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CURVATURE EXPLOSION IN QUOTIENTS

AND APPLICATIONS

Alexander Lytchak & Gudlaugur Thorbergsson

Abstract

We prove that the quotient space of a variationally complete
group action is a good Riemannian orbifold. The result is gener-
alized to singular Riemannian foliations without horizontal conju-
gate points.

1. Introduction

Let M be a Riemannian manifold and let K be a closed group of
isometries of M . Usually, the quotient space B = M/K is not a
Riemannian manifold, but an Alexandrov space of curvature (locally)
bounded below, stratified by Riemannian manifolds that consist of or-
bits of the same type. The set M0 of all points in M with principal
isotropy group is open and dense in M , and it is invariant under the
action of K. The quotient B0 = M0/K is the maximal stratum of B. In
many cases, the sectional curvatures in B0 explode as one approaches
a singular point y ∈ Bsing = B \ B0. However, sometimes it does not
happen, like in the case of an exceptional orbit. An interesting class of
examples is given by polar actions, where the quotient is a smooth Rie-
mannian orbifold and, therefore, its sectional curvatures are uniformly
bounded on compact subsets. Our first objective is a precise description
of such (non-) explosions. For a point z ∈ B0, we denote by κ̄(z) the
maximum of the sectional curvatures of tangent planes at z. Then we
have:

Theorem 1.1. Let M be a Riemannian manifold and let K be a
closed group of isometries of M . Let B = M/K be the quotient. Let
x ∈ M be a point with isotropy group Kx acting on the normal space
Hx of the orbit Kx ⊂ M . Set y = Kx ∈ B. Then the following are
equivalent:

1) lim supz∈B0,z→y κ̄(z) < ∞;

2) lim supz∈B0,z→y κ̄(z) · d
2(y, z) = 0;

3) The action of Kx on Hx is polar;
4) A neighborhood of y in B is a smooth Riemannian orbifold.
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Remark 1.1. With arguments similar to those used in the proof
of Theorem 1.1, one sees that the explosion of curvatures in B0 is at
most quadratic in the distance to the singular strata; namely, for each
compact subset U of B there is a constant C > 0 such that for all
z ∈ B0 ∩ U ,

κ̄(z) ≤
C

d2(z,Bsing)
.

Since all orthogonal actions on Euclidean spaces of cohomogeneity at
most 2 are polar, we deduce that the complement of the set of Riemann-
ian orbifold points in the quotient has codimension at least 3:

Corollary 1.2. Let M be a Riemannian manifold and let K be a
closed group of isometries of M . Then each point y in the quotient B =
M/K contained in a stratum of codimension ≤ 2 has a neighborhood in
B isometric to a smooth Riemannian orbifold.

This result makes large parts of the quotient accessible with differen-
tial geometric tools and can be used to derive some geometric properties
of the quotient, like the invariance of the Liouville measure under the
(quasi-) geodesic flow; see Theorem 1.6 below.

Theorem 1.1 can be applied to study variationally complete actions.
Variationally complete actions were introduced by Bott and used in
[Bot56] and [BS58], as a mean for studying the topology of (loop spaces
of) symmetric spaces. In these papers it is observed that the orbits of
such actions are taut submanifolds of the ambient (symmetric) space,
which establishes strong relations between the topology of the ambi-
ent manifold and the topology of the orbits. Conlon [Con72] showed
that hyperpolar actions are variationally complete. The converse was
proven in [DO01] for Euclidean spaces, in [GT02] for compact sym-
metric spaces and, more generally, in [LT07] for non-negatively curved
Riemannian manifolds.

In general, a variationally complete action of a group K on a Rie-
mannian manifold M does not need to be polar, nor does an action
with taut orbits need to be variationally complete. We describe all vari-
ationally complete actions in terms of the quotient space and give a
precise meaning to the following remark of Bott and Samelson [BS58,
p. 965]: “Intuitively, we like to think of variational completeness as
absence of conjugate points on the decomposition space M/K.”

Theorem 1.3. Let M be a complete Riemannian manifold and K a
closed group of isometries of M . The action of K on M is variationally
complete if and only if the quotient B = M/K is a good Riemannian
orbifold without conjugate points, i.e., if and only if B is isometric to
a quotient B = N/Γ, where N is a smooth, complete, simply connected
Riemannian manifold without conjugate points and Γ a discrete group
of isometries of N .
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If the manifold M is non-negatively curved, then so is the quotient
B and the universal orbifold covering N of B. The absence of conju-
gate points implies flatness of N in such a case. This flatness, on the
other hand, implies that the action is hyperpolar. Thus Theorem 1.3
generalizes theorem A from [LT07].

As soon as one knows that the quotient B = M/K is a Riemannian
orbifold, the statement of Theorem 1.3 is a more or less direct con-
sequence of the definition of variational completeness. Thus the main
part of the work consists in proving that variational completeness im-
plies that the quotient M/K is a Riemannian orbifold. In this part of
the proof Theorem 1.1 plays an essential role.

As in [LT07], our results generalize to singular Riemannian folia-
tions. Recall that a transnormal system F on a Riemannian manifold
M is a decomposition of M into smooth injectively immersed connected
submanifolds, called leaves, such that geodesics emanating perpendic-
ularly from one leaf stay perpendicularly to all leaves. A transnormal
system F is called a singular Riemannian foliation if there are smooth
vector fields Xi on M such that for each point p ∈ M the tangent space
TpL(p) of the leaf L(p) through p is given as the span of the vectors
Xi(p) ∈ TpM . We refer to [Mol88, pp. 185–216] and [Wil07] for more
on singular Riemannian foliations. Examples of singular Riemannian
foliations are (regular) Riemannian foliations and the orbit decompo-
sition of an isometric group action. A singular Riemannian foliation
F will be called closed if all of its leaves are closed in M , and it will
be called locally closed at a point x ∈ M if for some neighborhood U
of x the restriction of F to U is closed (i.e., connected components of
the intersection of the leaves of F with U are closed in U). If F is
locally closed at x (if F is closed and M is complete, respectively) then
the local quotient (the global quotient, respectively) U/F (M/F) is a
well defined Alexandrov space of curvature locally bounded from below
[BGP92, Bol07, Lyt01]. Note, that closedness and completeness are
only needed to assure that the quotient space is Hausdorff.

For a singular Riemannian foliation F on M , denote by M0 the set
of all points z ∈ M , called regular points, whose leaves have maximal
dimension. The set M0 is open and dense in M , and the restriction of F
to M0 is a (non-singular) Riemannian foliation. At each point z ∈ M0,
the local quotient of M modulo F is a smooth Riemannian manifold
and we denote by κ̄(z) the maximum of all sectional curvatures at the
image of z in this quotient. The next result describes (non-) explosion
of these curvatures as one approaches a boundary point x of M0. The
isotropy representation at x used in Theorem 1.1 now has to be replaced
by the infinitesimal singular Riemannian foliation TxF on the tangent
space TxM (see [Mol88, pp. 202–205] and Subsection 2.1).

The following result generalizes Theorem 1.1:
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Theorem 1.4. Let F be a singular Riemannian foliation on a Rie-
mannian manifold M . Let x ∈ M be a point and let TxF be the in-
finitesimal singular Riemannian foliation induced by F on the tangent
space TxM . Then the following are equivalent:

1) lim supz∈M0,z→x κ̄(z) < ∞;

2) lim supz∈M0,z→x κ̄(z) · d
2(x, z) = 0;

3) The singular Riemannian foliation TxF is polar;
4) F is locally closed at x and a local quotient U/F of a neighborhood

U of x is a Riemannian orbifold.

