise 10). The homotopy

fiber of the embedding map N → M̂G is the loop space ΩWG ([Hat02], p. 409). Since

all homotopy groups of M̂G are torsion groups, the long exact homotopy sequence of
this fibration reveals that the map p : ΩWG → N induces isomorphisms on all rational
homotopy groups p∗ : π∗(ΩWG)⊗Q→ π∗(N)⊗Q.

Since N and ΩWG are abelian topological spaces, the map p induces an isomorphism of
rational cohomology rings p∗ : H∗(N,Q)→ H∗(ΩWG,Q). Thus the rational cohomology
of the H-space ΩWG (see Apendix A for more information on H-spaces) vanishes in
degrees larger than the dimension of N . We now use the following result, a slight
extension of a classical theorem of Hopf ([Hat02], p. 285), whose proof is postponed to
Appendix A, and deduce that the rational cohomology ring of N is the cohomology ring
of a finite product of spheres.

Proposition 3.1. Let X be a connected H-space. Let K be a field and assume that
H∗(X,K) vanishes in all degrees larger than m. Then H∗(X,K) has dimension at
most 2m over K.

Moreover, if K has characteristic 0, then H∗(X,K) is isomorphic to the cohomology
ring of a product of spheres. Thus H∗(X,K) is the antisymmetric algebra Λ(y1, . . . , yq)
with deg yi =: ei odd.

Given that H∗(N,Q) = Λ(y1, . . . , yq) with deg yi =: ei odd, and the assumption that

H∗(M̂G,Q) vanishes in positive degrees, the transgression theorem of Borel ([Bor53],
Théorème 13.1, see also [MT91], Theorem VII.2.9) gives us that the cohomology ring
H∗(WG,Q) is a polynomial ring Q[x1, ..., xq], generated by elements xi of degree ei + 1.
In particular, dimH2(WG,Q) = dimH1(N,Q). This dimension is exactly the number
of elements yi of degree 1.

Now, we can apply the following result (essentially Theorem 7.7 from [Qui71]), whose
proof will be explained in Appendix B, in order to find a lower bound on the ranks and
thus also bounds on the dimension of stabilizers of the action of G on W .

Proposition 3.2. Let G be a compact Lie group that acts smoothly on a manifold X.
Assume that the G-equivariant cohomology ring H∗(XG) is a polynomial ring in q vari-
ables. Then there is a point x ∈ X such that the rank of the stabilizer Gx is at least q.
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Applying this proposition to our action of G = SO(k) on W , we find some point
N0 ∈ W such that its stabilizer GN0 has rank and thus dimension at least q. On the other
hand, we know that q ≥ dimH2(WG,Q) = dimH1(N0,Q). We apply Proposition 2.7
and deduce that q = dimH1(N0,Q) and that N0 projects to a closed leaf L0 of F in M .

Now we are going to analyze the topology of this closed leaf L0. Since q = dimH1(N0,Q),
all generators yi of the cohomology of N0 have degree 1 and N0 has the rational coho-
mology ring of a q-dimensional torus.

We claim that all higher homotopy groups πj(N0), j ≥ 2 of N0 are torsion groups.
Indeed, let E = S1

Q be the Eilenberg MacLane space K(Q, 1), which is just the rational-
ization of the circle S1. We have H∗(E,Q) = H∗(S1,Q). This space E is the classifying
space for H1(·,Q), hence we find maps f1, ....., fq : N0 → E, such that the pull-backs
of the canonical generator e of H1(E,Q) are exactly yi = f ∗i (e). The knowledge of the
rational cohomology ring of N0 now tells us that the map F = (f1, ..., fq) : N0 → Eq

induces an isomorphism on all rational cohomology groups. Since E and N0 are abelian
spaces, the map F induces isomorphisms on all rational homotopy groups. But all higher
homotopy groups of E vanish, which proves the claim.

