
CURVATURE BOUNDS OF SUBSETS IN DIMENSION TWO

ALEXANDER LYTCHAK, STEPHAN STADLER

Abstract. We show that closed subsets with vanishing first homology in two-
dimensional spaces inherit the upper curvature bound from their ambient spaces
and discuss topological applications.

1. Introduction

This paper concerns the intrinsic geometry of subsets in two-dimensional metric
spaces with upper curvature bounds. The main geometric result is

Theorem 1. Let X be a two-dimensional contractible CAT(κ) space. Let A ⊂ X
be a closed, Lipschitz connected subset with H1(A) = 0. Then A is a CAT(κ) space
with respect to the induced intrinsic metric.

For κ = 0, this confirms a folklore conjecture, which appeared in print in [Ber02,
Conjecture 1]. Related statements and conjectures about subsets of non-positively
curved spaces can be found in [AKP19b, Chapter 4].

Some special cases of Theorem 1 are known. In [Bis08] and later in [Ric20], it
was shown that Jordan domains in the euclidean plane are CAT(0). A more general
version appeared in [LW18]. In [Ric19], Theorem 1 is proved for CAT(0) euclidean
simplical complexes. Another special case plays a central role in [NSY21].

The contractibility assumption is redundant for κ ≤ 0; for κ > 0 it is satisfied if
the diameter of X is less than π√

κ
. For κ > 0 the statement is wrong without the

contractibility assumption: A closed metric ball of radius π > r > π
2

in the round
sphere S2 is contractible but not CAT(1) in its intrinsic metric.

Localizing the above result we deduce the following:

Corollary 2. Let Y be a metric space of curvature bounded above by κ and dimen-
sion two. Let A ⊂ Y be closed, Lipschitz connected and locally simply connected.
Then A has curvature bounded above by κ with respect to the intrinsic metric.

If κ ≤ 0, the theorem of Cartan–Hadamard implies that the universal covering
of A is contractible. Hence A is aspherical in the sense that all higher homotopy
groups of A vanish:

Corollary 3. Let Y be a two-dimensional space of non-positive curvature and let
A ⊂ Y be a closed, Lipschitz connected and locally simply connected subset. Then
A is aspherical with respect to the topology induced by the intrinsic metric.

Somewhat surprisingly, no topological assumption is needed for our next conclu-
sion. Indeed, we obtain the following topological statement about all subsets of
non-positively curved metric spaces of dimension two.
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Theorem 4. Let Y be non-positively curved and two-dimensional. Let A ⊂ Y be
an arbitrary subset. Then all higher Lipschitz homotopy groups of A vanish: Every
Lipschitz n-sphere in A with n ≥ 2 bounds a Lipschitz ball in A.

This result is of geometric origin and is deduced from our main theorem. It has
the following purely topological application:

Corollary 5. Let Y be a two-dimensional space of non-positive curvature. Then
any neighborhood retract A ⊂ Y is aspherical.

It is known, but surprisingly difficult to prove that all subsets of the euclidean
plane are aspherical, [CCZ02]. This and the results above make the following gen-
eralization of the famous Whitehead Conjecture [Whi41] plausible:

Conjecture 1. Let X be a two-dimensional aspherical space. Then any subset A
of X is aspherical.

Possibly, a combination of the geometric ideas of the present paper and the purely
topological methods of [CCZ02] may lead to the resolution of this conjecture for non-
positively curved spaces.

Since there is no assumption on local compactness in Theorem 1, we gain some
information on coarse topology of high-dimensional spaces. Recall that a CAT(0)
space has asymptotic rank at most two, if no asymptotic cone contains an isometric
copy of euclidean 3-space [Gro93, CL10, Wen11].

Proposition 6. Let X be a CAT(0) space of asymptotic rank at most two and let
A ⊂ X be arbitrary. Then for every n ∈ N and ε > 0 there exists L0 > 0 such that
the following holds for all L ≥ L0. Any L-Lipschitz sphere f : Sn → A bounds a
Lipschitz ball in NεL(A).

As the proof shows, the numbers ε, L0 are independent of A, but only depend on
X. Moreover, the map f extends to a (πL)-Lipschitz map F from the euclidean
unit ball Bn+1 into the (εL)-neighborhood of the image of f .

Proposition 6 applies, in particular, to arbitrary subgroups of rank two CAT(0)
groups, finitely presented or not, compare the discussion on the Coarse Whitehead
Conjecture in [Kap05, p. 26].

We expect our results to simplify the description of geodesically complete two-
dimensional CAT(κ) spaces obtained and announced in [NSY21]. Moreover, we
expect the results to facilitate a good understanding of two-dimensional CAT(κ)
spaces beyond geodesic completeness. For instance, they might lead to a resolution
of the following conjecture of potential relevance to geometric group theory:

Conjecture 2. Any compact two-dimensional non-positively curved space is homo-
topy equivalent to a finite, two-dimensional, non-positively curved euclidean complex.

We want to point out that all the results above trivially hold in dimension one,
since any one-dimensional CAT(κ) space is covered by a tree. On the other hand,
all results completely fail in dimension at least three: already the complement of an
open ball in R3 is not non-positively curved and not aspherical.

Sketch of proof. In order to control the curvature bound of A we need to ma-
jorize arbitrary Jordan curves Γ ⊂ A by some CAT(κ)-discs inside A. We use the
homological assumption, to find a geodesic of X completely contained in A which
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subdivides Γ into two smaller Jordan curves. Iterating this process, we subdivide Γ
into a collection of 2k smaller Jordan curves. The technically most challenging part
of the proof controls this cutting process and confirms that the arising new Jordan
curves will have arbitrary small diameters after sufficiently many steps. Now we
majorize the small Jordan curves inside the ambient space X and observe that these
majorizations glue together to a majorization of Γ within a small neighborhood of
A in X. A limiting argument provides the required majorization contained in A.

Acknowledgments. We are grateful to Anton Petrunin for helpful comments.
Both authors were supported by DFG grant SPP 2026.