Let F be a singular Riemannian foliation on a Riemannian manifold
M . We will call F infinitesimally polar at the point x ∈ M if the
equivalent conditions of Theorem 1.4 are fulfilled. We call F infinites-
imally polar if it is infinitesimally polar at all points of M . The class
of infinitesimally polar singular Riemannian foliation is a broad gen-
eralization of regular Riemannian foliations and singular Riemannian
foliations with sections. On the one hand, such singular Riemannian fo-
liation are well accessible by differential geometric methods, since their
local quotients are finite(!) quotients of smooth Riemannian manifolds.
On the other hand, each singular Riemannian foliation is infinitesimally
polar on large parts ofM (compare Proposition 3.1). We hope to discuss
general features of infinitesimally polar singular Riemannian foliations
somewhere else. Here we discuss a surprising characterization of in-
finitesimally polar singular Riemannian foliations and an application to
general closed singular Riemannian foliations.

In order to state the characterization, recall that a geodesic on M
is called horizontal if it meets the leaves of F perpendicularly. We
will call such a geodesic γ : [a, b] → M regular, if γ(a) and γ(b) are
regular points of F . A regular horizontal geodesic intersects the sin-
gular strata of F only in finitely many points a < t1 < .... < tk < b
(see Corollary 4.6). We set c(γ) = c1 + .... + ck, where ci is given by
dim(L(γ(a)))−dim(L(γ(ti))), and call this number the crossing number
of γ. Then we have:

Theorem 1.5. Let M be a Riemannian manifold and let F be a
singular Riemannian foliation on M . Let G denote the space of all
regular horizontal geodesics with the topology of pointwise convergence.
Let c : G → N be the crossing number function. The function c is
continuous if and only if F is infinitesimally polar.

Remark 1.2. The crossing numbers c(γ) were implicitly used in
[Bot56] and [BS58] to calculate the indices of geodesics in compact
symmetric spaces and to deduce consequences about homology groups
of their loop spaces. The equality between the index and the crossing
number holds true for variationally complete actions, or, more generally,
for singular Riemannian foliations without horizontal conjugate points
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(see below). Generalizing [BS58], one can deduce from this fact that
the leaves are taut submanifolds, and the crossing numbers can be used
to compare the topology of the leaves with the topology of the ambient
space (cf. [Now08]).

Now let F be an arbitrary singular Riemannian foliation on a com-
plete Riemannian manifold M . Then on the quotient M/F one can
define a canonical “quasi-geodesic flow.” Restricted to the regular part
B0 ofM/F , this flow coincides with the geodesic flow. However, at some
time instances the flow may leave the regular part, and then a local in-
crease or decrease of volume could happen a priori. Using Theorem 1.4,
we show that it does not happen. In case of a compact quotient, the
next result can be used to obtain almost recurrent horizontal geodesics.

Theorem 1.6. Let M be a complete Riemannian manifold and let F
be a closed singular Riemannian foliation on M . Then the projection of
the horizontal geodesic flow on M leaves the Liouville measure of M/F
invariant.

The notion of variational completeness generalizes to the setting of
singular Riemannian foliation as the notion of absence of horizontal con-
jugate points (cf. [LT07]). Namely, let γ : [a, b] → M be a horizontal
geodesic. An F-Jacobi field along γ is a variational field through hori-
zontal geodesics starting on the leaf L(γ(a)). An F-vertical Jacobi field
along γ is an F-Jacobi field J with J(t) ∈ Tγ(t)L(γ(t)) for all t. We say
that γ has no horizontal conjugate points if each F-Jacobi field J with
J(t0) ∈ Tγ(t0)L(γ(t0)) for some a < t0 < b is F-vertical. We say that F
has no horizontal conjugate points if no horizontal geodesics in M have
horizontal conjugate points.

The following result generalizes Theorem 1.3:

Theorem 1.7. Let M be a complete Riemannian manifold with a sin-
gular Riemannian foliation F . If F has no horizontal conjugate points
then it is infinitesimally polar. If F is closed, then F has no horizon-
tal conjugate points if and only if quotient M/F is a good Riemannian
orbifold without conjugate points.

The paper is structured as follows. In Section 2 we recall some basic
facts about singular Riemannian foliations and Riemannian orbifolds.
In Section 3 we prove Theorem 1.4 and its consequences Theorem 1.1
and Proposition 3.1, which generalize Corollary 1.2 to the case of sin-
gular Riemannian foliations. In Section 4 we discuss the horizontal
geodesic flow and prove Theorem 1.6. The main technical observation
of this section is the fact that the horizontal geodesic flow in the total
space defines a flow in a quotient, i.e., that two projections of horizontal
geodesics that coincide initially coincide for their life span. This result
was proved in [Lyt01] and [Bol07] for the case of proper singular Rie-
mannian foliations, and in [LT07] and [Now08] for the case of singular
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Riemannian foliations without conjugate points. An independent proof
of this fact recently appeared in [AT08]. Finally, in Section 5 we dis-
cuss various notions of conjugate points, prove stability of the absence
of conjugate points and deduce Theorem 1.7 and Theorem 1.5.

Acknowledgments. The first author was supported in part by the SFB
611 Singuläre Phänomene und Skalierung in mathematischen Modellen.
The second author was supported in part by the DFG-Schwerpunkt
Globale Differentialgeometrie. We would like to thank Burkhard Wilk-
ing for several useful conversations.

2. Preliminaries

LetM be a Riemannian manifold and let F be a singular Riemannian
foliation on M .

2.1. Distinguished tubular neighborhoods and infinitesimal fo-

liations. Let x ∈ M be a point. Then there is a small open ball P
around x in the leaf L(x), a number ǫ > 0 and a neighborhood O of
P in M , called a distinguished tubular neighborhood at x such that the
following holds true [Mol88, pp. 192–193 and pp. 202–205]:

1) The foot point projection F : O → P is well defined;
2) O is the image of the ǫ-tube N ǫ(P ) in the normal bundle N(P ) of

P under the exponential map, and the map exp : N ǫ(P ) → O is a
diffeomorphism;

3) For each real positive number λ ≤ 1 the map hλ : O → O, given
by hλ(exp(v)) = exp(λv) for all v ∈ N ǫ(P ), preserves F ;

4) There is a diffeomorphism φ of O into the tangent space TxM with
Dxφ = Id and a singular Riemannian foliation TxF on TxM that
coincides with φ∗F on φ(O) and such that TxF is invariant under
all rescalings rλ : TxM → TxM, rλ(v) = λv, for all λ > 0.

Remark 2.1. In Section 4 we will see that the restriction of F to O
is invariant under the reflection h−1 : O → O at P .

The singular Riemannian foliation TxF on the tangent space TxM
will be called the infinitesimal singular Riemannian foliation of F at
the point x. The infinitesimal foliation TxF can be considered as a blow
up of F in the following sense. Let φ be as above. Identify O with
φ(O). Set Oλ = rλ(O) and define the Riemannian metric gλ on Oλ

as gλ = λ2 · (rλ)∗g. We have ∪Oλ = TxM . On compact subsets of
TxM , the blow up metrics gλ smoothly converge to the flat metric gx.
By construction, the restriction of TxF to Oλ is a singular Riemannian
foliation with respect to gλ.