Now we consider the fiber bundle N0 → L0 with fiber GN0 . Due to Lemma 2.5, the
orbit map GN0 → N0 induces an injection on π1. Since π1(GN0) and π1(N0) tensored
with Q are both isomorphic to Ql, the cokernel of the injection must be a torsion group.
Since π0(GN0) is finite, we deduce that π1(L0) is a torsion group. Since all higher
homotopy groups of N0 and GN0 are torsion groups, we deduce from the long exact
sequence in homotopy that all higher homotopy groups of L0 are torsion as well. Thus
L0 is a rationally contractible space.

Note further that π1(L0) contains the abelian image of π1(N0) as a subgroup of finite
index. Considering the same fiber bundle as above, π1(L0) is finitely generated if and
only if π1(N0) is finitely generated, and this is in turn equivalent to any other leaf closure
in M having finitely generated fundamental group. Assuming this in addition, π1(L0)
must be a finite group. The principal leaf L of F near L0 admits a canonical covering
map to L0. Since this covering must be finite, due to the finiteness of π1(L0), we see
that L is closed as well. Then all leaves are closed. Since L finitely covers L0 and any
other leaf is finitely covered by L all leaves are rationally contractible.

Once we know that F is closed, the quotient B = M/F is a Riemannian orbifold.
Moreover, the Borel construction WG is Haefliger’s classifying space of B, in particular,
its rational cohomology groups are non-zero only in finitely many degrees, since they
coincide with the rational cohomology groups of B. As we already know that H∗(WG,Q)
is a polynomial ring, this tells us that the rational cohomology groups of WG vanish in
positive degrees. Since WG is simply connected, WG is a rationally contractible space.
From the long exact homotopy sequence of the fibration M̂G → WG, we conclude that N
is rationally contractible as well.

Finally, B is simply connected and its rational cohomology groups vanish in positive
degrees, since they coincide with the rational cohomology groups of WG. Therefore B
is rationally contractible.

4. Finiteness conditions

We continue to use notations introduced in Section 2.
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4.1. Finite homology: Proof of Corollary 1.2. Using Theorem 1.1 we see that there
is a closed rationally contractible leaf L. Hence its universal covering is rationally
contractible as well.

The manifold N0 appearing in the proof of Theorem 1.1 is the fiber of the fibration
M̂G → WG. Since M̂G is contractible, N is homotopy equivalent to the loop space ΩWG.
In particular, N0 is an H-space, hence so is its universal covering Ñ0.

We have the fibration N0 → L with fiber GN0 . In the course of the proof of Theo-
rem 1.1, we have seen that the induced map π1(GN0)→ π1(N0) is injective. Therefore,
the fiber of the fibration Ñ0 → L̃ between the universal coverings is the universal cov-
ering of the connected component of GN0 . Since the connected component of GN0 is a
torus, we deduce that L̃ is homotopy equivalent to Ñ0. Thus L̃ is an H-space.

We conclude from Proposition 3.1 that the homology groups of L̃ with coefficients in
any field K are finite dimensional K-vector spaces.

If the homology of L̃ with integral coefficients is finitely generated, then a theorem of
Browder ([Bro61], see Corollary A.3 below) tells us that the rationally contractible H-
space L̃ must be contractible. Then L is the classifying space of its fundamental group,
which is torsion. Thus the fundamental group of L is trivial and L is contractible. From
Proposition 2.2 we get that F is a simple foliation given by a Riemannian submersion
M → B.

Since the fiber L and the total space M are contractible, the base B is contractible
as well, due to the exact sequence in homotopy. �

4.2. Small dimension: Proof of Corollary 1.3. Assume first that the quotient B =
M/F̄ is compact. Since B = W/G, the space W must be compact as well. Hence W has
finitely generated integral homology. Applying [Hat], Lemma 1.9, we see that the space
WG has finitely generated integral homology in each dimension. Therefore, WG has
finitely generated homotopy groups in each dimension. From the fibration MG → WG

we deduce that π1(N) is finitely generated. Then the fundamental group of a closed leaf
L0 is finitely generated as well. Using Theorem 1.1, we obtain that F is closed. But
then B is a simply connected compact orbifold. Hence its rational homology does not
vanish in the maximal dimension. Since B is rationally contractible, this implies that
dim(B) = 0. Hence F has only one leaf.

