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DIFFERENTIATION IN METRIC SPACES

c© ALEXANDER LYTCHAK

We discuss differentiation of Lipschitz maps between abstract metric spaces
and study such issues as differentiability of isometries, first variation formula
and theorems of Rademacher type.

§1. Introduction

1.1. The Aim. This paper is devoted to the study of the first order geometry
of metric spaces. Our study was mainly motivated by the observation that
whereas the advanced features of the theories of Alexandrov spaces with up-
per and lower curvature bounds are quite different, the beginnings are almost
identical, at least as far as only first order derivatives are concerned (for ex-
ample tangent spaces and the first variation formula). One is naturally led to
the question on which spaces the first order geometry can be established. As
it turns out the same first order geometry exists in many other spaces that
we call geometric. The class of geometric spaces contains all Hölder contin-
uous Riemannian manifolds, sufficiently convex and smooth Finsler manifolds
([LY]), a big class of subsets of Riemannian manifolds (for example sets of
positive reach, see [Fed59] and [Lyta]), surfaces with an integral curvature
bound ([Res93]) and extremal subsets of Alexandrov spaces with lower curva-
ture bound ([PP94a]). The last case was discussed in [Pet94] and the proof of
the first variation formula was a major step towards proving the deep gluing
theorem ([Pet94]). Moreover the class of geometric spaces is stable under
metric operations, even under such a difficult one as taking quotients. Finally
the existence of the first order geometry is a good assumption for studying
features of higher order, such as gradient flows of semi-concave functions
([PP94b] and [Lytc]). One of the main issues of this paper is the establishing
of natural, easily verifiable axioms, that describe this first order geometry and
their consequences.

Keywords and phrases: Alexandrov spaces, Rademacher theorem, variation formulas, tan-
gent cones.
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Another more direct motivation comes from the question whether a sub-
metry (or more specially an isometry) between metric spaces must be differ-
entiable in some suitable sense. This question was answered affirmatively for
smooth Riemannian manifolds in [BG00]. On the other hand in [CH70] an
example of a non-differentiable isometry between Riemannian manifolds with
continuous Riemannian metrics is constructed. Even for asking this question
a language is needed that allows us to speak about differentiability of Lips-
chitz mappings. Another main issue of this paper is the establishing of such a
language.

Remark 1.1. For (special) doubling metric measure spaces Cheeger has de-
veloped in [Che99] a deep theory giving a Rademacher type theorem for such
spaces. However this approach does not allow to speak about differentiability
in a given (singular) point. Moreover it is essentially restricted to differen-
tiation of functions and does not apply to maps into another singular space.
Kirchheim developed in [Kir94] a very interesting theory of metric differentia-
tion of Lipschitz mappings of the Euclidean space into arbitrary metric spaces.
The disadvantage of this theory is that it completely neglects the (possibly
existing) tangent structure of the image space. Whereas Kirchheims definition
has a clear interpretation in our language, the connections to the theory of
Cheeger are much less clear and will not be discussed here.

In this paper we discuss the basics of the theory. In [Lytc] we study con-
nections between properties of the differentials and the map itself, in [Lytb]
we apply these ideas to differentiability in Carnot–Caratheodory spaces.

1.2. The Problem. The notion of a tangent cone at a point of a proper met-
ric space was defined by Gromov using Gromov–Hausdorff convergence of
rescaled spaces, through the requirement that an infinitesimal portion of the
space at x does not depend on the infinitesimal scale. In many situations this
concept has been used to study the properties of the original space (for ex-
ample [BGP92, Pet94, Mit85] and many others). Unfortunately this definition
being perfect for the study of the infinitesimal portions of a given space is
not very suitable for the study of differentials. The problem is that Gromov–
Hausdorff convergence of abstract metric spaces is defined only on the set of
isometry classes. For example the question about differentiability of isometries
does not make any sense in this context. Dealing with differentials one would
prefer to know what happens in a fixed direction in the tangent space. Mostow
and Margulis encountered this problem as they were dealing with differentials
between Carnot–Caratheodory spaces ([MM00]).

1.3. The Method. To circumvent this problem we give a slightly different
definition of the tangent cone, working with ultra-convergence instead of the
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Gromov–Hausdorff convergence, a notion widely used in the theory of non-
positively curved spaces. Namely for each zero sequence (o) = (εi) which we
call an (infinitesimal) scale one can consider the blow up X

(o)
x of the pointed

space (X, x) at the scale (o), given as the ultralimit X
(o)
x = limω( 1

εi
X, x). Now

we say that a tangent cone TxX of X at the point x is a metric cone (T, 0)
together with a fixed choice of pointed isometries i(o) : T → X

(o)
x for each

scale (o), such that certain natural commutation relations (Definition 6.1) are
satisfied.
If the tangent space exists in the sense of Gromov, our definition just makes

the additional requirement of fixing a special choice of a metric space in the
isometry class of the tangent space in the sense of Gromov (Remark 6.2).
With this definition of the tangent space, the differential of a Lipschitz map is
the blow up at the given point, if this blow up is unique.
If the tangent spaces in X and in Y exist, then they exist in a natural way

in the product X × Y and in the Euclidean cone CX . Moreover there is a
natural choice (up to the tangent cones in X) of the tangent cones to subsets
of X .
In general no tangent space in our sense may exist or there may be no

natural choice (we assumed in the definition, that the isometries i(εi) are given
somehow). However, tangent spaces exist in lots of important singular metric
spaces. This existence is given by a (not necessarily continuous) map e from
a small portion of a metric cone T to a small neighborhood of the given point
x, that is an infinitesimal isometry at x (thus being a very singular equivalent
of the exponential map, see Subsection 3.5 and Subsection 6.1 for the precise
definition). All examples of tangent cones known to the author arise in this
way. One problem closely related to the question whether the tangent cone
is defined in a natural way is that the identification of the tangent space at
x with the ultraproduct Tω (this ultraproduct is equal to T if T is proper)
via this map e depends not only on e and the metric of T but also on the
particular metric cone structure on T , i.e. a particular choice of the dilations
(see Section 4). This is the reason for the pathological example of [CH70],
see Example 7.6.
Even though we use a choice of an ultrafilter ω in our definitions, the

notions of differentiability and differential do not depend on ω if the tangent
cones are given by a map e as above (see Subsection 7.2). For example for
Lipschitz mappings between Banach spaces we get the usual definition of
directional differentiability.

1.4. Geometric conditions. In order to obtain the tangent cones (the isome-
tries i(εi)) in a natural way, we observe that each metric space defines in a
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natural way a cone Cx at each point x, being the set of germs of unparam-
eterized geodesics starting at x. Moreover this cone Cx comes along with a
natural family of 1-Lipschitz exponential mappings exp(εi)

x : Cx → X
(εi)
x to the

different blow ups of X at x. We now define a generalized angle condition (A),
that is satisfied by spaces with one-sided curvature bound, by strongly convex
Banach spaces and many others (see below). It generalizes the usual condition
of the equality of the upper and the lower angles (Example 5.3). We say that
X has the property (A) at x if limt→0

d(γ1(t),γ2(st))
t exists for all s ∈ R

+ and
all geodesics γ1, γ2 starting at x.
However even in proper geodesic spaces geodesics may see only a small

part of the blow ups, as the example of Carnot–Caratheodory spaces shows.
To guarantee the surjectivity of the exponential maps, we impose a unifor-
mity condition (U). We say that a locally geodesic space X with the property
(A) at x has the property (U) at x, if the geodesic cone Cx is proper and
d(γ1(t), γ2(t)) � O(t, d(γ+

1 , γ+
2 ))t holds, where d(γ+

1 , γ+
2 ) is the distance be-

tween the starting directions γ+
i of γi in Cx and O is some function going

to 0 if both arguments go to 0. Given this condition one can define a natural
(however not continuous) exponential map e : Cx → X identifying Cx with the
tangent cone TxX . Hence in spaces with the property (U) the tangent space
exist in a natural way. We call a locally geodesic space X infinitesimally cone-
like, if it has the property (U) at each point and each tangent cone TxX = Cx

is a Euclidean cone (Definition 6.3). In [Lytc] we prove that gradient flows
of semi-concave functions exist in such spaces, generalizing the corresponding
result of [PP94b].
Finally to be able to deal with distance functions, we need a further con-

dition. We say that geodesics vary smoothly at x, if small long and thin
quadrangles with a vertex at x essentially look like quadrangles in Cx (see
Definition 9.2). This expresses the fact that geodesics converging pointwise to
a given geodesic converge also in some better sense. For example it is true in
a continuous Riemannian metric, if all geodesics are uniformly C1,α for some
α > 0, for this reason the name.

Remark 1.2. This (local) condition is almost equivalent to the global statement
that the first variation formula is valid in X , see Section 9 for details.

We call a proper geodesic space geometric if it has the property (U) at
each point, each tangent cone TxX = Cx is a uniformly convex and smooth
cone (for example a Euclidean cone or a Banach space with a strongly convex
and smooth norm, see Definition 4.3 and Definition 4.4) and if geodesics vary
smoothly at each point (Definition 10.1).
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1.5. Results. As was already mentioned in the beginning the class of geomet-
ric spaces is very big. Alexandrov spaces (see Definition 2.2), surfaces with an
integral curvature bound, manifolds with only Hölder continuous Riemannian
metrics, sets of positive reach and some more general subsets of Riemannian
manifolds are geometric and infinitesimally cone-like. A finite dimensional Ba-
nach space is geometric iff its norm is strongly convex and smooth. Finsler
manifolds with Hölder continuous and pointwise smooth and sufficiently con-
vex norms are geometric. Products and convex sets of and Euclidean cones
over (infinitesimally cone-like) geometric spaces are (infinitesimally cone-like)
geometric. Each open subset of an infinitesimally cone-like space is infinitesi-
mally cone-like.
We can now state our results. A map f : X → Z of a space X with property

(U) at x to another metric space Z is differentiable at x iff it is directionally
differentiable at x, i.e. if f ◦γ : [0, ε) → Z is differentiable at 0 for all geodesics
γ starting at x. This implies:

Proposition 1.1. Let f : X → Z be an isometric embedding. If X and Z are
infinitesimally cone-like (or more general just have the property (U)) then f
is differentiable at all points.