2. Metric geometry

2.1. Basics and notation. We refer to [BBI01], [Bal04], [AKP19a] for background
on metric geometry and CAT(κ) spaces. Let us summarize notation and basic facts.
As usual Rn will denote the euclidean space and Sn−1 ⊂ Rn the unit sphere.

The distance on a metric space X will be denoted by |·, ·|X and if there is no risk
for confusion by |·, ·|. If A ⊂ X is a subset, then we denote by Nr(A) and N̄r(A) its
open respectively closed r-neighborhoods. If A is just a point x, then Nr(A) is the
open r-ball which we denote by Br(x). The closed r-ball will be denoted by B̄r(x).

The length of a curve c in a metric space X will be denoted by `(c) ∈ [0,∞]. The
space X is called Lipschitz connected if any two points in X are joined by a curve of
finite length. X is called an intrinsic space, if the distance between any two points
is equal to the greatest lower bound for lengths of curves connecting those points.

Isometric embeddings of intervals will be called geodesics and in the case of com-
pact intervals also geodesic segments or simply segments. If c is a geodesic segment,
then we will denote its boundary points by ∂c. The space X itself will be called
geodesic if any two points in X are joined by a geodesic.

Any Lipschitz connected metric space has a canonical induced intrinsic metric,
[BBI01, 2.3.3]. The length of all curves for the given metric and for the induced
intrinsic metric coincide.

A triangle in X consists of three points and three geodesics connecting them. The
three geodesics are called the sides of the triangle. For κ ∈ R, let Dκ ∈ (0,∞] be the
diameter of the complete, simply connected model surface M2

κ of constant curvature
κ. For any triangle 4 with perimeter < 2Dκ in a metric space X, we can find a
comparison triangle 4̃ ⊂M2

κ such that corresponding sides have equal lengths.
A complete metric space X is CAT(κ) if points at distance < Dκ in X are joined

by geodesics and if all triangles in X with perimeter < 2Dκ are not thicker than
their comparison triangles. A metric space X is said to have curvature bounded
above by κ, if X is locally CAT(κ).

Any CAT(0) space is contractible; the universal covering of any complete non-
positively curved space is CAT(0), [AKP19a, 8.13.1, Theorem of Cartan–Hadamard].

In a CAT(κ) space X any point y in BDκ(x) is connected with x by a unique
geodesic, denoted by xy and depending continuously on y. Angles between geodesics
starting at x are well defined. There is a space of directions ΣxX which is CAT(1)
with respect to the angle metric. The logarithm map

logx : BDκ(x) \ {x} → ΣxX ,

which assigns to y the starting direction of xy is a homotopy equivalence [Kra11].
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In a CAT(κ) space Z, there are natural ways of straightening singular simplices
using iterated geodesic coning or barycentric simplices, see [KL97, Section 6.1] or
[Kle99, Lemma 5.1]. As a consequence, for any finite simplicial complex K, Lipschitz
maps are dense in the space of continuous maps K → Z with respect to compact-
open topology. Moreover, if a continuous map f is already Lipschitz continuous on
a subcomplex K0 of K then the Lipschitz continuous approximations f̃ of f can be
chosen to coincide with f on K0.

On a space X of curvature bounded above, there is a natural notion of dimen-
sion dim(X), introduced and investigated by Kleiner in [Kle99]. It is equal to the
supremum of topological dimensions of compact subsets of X, satisfies dim(X) =
supx∈X{dim(ΣxX) + 1} and coincides with the homological dimension of X.

The homological dimension of a space X is the supremum of all n, such that for
some open pair V ⊂ U ⊂ X the relative homology Hn(U, V ) is non-zero. Here and
below Hn denotes singular homology with Z coefficients.

3. Majorizations

A Jordan curve in a metric space X is a subset homeomorphic to a circle. We
say that a metric space Y majorizes a rectifiable Jordan curve Γ in a metric space
X if there exists a 1-Lipschitz map f : Y → X which sends a Jordan curve Γ′ ⊂ Y
bijectively in an arc length preserving way onto Γ. By Reshetnyak’s Majorization
Theorem, [AKP19a, 8.12.4], any Jordan curve of length < 2Dκ in a CAT(κ) space
is majorized by a closed convex subset of M2

κ . On the other hand, we have

Proposition 7. [LS20, Proposition 4.2] Let X be a complete intrinsic space. If any
Jordan curve Γ of length < 2Dκ in X is majorized by some CAT(κ) space YΓ, then
X is CAT(κ).

Majorizations stay close to the curve:

Lemma 8. Let X be a CAT(κ) space and let Γ ⊂ X be a Jordan curve of length
< 2Dκ. Suppose that the diameter of Γ is at most ε ≤ Dκ

2
. Then Γ has a majorization

by a convex subset of M2
κ whose image in X is contained in N̄ε(Γ).

Proof. For any x ∈ Γ, the closed ball B̄ε(x) is CAT(κ) and contains Γ. Hence, we
can find a majorization of Γ within this ball. �

The following simple gluing/subdivision lemma will be repeatedly applied in the
proof of the main theorem.

Lemma 9. Let X be a CAT(κ) space and Γ± ⊂ X rectifiable Jordan curves. Suppose
Γ+ intersects Γ− in a geodesic segment γ and denote by Γ the Jordan curve (Γ+ ∪
Γ−) \ γ. Let Z± be CAT(κ) discs and let w± : Z± → X be majorizations of Γ±

which restrict to arc length preserving homeomorphisms ∂Z± → Γ±. Then there is
a CAT(κ) disc Z and a majorization w : Z → X of Γ which sends ∂Z in an arc
length preserving way onto Γ and whose image is the union of the images of w±.