2.2. Local quotients. We will continue to use the notations intro-
duced above. Note that F is locally closed at the point x if and only
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if the infinitesimal foliation TxF is closed. In such a case, the quotient
TxM/TxF is a non-negatively curved Alexandrov space and φ(O)/TxF
is a ball around the origin (the leaf through 0) in this space. The space
O/F is an inner metric space of curvature bounded below in the sense
of Alexandrov. Moreover, the space TxM/TxF is the tangent space to
this Alexandrov space at the leaf L(x) ∈ O/F .

Let us now assume that M is complete and that F is closed. Let x ∈
M be given, and let O be a small distinguished tubular neighborhood
of x, such that O ∩ L(x) = P , in the notations of Subsection 2.1. Then
M/F and O/F are spaces with curvature locally bounded below. The
embedding O → M induces an open map i : O/F → M/F . Since F
is closed, the map is finite-to-one and, by construction, the leaf L(x) ∈
M/F has only one preimage in O/F . The map i preserves the lengths
of all curves.

Let U be an ǫ-tube around the leaf L with the same ǫ as in the defini-
tion of O. Then U is a union of leaves of F and U/F is a neighborhood
of L(x) in M/F ; see [Lyt01] or Section 4. The global quotient U/F
is mapped by i onto the local quotient O/F . To understand the map

i : O/F → U/F , consider the universal covering Ũ of U with the lifted

singular Riemannian foliation F̃ and the group of deck transformations
Γ. We have Ũ/F̃ = O/F . The action of Γ on Ũ induces an isometric

action on Ũ/F̃ whose quotient is precisely U/F . Thus we deduce that
a neighborhood of L(x) in M/F is the quotient of the local quotient
O/F by a finite group of isometries of O/F .

2.3. Stratification. Let F again be a singular Riemannian foliation
on the Riemannian manifold M . By the dimension, dim(F), and the
codimension of F , codim(F ,M), we denote the maximal dimension,
respectively the minimal codimension of its leaves. For s ≤ dim(F)
denote by Σs the subset of all points x ∈ M with dim(L(x)) = s. Then
Σs is an embedded submanifold of M and the restriction of F to Σs

is a Riemannian foliation [Mol88, pp. 194–198]. For a point x ∈ M ,
we denote by Σx the connected component of Σs through x, where
s = dim(L(x)). We call the decomposition of M into the manifolds Σx

the canonical stratification of M .
The subset Σdim(F) is open, dense, and connected in M . It is the

regular stratumM0 ofM . All other singular strata Σx have codimension
at least 2 in M . The quotient codimension of a stratum Σx is defined
to be codim(F ,M) − codim(F ,Σx).

If the singular Riemannian foliation F is locally closed at x, then
a local quotient O/F is a space stratified by smooth Riemannian orb-
ifolds Σz/F and the quotient codimension of the stratum Σx is just the
codimension of the quotient Σx/F in the whole quotient O/F .

Let a point x ∈ M be fixed. Then the tangent space TxM decomposes
as TxM = TxΣ

x ⊕ NxΣ
x, where NxΣ

x is the normal space in M to
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Σx. The infinitesimal Riemannian foliation TxF on TxM is the direct
product of the foliation of TxΣ

x by affine subspaces parallel to TxL(x)

and a singular Riemannian foliation T̃xF on NxΣ
x. This last (the main)

part T̃xF is invariant under positive homotheties of NxΣ
x, and the only

0-dimensional leaf of T̃xF is the origin {0}.
The quotient codimension of the stratum Σx is the codimension of

the singular Riemannian foliation T̃xF on the Euclidean space NxΣ
x.

2.4. Riemannian orbifolds. We refer to [BH99, pp. 584–619] for a
more advanced and refined study of Riemannian orbifolds. A metric
space X is called a good Riemannian orbifold if X is isometric to M/Γ,
where M is a smooth Riemannian manifold and Γ a discrete group of
isometries.

A point x in a metric space X is called an orbifold point if x has
a neighborhood U that is a good Riemannian orbifold. The set O of
all orbifold points in X is open. We call X a Riemannian orbifold if
X = O holds. Note that the quotient of a Riemannian orbifold by a
finite group of isometries is again a Riemannian orbifold.

Let B be a Riemannian orbifold. Then locally B is a finite isomet-
ric quotient of a smooth Riemannian manifold. Since geodesics, tan-
gent spaces, and the Liouville measure on the unit tangent bundle of
Riemannian manifolds are invariant under isometries, one gets corre-
sponding notions on B. Namely, the “unit tangent bundle” UB being a
disjoint union UB = ∪y∈BSyB of spaces of directions SyB, locally being
a finite quotient of the unit tangent bundle of a “covering” Riemannian
manifold. This unit tangent bundle comes along with the foot point
projection p : UB → B, a locally compact (quotient) topology, a local
geodesic flow φ, and the Liouville measure µ, that is a Borel measure
on UB. The local flow φt preserves the Liouville measure, whenever
it is defined, since this is the case for Riemannian manifolds and since
the Liouville measure and the local geodesic flow are preserved under
isometries. For v ∈ UB, we set ηv(t) = p(φt(v)), i.e., the curve ηv is
locally the image of a geodesic in a Riemannian manifold under the
quotient map. We call ηv the orbifold-geodesic in the direction of v.

A Riemannian orbifold B is stratified by Riemannian manifolds with
a unique maximal stratum B0 that is open and dense in B. The unit
tangent bundle UB0 is an open and dense subset of UB that has full
measure with respect to µ. Moreover, the set U ′ of all vectors v ∈ UB0

such that the orbifold-geodesic ηv does not cross strata of codimension
≥ 2 is of full measure in UB.

For each orbifold-geodesic ηv, the curvature endomorphism along ηv is
well defined. Therefore, the notions of Jacobi fields and conjugate points
are also well-defined. Let us now assume that B is complete as a metric
space. Then each orbifold-geodesic is defined on R and the local geodesic
flow is a global flow. Take a regular point x ∈ B0 ⊂ B. Consider the
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orbifold exponential map exp : TxB → B given by exp(tv) = ηv(t), for
a unit vector v ∈ Tx. This map (since defined in metric terms) factors
over local branched covers of B, i.e., for each w ∈ TxB there is a finite
quotient N/Γw = O ⊂ B, with exp(w) ∈ O, such that exp lifts on
a neighborhood of w to a smooth map to N . The vector w = tv is
a conjugate vector along the geodesic ηv, if and only if this lift has a
non-injective differential at w.

If no vector in TxB is a conjugate vector of x, i.e., if x has no conjugate
points, then one can pull back the metric from B (in fact from the local
covers N) to a Riemannian metric g̃ on TxB. The space TxB with
this Riemannian metric g̃ is a complete Riemannian manifold and the
map exp : TxB → B becomes an arclength preserving orbifold covering
(as in the Theorem of Cartan-Hadamard). Thus TxB is the universal
orbifold covering of B and we get B = (TxB, g̃)/Γ for some group Γ of
isometries of TxB. Hence B is a good orbifold in this case. Thus we
have the following observation that is implicitly contained in the proof
of the developability results stated in [BH99, p. 603].

Lemma 2.1. If B is a complete Riemannian orbifold without conju-
gate points then B is a good orbifold. More precisely, there is a complete
Riemannian manifold N without conjugate points and a discrete group
Γ of isometries of N such that B = N/Γ.