Assume now that the dimension of the leaves of F is at most 3, and let L be a
closed rationally contractible leaf. We claim that L is contractible. If dim(L) ≤ 2,
this is a direct consequence of the classification of one and two-dimensional manifolds.
Assume dim(L) = 3. Then the universal covering L̃ is still rationally contractible.
In particular, L̃ is non-closed, hence H3(L̃) = 0. By assumption, π1(L̃) = 0. From
Poincaré duality we know that H2(L̃) is torsion-free. Since π2(L̃) = H2(L̃), and since
L̃ is rationally contractible, we obtain H2(L̃) = 0. Therefore, L̃ is contractible. Thus
L is the classifying space of its fundamental group π1(L), which is a torsion group. We
conclude that L = L̃. Now the simplicity of the foliation follows from Proposition 2.2.

Let us assume now that the codimension of the leaves is at most 2. Assume first that
the foliation F is closed. The quotient B = M/F is an orbifold with trivial orbifold
fundamental group (which is just the fundamental group of WG). The classification of
one and two-dimensional orbifolds (cf. [KL11], Section 2.3) shows that either B has no
singularities and is diffeomorphic to the Euclidean space, or its underlying topological
space is the two sphere. But the second case cannot occur, since we already know that
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B cannot be compact. Thus B has no singularities. Hence F has no exceptional leaves
and F is simple.

Assume now that F is non-closed. Then M/F̄ has dimension less than two. Due to
Lemma 2.1, F cannot have dense leaves in M , unless F has only one leaf, hence we
may assume that F has codimension 2 and F̄ has codimension 1. The closed leaves of
F are exactly the singular leaves of F̄ . Since at least one such leaf exists, the quotient
M/F̄ is either an interval or a ray. If the quotient is a ray, then M retracts to the closed
leaf of F , which has an infinitely generated fundamental group by Theorem 1.1. This is
impossible, since M is simply connected. Hence the quotient B is a compact interval.
But B cannot be compact, unless it is a point.

�

4.3. Non-negative curvature: Proof of Theorem 1.7. Due to Proposition 2.2, it suf-
fices to find a closed contractible leaf. Following the ideas of [GW01a] and [Bol07],
Section 2.1, we are going to find a totally convex leaf. Recall that a subset X ′ of M is
called totally convex, if it contains any (not necessarily minimal) geodesic connecting
any pair of its points. A closed totally convex subset is a topological manifold with
boundary, whose set of inner points is a totally geodesic submanifold. If a closed totally
convex subset X is a manifold (without boundary) then X is homotopy equivalent to
M .

Assume now that we can find a closed totally convex F -saturated submanifold M ′ of
M , such that the restriction of F to M ′ is cobounded. Then M ′ is contractible and by
Corollary 1.3, M ′ must be a leaf of F . Hence, Theorem 1.7 follows directly from the
following general geometric observation, whose proof, essentially contained in [Bol07],
we shortly recall below:

Lemma 4.1. Let M be a (not necessarily contractible) complete Riemannian manifold
of non-negative curvature with a Riemannian foliation F . Then there exists a closed,
totally convex F-saturated submanifold M ′ of M such that the restriction of F to M ′ is
cobounded.

Proof. Let C be the set of all closed, totally convex, F -saturated subsets of M . The set
C is non-empty, since it contains M , and it is closed under intersections. Let us fix some
set X ∈ C of smallest dimension in C. Fix some x ∈ X and let L be the leaf through x.
We may assume that X is the smallest element of C which contains L.