Proof. Since γ is a geodesic in X and w± is 1-Lipschitz, the subarc c± of ∂Z± which
gets mapped to γ has to be geodesic in Z±, cf. [AKP19a, 8.12.2]. Let f : c+ → c−

be the canonical isometry. By Reshetnyak’s gluing theorem [AKP19a, 8.9.1], the
space Z := Z+∪f Z− is CAT(κ). Moreover, Z is homeomorphic to a closed disc and
contains Z± as convex subspaces. We define w : Z → X such that it restricts to w±

on Z±. By construction, w is a well-defined majorization of Γ, as required. �
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4. Support sets of cycles

Support sets of top-dimensional cycles provide a useful tool in the study of finite
dimensional spaces [KL97, BKS16, Hua17, Ric19]. We will recall their definition
here and prove basic properties required in later sections, in order to define our
cutting procedure for Jordan curves. Support sets were also used by Ricks in his
proof of Theorem 1 for simplicial complexes, although in a different vein.

Definition 10. Let Y be a subset of a metric space X. The support spt(α) of a
homology class α ∈ Hn(X, Y ) is the set of all points x ∈ X \ Y such that the image
of α is non-trivial under the inclusion homomorphism

Hn(X, Y )→ Hn(X,X \ {x})

The support of α is the intersection of X \Y with all images of chains representing
α. Thus, spt(α) is closed in X \ Y and its closure in X is compact.

For instance, the support of the fundamental class [M ] ∈ Hn(M) of a compact,
oriented n-manifold M is the whole manifold M .

The following result has been verified in [Hua17, p. 2342]:

Lemma 11. Let Y be a subset of a metric space X of homological dimension n. Let
S be the support of a class α ∈ Hn(X, Y ). Then, for any neighborhood U of S∪Y , the
class α can be represented in U ; thus, α is in the image of i∗ : Hn(U, Y )→ Hn(X, Y ).

If X is contractible, then the boundary homomorphism ∂ : Hn(X, Y )→ Hn−1(Y )
is an isomorphism and the support of α ∈ Hn(X, Y ) is the set of all x ∈ X \ Y such
that the image i∗(∂α) ∈ Hn−1(X \{x}) is non-zero for the inclusion i : Y → X \{x}.

Corollary 12. Let X be a contractible metric space of homological dimension n.
Let Y ⊂ X and α ∈ Hn(X, Y ) be given. Set S = spt(α) ⊂ X \ Y . Let p ∈ S and
0 < r < |p, Y | be arbitrary. Then, for all neighborhoods W of ∂Br(p)∩S in X \{p},
the canonical map i∗ : Hn−1(W )→ Hn−1(X \ {p}) is non-trivial.

Proof. Fix a neighborhood W , which we may assume to be open. Assume that we
find a larger neighborhood V ⊃ W such that the non-zero image of α ∈ Hn(X, Y )
in Hn(X,X \ {p}) can be represented by an element β ∈ Hn(V,W ). Then, using
that the connecting homomorphism ∂ : Hn(X,X \ {p}) → Hn−1(X \ {p}) is an
isomorphism, we would deduce that i∗(∂β) is non-zero in Hn−1(X \ {p}).

In order to find such V , consider V̂ := Br(p)∪W ∪(X\B̄r(p)) and its subset Ŵ :=

W ∪ (X \ B̄r(p)). By Lemma 11, the class α can be represented in Hn(V̂ , Y ). Thus,

the image of α in Hn(X,X \ {p}) can be represented by an element α̂ ∈ Hn(V̂ , Ŵ ).
Now we use excision and see that α̂ can be represented by an element in Hn(V,W )

where V = V̂ \ (Ŵ \W ) = Br(p) ∪W . This finishes the proof. �

The following observation is essentially contained in [Ric19, Lemma 2.4].

Lemma 13. Let X be contractible metric space of homological dimension n. Let
M ⊂ X be a compact oriented (n − 1)-manifold with fundamental class [M ] ∈
Hn−1(M). Consider the unique α ∈ Hn(X,M) with ∂α = [M ] and let S ⊂ X \M
be the support of α. Then S 6= ∅ and S = S ∪M .

Proof. Let x ∈ M and δ > 0 be arbitrary. We claim that there exists an open
neighborhood O of M , such that O ∪ B2δ(x) = X and such that the image α̂ of α

in Hn(X,O) is non-zero. Once the claim is verified, the support Ŝ of α̂ would be a
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non-empty subset of X \O, since otherwise an application of Lemma 11 with U = O

would provide a contradiction to α̂ 6= 0. Any p ∈ Ŝ would also be contained in the
support S of α. Since δ was arbitrary, this would imply x ∈ S̄. But since x was
arbitrary, this would show M ⊂ S̄. On the other hand, S is closed in X \M , thus,
we would deduce S̄ = S ∪M . The statement S 6= ∅ would follow as well.

In order to verify the claim, we use that M is an absolute neighborhood retract,
and find a retraction r : V →M of a neighborhood V of M , [Han51]. Restricting to
a smaller neighborhood, if needed, we may assume that T := r−1(x) has diameter
smaller δ. Then the injectivity of the map Hn−1(M) → Hn−1(M,M \ {x}) implies
that the image of [M ] ∈ Hn−1(V ) is non-zero in Hn−1(V, V \ T ).

Setting O := V ∪ (X \ B̄δ(x))) we deduce by excision

Hn−1(O,O \ T ) = Hn−1(V, V \ T ) .

Thus, [M ] is non-zero in Hn−1(O,O \ T ), hence also in Hn−1(O). Therefore, [M ] is
not in the image of ∂ : Hn(O,M)→ Hn−1(M). Now, the long exact sequence of the
triple (M,O,X) shows that α̂ 6= 0. �

IfX is a CAT(κ) space of diameter< Dκ, the logarithm map logx : X\{x} → ΣxX
is a homotopy equivalence. Thus, for a subset Y ⊂ X and a class α ∈ Hn(X, Y ), a
point x ∈ X \ Y is in the support of α if and only if (logx)∗(∂α) 6= 0 ∈ Hn−1(ΣxX),
compare [Ric19, Definition 1.3], [Hua17, p.2345].