In geometric spaces the first variation formula holds, i.e. the distance func-
tions dS to subsets S and the metric d : X × X → R itself are differentiable
and the differential of dS at x depends only on the set of directions in Cx of
minimal geodesics, between x and S, see Proposition 9.3 for the precise for-
mulation, where the usual angles are replaced by the corresponding Busemann
functions. If the tangent spaces are Euclidean cones one gets the usual first
variation formula:

Theorem 1.2. Let X be an infinitesimally cone-like space, x �= z ∈ X . Let γ
be a geodesic between x and z with starting resp. ending directions γ+ ∈ TxX
and γ− ∈ TzX . Then the differential of the distance d : X × X → R can be
estimated by D(x,z)d(v, w) � −〈γ+, v〉−〈γ−, w〉. If X is in addition geometric,
then D(x,z)d(v, w) exists and is equal to the above sum for some geodesic γ
between x and z.

Using the uniform convexity of the tangent spaces we see that the distance
functions to points in a geometric space play the role of the coordinate func-
tions in the Euclidean space, i.e. a Lipschitz map f : X → Z of a space X
to a geometric space Z is differentiable at x if for a dense sequence of points
zn in a punctured neighborhood of f(x) the composition functions dzn ◦ f are
differentiable at x. Now the first statement of the next proposition is an easy



6 ALEXANDER LYTCHAK

application, whereas the second one requires some work. It shows that our no-
tion of geometric spaces is stable enough to survive such a difficult operation
as taking quotients.

Theorem 1.3. Let f : X → Y be a submetry. If X and Y are geometric,
then f is differentiable at each point. Moreover the assumption that X is
geometric already implies that Y is geometric.

Moreover it is possible to describe precisely the differential structure of a
submetry, getting the usual vertical (tangent space to the fiber) and horizontal
(tangent space to the union of horizontal geodesics) subspaces of the tangent
space.
For maps into a geometric space the theorem of Rademacher is equivalent

to the theorem of Rademacher for functions:

Proposition 1.4. Let Z be a metric space with a Borel measure μ, and
tangent spaces at almost each point, such that each Lipschitz function f :
Z → R is differentiable μ-almost every where. Then for each geometric space
X each Lipschitz map f : Z → X is differentiable almost everywhere.

Corollary 1.5. If Z is a measurable subset of the Euclidean space R
n and

f : Z → X is a locally Lipschitz map to a geometric space X , then for
almost all z ∈ Z the differential Dzf exists, the image Dzf(Rn) ⊂ Tf(z)X is
a Banach space and the restriction Dzf : R

n → Dzf(Rn) is linear.

A final issue that we address in this paper is differentiability of maps into
arbitrary spaces with a one-sided curvature bound. In this situation the tangent
space in our sense may not exist, however one can use the same ideas and
work with the geodesic cone Cx instead of the tangent cone. For semi-concave
functions this is used in [Lytc], here we prove:

Theorem 1.6. Let Z be either CAT (κ) space or a space with curvature � κ.
Let S ⊂ R

n be a measurable subset, f : S → Z a locally Lipschitz map. Then
f has at almost each point a differential Dxf : TxS → Cf(x)Z.

Remark 1.3. If Z is an Alexandrov space in the sense of Definition 2.2 then
Theorem 1.6 is a special case of Proposition 1.4.

1.6. The Plan. After the preliminaries we recall some basic notions concern-
ing ultra-convergence of spaces and maps, a major tool for this paper. In
Section 4 we discuss basic issues about general metric cones. In Section 5 we
start with differential issues and discuss geodesic cones and the exponential
mappings. In Section 6 and Section 7 we give the definition of tangent cones
differentials, give the main examples and discuss the condition (U) and some
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other related topics. In Section 8 we recall Kirchheim’s notion of metric dif-
ferentiability. In Section 9 we discuss the first variation formula. In Section
10 and Section 11 geometric spaces are studied. Finally in Section 12 we prove
Theorem 1.6.

1.7. Acknowledgments. I would like to thank Werner Ballmann for encour-
agement, support, helpful discussions and comments. I am very grateful to
Sergei Buyalo for many remarks and corrections. I am thankful to Juan Souto
for useful comments and suggestions.

§2. Preliminaries and Notations

2.1. Notations. By R
+ resp. R

n we will denote the positive real numbers
resp. the Euclidean space. We shall denote by d the distance in metric spaces.
For a subset A of a metric space X we denote by dA the distance function
to the set A. For a positive number r we denote by rX the set X with the
metric scaled by r. By Br(x) we denote the closed ball of radius r around x.
A pseudo metric d on a space X is a metric for which the distance between
different points may be 0. Identifying in X points x, z with d(x, z) = 0 we get
the corresponding metric space. A map f : X → Y between metric spaces is
called L-Lipschitz if for all x, z ∈ X one has d(f(x), f(z)) � Ld(x, z).

Example 2.1. Each distance function dA is 1-Lipschitz, whereas the metric
d : X × X → R is a

√
2-Lipschitz function.

An s-dilation is a bijective map f : X → Y between metric spaces with
d(f(x), f(x̄)) = sd(x, x̄) for all x, x̄ ∈ X . An isometry is a 1-dilation.

Definition 2.1. By a scale we will denote a sequence (o) = (εi) of positive
real numbers converging to 0.

2.2. Geodesics. For a curve γ in X we will denote its length by L(γ). A
geodesic resp. ray resp. line in X is an isometric embedding of an interval
resp. half-line resp. the whole real line into X . For disjoint subsets S, T ⊂ X
we denote by ΓS,T the set of all geodesics of length d(S, T ) starting in S and
ending in T . The space X is called geodesic if for all points x �= z in X the
set Γx,z is not empty. Finally we will denote by Γx the set of all geodesics
starting at x.
A metric space X is called proper if its closed bounded subsets are compact.

In a proper geodesic space X the set ΓS,T is compact and not empty if S is
compact and T is closed.
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2.3. Busemann functions. For a ray h : [0,∞) → X in space X we denote
by bh its Busemann function bh(x) = limt→∞(d(x, h(t))− t). This limit always
exists and bh is a 1-Lipschitz function.

Example 2.2. If f : X → R is a 1-Lipschitz map with f(h(t)) = −t, then
f � bh holds. Especially for rays γj converging to a ray γ the inequality
lim inf bhj � bh holds.

Example 2.3. Let γ be a line defining two rays γ+ and γ−. Then −bγ− is a 1-
Lipschitz function satisfying −bγ− = bγ+ on γ. Therefore we get bγ− +bγ+ � 0
on X . We will call γ straight if bγ− + bγ+ = 0 in X .

Example 2.4. For i = 1, 2 let hi be a ray in the space Xi. Then h(t) =
(h1( t√

2
), h2( t√

2
)) is a ray in X1 × X2. Let f : X1 × X2 be a

√
2-Lipschitz

function satisfying f(h1(t), h2(t)) = −2t. Then for (v, w) ∈ X1 × X2 we get
the inequality f((v, w)) �

√
2bh((v, w)) = bh1(v) + bh2(w).

2.4. Alexandrov spaces. We refer to [BBI01, BGP92, BH99] for the theory
of spaces with one-sided curvature bound. A space X is called a CAT (κ) space
resp. a space with curvature � κ if it is complete and geodesic and triangles
in X are not thicker resp. not thinner than triangles in the two dimensional
simply connected manifold M2

κ of constant curvature κ.

Definition 2.2. We will call a space X an Alexandrov space, if X is a proper
space, that either has curvature � κ and finite Hausdorff dimension or that is
geodesically complete (i.e. each geodesic is part of an infinite locally geodesic)
and contains a CAT (κ) neighborhood of each of its points, for some κ ∈ R.

§3. Ultralimits

3.1. Ultraconvergence of spaces. A reader not used to ultrafilters and ultra-
limits should consult [BH99] or [KL97] for excellent accounts. Let ω denote
an arbitrary non-principal ultrafilter on the set of natural numbers. It allows
to choose for each sequence (xi) in a compact Hausdorff space X a point
limω(xi) among the limit points of the sequence. It also allows us to construct
a limit space of a sequence of spaces and limits of Lipschitz maps between
them in the following manner.
For a sequence (Xi, xi) of pointed metric spaces their ultralimit (X, x) =:

limω(Xi, xi) is defined to be the set of all sequences (zi) of points zi ∈
Xi with sup{d(zi, xi)} < ∞. On this set one considers the pseudo metric
d((zi), (yi)) := limω(d(zi, yi)). The ultralimit (X, x) is the metric space arising
from this pseudo metric.
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Example 3.1. Let (Xi, xi) be a constant sequence (X, x). We call then
limω(Xi, xi) the ultraproduct of (X, x) and denote it by Xω. This space con-
tains (X, x) in a natural way (z → (z, z, z . . . )) and does not depend on the
base point x. It coincides with (X, x) iff X is a proper space.

3.2. Relation to the usual convergence. The following lemma allows us to
replace ultralimits by limits, if the statement concerns all sequences:

Lemma 3.1. Let (xj) be a sequence in a complete metric space (X, x) with
uniformly bounded distances to x. If for each subsequence (xki) of this se-
quence the point z = (xki) in the ultraproduct Xω = limω(X, x) does not
depend on the subsequence, then z is in X and the sequence (xj) converges
to z.

Proof. Assume that xi is not a Cauchy sequence. Then replacing (xi) by a
subsequence, we may assume d(xi, xi+1) > ε for all i. Consider the subse-
quence yi of xi given by yi = xi+1. Then the points (yi) and (xi) have in Xω

distance at least ε from each other. Contradiction. •
Gromov–Hausdorff topology on the set of isometry classes of pointed proper

metric spaces is closely related to ultralimits. If a sequence (Xi, xi) of proper
metric spaces converges to a proper space (X, x) in the Gromov-Hausdorff
topology, then limω(Xi, xi) is in the isometry class of (X, x) (see [KL97,
p. 132]).

3.3. Ultralimits of maps. Each sequence of L-Lipschitz maps fj : (Xj, xj) →
(Yj, yj) induces in a natural way an ultralimit f = limω fj that is an L-
Lipschitz map between the ultralimits (X, x) resp. (Y, y) of the sequences
(Xj, xj) resp. (Yj , yj), defined by f((zj)) := (fj(zj)). These ultralimits of
maps commute with compositions.

Example 3.2. If γj are L-Lipschitz curves in Xj starting at xj, then γ =
limω γj is an L-Lipschitz curve in (X, x) = limω(Xj, xj) starting at x. If all
curves γj are geodesics, then so is γ. In particular if all the spaces Xj are
geodesic, then so is X . Actually X is geodesic if Xj are only length metric
spaces.

Example 3.3. The ultralimit of products of spaces is the product of the cor-
responding ultralimits. If (Sj, xj) are subsets of (Xj, xj) then the ultralimit
limω(Sj, xj) is embedded into limω(Xj, xj) in a natural way.