We claim that X is a submanifold and that F is cobounded on X. First, assume
that F is not cobounded. Hence we find leaves Li ⊂ X running away from x, i.e.,
such that li = d(x, Li) converges to infinity. Consider the normalized distance functions
fi : M → R to the subset Li given by fi(y) = d(y, Li) − li. The functions fi vanish at
x, are 1-Lipschitz and F -basic, i.e., constant on leaves of F . Consider a pointwise limit
f of a subsequence of fi. Since the sets Li run to infinity, the function f is concave by
Toponogov’s theorem (see the usual proof of the soul theorem). Moreover, f is non-
constant on X since it has velocity 1 on a ray starting at x and being a limit of shortest
geodesics from x to L̄i. Hence the superlevel set f−1([0,∞)) ∩ X is a closed totally
convex subset of M , which is F -saturated, contains L and is properly contained in X.
This contradicts the minimality of X and thus we may assume that F is cobounded on
X.

Assume now that X is a manifold with non-empty boundary ∂X. The boundary ∂X
must be F -saturated as well, as we immediately see in the local picture (see [Bol07], for a

9



slightly more difficult argument in the case of singular foliations). The distance function
d∂X to the boundary is a concave function on X (see the usual soul construction), hence
its superlevel sets are closed totally convex subsets of X. Now, by the coboundedness,
the distance function d∂X assumes a maximum on X. And the set M ′ of points where
this maximum is attained is a convex set of dimension less than the dimension of X,
contradicting to the choice of X. �

Remark 4.2. In connection with Question 1.8, we mention that as in [Bol07], the above
proof applies without changes to singular Riemannian foliations (and more generally
transnormal decompositions) on non-negatively curved manifolds.

4.4. The Euclidean case. Here we present a short geometric proof of Theorem 1.7 for
the Euclidean space.

Namely, consider the closed singular Riemannian foliation F̄ on M = Rn. Due to
[Bol07], Theorem 2.1 (cf. [L09], Corollary 1.3 for a simplification of the argument, start-
ing from Lemma 4.1 above), there is at least one leaf L̄ of F̄ which is an affine subspace
of Rn. Since an affine subspace is contractible, this leaf closure L̄ must be in fact a leaf
L = L̄ of F due to Lemma 2.1. The result now follows from Proposition 2.2.

Appendix A. Preliminaries on H-spaces

We refer to [Hat02], pp. 281-292, for this section, in which we assume that all spaces
have the homotopy type of a CW complex. Recall that an H-space is a topological
space together with a ”multiplication” µ : X × X → X that has a ”canonical unit
element”. Any H-space is an abelian topological space ([Hat02], Example 4A.3) and
its universal covering is again an H-space. In our applications, the space X will be
the loop space ΩZ of some other space Z, equipped with the multiplication given by
concatenation of loops.

For a ring R, a Hopf algebra over R is a graded R-algebra A (always associative
and graded-commutative) together with a graded homomorphism µ : A → A ⊗R A,
called the comultiplication, that satisfies an algebraic equivalent of the unity axiom for
H-spaces; see [Hat02], p. 283. In the sequel, all Hopf algebras will be connected, i.e.,
satisfy A0 = R.

The structure of finite-dimensional Hopf algebras over fields is essentially known due
to the following theorem proved by Hopf in characteristic 0 and by Borel in positive
characteristics ([Hat02], p. 285 or [MM65], Theorem 7.11):

Theorem A.1. Let A be a finite-dimensional Hopf algebra over a perfect field K.
Then A is a tensor product of Hopf algebras Ai over K, each generated by one element.
Moreover, if K has characteristic 0, each Ai has dimension 2, and A is isomorphic to
the cohomology ring with coefficients in K of a product of odd-dimensional spheres.

As a consequence we have:

Corollary A.2. Let A be a finite-dimensional Hopf algebra over a perfect field K. Then
the dimension of A is bounded from above by 2d, where d is the maximal degree in which
the graded algebra A is not 0.
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Proof. The result clearly holds for algebras generated by one element. Since the bound
is preserved under tensor products, the statement follows from the above theorem of
Borel and Hopf. �

If X is an H-space with multiplication µ and if the cohomology ring A = H∗(X,K)
with coefficients in a field K is finite-dimensional, then µ induces a comultiplication
on A that makes it into a Hopf algebra. Using this, the above theorem of Borel and
Hopf and the Bockstein sequence, it is not difficult to get the following result of Browder
(Corollary 7.2 in [Bro61]):

Corollary A.3. Let X be a connected H-space, whose integer homology H∗(X,Z) is
finitely generated. Then Hd(X,Z) = Z, where d is the maximal degree, in which the
homology does not vanish. In particular, if X is rationally contractible, it is in fact
contractible.