3. Infinitesimal polarity

3.1. Horizontal sections. Let F be a singular Riemannian foliation
on a Riemannian manifoldM . A global (local) horizontal section through
x is a smooth immersed submanifold N in M through x that intersects
all leaves of F (all leaves in a neighborhood of x), such that all in-
tersections are orthogonal. We say that F is polar if there are global
horizontal sections through every point x ∈ M . It is called hyperpolar
if all these sections are flat. Recall that all local sections are totally
geodesic; thus each polar foliation of Rn is hyperpolar. Finally, each
hyperpolar foliation of Rn is closed. We refer to [Bou95], [Ale04], and
[Ale06] for more on singular Riemannian foliation with sections.

Remark 3.1. In many important cases, like in Euclidean or sym-
metric spaces, polar singular Riemannian foliation have been objects
of an extensive study, where they are better known as isoparametric
foliations. See, for instance, [PT88].

3.2. Non-explosion of curvature. Now we can start with the

Proof of Theorem 1.4. The implications (4) =⇒ (1) =⇒ (2) are clear.
Assume (2). We are going to use the notations introduced in Subsec-

tion 2.1. Let z ∈ TxM be a TxF-regular point. For all t with z ∈ Ot we
denote by κ̄t(z) the supremum of all sectional curvatures at the local
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projection of z in (Ot, gt)/TxF . Since gt smoothly converge to gx for
t → ∞, the horizontal curvatures satisfy limt→∞(κ̄t(z)) = κ̄x(z). On
the other hand, the assumption (2) implies limt→∞(κ̄t(z)) = 0. Thus
we deduce that the local quotient of (TxM,gx) modulo TxF is flat at
all regular points. Due to the flatness of (TxM,gx), this implies the
vanishing of the O’Neill tensor of the Riemannian foliations TxF on the
regular part. Thus the horizontal distribution on the regular part of
TxF is integrable and we deduce that TxF is hyperpolar [Ale06].

The main implication (3) =⇒ (4) is more subtle. Let TxF be hy-
perpolar and let N be a horizontal section through 0. There is a finite
group Γ of isometries of N , called theWeyl group of N (cf. [PT88]),
with Γ(0) = 0 such that N/Γ is isometric to TxM/TxF . Let O be again
as in Subsection 2.1 and let us again identify it with φ(O). Let N0 be a
small ball in N around 0 that is contained in O.

In general, one cannot expect that N is a g-horizontal section of F
nor must F have any horizontal local sections. The idea is to define a
new “horizontal” metric on N0 that is invariant under Γ and such that
N0/Γ becomes isometric to a neighborhood of x in O/F .

For a point z ∈ N0, we denote by Ṽ (z) the orthogonal complement

of TzN with respect to the (constant) metric gx. Let H̃(z) denote

the orthogonal complement of Ṽ (z) with respect to the original metric

g. Then H̃(z) depends smoothly on z. Moreover, each space H̃(z) is
contained in the g-orthogonal complement of TzL(z). By dimensional

reasons, H̃(z) is the orthogonal complement of TzL(z) at all regular
points.

Define a Riemannian metric g̃ on N0 by g̃z(v,w) = gz(P
z(v), P z(w)),

where P z is the orthogonal projection to H̃(z) with respect to gz . De-

note by Ñ the manifold N0 with the inner metric defined by the Rie-
mannian metric g̃. The projection p : Ñ → O/F preserves lengths of
all curves contained in the set of regular points of N . On the other
hand, p is invariant under the group of diffeomorphisms Γ of Ñ . Thus
each k ∈ Γ preserves lengths of all curves contained in the regular part
of N . By continuity, each k ∈ Γ is an isometry of Ñ . Moreover, the
induced map Ñ/Γ → O/F is an isometric embedding. This proves (4)
and finishes the proof of Theorem 1.4. q.e.d.

Let us now assume that M is complete and that F is closed. Let
x ∈ M be given and let O be a small distinguished tubular neighborhood
around x. If F is infinitesimally polar, then O/F is a Riemannian
orbifold. Therefore, the image of O in M/F , which is a finite quotient of
O/F , is a Riemannian orbifold. On the other hand, if L(x) ∈ M/F is an
orbifold point, then the regular part of TxM/TxF is flat and we get that
TxF is hyperpolar. Thus L(x) is an orbifold point of the global quotient
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M/F if and only if F is infinitesimally polar at x. Thus Theorem 1.4
implies Theorem 1.1.

3.3. Small codimensions. Let F be a singular Riemannian foliation
on the Euclidean space R

n that is invariant under positive rescalings
and satisfies L(0) = {0}. Then all leaves of F are contained in concen-
tric spheres around 0, and F is the cone over the restriction of F to
the unit sphere S

n−1. Note that F is polar on R
n if and only if its re-

striction to S
n−1 is polar. We have codim(F ,Rn) = codim(F ,Sn−1)+1.

Finally, each singular Riemannian foliation of codimension 1 in a com-
plete Riemannian manifold is polar. Thus each scaling invariant singular
Riemannian foliation on R

n of codimension ≤ 2 is polar. This proves
the following result generalizing Corollary 1.2:

Proposition 3.1. Let F be a singular Riemannian foliation on a
Riemannian manifold M . Let x ∈ M be a point with stratum Σx of
quotient codimension ≤ 2. Then F is infinitesimally polar at x.

4. Horizontal exponential map

4.1. Horizontal vectors. Consider the subset D of the unit tangent
bundle UM that consists of all starting vectors v of horizontal geodesics
γv. The set D is closed and invariant under the local geodesic flow
φt, whenever it is defined. By p : D → M we denote the foot point
projection.

We now discuss a preliminary stratification of D; later we will derive
a more natural stratification adapted to the geodesic flow. For each
stratum Σx of M , the preimage Dx = p−1(Σx) ⊂ D is a smooth sub-
manifold of UM (and in fact a sphere bundle over Σx) of dimension
dim(M) − 1 + dim(Σx) − dim(L(x)). Thus D is stratified by smooth
submanifolds Dx of UM . The main stratum D0 is open and dense in
D and the codimension of the stratum Dx (i.e., dim(D0) − dim(Dx))
coincides with the quotient codimension of the stratum Σx of M .

Let Mi be the open subset of all points x ∈ M such that the quotient
codimension of Σx is at most i. Set Di = p−1(Mi) ⊂ D. Then Di

is the union of all strata in the above stratification of D that have
codimension at most i. Since the geodesic flow φt is locally Lipschitz,
the shadow of D \Di under φ (i.e., the set of all directions v ∈ D, such
that γv intersects M \Mi) has Hausdorff dimension at most dim(D)− i.
Moreover, for each fixed t, the Hausdorff dimension of φt(D \Di) is at
most dim(D)− i− 1. In particular, we deduce:

Lemma 4.1. There is a subset D′ of full measure in the manifold
D0, such that for all v ∈ D′ the whole geodesic γv is contained in M1.

4.2. Horizontal geodesics in the nice part. Let x be a regular
point (x ∈ M0). Then a local quotient of O/F around x is a smooth
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Riemannian manifold, and horizontal geodesics in O are projected to
geodesics in O/F . In particular, two such projections coincide, if they
coincide initially.