Example 3.4. Let Xj be a CAT (κj) space resp. a space with curvature
� κj, with κj → κ. Then limω(Xj, xj) is a CAT (κ) space resp. a space
with curvature � κ. For spaces with upper curvature bound this is proved in
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[KL97]. For lower curvature bound the statement is not completely trivial, but
it follows directly from [PP94b], Subsection 1.6.

Remark 3.5. The ultralimits of sequences of spaces and maps usually depend
on the choice of the ultrafilter ω. In fact if for a sequence (Xi, xi) of proper
metric spaces the isometry class of (X, x) = limω(Xi, xi) does not depend
on the ultrafilter ω and if this space X is proper, then the sequence of the
isometry classes of (Xi, xi) is a convergent sequence with respect to the
Gromov–Hausdorff topology.

3.4. Blow up. Let X be a metric space, x ∈ X . For each scale (o) = (εi)
we get a blow up X

(o)
x = limω( 1

εi
X, x) at the scale (o). It is a space with a

distinguished point 0 = (x, x, . . .). If f : (X, x) → (Y, y) is a locally Lipschitz
map, we get a blown up map: f

(o)
x : X

(o)
x → Y

(o)
y . For a subspace S of

X containing x we get a subspace S
(o)
x of X

(o)
x . In particular a geodesic γ

starting at x defines a ray γ
(o)
x starting at 0.

Remark 3.6. If X is a doubling metric space near x, i.e. if for some C > 0,
each r � 1

C and each point z ∈ B 1
C

(x) the ball Br(z) can be covered by C balls

of radius r
2 , then each blow up X

(o)
x is a proper metric space. For example this

is the case if X is a doubling measure space (see [Che99]).

Example 3.7. If X is a Banach space, resp. has lower resp. upper curvature
bound, then for each scale (o) the blow up X

(o)
x is a Banach resp. a non-

negatively curved resp. a CAT (0) space.

Example 3.8. Let (o) = (ti) and (õ) = (ri) be different scales. In general
there is no possibility to compare the blow ups X

(o)
x and X

(õ)
x . However if the

scales are comparable, i.e. if 0 < limω( ti
ri

) := s < ∞ holds, then the identity

id : ( 1
ti
X, x) → ( 1

ri
X, x), being an ti

ri
-dilation induces a natural s-dilation

id
(o)
(õ)

: (X (o)
x , 0) → (X (õ)

x , 0).

3.5. Infinitesimal isometries. The following definition is the metric analog
of the notion of a Lebesgue point.

Definition 3.1. Let (S, x) be a subset of (X, x). We will say that S is in-
finitesimally dense at x if for each scale (o) the canonical isometric embedding
i(o) : S

(o)
x → X

(o)
x is onto (i.e. an isometry).

The above definition just says, that for each ε > 0 and all sufficiently small
δ the ball Bδ(x) ⊂ S is εδ-dense in the ball Bδ(x) ⊂ X .
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Example 3.9. If S is dense in a neighborhood of x in X , then S is infinites-
imally dense at x. If X is a doubling metric measure space ([Che99]) and S
a measurable subset, then S is infinitesimally dense at each of its Lebesgue
points.

Example 3.10. Let X be complete and geodesic. If a closed subset S of X is
infinitesimally dense at each point x ∈ S, then S = X ([Lytc]).

Definition 3.2. Let e : (X, x) → (Y, y) be a not necessarily continuous map.
We will call e an infinitesimal isometric embedding (at x) if |d(e(x1), e(x2))−
d(x1, x2)| � o(d(x1, x) + d(x2, x)), for all x1, x2 ∈ X and some function
o : R

+ → R
+ with limt→0

o(t)
t = 0. We will say that e is an infinitesimal

isometry (at x) if in addition the image e(Bδ(x)) of each ball Bδ(x) around x
is infinitesimally dense at y in Y .

Example 3.11. A Lipschitz map e : (X, x) → (Y, y) is an infinitesimal isometry
iff for each scale (o) the blow up e

(o)
x : X

(o)
x → Y

(o)
y is an isometry.

A composition of infinitesimal isometries is again an infinitesimal isometry.
The importance of this notion is due to the following easy observation:

Lemma 3.2. Let e : (X, x) → (Y, y) be an infinitesimal isometry. Then for
each scale (o) the map e

(o)
x : X

(o)
x → Y

(o)
y given by e

(o)
x ((xi)) = (e(xi)) is well

defined. Moreover it is an isometry.

Example 3.12. Let (S, x) be a subset of (X, x). Define a map e : (X, x) →
(S, x) by setting e(z) = z̄, where z̄ is an arbitrary point in S with d(z, z̄) �
2d(z, S). Then e is an infinitesimal isometry iff S is infinitesimally dense at x.
In this case e

(o)
x : X

(o)
x → S

(o)
x is the canonical identification.

These (generalized) blow ups are again compatible with compositions (of
infinitesimal isometries). From Example 3.12 one deduces, that for each in-
finitesimal isometry e : (X, x) → (Y, y) there is an infinitesimal isometry
ē : (Y, y) → (X, x) such that for each scale (o) one has e(o) ◦ ē(o) = id and
ē(o) ◦ e(o) = id.

§4. Metric cones

4.1. Group of dilations. Let (X, x) be a pointed metric space. Consider the
group Dilx(X) of all dilations of X leaving the point x invariant, equipped with
the topology of pointwise convergence. The natural map P : Dilx(X) → R

+

sending an s-dilation to the number s is a continuous homomorphism. The
kernel of P is the group Ix of isometries of X fixing the point x.
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Definition 4.1. A metric cone structure on the space (X, x) is a continuous
section of the homomorphism P above, i.e. a continuous homomorphism ρ :
R

+ → Dilx(X) that sends s to some s-dilation ρs. A metric cone is a space
with a metric cone structure. We call x the origin of the metric cone X and
denote it by 0. A map f : X → Y between metric cones is called homogeneous
if it commutes with all dilations ρt.

A metric space (X, x) can admit several families of dilations making it to
a metric cone. If X is a proper metric space, then the pointwise topology on
Dilx(X) coincides with the compact-open topology and the group Dilx(X)
resp. Ix is locally compact resp. compact. If a metric cone structure on (X, x)
exists, the projection P : Dilx(X) → R

+ is surjective. On the other hand if the
map P is surjective and X is proper it is easy to see, that the group Dilx(X)
splits as a direct product Ix×R

+, such that P becomes the projection onto the
second factor (First reduce to the connected component of Dilx(X). Then use
the fact the group of outer automorphisms of Ix is totally disconnected, see
[HM98, p. 512]). In particular in this case a metric cone structure on X exists,
such that all dilations ρs are in the center of Dilx. Moreover different metric
cone structures are in one-to-one correspondance with different continuous
homomorphisms p : R

+ → Ix.

4.2. Cones. The products and ultralimits of metric cones are metric cones
with naturally defined dilations ρs. For a metric cone (X, 0) the metric d :
X × X → R is a homogeneous function. By the norm | · | we will denote the
homogeneous function d0.
A ray γ : [0,∞) → X starting at the origin of the cone X is called radial,

if it is stable under the dilations, i.e. if it is a homogeneous map. If a ray γ is
radial, then its Busemann function bγ : X → R is homogeneous.

Example 4.1. A Banach space B is a cone with dilations ρt(v) = tv. Radial
rays are precisely the linear ones γ(t) = tv. The Busemann function bγ of such
a ray γ is linear iff v is a smooth point of the unit sphere (see [JL01, p. 30]
for the definition), i.e. iff the affine line in the direction of v is straight in the
sense of Example 2.3.

Example 4.2. The Euclidean cone CY over a metric space Y ([BBI01, p. 91])
is a metric cone. Each ray starting at 0 is radial and has the form γ(t) =
tv with v ∈ Y . Its Busemann function is given for w ∈ Y by bγ(sw) =
−〈v, sw〉 := −s cos(dY (v, w)).

4.3. Special metric cones. Cones can be arbitrary wild in general. We will
use the following particularly nice classes of metric cones.
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Definition 4.2. We will call a metric cone X radial, if for each x ∈ X with
|x| = 1 the map t → ρt(x) is a ray.

A cone is radial iff it is the union of its radial rays. Consider the unit sphere
S in a radial cone X , i.e. the set of all points v ∈ X with |v| = 1. Then it is
easy to check using only the triangle inequality, that the natural homogeneous
map CS → X of the Euclidean cone over S to X that sends the point tv ∈ CS
to ρt(v) is biLipschitz.

Definition 4.3. We call a radial cone X uniformly convex if for each ε > 0
there is some δ > 0, such that for each radial ray γ(t) = ρt(v0) (|v0| = 1) and
each v ∈ X with |v| = 1 and d(v, v0) � ε one has bγ(v) � −1 + δ.

Definition 4.4. We call a metric cone X smooth if for each sequence of radial
rays γj converging to a radial ray γ the Busemann functions bγj converge
pointwise to the Busemann functions bγ.

A direct product or a subcone of radial resp. uniformly convex resp. smooth
cones is radial resp. uniformly convex resp. smooth. A completion or an ul-
traproduct of radial resp. of uniformly convex cones is radial resp. uniformly
convex. Euclidean cones are uniformly convex and smooth. Banach spaces are
radial cones and the notion of uniform convexity resp. of smoothness is the
usual uniform convexity resp. smoothness of the norm.

Example 4.3. Carnot groups are not radial, but it is possible to prove that
they are smooth cones.

§5. Geodesic cones

5.1. Germs of geodesics. Let x be a point in a space X . Consider the
set Γx of all geodesics starting at x and the direct product Γx × [0,∞).
Define a pseudo metric d̃ on Γx × [0,∞) by setting d̃((γ1, s1), (γ2, s2)) =
lim supt→0

d(γ1(s1t),γ2(s2t))
t . Denote by ˜Cx the metric space corresponding to

the pseudo metric space (Γx × [0,∞), d̃) and by Cx its metric completion. The
set Γx × {0} is identified to a point 0 in Cx. The dilations of [0,∞) define on
the spaces ( ˜Cx, 0) and (Cx, 0) structures of metric cones.
Each geodesic γ ∈ Γx defines a radial ray γ̄(t) = (γ, t) in ˜Cx ⊂ Cx. Hence

Cx is always a radial metric cone. We will denote by γ+ the ray (γ, t) in Cx

as well as the point γ+(1) = (γ, 1). By Sx we denote the unit sphere in Cx

and call it the link at x. One can think of Cx as the space of unparameterized
geodesic germs at x, however one should be cautious:

Example 5.1. Let X be a Banach space and x = 0 its origin. If the norm of
X is strongly convex, then all geodesics are straight lines and Cx is naturally
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isometric to X . But if the norm is not strongly convex, the space Cx is much
bigger than X , for instance Cx is never locally compact in this case.