The H-spaces X arising in the proof of Theorem 1.1, a priori, do not satisfy the
assumption of the last corollary. Instead, their cohomology is the cohomology of non-
compact finite dimensional manifolds, in particular, their cohomology groups vanish in
all but finitely many degrees.

We are going to prove Proposition 3.1 now, showing that in this more general situation
the cohomologies with coefficients in a field do not show anomalies and behave like in
the finite case.

Proof of Proposition 3.1. By the universal coefficient theorem, it suffices to prove the
result for K = Q and K = Fp, for all prime numbers p. Thus let K be one of these
fields and let us consider homologies and cohomologies with coefficients in K until the
end of the proof. Hence the field K is a perfect field and we may use Theorem A.1 and
Corollary A.2.

We denote by A the cohomology ring H∗(X,K). Since any finite-dimensional Hopf
algebra contained in A has dimension at most 2m by Corollary A.2, and since any Hopf
algebra can be exhausted by finite-dimensional subalgebras (cf. [MM65]), we conclude
that any Hopf subalgebra of A has finite dimension, bounded above by 2m.

It remains to prove that A is a Hopf algebra. Unfortunately, the homology is not
finitely generated, and the assumption that X is an H-space does not provide A auto-
matically with the structure of a Hopf algebra. Instead we argue as follows: The map µ
defines a homomorphism µ∗ : H∗(X)→ H∗(X ×X). We consider the Künneth formula
with coefficients in a field (see [Hat02], Corollary 3B.7)

Hk(X ×X) = HomK(Hk(X ×X), K)

= ⊕k
i=0HomK(Hi(X)⊗Hk−i(X), K).

The i-th summand in this decomposition contains H i(X)⊗Hk−i(X) as a subspace in a
canonical way. Moreover, the i-th summand coincides with this tensor product if (and
only if) one of the factors is finite-dimensional. In particular, this is always the case for
i = 0 and i = k. With respect to this decomposition, for any α ∈ Hk(X) we have

µ∗(α) = 1⊗ α + α⊗ 1 + r(α),

where r(α), with respect to the above decomposition, has non-zero coordinates only in
summands with 0 < i < k ([Hat02], p. 283).
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Let us assume that A is not finite dimensional. Let d be the smallest integer such
that Hd(X) is not finite-dimensional. Consider the subalgebra C of A that is generated
by all elements of degree at most d. For each α ∈ Hk(X), with k ≤ d, we have
r(α) ∈ ⊕k

i=0HomK(Hi(X)⊗Hk−i(X), K) = ⊕k−1
i=1H

i(X)⊗Hk−i(X), by the assumption
about finite-dimensionality of all H i(X), with i < d.

In particular, µ∗(α) is contained in the subalgebra C ⊗ C ⊂ A ⊗ A ⊂ H∗(X × X).
Since µ is a homomorphism, and C is by assumption generated by such elements α of
degree at most d, we conclude that µ∗(C) ⊂ C ⊗ C. Thus C is a Hopf algebra. As we
have observed, C is finite dimensional. This is in contradiction to our assumption on
Hd(X). �

Appendix B. Equivariant cohomology and dimension

We are going to prove Proposition 3.2 in this section. First, we recall some notations
and basics about equivariant cohomology. We refer the reader to [AP93] for more details.
In this section all cohomologies are considered with Q-coefficients.

For a compact Lie groupG letBG denote the classifying space ofG with the classifying
principal G-bundle EG→ BG, such that EG is contractible.