Now let x be a point, such that Σx has quotient codimension 1.
Then the infinitesimal quotient TxM/TxF is isometric to R

q−1 × [0,∞)
and (due to Theorem 1.4) the local quotient O/F is a Riemannian
orbifold of the form N/Z2, where Z2 acts as an isometric reflection at a
totally geodesic hypersurface of a smooth Riemannian manifold N . A
horizontal geodesic γ in O is either completely contained in the regular
part of O, or it is completely contained in the singular stratum Σx, or it
intersects Σx in precisely one point. In the first two cases the image of
γ is a geodesic in O/F . In the last case the image is the concatenation
of two geodesics that meet at the boundary of O/F = N/Z2 and satisfy
the reflection law. In any case, such a projection is an orbifold-geodesic
in N/Z2. In particular, two projections of horizontal geodesics coincide
if they coincide initially. Thus we have shown:

Lemma 4.2. If M does not have any strata of quotient codimension
≥ 2, then in each local quotient O/F projections of horizontal geodesics
coincide if they coincide initially.

4.3. Equivalence relation. We are going to define a natural equiv-
alence relation R on D that identifies two directions v,w ∈ D if the
corresponding geodesics have equal images in M/F .

To be more precise, let first L be a leaf of F . There is a small (not
necessarily tubular) neighborhood U of the zero section of the normal
bundle N(L) of L with the following properties (see Subsection 2.1).
The exponential map restricted to U is a local diffeomorphism. The set
U is pointwise star-shaped, i.e., it is invariant under the maps hλ(v) =
λv, 0 < λ ≤ 1. Finally, the pull-back exp∗(F) is invariant under all hλ.
Thus there is a unique singular foliation on N(L) invariant under all
hλ, 0 < λ < ∞, that coincides with exp∗(F) on U .

We will call two vectors v,w ∈ D equivalent if v and w are normal
vectors to the same leaf L of F , and if they are in the same leaf of the
singular foliation on the normal bundle N(L) described above. Equiv-
alently, v and w are in the same equivalence class if and only if there is
a smooth (or piecewise smooth) curve η connecting v and w in D and
a small positive number ǫ, such that the leaf through γη(s)(t) does not
depend on s, for all 0 ≤ t < ǫ. The last condition just means, that
for all 0 ≤ t < ǫ the curve ηt(s) = φt(η(s)) is contained in the normal
bundle to some leaf Lt of F .

We will denote the equivalence relation by R. By R(v) we will denote
the equivalence class of v. Note that the restriction of R to the manifold
D0 is given by leaves of a smooth foliation.
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We are going to prove the invariance of R under the geodesic flow (cf.
[AT08] for an alternative proof and [Lyt01], [Bol07], and [Now08] for
some special cases).

Proposition 4.3. Let η : [a, b] → D be a curve in an equivalence
class R(v). If φt(η) is defined for some t > 0, then φt(η) is contained in
an equivalence class of R. Moreover, R is invariant under the reversion
− Id : D → D, given by − Id(v) = −v.

Proof. The equivalence classes of R are smooth injectively immersed
submanifolds of the unit tangent bundle of M . Denote by R̃(v) the
tangent space to the vector v ∈ D of its equivalence class R(v). The
claim can now be restated as follows: The local flow φt and the reversion
− Id leave the “distribution” R̃ invariant, i.e., for all v ∈ D we have
R̃(−v) = (− Id)∗(R̃(v)) and (φt)∗(R̃(v)) = R̃(φt(v)), for all t such that
φt(v) is defined.

Given an open subset V of M , the restriction of D, R̃, and the flow φ
to the unit tangent bundle of V coincides with the corresponding objects
for the restriction of F to V . Thus our claim is local on M .

Due to Lemma 4.2, the claim is true if in M there are no strata
of quotient codimension ≥ 2. Thus for all v, such that the geodesic
γv : [0, t] → M is contained in M1, we have (φt)∗(R̃(v)) = R̃(φt(v)).

In particular, this is true for all v ∈ D′ ⊂ D0 from Lemma 4.1 and
all t, such that φt(v) is defined. Notice that R̃ is a smooth foliation on
D0, φ is smooth, and D′ is dense in D0. Therefore, for all v ∈ D0 and
all t with φt(v) ∈ D0, we must have (φt)∗(R̃(v)) = R̃(φt(v)).

Remark 4.1. Continuity arguments could be used to finish the proof
at this point if all leaves were assumed to be closed.

Let x ∈ M be a point and let the plaque P ⊂ L(x), the number
ǫ > 0, and a distinguished tubular neighborhood O at x be chosen as
in Subsection 2.1. For a unit normal vector v to the plaque P , we
get from the definition of O and R that (φt)∗(R̃(v)) = R̃(φt(v)) and

(φt)∗(R̃(−v)) = R̃(φt(−v)), for all 0 ≤ t < ǫ. Moreover, (φt)∗(R̃(v)) =

R̃(φt(v)) for all −ǫ < t < 0 if and only if (− Id)∗(R̃(v)) = R̃(−v).

As we have seen, φt leaves R̃ on the regular part D0 invariant, and
therefore (− Id)∗(R̃(v)) = R̃(−v), for all normal v to P , such that
exp(tv) and exp(−tv) are in M0, for some (and hence all) 0 < t < ǫ.

Consider the diffeomorphism I : O → O (reflection at P ; in terms of
Subsection 2.1 it is just h−1), defined by I(exp(tv)) = exp(−tv) for unit

normal vectors v to P and 0 ≤ t < ǫ. By definition, (− Id)∗(R̃(v)) =

R̃(−v) for a unit normal vector v to P if and only if I preserves F at
exp( ǫ2v). By the observation above, I preserves F on the open dense
subset M0 ∩ O ∩ I(M0 ∩ O) of O. But a singular Riemannian folia-
tion is uniquely defined by its restriction to an open dense subset; see
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Lemma 4.4 below. We deduce I∗(F) = F . Thus we have shown the

invariance of R̃ under the reversion − Id.
For each vector v ∈ D, we can now take its foot point x and a dis-

tinguished tubular neighborhood of x and deduce that (φt)∗(R̃(v)) =

R̃(φt(v)), for all −ǫ < t < ǫ, where ǫ = ǫ(x) is chosen as in Subsection
2.1. Covering an arbitrary geodesic γv : [0, t] → M by finitely many dis-

tinguished tubular neighborhoods, we deduce (φt)∗(R̃(v)) = R̃(φt(v)).
This finishes the proof of Proposition 4.3. q.e.d.

In the proof above we used the following:

Lemma 4.4. Let M be a manifold. For i = 1, 2, let gi be a Rie-
mannian metric on M and let Fi be a singular Riemannian foliation on
M with respect to gi. If Fi coincide on an open and dense subset U of
M , then they coincide on all of M .

Proof. Choose an arbitrary point x ∈ M . The claim is local; thus re-
stricting to a small relatively compact neighborhood O of x, we may as-
sume that the leaves L1(x) and L2(x) are closed. Then for each sequence
xn → x the leaves Li(xn) (or, equivalently, their closures) converge in
the Gromov-Hausdorff topology to the leaf Li(x).

Thus it is enough to prove that L1(x) = L2(x) if x is a regular point of
F1. Hence we may assume that F1 is a regular foliation. By continuity
the leaves of F2 are contained in the leaves of F1 in such a case. Thus for
each F2-regular point y we get L1(y) = L2(y). Then the above limiting
argument shows that leaves of F1 and F2 through all points coincide.
q.e.d.

4.4. Natural stratification of the space of horizontal geodesics.

Let v be a horizontal vector and let γ = γv be the horizontal geodesic
with γ′v(0) = v. For t in the interval of definition of γ, we let l(t) be
the dimension of the leaf L(γ(t)). Due to the semi-continuity of the leaf
dimension, we have lim inf ti→t l(ti) ≥ l(t).