5.2. Exponential mappings. For each scale (o) = (ti) there is a natural map
exp(o)

x : Γx × [0,∞) → X
(o)
x defined by exp(o)

x ((γ, t)) = (γ(tti)) ∈ X
(ti)
x . The

exponential map exp(o)
x goes down and defines a 1-Lipschitz map exp(o)

x : ˜Cx →
X

(o)
x , due to the limit superior in the definition of the distance in ˜Cx. Also by

exp(o)
x we will denote the unique 1-Lipschitz extension exp(o)

x : Cx → X
(o)
x .

Example 5.2. Let (o) = (ti), (õ) = (ri) be two scales with 0 < limω( ti
ri

) :=

s < ∞. For the canonical s-dilation id
(o)
(õ)

: (X (o)
x , 0) → (X (õ)

x , 0) we get:

id
(o)
(õ) ◦ exp(o)

x = exp(õ)
x ◦ρs, where ρs is the natural s-dilation on Cx.

For each γ ∈ Γx the radial ray γ+ ⊂ Cx is mapped by expx : Cx → X
(o)
x

isometrically onto the ray γ
(o)
x . The exponential mappings exp(o)

x : Cx → X
(o)
x

are isometric embeddings for all scales (o) = (ti) if and only if the limit
superior in the definition of the distance in Cx is always a limit. This property
being quite fundamental justify the following

Definition 5.1. We say that the space X has the property (A) at x if the limit
superior in the definition of the distance in Cx is always a limit.

Example 5.3. The upper angle coincides with the lower angle between ar-
bitrary geodesics starting at x (see [BBI01, p. 98] for the definition) iff the
condition (A) holds at x and the geodesic cone is a Euclidean cone Cx = CSx.

Remark 5.4. Even if X is a geodesic space and the property (A) holds at x,

and so the mappings exp(o)
x define isometric embeddings of Cx into geodesic

spaces X
(o)
x , the geodesic cone Cx need not be a geodesic space. For example

it is not the case in Carnot–Caratheodory spaces or in general spaces with
lower curvature bound ([Hal00]).

Remark 5.5. If X has the property (A) at x and some blow up X
(o)
x is a

proper space (compare Remark 3.6), then Cx is a proper space too.

5.3. Geodesic cones under one-sided curvature bounds. In a general space
X with one-sided curvature bound the lower and the upper angle between
arbitrary geodesics coincide (see [BBI01]). Therefore the geodesic cone Cx at
each point x ∈ X is a Euclidean cone and for each scale (o) the exponential
map exp(o)

x : Cx → X
(o)
x is an isometric embedding. If X is an Alexandrov

space, we will see below, that exp(o)
x is also onto. However in general spaces

with one-sided curvature bound it is almost never the case.
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If X has an upper curvature bound, it was proved in [Nik95] that Cx is a
geodesic space, hence it is a totally convex subset of each blow up X

(o)
x . The

example of [Hal00] shows that Cx is not necessarily a geodesic space if X
has a lower curvature bound. However, since Cx is an isometrically embedded
Euclidean cone in X

(o)
x , the rigidity theorem of Toponogov gives us that for

all radial rays η1, η2 in Cx and an arbitrary geodesic η in X
(o)
x connecting

arbitrary points on η1 and η2, the triangle η1ηη2 is Euclidean.

Remark 5.6. Let X be a space with lower curvature bound. It is not difficult
to prove, that if a unit vector v ∈ Cx has an antipode w ∈ X

(o)
x , i.e. a point w

with d(w, 0) = 1 and d(w, v) = 2, then w is contained in exp(o)
x (Cx) and the

line defined by v and w is a Euclidean factor not only of X
(o)
x but also of Cx,

i.e. v is connected with each other point v̄ ∈ Cx by a geodesic in Cx.

§6. Tangent cones

6.1. Definition and the main example. The following main definition of this
paper is motivated by Example 5.2

Definition 6.1. Let (X, x) be a metric space. We say that the tangent space
of X at x exists, if for some metric cone (T, ρs) and each scale (o) = (ti)
an isometry i(o) : (T, 0) → (X (o)

x , 0) is chosen, such that for different scales
(o) = (ti) and (õ) = (ri) with 0 < limω( ti

ri
) := s < ∞ the map i(õ)◦ρs◦(i(o))−1 :

X
(o)
x → X

(õ)
x is the natural s-dilation from Subsection 3.4.

This metric cone T together with the fixed isometries i(o) will be called the
tangent space at x and denoted by TxX .

Example 6.1. If (T, 0) is a metric cone then the tangent space at 0 is naturally
isometric to the ultraproduct Tω. The isometries i(ti) : Tω → T

(ti)
0 are given

by i(ti)((xi)) = (ρti(xi)).

If the tangent cone TxX exists, then the isometries i(o) allow us to identify
in a unique way points from the blow up X

(o)
x with points in TxX . We will

always use this particular identification below.
The following remark refers our definition to that of Gromov:

Remark 6.2. Let (X, x) be a proper space. Assume that for t → 0 the set
of all (isometry classes of) spaces ( 1

t X, x) is relatively compact in the G.-H.-
topology (compare Remark 3.6). If TxX exist in the sense of Definition 6.1
then for t → 0 the isometry classes of ( 1

t X, x) converge to the isometry class
of TxX (Subsection 3.2). On the other hand if such a convergence takes place,
we know that for each scale (o) = (ti) there is an isometry i(o) : TxX → X

(o)
x .
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The natural s-dilations between the blow ups define s-dilations on TxX . It
is possible to choose a metric cone structure on TxX (see Subsection 4.1)
and to change the isometries i(o), such that the commutation relations of
Definition 6.1 are satisfied.

The most tangent spaces arise from Example 6.1 and the following:

Example 6.3. Let e : (X, x) → (Y, y) be a (not necessarily continuous) in-
finitesimal isometry. If TxX exists, then TyY exists too and is naturally iso-

metric to TyY . Namely the isometries i(o) : TxX → X
(o)
x define isometries

ĩ(o) : TxX → Y
(o)
y by ĩ(o) = e

(o)
x ◦i(o), where the isometries = e

(o)
x : X

(o)
x → Y

(o)
y

are given by Lemma 3.2.

Combining Example 6.1, Example 6.3 and Example 3.12 we obtain:

Lemma 6.1. Let (T, 0) be a metric cone, (D, 0) a subset of T infinitesimally
dense at 0 and let e : (D, 0) → (X, x) be an infinitesimal isometry. Then TxX
exists and is naturally isometric to the ultraproduct Tω.

Remark 6.4. The identification of TxX with Tω as above depends on the
metric cone structure of T in an essential way (Example 6.1). Thus changing
the cone structure on T (and letting e and the metric on T fixed) we get a
different tangent cone structure at x.

Remark 6.5. If the cone T in Lemma 6.1 is proper then the tangent cone
TxX is isometric to T , in particulary it does not depend on the choice of the
ultrafilter ω.

Example 6.6. Let (M, | · |) be a smooth manifold with a continuous Finsler
metric. For x ∈ M let (TxM, | · |x) be the usual tangent space at x. Then each
chart e : TxM → M with e(0) = x whose differential at 0 is the identity,
satisfies the assumptions of Lemma 6.1. Therefore the tangent space in the
sense of Definition 6.1 coincides with the Banach space (TxM, | · |x). Remark
that the identification (i.e. the maps i(o)) does not depend on the choice of the
chart e. Moreover the topology, the metric cone structure and the identification
map e only depend on the manifold structure of X . Only the metric (norm)
on TxM depends on the Finsler metric | · |.
Example 6.7. Belaiche constructed in [Bel96] for each Carnot–Caratheodory
space M an almost isometry e : Gx → M from the Nilpotenization Gx of M
at x to M , identifying TxM with Gx.

6.2. Metric operation. Let X , Y be metric spaces. If TxX and TyY exist,
then T(x,y)X ×Y exists and is naturally isometric to TxX ×TyY . The tangent
space at x to the rescaled space tX is naturally isometric to tTxX = TxX . If
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X and Y are geodesic spaces and f : X → R
+ a continuous function, then the

warped product X ×f Y (compare [BBI01, p. 95]) has at (x, y) the tangent
cone TxX × TyY (Use Example 6.3 for the identity map between X ×f Y and
X ×f̃ Y for the constant function f̃ = f(x)). In particular if TxX exists then
for each t ∈ R

+ the tangent space TtxCX to the Euclidean cone exists and is
naturally isometric to TxX × R.
Let S be a subset of X , x ∈ S and let TxX exist. If we say that S has

a tangent cone at x it means, that the subset S
(o)
x ⊂ X

(o)
x = TxX does not

depend on the scale (o). If S1, S2 are subsets of X both containing x with
tangent cones TxS1, TxS2 ⊂ TxX then the union S1 ∪ S2 has the tangent cone
TxS1 ∪ TxS2 at x.

Example 6.8. If the subset (S, x) of (X, x) is infinitesimally dense at x, then
TxS exists and is equal to TxX . In particular if X is a doubling metric measure
space such that TxX exists for almost all x ∈ X , then for each measurable
subset S ⊂ X and almost each point (with respect to the induced measure)
x ∈ S the tangent space TxS ⊂ TxX exists and coincides with TxX .

Example 6.9. Let X be an Alexandrov space with curvature � k, S an
extremal subset of X ([PP94a]). Then at each point x ∈ S the tangent space
TxS ⊂ TxX exists and it is an extremal subset of TxX .

6.3. Property (U). The following condition seems to be very natural. It is a
very rough generalization of the lower curvature bound condition:

Definition 6.2. Let X be a space, x ∈ X . Assume that the union of all
geodesics starting in x contains a neighborhood of x, that the property (A)
holds at x and that the geodesic cone Cx is proper. We say that X has
the property (U) at x if for each ε > 0 there is some ρ > 0, such that
d(γ(t), η(t)) � εt for all t < ρ and all γ, η ∈ Γx with d(γ+, η+) < ρ.

Example 6.10. If X has the property (U) at x, then so does each subset S of
X that is a union of geodesics starting at x.

Example 6.11. A complete metric cone T has the property (U) at the origin
iff it is proper and one can change the metric cone structure such that T
becomes radial and the only geodesics starting at 0 are parts of radial rays.
The if direction is clear and the only if implication follows from the fact
(see below for a proof) that under the condition (U) the geodesic cone C0 is
isometric to the ultraproduct Tω . In particular each proper Euclidean cone and
each proper, uniformly convex Banach space have the property (U).