Proposition 14. [BKS16, Lemma 3.1][Hua17, Lemma A-11] Let X be an n-dimen-
sional CAT(κ) space of diameter < Dκ, let Y ⊂ X be a closed subset and α a
class in Hn(X, Y ) with support S := spt(α). Then the following geodesic extension
property holds. For any pair of points x ∈ X and p ∈ S the segment xp extends
beyond p to a point y ∈ Y such that the subsegment py lies in S ∪ {y}.

Proof. It is enough to find, for any p ∈ S, x ∈ X \ {p} and any 0 < r < |p, Y |, a
point q ∈ ∂Br(p) ∩ S such that p lies on the segment xq. Then an iteration of this
property, as at the end of [Hua17, Lemma A-11], finishes the proof.

If there is no such q, then there exists a neighborhood W of ∂Br(p)∩S in X, such
that p does not lie on geodesic from x to a point in W . Thus, the geodesics towards
x provide a contraction of W inside X \ {p}, in contradiction to Corollary 12. �

For Y ⊂ X as in Proposition 14 and a class α in Hn(X, Y ), consider again the
support S := spt(α). For p ∈ S, we define the space of directions ΣpS ⊂ ΣpX to be
the set of starting directions of geodesics py contained in S.

Due to Proposition 14 any such segment extends within S until Y (in particular,
to a uniformly positive length). By compactness of S̄, this implies that ΣpS is a
compact subset of ΣpX. Another application of Proposition 14 shows

ΣpS =
⋂
r>0

logp(Ḃr(p) ∩ S)

where Ḃr(p) refers to the punctured ball Br(p)\{p}. We refer to [Hua17] for further
properties of ΣpS. Here we will only need:

Lemma 15. In the notations above, assume that ΣpS = V+ ∪ V−, with V± being
closed, non-empty and disjoint. Then we find v+ ∈ V+ and v− ∈ V− with

|v+, v−| = π.
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Proof. Assume the contrary and find a small ε, such that ε < |v+, v−| < π− ε for all
v± ∈ V±. Choose arbitrary v±0 ∈ V± and x±0 ∈ S lying in the direction of v±0 from p.

We find a small positive r > 0, such that for all q ∈ S ∩ ∂Br(p) we have
|ΣpS, logp(q)| ≤ ε

3
. Thus, S ∩ ∂Br(p) is a disjoint union of two compact subsets

K± such that |V±, logp(q)| ≤ ε
3
, for q ∈ K±.

The geodesics towards x±0 provide a contraction of a neighborhood of K∓ in X
inside X \ {p}. Thus, a neighborhood of S ∩ ∂Br(p) is contractible inside X \ {p},
in contradiction to Corollary 12. �

5. Reduction to a cutting Lemma

Throughout this section X is a contractible CAT(κ) space of dimension two.

Definition 16. Let Γ be a Jordan curve in X and [Γ] a generator of H1(Γ). Denote
by α ∈ H2(X,Γ) the unique element with ∂α = [Γ]. The support spt(α) ⊂ X \Γ will
be called interior of Γ.

We borrow the term interior in this context from [Ric19].
A closed convex subset X ′ of X of diameter less than Dκ is contractible. If Γ is

contained in X ′, then, by the definition of support, the interior of Γ is contained in
X ′ and so are all subsets resulting from the constructions performed in this section.
Recall that any Jordan curve Γ of length l < 2Dκ is contained in a closed ball X ′

of radius l
4
, [Bal04, Prop. 3.20]. Since all subsequent considerations concern only

such curves, we may always replace X by X ′ and assume that the diameter of X is
at most l

2
< Dκ to begin with.

Let Γ ⊂ X be a Jordan curve with interior S. We define a cut of Γ to be a
geodesic c with c ⊂ S̄ and c ∩ Γ = ∂c. A cut c divides Γ into two arcs Γ+ and
Γ− whose boundaries coincide with ∂c. When performing a cut we obtain two new
Jordan curves Γ±c := Γ± ∪ c.

A k-fold (iterated) cut is defined inductively, where a 1-fold iterated cut is just a
cut and a k-fold iterated cut are 2k−1 cuts performed at each of the Jordan curves
resulting from a (k − 1)-fold iterated cut.

Iterated cuts stay in a controlled neighborhood of the original curve:

Lemma 17. Let Γ ⊂ X be a Jordan curve of diameter at most ε < Dκ
2

. Denote
by Gk the union of Γ with all the geodesics from a k-fold iterated cut. Then Gk is
contained in the ε-neighborhood of Γ.

Proof. Γ is contained in a convex ballX ′ = B̄ε(x), for any x ∈ Γ. Then, by induction,
all iterated cuts of Γ are contained in X ′. This implies the claim. �

For any cut c of a Jordan curve Γ of length < 2Dκ in X, both arising Jordan
curves Γ±c have length strictly smaller than the length of Γ. The same is true for
any Jordan curve obtained as a result of an iterated cut. The following cutting
lemma is a uniform version of this statement. We are going to postpone its proof to
the next section. In this section, we derive from it the main results of the present
paper.

Lemma 18. For any Jordan curve Γ ⊂ X of length < 2Dκ and ε > 0, there exists
a k-fold cut of Γ, such that all resulting Jordan curves have diameter at most ε.

Using this lemma we can now provide:
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Proof of Theorem 1. Thus, let A ⊂ X be a Lipschitz connected subset of a con-
tractible CAT(κ) space X such that H1(A) = 0.

Since H1(A) = 0, for any Jordan curve Γ contained in A, the interior of Γ is
contained in A (by the very definition of support). By induction on the number of
cuts, all iterated cuts of Γ are contained in A.

Denote by Â the set A with its intrinsic metric. By assumption Â is a intrinsic
space. Since A is closed, Â is complete [Pet20, Exercise 1.19].

The identity map I : Â→ A is 1-Lipschitz. For any Lipschitz curve γ : [a, b]→ A,

the curve I−1 ◦ γ has the same length in A and in Â. Therefore, for any 1-Lipschitz
map f : Z → A from an intrinsic space Z, the composition I−1 ◦ f is 1-Lipschitz as
well. Thus, by Proposition 7, we only need to find for any Jordan curve Γ in A of
length < 2Dκ a majorization of Γ in A by some CAT(κ) disc Z.