Let t be fixed and consider a small distinguished neighborhood O of
γ(t) as in Subsection 2.1. Then hs(γ(t+ρ)) = γ(t+sρ), for −1 ≤ s ≤ 1.
For 0 < s ≤ 1, hs preserves F . On the other hand, in the course of
the proof of Proposition 4.3, we have seen that h−1 preserves F as well.
Thus hs : O → O preserves F for all s ∈ [−1, 1] \ {0}. In particular,
l(t+ ρ) does not depend on ρ for ρ ∈ [−ǫ, ǫ] \ {0}.

This shows that l(t) is equal to the constant d(γ) := max(l(t)) for all
but discretely many t. We summarize our observations:

Lemma 4.5. Let γ be a horizontal geodesic in M . Let d(γ) denote
the maximal dimension of the leaves L(γ(t)). Then for all but discretely
many t, the leaf L(γ(t)) has dimension d(γ).

In the case of maximal dimension we get:
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Corollary 4.6. A compact horizontal geodesic that contains a regular
point is contained in the set of regular points, with exception of at most
finitely many points.

Remark 4.2. In fact, we have shown a slightly more general state-
ment than Lemma 4.5. Namely, for each horizontal geodesic γ and for
all but discretely many times t, the infinitesimal foliation Tγ(t)F does
not depend on t.

By definition, the function d : D → N, given by d(v) = d(γv), is
invariant under the local geodesic flow φ under the multiplication by
−1 and under the equivalence relation R. From the above we deduce,
that d(v) is the dimension of the leaf L(γv(ǫ)) for small positive ǫ.

Set Di := d−1(i) ⊂ D. Then D is decomposed into the disjoint
union of the sets Di. Due to the semi-continuity of leaf dimensions, the
closure of Di is contained in the union of Dj, j ≤ i. We claim that
Di is a smooth submanifold of the unit tangent bundle UM of M . To
see this, let v ∈ Di be given. Then φǫ(v) is a horizontal vector of the

restricted Riemannian foliation F on the submanifold Σγv(ǫ) of M . The
space H of unit horizontal vectors of the restriction of F to the manifold
Σγv(ǫ) is a smooth submanifold of the unit tangent bundle of Σγv(ǫ). By
definition, the diffeomorphism φ−ǫ sends a neighborhood of φǫ(v) in H
to a neighborhood of v in Di. This shows that Di are submanifolds of
UM .

If F is a Riemannian foliation, then the function d : D → N de-
fined above is constant. For each vector v ∈ D, we have d(v) =
dim(L(p(v))) = dim(R(v)). Moreover, the equivalence classes of R
are leaves of a foliation on the manifold D in this case. Finally, the
equivalence classes of R are closed if F is a closed Riemannian foliation.

For a general singular Riemannian foliation, the observation above
shows that each small open subset of Di, for each i, can be moved by
the geodesic flow to an open part of the set of horizontal vectors of a
smooth Riemannian foliation (restriction of F to a stratum). Thus we
arrive at the following:

Proposition 4.7. For each i ∈ D, the subset Di of all vectors v ∈ V
with dim(R(v)) = i is a submanifold of the unit tangent bundle, which is
invariant under the local geodesic flow φ. The equivalence classes of R
on Di are leaves of a smooth foliation. This foliation has closed leaves,
if the leaves of F are closed. For each v ∈ Di, we have d(γv) = i.

4.5. Vertical Jacobi fields. Let v be a horizontal vector and γ = γv
the geodesic in the direction v. Consider the leaf R(v) and a small
neighborhood V of v in R(v). For each v̄ in V consider the horizontal
geodesic γv̄. Due to Proposition 4.3, for each compact interval I of
definition of γ, we may choose V so small that for all t ∈ I and all
v̄ ∈ V we have γv̄(t) ∈ L(γ(t)).
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The space W γ of variational fields through geodesics γv̄ is a vector
space of Jacobi fields along γ of dimension dim(R(v)) = d(v). Due
to Proposition 4.3, W γ does not depend on the starting point of γ.
Moreover, we have W γ(t) := {J(t)|J ∈ W γ} = Tγ(t)L(γ(t)), for all t in
the interval of definition of γ.

4.6. Invariance of the Liouville measure. Now let M be complete
and let F be closed. Consider the space of horizontal vectors D and its
decomposition D = ∪Di discussed in Subsection 4.4. We have v ∈ Di

if and only if dimL(γv(t)) = i, for all but discretely many times t. The
relation v ∈ R(w) is equivalent to L(γv(t)) = L(γw(t)), for all t ∈ R.

Denote by G the space of equivalence classes D/R. We consider
G with the induced quotient topology (which is Hausdorff and locally
compact in our case). The decomposition of D induces a decomposition
of G as G = ∪Gi. The flow φ descends to a flow on G. Denote by D+

and G+ the maximal stratum of D and its projection to G, i.e., the set
of all horizontal geodesics that contain at least one regular point.

The subspace D0 ⊂ D+ of all horizontal vectors with regular starting
point is of full measure in the manifold D+ (since the complement of
D0 is a countable union of submanifolds of positive codimension). The
subspace D′ ⊂ D0 defined in Lemma 4.1 is of full measure in D+,
invariant under φ, and saturated under R.

For each v ∈ D′, the singular Riemannian foliation F is infinitesimally
polar at all points γv(t). Moreover, due to Subsection 4.2, γv projects
to an orbifold geodesic in each local quotient O/F . Thus the image of
γv in M/F is contained in the set B of orbifold points of M/F , and this
image is an orbifold geodesic in the orbifold B.

We set G′ = D′/R. Identify G′ with a subset of the unit tangent
bundle UB of the orbifold B. The argument above shows that on G′

the flow φ coincides with the orbifold-geodesic flow of the orbifold B.
Define the measure µ on G by setting µ(G \ UB) = 0 and by letting

µ be the (usual) Liouville measure on the unit tangent bundle UB.
Thus we deduce that φ preserves this Liouville measure µ. This proves
Theorem 1.6.

Note that by construction the Liouville measure µ is positive on non-
empty open subsets of G and that the total mass of µ is proportional to
the volume of B. The last one is finite if M/F is compact [BGP92].

5. Conjugate points

5.1. Jacobi equation and Jacobi fields. We recall here some basic
facts about the Jacobi equation, Jacobi fields, and focal points. We
refer to [Lyt09] for extended explanations.

Let M be a Riemannian manifold, let γ : I = [a, b] → M be a
geodesic, and let N be the normal bundle of γ. Let Jac denote the
space of all normal Jacobi fields along γ, i.e., solutions of the equation
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J ′′ + R(J) = 0, where R denotes the curvature endomorphism. By ω
we denote the canonical symplectic form on Jac, defined by ω(J1, J2) =
〈J ′

1, J2〉 + 〈J1, J
′
2〉. For subspaces W of Jac, we denote by W⊥ the

orthogonal complement with respect to ω. A subspaceW of Jac is called
isotropic if W ⊂ W⊥, and it is called Lagrangian if W = W⊥. For an
isotropic subspace W and t ∈ I, we define the W -focal index of t to be
fW (t) = dim(W )−dim(W (t)), where W (t) = {J(t)|J ∈ W}. The set of
points with non-zero focal index is discrete [Lyt09] and such points are
called W -focal. TheW -index of γ is defined by indW (γ) = Σt∈I(f

W (t)).
We have the following semi-continuity property [Lyt09]:

Lemma 5.1. Let gn be a sequence of Riemannian metrics that smoothly
converges to g. Let γn : [an, bn] → M be a sequence of gn-geodesics
converging to γ. Let Wn ⊂ Jac(γn) be isotropic subspaces of nor-
mal Jacobi fields along γn that converge to an isotropic subspace W ⊂
Jac(γ). If fWn(an) = fW (a) and fWn(bn) = fW (b), then indWn

(γn) ≤
indWn

(γ) for all n large enough. If, in addition, Wn are Lagrangians,
then indWn

(γn) = indWn
(γ) for all n large enough.