The property (U) allows us to compare distances in Cx and in X .
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Proposition 6.2. Let X be a space with the property (U) at x. Then for each
ε > 0 there is some ρ > 0, such that for all r � t � ρ and all γ, η ∈ Γx the
inequality |d(γ(r), η(t))− d((γ, r), (η, t))|� εt holds.

Proof. Assume that there are sequences γi, ηi ∈ Γx and zero sequences ri �
ti → 0 violating the above inequality. Choosing a subsequence we may assume
that γ+

i and η+
i are Cauchy sequences and ri

ti
converge to a number s with

0 � s � 1. Moreover we may assume ri = sti and that the sequence ti is
non-increasing.
For arbitrary small ρ > 0 we can choose i big enough such that for all j � i

we get d(η+
i , η+

j ) + d(γ+
i , γ+

j ) < ρ < ε
5 . Using the property (U), increasing

i if necessary and having chosen ρ small enough we get d(γi(t), γj(t)) +
d(ηi(t), ηj(t)) � εt

5 for all t � ti. Hence we get |d(γj(stj), ηj(tj)) − d(γi(stj),
ηi(tj))| + |d((γj, stj), (ηj, tj)) − d((γi, stj), (ηi, tj))| � 4ε

5 . Therefore we obtain
the inequality |d(γi(stj), ηi(tj)) − d((γi, stj), (ηi, tj))| � εtj

5 for all j � i. This
is a contradiction to the property (A). •
Corollary 6.3. Let X have the property (U) at x and let γi be a sequence in
Γx converging pointwise to a geodesic γ of positive length. Then γ+

i converge
to γ+ in Cx. For each ε > 0 there is some ρ > 0, such that for each z with
d(z, x) < ρ the inequality d(γ+, η+) < ε holds for all geodesics γ, η ∈ Γx,z.

Now we can use Proposition 6.2 and Lemma 6.1 to identify Cx with TxX .
Namely we consider the logarithmic map h : X → Cx, that sends a point
z ∈ X to some pair (γ, t) ∈ Cx with t = d(x, z) and γ ∈ Γx,z ⊂ Γx. By
assumption h is defined on the neighborhood ∪γ∈Γx of x. From Proposition 6.2
we conclude, that h is an infinitesimal isometry, hence each map e : h(X) ⊂
Cx → X satisfying e◦h = id has the properties used in Lemma 6.1 to identify
Cx with TxX . The identification between X

(o)
x and Cx given by Lemma 6.1 is

exactly the exponential map exp(o)
x .

Remark 6.12. The last construction is well known in many cases. In the case
of Riemannian manifolds the logarithmic map h above is just the inversion of
the usual exponential map. If X is an Alexandrov space with curvature � 0,
then h is uniquely defined, surjective and 1-Lipschitz. If X is an Alexandrov
space with curvature � 0, then one can define the almost inversion e : Cx → X
to be surjective and 1-Lipschitz ([PP94b]).

Definition 6.3. A space X will be called infinitesimally cone-like, if it is
locally geodesic, at each point x ∈ X the property (U) holds and each tangent
cone TxX = Cx is a Euclidean cone.
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§7. Differentials

7.1. Generalities. Let f : (X, x) → (Y, y) be a locally Lipschitz map and
assume that TxX and TyY exist. For each scale (o) the blow up f

(o)
x : X

(o)
x →

Y
(o)
y gives us a map between the tangent spaces.

Definition 7.1. Let f : X → Y be as above. We say that f is differentiable at
x if the blow up f

(o)
x : TxX → TyY does not depend on the scale (o). In this

case we denote this uniquely defined map by Dxf .

Example 7.1. If f : (X, 0) → (Y, 0) is a homogeneous map between cones,
then f is differentiable at 0 and the differential D0f is the ultraproduct fω =
limω f : Xω → Y ω of f .

Example 7.2. Let f : X → Y be an isometry. If TxX does not admit a non-
trivial isometry fixing the origin 0, then f is differentiable at x, since for each
scale (o) the map f

(o)
x : TxX → TyY is an origin preserving isometry.

Example 7.3. Let S be a subset of X , x ∈ S. If TxX and TxS ⊂ TxX exist as
in Subsection 6.2 then the inclusion I : S → X is differentiable at x and the
differential is the natural embedding Ix : TxS → TxX .

Example 7.4. Let f : X → Y be a biLipschitz embedding. If f is differentiable
at x, then f(X) has a tangent cone at f(x) given by Tf(x)f(X) = Dxf(TxX) ⊂
Tf(x)Y . On the other hand if f : X → Y is a differentiable C-open map (see
[Lytc]) and S a subset of Y that has a tangent cone at f(x), then f−1(S) has
a tangent cone at x given by Txf

−1(S) = (Dxf)−1(Tf(x)S) ⊂ TxX .

Example 7.5. If TxX and TyY exist, then the projection p : X × Y → X is
differentiable and the differential is just the projection. If TxX exist, then the
metric d : X×X → R is differentiable at each point (x, x) on the diagonal and
the differential is just the metric on TxX . The distance function dx : X → R is
differentiable at x with differential Dxdx(v) = |v|. The differentiability of the
metric at points outside the diagonal will be discussed in Section 9.

Example 7.6. Let (T, 0) be a proper metric cone with dilations lying in the
center of Dil0. Let ( ˜T , 0) be the same space with a different metric cone
structure given by a continuous homomorphism p : R

+ → I0 (Subsection 4.1).
Let f : (T, 0) → (˜T, 0) be the identity. Then f

(ti)
0 is exactly the isometry

limω(p(ti)). Hence f is differentiable at 0 iff limt→0 p(t) exists. However this
can only happen if p is the trivial map. This suggests, that there is at most
one natural tangent cone structure. Considering T = R

2 we get essentially the
counterexample of [CH70].
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Since ultralimits commute with compositions we immediately see:

Lemma 7.1. Let f : X → Y and g : Y → Z be Lipschitz maps, f(x) =
y, g(y) = z. If f is differentiable at x and g differentiable at y then g ◦ f is
differentiable at x with differential Dx(g ◦ f) = Dyg ◦ Dxf .

Example 7.7. If f : X → Y is differentiable at x and S a subset of X such that
TxS ⊂ TxX exists, then f : S → Y is differentiable in x and the differential
Dxf : TxS → Tf(x)Y is the restriction of Dxf : TxX → Tf(x)Y . If on the other
hand TxS = TxX and the restriction f : S → X is differentiable at x, then
f : X → Y is also differentiable at x.

7.2. Comparing with the usual differentiability. If the tangent spaces are
given by Lemma 6.1, we get the usual definition of differentiability. Let namely
f : (X, x) → (Y, y) be a Lipschitz map, (T1, 0) resp. (T2, 0) metric cones and
e1 : T1 → X resp. e2 : T2 → Y be maps as in Subsection 6.1 (If ei are defined
only on infinitesimally dense subsets (Di, 0) ⊂ (Ti, 0) we may extend them by
Example 3.12). If A : T1 → T2 is a homogeneous Lipschitz map, such that for
v ∈ T1 one has lim|v|→0

d(f(e1(v)),e2(A(v)))
|v| = 0 then the differential of f at x

exists and is equal to the ultraproduct Aω : Tω
1 → Tω

2 . On the other hand we
can use Lemma 3.1 and see, that if the differential Dxf exists, then the image
of Dxf(T1) ⊂ Tω

2 must be contained in T2 ⊂ Tω
2 , therefore the existence of a

map A as above is also necessary in this case.
In particular the differentiability does not depend on the ultrafilter ω! More-

over if T1 and T2 are proper, then the differential does not depend on the
ultrafilter too.

7.3. Separating maps. Let (Y, y) be a metric space, {fj : Y → Yj} a set
of Lipschitz maps differentiable at y and separating the points in TyY , i.e.
for v1 �= v2 ∈ TyY there is some j, such that Dyfj(v1) �= Dyfj(v2). Since
ultralimits of maps commute with compositions we obtain, that a map g :
(X, x) → (Y, y) is differentiable at x iff for each j the map fj◦g is differentiable
at x. For example a biLipischitz map f0 : Y → Y0 differentiable at y satisfies
the above conditions. In particular its inverse must be differentiable at f0(y).

7.4. Differentiating curves. Let γ : [0, a] → X be a Lipschitz curve, with
γ(0) = x. If γ is differentiable at 0, then the differential is a homogeneous
map h of the half-line [0,∞) to TxX . Since this map is uniquely determined
by h(1), we will call the point h(1) the right hand side differential of γ at 0
and denote it by γ+. In the same way one defines γ− if γ is differentiable at
a. The differential exists at an inner point t ∈ (0, a), iff γ+ and γ− exist in t.
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7.5. Differentiating geodesics. The most natural and basic maps into a met-
ric space are geodesics. One can only hope to get a rich theory of differ-
entiation if many geodesics are differentiable. A geodesic γ : [0, a] → X

starting at x is differentiable at 0 iff the ray γ
(o)
x ⊂ X

(o)
x = TxX does not

depend on the scale (o). In this case we get a unique radial ray γx ⊂ TxX .
We see that all geodesics are differentiable at x iff the exponential mappings
exp(o)

x : Cx → X
(o)
x = TxX do not depend on the scale (o), that means iff Cx is

naturally embedded in TxX via the exponential mappings. In this case X has
the property (A) at x. For example this is always true if X has the property
(U) at x. In general however it does not need to be true even in quite tame
spaces, see [CH70] or Example 7.6.

7.6. Directional derivatives. Let f : (X, x) → (Z, z) be a locally Lipschitz
map and assume that TzZ exists. We say that f has directional derivatives
at x if the restriction f ◦ γ to each geodesic γ ∈ Γx is differentiable at 0. In
this case we obtain a well defined homogeneous map Dxf : Cx → TzZ of
the geodesic cone Cx into the tangent cone TzZ. For each scale (o) we have
f

(o)
x ◦ exp(o)

x = Dxf , in particular Dxf inherits the Lipschitz constant of f .

Example 7.8. Each locally Lipschitz semi-concave function f : X → R has
directional derivatives at all points (see [Lytc] for more on this).

If X has a tangent cone at x and the geodesics are differentiable at x, then
each Lipschitz map f : (X, x) → (Z, z) differentiable at x is also directionally
differentiable and Dxf : Cx → TzZ is just the restriction of Dxf : TxX → TzZ
to Cx. On the other hand if all geodesics are differentiable at x and the
map f : X → Z is directionally differentiable at x then the restriction of
f

(o)
x : TxX → TzZ to the subset Cx ⊂ TxX is independent of the scale (o).
This implies Proposition 1.1.
We can actually deduce a bit more smoothness of isometries:

Corollary 7.2. Let X have the property (U) at x. Let fi : (X, x) → (X, x)
be isometries fixing x and converging pointwise to an isometry f . Then the
isometries Dxfi of TxX converge to the isometry Dxf .