We fix such a curve Γ. By Lemma 18, we find an infinite sequence of iterated cuts
of Γ such that the diameters of all occurring Jordan curves go to zero uniformly.
Namely, for each ε > 0 there exists kε ∈ N such that all the resulting Jordan curves
after k ≥ kε iterations have diameter at most ε. Denote by Gk the union of Γ with
all cuts after k iterations. Then (Gk)k∈N forms an increasing sequence of compact
sets in A, Gk ⊂ Gk+1. By Lemma 17, we have Gk ⊂ Nε(Gkε). This implies that the

closure
⋃
k∈NGk is compact. Indeed, for all ε > 0 we can cover Gkε by finitely many

ε-balls. Hence
⋃
k∈NGk ⊂ N̄ε(Gkε) is covered by finitely many 2ε-balls.

Since all Jordan curves which arose from our cutting process have diameter at most
ε, Lemma 8 ensures that they can be majorized within their closed ε-neighborhoods.
Using Lemma 9, we can then inductively glue these majorizations to obtain a ma-
jorization fk : Zk → X of Γ with image contained in N̄ε(Gk). Precomposing with
a majorization of ∂Zk ⊂ Zk, we may assume that Zk is a convex region in M2

κ .
The sequence (Zk)k∈N subconverges with respect to Hausdorff distance to a convex
region Z∞. Thus we obtain a partial limit f∞ : Z∞ → X which is 1-Lipschitz and
has image in

⋃
k∈NGk ⊂ A. To see that it is a majorization of Γ, we note

`(Γ) ≤ `(∂Z∞) ≤ lim inf `(∂Zk) = `(Γ).

Hence the boundary ∂Z∞ is mapped in an arc length preserving way by f∞. �

From the above proof we now derive

Proof of Corollary 2. As before, denote by Â the set A with the induced intrinsic
metric. Let x ∈ A be an arbitrary point. Since Y has curvature bounded above by
κ, we find a small ball B̄r(x) around x in Y which is CAT(κ) and such that r < Dκ

2
.

Since A is locally simply connected at x, we find some s < r, such that the
inclusion B̄s(x) ∩ A→ Br(x) ∩ A induces a trivial map on π1, hence also on H1.

Denote by P the set of all points in B̄s(x) ∩ A which are connected to x by a

Lipschitz curve inside B̄s(x) ∩ A. Let P̂ be the set P equipped with the induced

intrinsic metric. Note that the s
4
-ball in P̂ around x coincides with the s

4
-ball around

x in Â. Thus, it suffices to prove that P̂ is CAT(κ). The space P̂ is a complete
intrinsic space, by the same argument as in the solution of [Pet20, Exercise 1.19].

Assume that Γ is a Jordan curve in P̂ of length < 2Dκ. Then Γ defines a trivial
element in H1(A ∩ Br(x)), thus, the interior of Γ within B̄r(x) is contained in A ∩
B̄r(x). So, any cut of Γ (considered within the CAT(κ)-space B̄r(x)) is contained in
A ∩ B̄r(x). Since a cut is a geodesic, it is also contained in the convex ball B̄s(x).
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Repeating the argument, any iterated cut of Γ is contained in A ∩ B̄s(x). As in
the proof of Theorem 1, we now find a majorization of Γ within A ∩ B̄s(x) by a
convex subset of M2

κ .
The image of this majorization lies in P and provides a majorization of Γ within

P̂ . By Proposition 7, this implies that P̂ is CAT(κ) and finishes the proof. �

In the case κ = 0, the theorem of Cartan–Hadamard yields Corollary 3.

6. Proof of the cutting Lemma

6.1. Reduction to existence of essential cuts. For δ > 0, a k-fold cut of Γ will
be called δ-essential, if all 2k resulting Jordan curves Γi satisfy `(Γi) ≤ (1− δ) · `(Γ).

Lemma 18 is a direct consequence of the following:

Proposition 19. For every ε0 > 0, κ ∈ R and 2Dκ > l0 > 0 there exists a positive
constant δ = δ(ε0, κ, l0) such that the following holds:

Let Γ be a Jordan curve of length l ≤ l0 in a CAT(κ) space X. If the diameter of
Γ is at least ε0, then Γ admits a δ-essential 2-fold cut.

Assuming Proposition 19, we now provide

Proof of Lemma 18. Let l be the length of Γ. Choose δ = δ(ε, κ, l) in Proposition 19.
If Γ has diameter ≤ ε there is nothing to prove. Otherwise, we apply Proposition 19
and obtain a δ-essential 2-fold cut of Γ resulting in four new Jordan curves.

We proceed inductively as follows. At each step we consider the Jordan curves
produced by the previous step and split them into two groups depending on their
diameter. If a Jordan curve has diameter at most ε, we perform an arbitrary 2-
fold cut, thereby keeping the diameter bound. If, on the other hand, a Jordan
curve has diameter larger than ε, then, since its length is less than l, we can apply
Proposition 19 to make a δ-essential 2-fold cut.

Thus, after k steps, the diameters of the arising Jordan curves are at most
max{ε, (1−δ)k · l}. For sufficiently large k, this number is at most ε as required. �

6.2. Setting for finding essential cuts. In order to prove Proposition 19, we fix
κ, l0 < 2Dκ and ε0. By scaling, we may assume κ = 1. Making ε0 smaller, we may
assume ε0 <

1
8
.

Henceforth we fix a CAT(1) space X and a Jordan curve Γ in X of length l ∈
(ε0, l0]. The curve Γ is contained in a ball of radius at most l

4
and replacing X by

this ball, we may assume that X has diameter at most l
2
. Let S denote the interior

of Γ. We are going to construct a 2-fold δ-essential cut of Γ for some δ depending
only on l0 and ε0.

The proof will be divided into two cases, depending on the existence of long cuts:
For ε > 0, we say that Γ is ε-degenerated if all cuts of Γ are shorter than 2ε · l.