The following example is the main source of Lagrangians.

Example 5.1. If N is a submanifold ofM through γ(a) orthogonal to
γ, then the space ΛN of normal N -Jacobi fields is a Lagrangian. In this
case the ΛN -focal index of a is equal to dim(M)−1−dim(N) and a point
t 6= a is ΛN -focal if γ(t) is a focal point of N along γ in the usual sense

of Riemannian geometry. In particular, the space Λ = ΛL(γ(a)) of all
F-Jacobi fields along a horizontal geodesic γ of a singular Riemannian
foliation F is a Lagrangian. Thus the space W of all vertical F-Jacobi
fields is isotropic.

We recall now what we are going to use from Wilkings construction
[Wil07] of a transversal Jacobi equation. LetW be an isotropic space of
Jacobi fields along γ. Then there is a smooth Riemannian vector bundle
H with a Riemannian connection ′ and with a Riemannian projection
P : N → H, such that H(t) = N (t)/W (t) for all t, that are notW -focal.
There is a smooth symmetric operator RH : H → H such that solutions
of the Jacobi equation Y ′′ + RH(Y ) = 0 are precisely the projections
(by the map P ) of Jacobi fields J ∈ W⊥ ⊂ Jac(N ) to H. Lagrangians
in Jac(H) are precisely the projections of Lagrangians in Jac(N ) that
contain W . Moreover (cf. [Lyt09]):

Lemma 5.2. For each Lagrangian Λ ⊂ Jac(N ) that contains W , we
have indW (γ) + indΛ/W (γ) = indΛ(γ).

Example 5.2. In the special case, where γ is a horizontal geodesic
with respect to a Riemannian submersion f : M → B, let W be the
space of f -vertical Jacobi fields, i.e., variational fields through variations
of horizontal lifts of f(γ). Then W (t) for each t is the vertical space of
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the submersion through γ(t), H is canonically identified with the normal
bundle of the projected geodesic γ̄ = f(γ) in B, and the transversal
operator RH coincides with the curvature endomorphism in the base
space B.

5.2. Vertical Jacobi fields. Let M be a Riemannian manifold and let
F be a singular Riemannian foliation on M . Let γ : [a, b] → M be a
horizontal geodesic. Then the space Λ = ΛL(γ(a)) of all normal F-Jacobi
fields along γ is a Lagrangian space of Jacobi fields. Note that the space
Λ depends not only on the maximal geodesic containing γ but also on
the starting point γ(a).

In the introduction, the space of F-vertical Jacobi fields was defined
as the space of all Jacobi fields J ∈ Λ with J(t) ∈ Tγ(t)L(γ(t)) for
all t ∈ [a, b]. Recall now that in Subsection 4.5 we have defined a
space W γ of Jacobi fields along γ that are defined (independently of the
starting point) as variational fields through horizontal geodesics γs with
γs(t) ∈ L(γ(t)), for all t. We have seen that W γ(t) := {J(t)|J ∈ W γ}
coincides with Tγ(t)L(γ(t)), for all t. By definition W γ ⊂ Λ. Therefore,
W γ is precisely the space of all F-vertical Jacobi fields along γ. In
particular, the latter does not depend on the starting point, in contrast
to Λ.

The number d(γ), defined in Subsection 4.4, is the maximal dimension
of L(γ(t)). We get d(γ) = dimW γ. The W -focal points along γ are
precisely the points ti with dimL(γ(ti)) < d(γ) and theW -focal index of
such points is d(γ)−dimL(γ(ti)). In particular, for a regular horizontal
geodesic γ, its crossing number c(γ) defined in the introduction coincides
with the vertical index indW (γ).

Remark 5.3. In the above terminology it is possible to describe the
space W⊥ geometrically. Namely, it is possible to see that W⊥ con-
sists of normal horizontal Jacobi fields, where we call a Jacobi field
F-horizontal if it is the variational field of a variation of γ through
horizontal geodesics. This observation together with Lemma 5.3 below
proves the equivalence between two a priori slightly different definitions
of variational completeness used in [Bot56] and [BS58]. In our ter-
minology this equivalence reads as follows. The singular Riemannian
foliation F does not have horizontal conjugate points if and only if any
F-horizontal Jacobi field along any horizontal geodesic that is tangent
to the leaves at two points is tangent to the leaves at all points.

5.3. Horizontal conjugate points. Let γ be a curve and let T be a
Riemannian bundle over γ with a Riemannian connection and a sym-
metric field of endomorphisms R : T → T and the corresponding sym-
plectic vector space Jac(T ) of Jacobi fields. (In this paper we are only
interested in the cases T = N and T = H). Points c < d in the interval
of definition I of γ are called conjugate if there is a non-zero Jacobi field
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J ∈ Jac with J(c) = J(d) = 0. Note that if c < d are conjugate, then
for each c̄ ≤ c there is some d̄ ∈ [c, d] that is conjugate to c̄ [Lyt09].

Now let M,F , g be as always and let γ : [a, b] → M be a horizontal

geodesic. Let Λ = ΛL(γ(a)) and W = W γ be defined as above. Let H be
the W -transversal bundle as defined in Subsection 5.1. The following
result was independently obtained in [Now08]:

Lemma 5.3. There are no horizontal conjugate points along γ if
and only if indΛ(γ0) = indW (γ0), where γ0 denotes the subgeodesic γ0 :
(a, b) → M of γ. This condition is equivalent to the statement that
the point a does not have conjugate points for the transversal Jacobi
equation on H.

Proof. Assume that indΛ(γ) = indW (γ) and let some J ∈ Λ and

a < t0 < b with J(t0) ∈ Tγ(t0)L(γ(t0)) be given. We find some J̃ ∈ W ,

with J̃(t0) = J(t0). From indΛ(γ) = indW (γ), we deduce that J̃−J ∈ W
and therefore J ∈ W . The other implication is a direct consequence of
the definition.

To see the equivalence of indW (γ0) = indΛ(γ0) to the absence of
conjugate points in the quotient bundleH, we use Lemma 5.2 to see that
indW (γ0) = indΛ(γ0) is equivalent to the absence of focal points of Λ/W

on the open interval (a, b). But Λ/W is by definition the Lagrangian Λ̃a

in Jac(H) of all Jacobi fields Y with Y (a) = 0. Thus the statement that
indΛ/W (γ0) = 0 is equivalent to the fact that a does not have conjugate
points with respect to the transversal Jacobi equation. q.e.d.

Note that if the point γ(a) is regular, then the condition indΛ(γ0) =
indW (γ0) is equivalent to indΛ(γ) = indW (γ) + codim(F ,M)− 1.