Proof. Composing the isometries fi with f−1 we may assume f = Id. Then
for each geodesic γ the geodesics γi = fi(γ) converge to γ. By Corollary 6.3
for the starting direction γ+ of γ the directions Dxfi(γ+) converge to γ+. •
7.7. Strong differentiability. Let f : (X, x) → (Z, z) be a locally Lipschitz
map and assume that TxX exists and Z has the property (A) at z. We will
say that a strong differential Dxf : TxX → Cz exists, if for each scale (o)
one has f

(o)
x = exp(o)

z ◦Dxf . If TzZ exists and geodesics are differentiable at
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z, then a map f is strongly differentiable at x iff it is differentiable and the
differential Dxf : TxX → TzZ satisfies Dxf(TxX) ⊂ Cz . Remark that the
strong differential (if it exists) is a homogeneous Lipschitz map.

§8. Metric Differentials

Example 7.5 gives rise to the following definition ([Kir94]):

Definition 8.1. Let f : X → Y be a Lipschitz map and let TxX exist. We say
that f has a metric differential at x if the composition d◦ (f ×f) : X×X → R

is differentiable at (x, x). In this case the differential is a homogeneous pseudo
metric on TxX and we denote it by mDxf . We will say that f has a weak
metric differential at x if the map df(x) ◦ f : X → R is differentiable at x.
Again by mDxf we denote the differential of this map.

If f is differentiable at x then it also has a metric differential given by
mDxf(v, w) = d(Dxf(v), Dxf(w)). If f is metrically differentiable at x then it
is also weakly metrically differentiable with weak metric differentialmDx(v) =
mDx(0, v). Let on the other hand f : X → Y be a biLipschitz map, f(x) = y.
If f is metrically differentiable at x then one can uniquely define a tangent
space TyY , such that f becomes differentiable at x. An isometric embedding
I : X → Z is metrically differentiable at each point x where TxX exists and
the metric differential is just the metric mDxI = d : TxX × TxX → R.

Example 8.1. The space X has the property (A) at the point x, iff for each
pair of geodesics γ1, γ2 ∈ Γx the map γ : (−ε, ε) → X given by γ(t) = γ1(t)
for t � 0 and γ(t) = γ2(t) for t � 0 is metrically differentiable at 0.

Using this example we immediately obtain:

Lemma 8.1. Let f : (X, x) → (Z, z) be a Lipschitz map that is an infini-
tesimal isometric embbeding at x and assume that TzZ exists. If the image
f ◦ γ of each geodesic γ ∈ Γx is differentiable at 0, then X has the property
(A) at x, the map f is directionally differentiable at x and the differential
Dxf : Cx → TzZ is an isometric embedding.

Example 8.2. Let M be a Finsler manifold. If each geodesic γ ∈ Γx is
differentiable at 0, then M has the property (A) at x.

The following deep theorem was proved in [Kir94]:

Theorem 8.2. Let K be a measurable subset of R
n, f : K → Y a Lipschitz

map. Then f has a metric differential at almost each point, this metric
differential is almost everywhere a semi-norm, and the map x → mDx = | · |x
is measurable.
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Example 8.3. Let γ : [p, q) → Y be a Lipschitz map. If the weak metric
differential of γ at p exists, we will denote by mD+

p the number mDpγ(1), i.e.

mD+
p = limt→0

d(γ(p+t),γ(p))
t . The fact that the metric differential exists and is

a semi-norm amounts to the much stronger statement

lim
t→0

d(γ(p + s1t), γ(p + s2t))
t

= |s2 − s1|mD+
p

for all s1, s2 > 0.

§9. Differentiation of distance functions

9.1. Generalities. We start with the following paradigmatic example:

Example 9.1. Let T be a proper metric cone, h a radial ray, x = h(1). Then
the distance function dx is differentiable at the origin 0 and the differen-
tial is given by D0dx(v) = bh(v), since D0dx(v) = limt→0

d(x,ρt(v))−d(x,0)
t =

limt→∞(d(ρt(x), v)− t) = bh(v).

To state our results we need the following extension of Definition 6.1. Let
f : X → Y be a Lipschitz map and let TxX and TyY exist. We say that Dxf

has some property (even if it does not exist) if each blow up f
(o)
x : TxX → TyY

has this property.
Let now X be a space, x �= z points in X such that TxX and TzX exist.

Assume that each geodesic γ ∈ Γx,z is differentiable at x and at z thus defining
radial rays γ+ ⊂ TxX and γ− ⊂ TzX . Then we show:

Lemma 9.1. In the above notations the differential D(x,z)d : TxX × TzX →
R of the metric d : X × X → R

+ can be estimated by D(x,z)d(v, w) �
infγ∈Γx,z (bγ+(v) + bγ−(w)).

Proof. Choose some geodesic γ : [a1, a2] → X connecting x and z. Then

d(γ(a1+s), γ(a2−s)) = d(x, z)−2s. Hence each blow up d
(o)
(x,z) : TxX×TzX →

R satisfies d
(o)
(x,z)(γ

+(s), γ−(s)) = −2s. We are done by Example 2.4. •
In the same way using Example 2.2 instead of Example 2.4 we see:

Lemma 9.2. Let X be a space, S a closed subset of X , x ∈ X \ S. Assume
that TxX exists and each geodesic γ ∈ Γx,S connecting x and S is differen-
tiable at 0. Then the differential of the distance function dS is bounded from
above by DxdS(v) � infγ∈Γx,S

bγ+(v).

Remark 9.2. Even if TxX and TzX do not exist, one can work with the
directional differentials D(x,z) : Cx × Cz → R and get (for the same reason)
the same estimations as in Lemma 9.1.
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9.2. First variation formula. As in the Riemannian geometry one would like
to have equalities in the last two lemmas.

Definition 9.1. We say that the first variation formula holds for S ⊂ X and
x ∈ X \ S if in the statement of Lemma 9.2 equality holds.

Example 9.3. Let γ ∈ Γz,S be a geodesic, x = γ(t) an inner point of γ. If
γ is differentiable at x, it defines a homogeneous line γ̃ in TxX . Moreover
Dt(dS ◦ γ) = −id. If γ̃ is straight in the sense of Example 2.3, then the first
variation formula holds for S and x.

The validity of the first variation formula is closely related to the question
whether geodesics vary smoothly in X .

Definition 9.2. Let X be a space with the property (U) at x. We say that
geodesics vary smoothly at x if for all geodesics γ and η in Γx and each
sequence of geodesics γn with γn(0) = η(tn) converging to γ, the following
condition holds. For each ε > 0 there is some n > 0 and ρn > 0, such that
ρn − d(x, γn(ρn)) � (bγ+(v) − ε)tn, where v = η+(1) is the starting direction
of η.
If this condition holds for all x and all γ ∈ Γx, we will say that geodesics

vary smoothly in X .

Remark 9.4. First of all we see, that since we require the above condition to
hold for all convergent sequences of geodesics, the number ρn as above exists
for all sufficiently large n. Moreover the numbers ρn can be chosen, such that
ρn → 0. Finally if the inequality in Definition 9.2 holds for some ρn, it also
holds for all ρ � ρn. Hence we may also choose all ρn to be equal to a small
constant ρ depending on γ and ε.

The connection between Definition 9.2 and the first variation formula is
provided by the next three results.

Proposition 9.3. Let X be a proper geodesic space, x, z ∈ X points at which
X has the property (U). Assume that geodesics vary smoothly at x and at z.
Then in Lemma 9.1 equality holds.

Proof. Since X × X has the property (U) at (x, z) it is enough to prove,
that the equality holds for the starting direction of each geodesic η̃ in X × X
starting at (x, z). Hence it is enough to prove, that for arbitrary geodesics
η1 ∈ Γx and η2 ∈ Γz with starting directions v ∈ TxX resp. w ∈ TzX one has
lim inft→0

d(η1(t),η2(st))
t � infγ∈Γx,z (bγ+(v)+bγ−(sw)), for all s � 0. Assume the

contrary and choose a zero sequence (tn) violating the above inequality. Choose
a geodesic γn from η1(tn) to η2(stn). Going to a subsequence we may assume,
that γn converge to a geodesic γ ∈ Γx,z. For given ε > 0 and all n big enough
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we can find numbers ρ+ and ρ−, such that d(x, γn(ρ+)) � ρ+ − (bγ+(v)− ε)tn
and d(x, γn(L(γn)−ρ−)) � ρ−− (bγ−(sw)− ε)tn. But since γ is a geodesic we
get L(γ) � d(x, γn(ρ+)) + (L(γn) − ρ+ − ρ−) + d(z, γn(L(γn) − ρ−)). Hence
L(γ)− L(γn) � (2ε + bγ+(v) + bγ−(sw))tn. This proves the result. •
In the same way we see:

Proposition 9.4. Let X be a proper geodesic space with property (U) at
x, S ⊂ X a closed subset not containing x. Assume that geodesics vary
smoothly at x. Then the first variation formula holds for S and x.

Example 9.5. Under the assumptions of Proposition 9.3 assume in addition,
that the tangent cones TxX and TzX are smooth (Definition 4.4). For v ∈
TxX, w ∈ TzX choose a sequence γi ∈ Γx,z such that D(x,z)d(v, w) = bγ+

i
(v)+

bγ−
i
(w). Let γ ∈ Γx,z be a pointwise limit of γi. Then γ+

i resp. γ−
i converge to

γ+ resp. γ− by Corollary 6.3 and from the smoothness of the tangent cones we
obtain D(x,z)d(v, w) = bγ+(v)+bγ−(w). This finishes the proof of Theorem 1.2.

Lemma 9.5. Let X be a proper geodesic space with the property (U) at x.
Assume that the first variation formula is valid at x for each closed subset
S not containing x. If the tangent cone TxX is smooth then geodesics vary
smoothly at x.