6.3. The non-degenerated case. In this case we proceed as follows. First we are
going to verify the following simple claim about spherical triangles:

There exists a positive constant ρ = ρ(l0) such that for any spherical triangle
4(x, y, z) ⊂ S2 with |y, z| ≤ π/2, |x, y| ≤ l0

2
, ∠y(x, z) ≥ π

2
we have

|x, y| ≤ |x, z|+ |z, y| − ρ · |z, y|.

If |x, y| ≤ π
2
, we can take ρ = 1.
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For l0
2
≥ |x, y| ≥ π

2
, we may assume ∠y(x, z) = π

2
and |x, y| = l0

2
. The claim

follows by compactness and the fact that for sufficiently small |x, y| the statement
is true by the first variation formula.

Using this ρ = ρ(l0) we can now state:

Lemma 20. If, for some ε ∈ (0, 1
8
), the curve Γ is not ε-degenerated then there is a

(ρε)-essential 2-fold cut of Γ.

Proof. Let c be any cut of length at least 2ε · l, which exists by assumption. Denote
by z1, z2 ∈ Γ the endpoints of c. Denote by Γ+

c and Γ−c the arising Jordan curves
with interiors S±. Let m denote the midpoint of c.

In S+ we consider a sequence of points xk converging to m ∈ c ⊂ Γ+, which
is possible by Lemma 13. Denote by x̄k ∈ Γ+ the closest point to xk. Then x̄k
converges to m, and taking k large enough, we may assume that x̄k ∈ c. Using
the geodesic extension property, Proposition 14, we can extend the segments x̄kxk
to a segment ck = x̄kyk such that xkyk is contained in the closure S̄+. Since S̄+

is compact, we can pass to a partial limit c′ of ck, which is a geodesic segment my
starting in m and contained in S̄+. By the upper semi-continuity of angles, both
angles enclosed between c and c′ are at least π

2
, since the same is true for ck and c

at x̄k. Restricting c′ to the first intersection point y+ 6= m of my with Γ+ we obtain
a cut c+ = my+ of Γ+ starting at m and enclosing angles at least π

2
with c.

In the same way, we construct a cut c− = my− of Γ− starting at m and enclosing
angles at least π

2
with c. The geodesics c, c+, c− provide a 2-fold cut of Γ. We claim

that this 2-fold cut is (ρε)-essential.

In order to see this, consider one of the four Jordan curves Γi. Without loss of
generality, we may assume that Γi consists of the geodesics z1m, my+ and the part
of Γ between y+ and z1. Thus, Γi arose from the cut c+ of Γ+. The difference of
lengths

`(Γ+)− `(Γi)

is at least as large as the triangular defect

|y+, z2|+ |z2,m| − |m, y+|
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which by construction of ρ is at least

ρ · |z2,m| ≥ ρ · ε · l .
Therefore, we deduce

`(Γ)− `(Γi) ≥ `(Γ+)− `(Γi) ≥ ρ · ε · l .
This finishes the proof. �

6.4. The degenerated case. This case is technically more complicated and re-
quires several steps. In the rest of this subsection, we fix δ := ε0

1000·π and assume
that Γ is δ-degenerated. Since l < 2π, we have 5 · δ · l < ε0

100
.

We note that the closure S̄ of S is Lipschitz connected: Γ has finite length and
any point in S is connected to some point on Γ by an (extrinsic) geodesic completely
contained in S̄, due to Proposition 14.

Denote by Ŝ the set S̄ equipped with the induced intrinsic metric. If we consider
Γ as a subset of Ŝ we will denote it by Γ̂. The identification Γ̂ → Γ is a length
preserving, 1-Lipschitz homeomorphism.

We observe: Γ̂ is (δ · l)-dense in Ŝ.

Otherwise, we could find a point x ∈ Ŝ at distance at least δ · l from Γ̂. By
Proposition 14, we find a cut c of Γ through the point x. By assumption on x, the
cut c has length at least 2δ · l, in contradiction to our degeneracy assumption.

Using this observation, we are going to control the absolute filling radius of Γ̂.
Recall that the absolute filling radius of Γ̂ is the greatest lower bound of numbers
r such that Γ̂ embeds isometrically as an r-dense subset into a metric space Y ,
ι : Γ̂ ↪→ Y , and ι∗[Γ̂] = 0 ∈ H1(Y ).

We will use the following basic observations about absolute filling radii:

• The absolute filling radius of S1 with its intrinsic metric is π
3
, [Kat83].

• If f : Γ̂ → Γ̃ is an L-Lipschitz map of degree one, then the absolute filling
radius of Γ̃ is at most L times the filling radius of Γ̂, [Gro83, p. 8].

• If |·, ·|k is a sequence of metrics on Γ̂ converging uniformly to |·, ·|Γ̂ then the

absolute filling radii of (Γ̂, |·, ·|k) converge to the absolute filling radius of

(Γ̂, |·, ·|Γ̂), [LMO20, Proposition 9.34].

Under our degeneracy assumption we can now show:

Lemma 21. The Jordan curve Γ̂ ⊂ Ŝ has absolute filling radius at most δ · l.

Proof. For every k ∈ N, consider the neighborhood Wk = N 1
k
(S̄) of S̄. Due to

Lemma 13, the curve Γ bounds a chain in Wk. This relative cycle can be represented
by a continuous map f : Σ→ Wk, where Σ is a smooth Riemannian surface with one
boundary curve which is mapped by f onto Γ in a length preserving way, [Hat02,
p. 109]. Due to the straightening of simplices mentioned above, [KL97, Section 6.1],
we may assume that f is Lipschitz continuous after perturbation.

The set Wk is also Lipschitz connected. We denote by Ŵk the set Wk with its
intrinsic metric and by Γk, the curve Γ as a subset of Ŵk.