Let X be a topological space with a G-action. The Borel construction of the G-action
on X is the space XG := (X × EG)/G, where G acts diagonally. The G-equivariant
cohomology of the space X is by definition H∗G(X) := H∗(XG).

Let T be a maximal torus of G and let N(T ) be its normalizer in G. Then we have a
canonical isomorphism H∗G(X) = H∗N(T )(X) (cf. [AP93], p. 205-206). In fact, in [AP93]

this result is explained only in the case of a connected group G (the only case we need),
but the same proof applies to disconnected groups as well.

We recall the notion of Krull dimension, (cf. [Eis94], Section 8) which we will only use
in the case of commutative finitely generated Q-algebras. Namely, the Krull dimension
of such an algebra A is the maximal number s such that A contains a polynomial
algebra on s variables (the usual definition is equivalent to this one due to Noether’s
normalization lemma). The Krull dimension does not change if A is replaced by a larger
algebraA′, such thatA′ is a finite module overA. In particular, for a finite group Γ acting
on A by homomorphisms, the set of fixed points AΓ is a finitely generated Q-algebra
of the same Krull dimension as A (this is a theorem of Noether [Noe26], cf. [Eis94],
Exercise 13.2 and Exercise 13.3).

Now, Proposition 3.2 is a direct consequence of the following more general result,
which is an analogue of Theorem 7.7 in [Qui71] for p = 0.

Proposition B.1. Let X be a smooth manifold with a smooth action of a compact Lie
group G. Assume that H∗G(X) is a finitely generated Q-algebra. If the Krull dimension
of the even-dimensional part of H∗G(X) is q, then there is a point x ∈ X whose stabilizer
has rank q.

Proof. We have seen that, by replacing G by the normalizer of the maximal torus, we
may assume that the connected component G0 of G is a torus. The algebra H∗G(X)
is the set of fixed points of H∗G0(X) under the canonical action of the finite group
G/G0 = π0(G). Hence, Heven

G0 (X) is a finitely generated Q-algebra of Krull dimension q.
Thus, we may assume that G is a torus.
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For any fixed degree ∗, the space H∗G(X) is finite-dimensional. From the principal
fibration X×EG→ XG we deduce that in each degree ∗, the cohomology H∗(X×EG) =
H∗(X) is finite dimensional ([Hat], Lemma 1.9, for the Serre class C of abelian groups,
whose tensor product with Q has finite rank over Q). Since X is a finite-dimensional
space, the total cohomology ring H∗(X) is finite dimensional.

Thus, G is a torus and H∗(X) is finite-dimensional. In this case the claim is well-
known and appears for instance in [AP93], p. 257, under the additional assumption that
the set of connected components of isotropy groups of the action is finite. (Note that
the Krull dimension of Heven

G (X) coincides with the Krull dimension of H∗G(X) used in
[AP93], since Heven

G (X) is a finite algebra over the ring H∗(BG)/ann(H∗G(X)), which
is used there to define the dimension.) This assumption is verified due to Lemma B.2
below. �

Lemma B.2. Let G be a torus and let X be a smooth manifold with a smooth action
of G. Assume that Hk

G(X) is finite-dimensional for each k. Then the set of connected
components of isotropy groups of the action of G on X is finite.

Proof. Assume the contrary. Then we find infinitely many subtori Ti of T , together
with some connected components Xi 6= ∅ of the set of fixed points XTi , such that no
point in Xi is fixed by a torus larger than Ti; the Ti are not necessarily distinct, but
the Xi can be chosen not to intersect. Then, in a small neighborhood Ui of Xi the set of
connected components of isotropy groups is finite. The equivariant Thom class ui of Xi

is a nonzero cohomology class in H∗G(X) of degree equal to the codimension of Xi in M ,
and with support on Xi, thus its restriction to X \Ui is zero. Therefore, the elements ui
are linearly independent. Hence, there exists k ≤ dimX such that Hk

G(M) is infinite
dimensional, contradicting the finiteness assumption. �
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50931 Köln, Germany

E-mail address: alytchak@math.uni-koeln.de
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