Proof. Let γ, η, γn → γ be as in Definition 9.2 and set v = η+. For sufficiently
small δ and each geodesic γ̃ ∈ Γx,γ(δ) we obtain from Corollary 6.3 that
d(γ+, γ̃+) � ε1 with ε1 → 0 if δ → 0. By the smoothness of the tangent cone
we get |bγ+(v)− bγ̃+(v)| � ε with ε → 0 if δ → 0.
Let now ε be given. Choose δ small enough and consider δn such that

d(γn(δn), x) = δ + t2n. Let S be the closed subset of X that consists of the
sequence γn(δn) and the point z = γ(δ). The first variation formula gives us
DxdS(v) = Dxdz(v) = inf γ̃∈Γx,z bγ̃+(v). This and the above estimate of bγ̃+(v)
directly imply the inequality of Definition 9.2. •
At the beginning of this section we have seen that in Banach spaces the first

variation formula always holds for distance functions to points. The situation
for the distance functions to subsets is more complicated, namely:

Lemma 9.6. Let B be a finite dimensional uniformly convex Banach space.
Then the first variation formula holds in B for all distance functions iff the
norm of B is smooth.

Proof. Assume that the norm is smooth. Let γn be a sequence of geodesics
converging to a geodesic γ. We may assume that γ(s) = sh, γn(s) = tnv+shn

with tn → 0 and some unit vectors v, hn and h, where hn converge to h. Fix
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some positive ε. By the smoothness of the norm, for large positive C we get
|Ch+v|+ |Ch−v|−2C < ε. But d(0, γn(Ctn)) = |tnv+Ctnhn| = tn|v+Chn|.
Choosing n such that Chn is very close to Ch, we get Ctn − d(0, γn(Ctn)) �
tn(C − |v + Chn|) � tn(|Ch− v| −C − ε

2) � tn(bh(v)− ε). Therefore geodesics
vary smoothly in X and we are done by Proposition 9.4.
If the norm is not smooth, one can consider a non-smooth point x of the

unit sphere in B. Let H be a supporting hyperplane at x. It is easy to see that
for the distance function dH the first variation formula does not hold at the
origin. We leave the details to the reader. •

§10. The class of geometric spaces

We recall from the introduction:

Definition 10.1. A proper geodesic space X is called geometric if it has
property (U) at each point, each tangent space TxX = Cx is uniformly convex
and smooth and if geodesics vary smoothly in X .

We are going to show now that many important spaces are geometric.

10.1. Alexandrov spaces. Let X be an Alexandrov space. The upper angle
coincides with the lower angle for each pair of geodesics starting at the same
point. Hence X has the property (A) at each point and each geodesic cone is
a Euclidean cone. If X has a lower curvature bound, then the geodesic cone
Cx is proper by [BGP92] and the property (U) holds by the very definition of
lower curvature bound. For Alexandrov spaces with an upper curvature bound
the property (U) easily follows from the geodesically completeness (see [OT]).
Hence Alexandrov spaces are infinitesimally cone-like.
In order to prove that they are geometric, consider geodesics γ and η

starting at x at the angle α and a sequence of geodesics γi converging to
γ with γi(0) = η(ti). If X has a lower curvature bound, then by the semi-
continuity of angles the angle between γi and η+ is � α − ε for arbitrary
small ε and sufficiently big i. Hence the angle between γi and η− is at most
π−α+ε. Now using the comparison triangle for xη(ti)γi(ρ) we get the needed
upper bound for d(x, γi(ρ)). If X has an upper curvature bound, then the angle
between η and the geodesic connecting x with γi(ρ) is at least α − ε. Again
the comparison triangle to xη(ti)γi(ρ) gives us the needed upper bound for
d(x, γi(ρ)).

10.2. Extremal subsets. Petrunin has proved in [Pet94] that an extremal
subset of an Alexandrov space with a lower curvature bound is infinitesimally
cone-like and geometric with respect to the inner metric.
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10.3. Surfaces with an integral curvature bound. We will assume that the
reader is familiar with the notion of a two-dimensional surface with an integral
curvature bound, see [Res93] for the definition and an excellent survey. Let M
be a surface with an integral curvature bound. By Theorem 8.2.3 of [Res93]
the upper and lower angle between each pair of geodesics coincide, hence M
has at each point the property (A) and the geodesic cone is a Euclidean cone.
We will denote by Ω+ resp. Ω− the Borel measures that describe the positive
resp. the negative part of the curvature. We will use Theorem 8.2.2 of [Res93]
saying the following: let T be a triangle in M such that the concatenation of
its sides is a simple closed curve and its inner part T 0 is homeomorphic to a
ball. Let α be the angle between two sides of T and let α̃ be the corresponding
angle in the comparison triangle in the Euclidean plane. Then α−α̃ � Ω+(T 0).
Now let x ∈ M be an arbitrary point. Since the intersection of the punctured
balls B0

r (x) := Br(x) \ {x} is empty, for each ε � 0 we can find a r > 0, such
that Ω+(B0

r (x)) + Ω−(B0
r (x)) � ε. Hence for each triangle T as above with a

vertex in x and sidelengthes � r, we obtain, that each angle of T differs from
the corresponding angle of the comparison triangle by at most 3ε.
Consider now two geodesics γ1, γ2 of length t � r starting at x at an angle

� ε. In order to verify the property (U) we have to estimate d(γ1(t),γ2(t))
t from

above. If γ1 and γ2 intersect at γ1(t0) = γ2(t0), then the angle between γ+
1

and γ+
2 at γ1(t0) is at most ε. Hence we may assume that γ1 and γ2 do

not intersect. Now it is easy to see, that for each geodesic η between γ1(t)
and γ2(t) does not intersect γ1[0, t) ∪ γ2[0, t). Hence we may apply the above
remark to the triangle γ1ηγ2 and get the needed estimate for the length of η.
Thus M is infinitesimally cone-like.
In order to prove that geodesics vary smoothly at x consider two geodesics

γ, η ∈ Γx enclosing a positive angle α at x. Let γn be a sequence of geodesics
converging to γ with γn(0) = η(tn). Consider a geodesic νn between x and
γn(r). Applying the above consideration we see that the angle between νn and
γ is at most 2ε for big n. Hence the angle between η and νn is at least α−2ε.
Using the triangle ηνnγn we get the needed upper bound for the length of νn.

10.4. Metric operations. If X and Y are geometric, then so is the product
X × Y . If X is geometric and C a closed convex subset of X then C is
geometric. Moreover the Euclidean cone CX is geometric. The proofs are
straightforward and left to the reader.

10.5. A class of interesting subsets of manifolds. Let M be a smooth
manifold with a continuous Finsler metric. Let K ⊂ M be a closed subset
such that the inner metric on K is biLipschitz equivalent to the induced one,
i.e. each two points x, z ∈ K are connected in K by a curve of length at most
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Ld(x, z). Assume further that all geodesics in K with respect to the inner
metric have uniformly bounded C1,α norms for a fixed 0 < α � 1.

Remark 10.1. In [Lyta] it is shown, that the above conditions are satisfied
by sets of positive reach (α = 1) and similar big classes of subsets in smooth
Riemannian manifolds. Moreover they are satisfied if K = M and the Finsler
metric on M is Hölder continuous and sufficiently convex ([LY]).

We are going to prove now that K with its inner metric has the property (U)
at each point and that it has continuously varying geodesics if all norms |·|x are
strongly convex and smooth. We will denote by dK resp. by d the inner resp.
the induced metric on K. The question is local, so we may assume that M is
a chart U ⊂ R

n and the Finsler structure is uniformly continuous. We denote
by || · || the Euclidean norm on R

n and by | · |x the norm defined by the Finsler
structure at x. For each K-geodesic γ in U we have ||γ ′(t) − γ ′(0)|| � Ltα

for some fixed constant L. Moreover ||γ(0) − γ(t)|γ(0) − t| � o(t) where the
function o(t) depends only on U and satisfy limt→0

o(t)
t → 0. This implies the

inequality dK(x, z) � d(x, z) + o(d(x, z)) (compare [LY]). By Lemma 8.1 the
space K has the property (A) at each point.
If γ1, γ2 are two geodesics starting at x, then |dK(γ1(t), γ2(t)) − |γ1(t) −

γ2(t)|x| � o(t). Since |γi(t) − tγ+
i (0)|x � o(t) we conclude that K has the

property (U) at x.
Let finally γ and η be geodesics starting at x and let γn be a sequence of

geodesics converging to γ with γn(0) = xn = η(tn). Let v be the starting
direction of η and let h resp. hn be the starting directions of γ resp. of γn.
From the uniform C1,α bound of γn we see, that hn converge to h. Fix some
ε > 0 and choose a sufficiently big C = C(ε) > 0. Consider the triangle
xγn(0)γn(Ctn).
We have d(x, γn(Ctn)) � |γn(Ctn)−x|x +o(tn). On the other hand we have

|γn(Ctn)−x|x � tn|v+Chn|x +o(tn). Hence geodesics in X vary continuously
at x if this is true in the Banach space TxM , i.e. if the norm of TxM is smooth
and uniformly convex (Lemma 9.6).
Finally remark, that if each norm | · |x is a Euclidean norm, then K is

infinitesimally cone-like.

§11. Differentiating in geometric spaces

11.1. Basics. Let X be a geometric space, F a closed subset of X and x ∈
X \ F . The uniform convexity of TxX and the first variation formula show,
that DxdF (v) � −1 + δ for a vector v ∈ Sx ⊂ Cx implies d(v, γ+) � ε for
some γ ∈ Γx,F and ε = ε(δ) = ε(x, δ) with limδ→0 ε(δ) = 0. In particular
DxdF (v) = −1 iff v is the starting direction γ+ of some γ ∈ Γx,F .
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Choose now a dense countable subset S of a punctured neighborhood of x.
For each z ∈ S the function dz is differentiable at x with differential given by
the first variation formula. For each unit vector v ∈ TxX and each ε > 0 we
can find a point z ∈ S such that Dxdz = infγ∈Γx,z bγ+ where γ+ runs over
some radial rays h with d(v, h(1)) < ε, i.e. z lies almost in the direction v
from x. The uniform convexity of TxX shows:

Lemma 11.1. The differentials {Dxdz|z ∈ S} of distance functions dz sepa-
rate the points in TxX , i.e. functions dz satisfy the conditions of Subsection
7.3.

Now Subsection 7.3 gives us:

Corollary 11.2. Let f : Z → X be a Lipschitz map. Assume that TzZ exists
and that X is geometric. The map f is differentiable at z iff the compositions
dxn ◦ f : Z → R are differentiable at z, for all points xn in dense countable
subset D of X .

This implies Proposition 1.4 and from Theorem 8.2 we deduce Corollary 1.5.

11.2. Differentiating submetries. We recall some facts about submetries, a
notion invented in [Ber87], see also [BG00].

Definition 11.1. A map f : X → Y is a submetry if f(Br(x)) = Br(f(x))
holds for all x ∈ X and r ∈ R

+.