Since f is Lipschitz continuous, it remains continuous as a map f : Σ → Ŵk.
Thus, Γk induces a trivial 1-cycle in H1(Ŵk). Since any point of S̄ is connected to Γ

with a curve of length at most δ · l, the curve Γk is (δ · l+ 1
k
)-dense in Ŵk. Therefore,

the filling radius of Γk is at most (δ · l + 1
k
).
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In order to reach the conclusion, we only need to show that |·, ·|Γk converge uni-
formly to |·, ·|Γ̂. By the uniform compactness of Γk it suffices to prove that for any
p, q ∈ Γ the distances |p, q|Γk = |p, q|Wk

converge to |p, q|Γ̂ = |p, q|Ŝ.
Clearly, |p, q|Ŵk

≤ |p, q|Ŝ.
On the other hand, consider a sequence of curves ηk in Wk connecting p, q,

parametrized by arclength and such that lim
k→∞

`(ηk) = lim
k→∞
|p, q|Ŵk

. By compact-

ness of S̄, we find a subsequence of ηk which converges pointwise to a curve η in S̄.
Then `(η) ≤ lim

k→∞
`(ηk), hence

lim
k→∞
|p, q|Ŵk

≥ |p, q|Ŝ .

This finishes the proof of the lemma. �

We are going to show that the δ-degenerated Γ̂ “comes close to itself”.
Consider points p, q ∈ Γ̂ realizing the diameter d of Γ̂. Since the diameter of Γ

does not exceed the diameter of Γ̂, by our assumption d > ε0.
Denote by Γ± the arcs of Γ̂ defined by the points p and q. Denote by Γ±0 the set

of all points in Γ± that have Ŝ-distance at least d
3

to p and q. We claim

Lemma 22. There exist points x+ ∈ Γ+
0 and x− ∈ Γ−0 with |x+, x−|Ŝ ≤ 4 · δ · l.

Proof. Assume the contrary. The function f̂(x) := |p, x|Ŝ defines 1-Lipschitz maps

of both arcs Γ± onto the interval [0, d]. Moreover, f̂ sends the points p, q onto the
ends of the interval and is a degree one map of Γ± onto [0, d] modulo endpoints.

Hence also the maps f̃ : Γ± → [d
3
, 2d

3
], defined as composition of f̂ and the closest-

point projection from [0, d] to [d
3
, 2d

3
], are 1-Lipschitz and have degree one.

Consider the constant speed parametrizations η± : [d
3
, 2d

3
] → S1 of the upper and

lower hemi-circle, respectively. Let f : Γ̂ → S1 be defined on Γ± as η± ◦ f̃ . By
construction, the map f has degree one and its restrictions to Γ+ and to Γ− are
both (3

d
· π)-Lipschitz continuous.

For all x+ ∈ Γ+ and x− ∈ Γ−, either one of the points is not in Γ±0 and then

|f(x+), f(x−)|
|x+, x−|Ŝ

≤ 3

d
· π ,

by the 1-Lipschitz property of f̃ . Or, otherwise, the distance between x+ and x− is
at least 4 · δ · l and then

|f(x+), f(x−)|
|x+, x−|Ŝ

≤ π

4 · δ · l
.

By assumption on δ we have 3
d
≤ 1

4·δ·l . Thus, the map f is π
4·δ·l -Lipschitz.

Due to Lemma 21 and the properties of the filling radius listed above, we deduce

π

4 · δ · l
· δ · l ≥ π

3
.

This is a contradiction, finishing the proof. �

Now we will find a “good” cut near the points provided by the above lemma:

Corollary 23. The curve Γ admits a δ-essential cut.
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Proof. We continue to use notations introduced prior to Lemma 22. Consider points
x± ∈ Γ±0 provided by Lemma 22. We find a curve η̂ in S connecting x+ with x− of
length < 5 · δ · l. Let x+

0 be the last intersection point of η̂ with Γ+ and let x−0 be
the first intersection point of η̂ with Γ−. Denote by η the part of η̂ between x+

0 and
x−0 .

Thus, the length of η is < 5 · δ · l and, by construction, the distances from x±0 to
p and q are at least

d

3
− 5 · δ · l ≥ d

3
− d

100
≥ d

4
.

Consider the set C of all cuts c of Γ which contain a point on η. Let C̄ be the set
of all geodesics which can be obtained as a limit of a sequence in C.

Any geodesic ĉ ∈ C̄ connects two points on Γ and intersects η. By the degeneracy
assumption, ĉ has length at most 2 · δ · l. Thus, any point on ĉ has distance from p
and q at least equal to

d

4
− 7 · δ · l ≥ d

5
.

Assume that there exists an element ĉ ∈ C̄ which contains points from Γ+ and
Γ− simultaneously. Then a subsegment c of ĉ is a cut of Γ and has one endpoint on
Γ+ and the other endpoint on Γ−. Then c subdivides Γ into two arcs, one of which
contains p and the other contains q, hence both of them are at least 2d

5
long.

Thus, both Jordan curves Γ±c arising from the cut c have lengths at most

l − 2d

5
+ 2 · δ · l ≤ l − δ · l .

Therefore, c is δ-essential and the proof would be complete.
Therefore, assuming that the corollary does not hold, we infer that no ĉ ∈ C̄

simultaneously intersects Γ+ and Γ−. Denote by C̄± the subsets of elements of C̄
which contain points in Γ+, respectively in Γ−. As we have observed, our assumption
implies that the sets C̄± are disjoint. By definition, both these sets are closed under
convergence, and we have C̄ = C̄+ ∪ C̄−.

By Proposition 14, there exists an element c ∈ C through each point in η \ {x±0 }.
Denote by K± the set of points on η \ {x±0 }, which lie on some segment in C̄+ and
C̄−, respectively. Hence, η \ {x±0 } = K+ ∪K−. Since C̄± is closed, the sets K± are
closed in the connected set η \ {x±0 }.