5.4. Horizontal conjugate points in the infinitesimally polar

case. Let (M,g,F) be as above and assume that F is infinitesimally
polar. Let γ be a horizontal geodesic in M . Then one can cover γ by
small distinguished neighborhoods Oi. The restriction of F to each Oi

has a Riemannian orbifold Oi/F as quotient and γ ∩Oi is projected to
an orbifold geodesic γ̄ in this quotient. We get a well-defined develop-
ment along the projection γ̄ of γ. We can consider it to be a smooth
Riemannian manifold B containing our geodesic γ that we will denote
by γ̄, if we consider it as part of B.

Remark 5.4. If F is infinitesimally polar and closed and if M is
complete, then γ is projected to an orbifold-geodesic γ̄ in the Riemann-
ian orbifold M/F and the manifold B considered above is the local
development of M/F along γ̄.

For regular geodesics, the following lemma is a direct consequence of
the basic Example 5.2.
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Lemma 5.4. There are no horizontal conjugate points along γ if and
only if there are no conjugate points along γ̄ in the local development
B.

Proof. Let γ : [0, a] → M be given. First let us assume that b is
horizontally conjugate to 0 along γ. Then there is a normal L(γ(0))-
Jacobi field J ∈ Λ \ W with J(b) = 0. Adding some element of the
vertical space W to J , we get another L(γ(0))-Jacobi field J1 with
J1(0) = 0 and J1(b) ∈ Tγ(b)L(γ(b)). Then J1 is the variational field of a
variation γs through horizontal geodesics with γ0 = γ and γs(0) = 0, for
all s. Then in each local quotient γs is projected to a variation through
orbifold geodesics. Thus we obtain a lift γ̄s to B that gives us a variation
of γ̄ through geodesics in B with γ̄s(0) = 0. Moreover, the assumption
J1(b) = Tγ(b)L(γ(b)) implies for the variational field Y := d

ds γ̄s that
Y (b) = 0. If b is non-conjugate to a along γ̄, then Y is constant 0. But
this is equivalent to J ∈ W .

On the other hand, let us assume that there is some Jacobi field Y
along γ̄ with Y (0) = 0 and Y (b) = 0. Find a variation of geodesics
γ̄s corresponding to this Y , with γ̄s(0) = γ(0). Since Tγ(0)F is polar,
we may choose a horizontal section Z of Tγ(0)F . Now we find a unique

smooth lift η of the curve η̄(s) := γ̄′s(0) to Z with η(0) = γ′(0). Then
γs(t) = exp(tη(s)) is a variation of γ through horizontal geodesics, whose
Jacobi field J satisfies J(0) = 0 and J(b) ∈ Tγ(b)L(γ(b)). Moreover, J
is not in W , since Y 6= 0. q.e.d.

Remark 5.5. Since regular horizontal geodesics are dense in the
space of all geodesics and since the absence of conjugate points is an
open condition for Riemannian manifolds, we deduce from Lemma 5.4
and the proof of Proposition 5.6 below that a singular Riemannian fo-
liation F does not have horizontal conjugate points if and only if any
regular horizontal geodesic does not have horizontal conjugate points.

5.5. Stability of absence of conjugate points. Let (M,g,F) be as
above. Let γ : [a, b] → M be a regular horizontal geodesic. Let Λ and
W be defined as in Subsection 5.2. We assume that b is not Λ-focal.
(The last condition can be achieved by slightly increasing b).

Now let gn be a sequence of Riemannian metrics on M that smoothly
converge to g and that are adapted to the singular Riemannian foliation
F . Let γn : [a, b] → M be a sequence of gn-horizontal geodesics that
converge to γ. Let Λn and Wn be the spaces of F-Jacobi fields and
F-vertical Jacobi fields along γn (with respect to the metric gn).

Since we are in the regular part of F , the spaces Λn converge to Λ and
Wn converge to W . Moreover, fWn = fW (a) = fWn(b) = fW (b) = 0
and fΛn(a) = fΛ(a) = dim(M) − 1 − dim(F) and fΛn(b) = fΛ(b) = 0.
From Lemma 5.1 we get indΛ(γ) − indW (γ) ≤ indΛn

(γn) − indWn
(γn),

for all n large enough. Using Lemma 5.3 we derive:
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Lemma 5.5. In the above situation, assume that γn has no horizontal
conjugate points. Then γ has no horizontal conjugate points as well.

5.6. Conclusions. Now we can finish the proofs of all results announced
in the introduction. We start with another characterization of infinites-
imal polarity.

Proposition 5.6. Let F be a singular Riemannian foliation on a
Riemannian manifold M and let x be a point in M . Then F is in-
finitesimally polar at x if and only if there is a neighborhood U of x,
such that the horizontal geodesics contained in U do not have horizontal
conjugate points.

Proof. If F is infinitesimally polar at x, then we can find a small
distinguished tubular neighborhood O of x such that O/F is a smooth
Riemannian orbifold with bounded curvature. Then there is some ǫ > 0
such that each orbifold-geodesic of length ≤ ǫ in O/F has no conjugate
points. Then taking U ⊂ O to be an open ball of radius ǫ around x, we
deduce from Lemma 5.4 that no horizontal geodesic in U has horizontal
conjugate points.

On the other hand, let us assume that TxF is not polar. Then there
is at least one regular horizontal geodesic γ in TxM with horizontal
conjugate points (see [LT07]). Using the convergence of the rescaled
metrics on a small tubular neighborhood O of x to the flat metric on
TxM from Subsection 2.1, we deduce from Lemma 5.5 that arbitrary
small neighborhoods of x contain regular geodesics γn with horizontal
conjugate points. q.e.d.

Now we can finish the proof of Theorem 1.7. If there are no horizon-
tal conjugate points, then F is infinitesimally polar by Proposition 5.6.
If, in addition, F is closed, then B = M/F is a complete Riemannian
orbifold (Subsection 2.4). From Lemma 5.4 we deduce that this Rie-
mannian orbifold does not have conjugate points if and only if in M
there are no horizontal conjugate points. Now the result follows from
Lemma 2.1.

5.7. Continuity of the crossing counting function. Now we are
going to prove Theorem 1.5.

Proof. Recall that the crossing number c(γ) of a regular geodesic is
equal to its vertical index indW (γ). The claim of Theorem 1.5 is local,
i.e., c is continuous if and only if each point x ∈ M has a neighborhood U
such that c is continuous for the restricted singular Riemannian foliation
(U,F).

If F is infinitesimally polar at x, we may choose U as in Proposi-
tion 5.6. Then for each regular geodesic γ in U we get indW (γ) =
indΛ(γ)− (codim(F ,M)− 1). The result now follows from the continu-
ity of indices for Lagrangians, Lemma 5.1.
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Now let us assume that c is continuous and that TxF is not po-
lar. The proof of Corollary 5.6 shows that there are regular geodesics
γn : [0, ǫn] → M , with ǫn → 0 and γn(0) → x, that have horizontal
conjugate points and such that the starting directions vn of γn con-
verge to a regular direction v in TxM . Let γ = γv be the geodesic
in M in the direction v. For sufficiently small ǫ = ǫ(γ), the geodesic
γ : [−ǫ, ǫ] → M has no horizontal conjugate points. But the extended
geodesics γn : [−ǫ, ǫ] → M still have horizontal conjugate points. Thus,
for n large enough, c(γn) = indWn

(γn) < indΛn
(γn)−(codim(F ,M)−1)

and c(γ)) = indW (γ) = indΛ(γ)−(codim(F ,M)−1). Since γn converges
to γ, this contradicts the continuity of c. q.e.d.
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