If f : X → Y is a submetry, and X is proper resp. geodesic then so is
Y . For each closed subset A ⊂ Y we have dA ◦ f = df−1(A). Two points x, x̄
in X are called near with respect to f , if d(x, x̄) = d(f(x), f(x̄)) holds. By
Nx we denote the set of all points near to x. The restriction f : Nx → Y is
a surjective map. Each geodesic γ between near points (called a horizontal
geodesic) is mapped isometrically onto its image, that is itself a geodesic. If
X is geodesic, then the set Nx is the union of horizontal geodesics starting at
x and each geodesic in Γf(x) has a horizontal lift in Γx.

Proposition 11.3. Let f : X → Y be a submetry between geometric spaces.
Then f is differentiable at each point and the differential Dxf : TxX →
Tf(x)Y is a homogeneous submetry.

Proof. Consider a point x ∈ X and y = f(x). For each ȳ �= y the function
dȳ ◦ f is the distance function dFȳ to the fiber Fȳ = f−1(ȳ) and therefore
differentiable at x. By Corollary 11.2 the map f is differentiable at x. Being an
ultralimit of submetries the differential Dxf is a submetry. •
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Under a convergence of submetries fibers converge to fibers, hence the tan-
gent space to each fiber exists and is given by Tx(f−1(f(x))) = (Dxf)−1(0) :=
Vx (compare Example 7.4).
The subset Nx of all points near to x is the union of all horizontal geodesics

starting at x. Therefore we know by Example 6.10 that the space Nx has the
property (U) at the point x. Hence the tangent space to Nx at x exists and
is given by the closure of the union of radial rays in the tangent cone TxX
corresponding to horizontal geodesics. In particular TxNx is contained in the
horizontal subcone Hx = {h ∈ TxX ||h| = |Dxf(h)|}.
Take now an arbitrary unit direction h ∈ Hx and consider w = Dxf(h).

Choose a sequence yj converging to y from the direction w. Then Dydyj(w)
goes to −1. Therefore DxdFj(h) goes to −1 too, where Fj is the fiber f−1(yj).
Thus the vector h is the limit of initial directions hj corresponding to some
geodesics γj ∈ Γx,Fj . But each geodesic γ in Γx,Fj is horizontal. Thus we have
proved TxNx = Hx = {h ∈ TxX ||h| = |Dxf(h)|}. Moreover the proof shows,
that for each h ∈ Hx and each geodesic γ in Y starting at y in the direction
Dxf(h) there is a horizontal lift γ̄ of γ starting at x in the direction h.

11.3. More on submetries. The aim of this subsection is to sketch the proof
of the following

Proposition 11.4. Let X be a geometric space, f : X → Y a submetry. Then
Y is geometric.

Proof. Choose x ∈ X and set y = f(x). The set Nx of points near to x still has
the property (U). Denote by Hx = Cx(Nx) = TxNx ⊂ Cx = TxX the tangent
space so Nx. Each geodesic in Nx starting at x is mapped isometrically onto
a geodesic in Y . Hence we get a natural surjective map Dxf : Hx → Cy, that
is 1-Lipschitz and maps radial rays isometrically. In particular the geodesic
cone Cy must be proper. For each radial ray h and each point v in Hx we get
the following inequality for the Busemann functions: bDxf(h)(Dxf(v)) � bh(v)
(Example 2.2).
In order to prove the property (A) at y, consider two geodesics γ1 and γ2

starting at y and let γ̄1, γ̄2 ∈ Γx be their horizontal lifts. Denote by Fr resp. Gr

the fiber f−1(γ1(r)) through γ̄1(r) resp. the fiber f−1(γ2(r)) through γ̄2(r). We
get limω

d(γ1(ti),γ2(sti))
ti

= limω
d(Fti ,Gsti)

ti
. Hence it is enough to prove, that the

equidistant decomposition of TxX defined by the submetry f
(ti)
x : X

(ti)
x → Y

(ti)
y

is independent of the scale (ti). However using the first variation formula and
the uniform convexity of TxX , it is possible to show, that v, w ∈ TxX are in
the same fiber of f

(ti)
x iff DxdF (v) = DxdF (w) holds for each fiber F = f−1(ȳ)

with ȳ �= y. In fact this shows, that f is metrically differentiable at x.
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Let now γ ∈ Γy be a geodesic and γ̄ ∈ Γx a horizontal lift of γ. Let ȳ �= y
be an arbitrary point and set F = f−1(ȳ). Then dȳ ◦ γ = dF ◦ γ̄. Therefore the
differentials of these two maps at 0 coincide. If we denote by v the unit vector
γ̄+ ∈ Hx we get by the first variation formula D0(dF ◦ γ) = bη+(v), for some
geodesic η ∈ Γx,F .
Geodesics from Γx,F are mapped by f isometrically onto geodesics in Γy,ȳ .

Set w = Dxf(v). Then as in Lemma 9.2, we get D0(dȳ ◦ γ) � bDxf(η+)(w).
But bDxf(η+) ◦ Dxf � bη+. Thus we obtain bDxf(η+)(w) = bη+(v).
Using once again the uniform convexity of Cx, the above equality and the

property (U) in X we get the following: if d(γ+
1 , γ+

2 ) < ρ for some γ1, γ2 ∈ Γy ,
then d(γ̄1(t), γ̄2(t)) < εt for all t < ρ, each horizontal lift γ̄1 of γ1 and some
horizontal lift γ̄2 of γ2 starting at x. This verifies the property (U) at y.
Moreover the above equality for Busemann functions implies, that for each
v ∈ Hx and each radial ray η ⊂ Cy there is at least one radial ray η̄ ⊂ Hx with
Dxf(η̄) = η and bη̄(v) = bη(Dxf(v)).
If both Hx and Cy were Euclidean cones, this would give us that the

differential Dxf : Hx → Cy is a submetry. In general we do not know if this
must be true. However the uniform convexity and the smoothness of Hx imply
that the cone Cy is uniformly convex and smooth.
Finally the above equality of Busemann functions in Cx and in Hy shows

that the first variation formula is valid at y. From Lemma 9.5 we deduce that
Y is geometric. •

§12. Theorem of Rademacher

Now we are going to prove Theorem 1.6.

Proof. The question is local and we may assume that S is compact. Assume
that we already know the result in the case n = 1. Then we can deduce it for
arbitrary n by standard reasoning ([Kir94] and [MM00]). Let namely v be
a unit vector in R

n. For each x ∈ R
n consider the line γx through x in the

direction v. The restriction of f to γx ∩ S is Lipschitz and by assumption this
restriction is differentiable a.e. on γx ∩ S. Denote by Gv the set of all x ∈ S,
such that the restriction of f to γx ∩ S is differentiable at x. Then Gv has full
measure in S, by the theorem of Fubini ([MM00]). Put G = ∩v∈DGv where
v runs over a countable dense subset of the unit sphere. The set G has also
full measure in S and f is differentiable at each point of G.
So let S ⊂ I be a compact subset of an interval and f : S → Z a Lipschitz

map. Since Z is geodesic, we may extend f to a Lipschitz curve γ : I → Z.
Reparametrizing γ we may assume, that it is parameterized by the arclength.
Then γ is 1-Lipschitz and by Theorem 8.2 there is a subset ˜G ⊂ I of full
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measure in I such that for all s ∈ ˜G the metric differential mDsγ exists and
is the canonical metric d on R = TsI .
Set xt = γ(t) and let ht : I → R be the non-negative 1-Lipschitz function

ht(s) = dxt(γ(s)) = d(xt, xs). Let T be a dense countable subset in I . By the
usual theorem of Rademacher the set G of all points x ∈ ˜G, where h′

t(x) exists
and is linear for all t ∈ T , has full measure in I . Denote by N+

ε resp. N−
ε the

set of all point x ∈ G such that h′
t(x) < 1 − ε for all t ∈ T with t < s resp.

h′
r(x) > −1 + ε for all r ∈ T with r > s. The set N+

ε is measurable. Assume
that it has positive measure and take a Lebesgue point s of N+

ε .
Choose ρ such that for all t ∈ G with s − ρ < t < s the inequalities

d(xt, xs) � (1− ε2)|t − s| and μ(N+
ε ∩ [t, s]) � (1− ε2)|s − t| hold.

But T is dense in I by assumption. Hence we can choose some t ∈ T with
s − ρ < t < s and get ht(s) − ht(t) � (s − t)(1 − ε2). On the other hand
the differential of 1-Lipschitz function ht on the subset N+

ε ∩ [t, s] is bounded
above by 1 − ε. Since this subset has measure at least (s − t)(1 − ε2) we see
ht(s) − ht(t) � (s − t)(ε2) + (s − t)(1 − ε2)(1 − ε) = (s − t)(1 − ε + ε3). For
small ε we get a contradiction to ht(s) − ht(t) � |s − t|(1 − ε2).
In the same way we see, that N−

ε has measure 0 in G. Hence also Nε =
N+

ε ∪ N−
ε and N = ∪ε>0Nε have measure 0 in I . Thus the complement

G0 = G \ N has full measure in I . Until now we have not used the curvature
assumptions and they will imply the result now.
Let s ∈ G0 be arbitrary and set z = γ(s). Choose sequences tn and rn with

tn < s < rn, such that h′
tn(s) → 1 and h′

rn
(s) → −1. Let vn resp. wn be the

starting vectors of some geodesics from z to γ(tn) resp. from z to γ(rn).
We are going to prove that vn and wn converge in Cx to γ+ resp. to γ−.

In order to prove this consider an arbitrary sequence εj → 0 and the point
w = (γ(s + εj)) ∈ Z

(εj )
z .

Assume first that Z is a CAT (κ) space. Then from the comparison triangle
to xrnxsxs+εj with εj << rn − s we see that h−

rn
(s) → −1 implies that the

distance between wn and w goes to 0 with n → ∞. This finishes the proof in
the case of upper curvature bound.
Let now Z be a space with curvature � κ. Then the comparison triangle

to xtnxsxs+εj with εj << s − tn shows that the distance between vn and w

goes to 2 as n goes to ∞. But Z
(εj)
z is a non-negatively curved space. This

shows that vn converge to a unique point v̄ ∈ Cz ⊂ Z
(εj )
z with |v̄| = 1 and

d(v̄, w) = 2. But since the metric differential at s of γ is the usual metric on

R = TsI , we see that the point v = (γ(s− εj)) ∈ Z
(εj)
z also satisfies d(v, 0) = 1

and d(v, w) = 2. In the non-negatively curved space Z
(εj )
z geodesics cannot
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branch, hence v and v̄ coincides. This finishes the proof in the case of lower
curvature bound. •
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