We claim that the sets K± are non-empty. Indeed, consider points ym 6= x+
0 on η

converging to x+
0 . Choose cuts cm of Γ through ym. If cm ∈ C̄− for all m, then any

partial limit ĉ of cm is contained in C̄−. But ĉ contains x+
0 , in contradiction to the

disjointness of ĉ ∈ C̄− and Γ+. Thus, cm ∈ C̄+, for large m. Therefore, K+ is not
empty. Similarly, K− is non-empty as well.
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The connectedness of η \ {x±0 } implies that K+ ∩K− is not empty. Consider an
arbitrary point z ∈ K+ ∩K−.

Denote by V± the set of all vectors v ∈ ΣzX tangent to an element in C̄±. By
construction, V± are both non-empty and their union V+ ∪ V− is the space of
directions ΣzS. Since the sets C̄± are closed, the sets V± are closed in ΣzX. Since
C̄+∩C̄− is empty, the intersection of V+ and V− is empty and no direction v ∈ V+ has
an antipodal direction in V−. This contradicts Lemma 15 and finishes the proof. �

6.5. Conclusion. Now we finish the proof of the existence of essential iterated cuts.

Proof of Proposition 19. Set δ = ε0
1000·π . If Γ is δ-degenerated we obtain a δ-essential

cut from Corollary 23. If Γ is not δ-degenerated, we apply Lemma 20 and obtain a
(ρ · δ)-essential 2-fold cut, where ρ depends only on l0. �

7. Lipschitz homotopy groups

In this final section we provide proofs for the applications of the main result.

Proof of Theorem 4. Let A be a subset of a two-dimensional non-positively curved
space Y , let n ≥ 2 be fixed and let f : Sn → A be a Lipschitz map. In order to prove
that f is contractible in A, we may replace A by the compact image K = f(Sn) and
assume that A is compact. Rescaling the metric on Y by a factor, we may assume
that f is 1-Lipschitz if Sn is considered with respect to its intrinsic metric.

Using that Sn is simply connected we can lift f to a map f̃ : Sn → X into the
universal covering X of Y . Note that f̃ is still 1-Lipschitz and X is CAT(0), by the

theorem of Cartan–Hadamard. Once we can contract f̃ in its image, we can also
contract f . Thus we may assume that Y = X is CAT(0), that A is compact and
that f is 1-Lipschitz with respect to the intrinsic metric on Sn.

For ε > 0 we can cover the compact set A by finitely many closed ε-balls. Denote
by Aε the union of these balls. Then Aε is a closed and Lipschitz connected subset of
X. Moreover, Aε is locally contractible since the union of those balls which contain
a fixed point is star shaped. Denote by Âε the set Aε with its the intrinsic metric.
It follows from Corollary 2 that Âε is non-positively curved. Note that f is still
1-Lipschitz as a map from the intrinsic space Sn to Âε. Denote by πε : Yε → Âε the
universal cover. We lift f to a 1-Lipschitz map f̃ : Sn → Yε. Then f̃ is π

2
-Lipschitz

when considering Sn as a subset of Rn+1.
Since Yε is CAT(0), Kirszbraun’s theorem [LS97, AKP11] implies that f̃ has a

π
2
-Lipschitz extension F̃ : Bn+1 → Yε where Bn+1 denotes the closed unit ball in

Rn+1. Projecting to Aε, we extend f to a π
2
-Lipschitz map F := πε ◦ F̃ : Bn+1 → Âε.

Hence F is also a π
2
-Lipschitz extension of f as a map Bn+1 → Aε, where Aε is

equipped with the induced metric from Y (and not with its intrinsic metric).
Now we choose a sequence εk → 0. We obtain a nested sequence Aεk of closed sets

with A =
⋂
k∈NAεk and π

2
-Lipschitz maps Fk : Bn+1 → Âεk filling f . All the maps

Fk are π
2
-Lipschitz as maps to Y . Since K is compact, we obtain a partial limit

F∞ : Bn+1 → Y which is a π
2
-Lipschitz map extending f and has image in A. �

Proof of Corollary 5. Let Y be a two-dimensional space of non-positive curvature,
let A ⊂ Y be a neighborhood retract and let f : Sn → A be continuous for some
n ≥ 2. By assumption, we find a retraction r : U → A of an open neighborhood U
of A and it suffices to find a continuous filling F : Bn+1 → U of f .



CURVATURE BOUNDS IN 2D 15

Thus, we may assume that A = U is open in Y . By staightening simplices, we
see that f is homotopic to a Lipschitz map f̂ : Sn → U , [KL97, Section 6.1]. By

Theorem 4 the map f̂ is contractible in its image, hence f is contractible in U . �

In the proof of Proposition 6 we will use the concept of ultralimits of metric spaces
with respect to a non-principal ultrafilter ω. For precise definitions and properties
we refer the reader to [KL97], [BH99, Chapter 1.5], [DK18, Chapter 10].

Proof of Proposition 6. Suppose for contradiction that the claim is wrong for some
n and ε. Then we find a sequence Lk → ∞ and a sequence of Lk-Lipschitz maps
fk : Sn → X with images in A which do not bound Lipschitz balls in NεLk(A).

Let p be a base point in Sn and set xk := fk(p). Then we rescale X by 1
Lk

and denote the resulting space by Xk. Note that fk is 1-Lipschitz as a map to
Xk. We pass to ultralimits (Xω, xω) = ω-lim(Xk, pk) and fω : Sn → Xω. Then
fω is 1-Lipschitz and by assumption, Xω is a CAT(0) space of dimension at most
two. By the proof of Theorem 4, fω bounds a π

2
-Lipschitz ball Fω in its image.

Choose a finite ε
2π

-dense set T in the open unit ball Bn+1 in Rn+1. Define an

extension F̃k : Sn ∪ T → Xk of fk such that ω-lim F̃k = Fω|Sn∪T . Then for k large
enough, all F̃k are π-Lipschitz (where Sn ∪T carries the induced metric from Rn+1).
By Kirszbraun’s theorem [LS97, AKP11], we can extend F̃k to a π-Lipschitz map
Fk : B̄n+1 → Xk. Again, for k large enough, Fk(T ) lies at distance < ε

2
from A and

therefore the image of Fk lies at distance < ε from A. Contradiction. �
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