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Abstract. We show that in the setting of proper metric spaces
one obtains a solution of the classical two-dimensional Plateau
problem by minimizing the energy, as in the classical case, once a
definition of area (in the sense of convex geometry) has been chosen
appropriately. We prove the quasi-convexity of this new definition
of area. Under the assumption of a quadratic isoperimetric in-
equality we establish regularity results for energy minimizers and
improve Hoelder exponents of some area-minimizing discs.

1. Introduction

1.1. Motivation. The classical Plateau problem concerns the exis-
tence and properties of a disc of smallest area bounded by a given
Jordan curve. In a Riemannian manifold X, a solution of the Plateau
problem is obtained by a disc of minimal energy, where one minimizes
over the set Λ(Γ, X) of all maps u in the Sobolev space W 1,2(D,X),
whose boundary tr(u) : S1 → X is a reparametrization of the given
Jordan curve Γ. This approach has the additional useful feature that
the area minimizer obtained in this way is automatically conformally
parametrized.

Recently, the authors of the present article generalized the classical
Plateau problem to the setting of arbitrary proper metric spaces in
[LW15]. In particular, they proved existence of area minimizing discs
with prescribed boundary in any proper metric space and with respect
to any quasi-convex definition of area (in the sense of convex geometry).
It should be noted that the classical approach (described above) to
the Plateau problem cannot work literally in the generality of metric
spaces. This is due to the fact that there are many natural but different
definitions of area and of energy. Moreover, different definitions of
area may give rise to different minimizers as was shown in [LW15].
Finally, the presence of normed spaces destroys any hope of obtaining
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a conformal area minimizer and the inevitable lack of conformality is
the source of difficulties when trying to compare or identify minimizers
of different energies and areas.

One of the principal aims of the present article is to show that the
classical approach (of minimization of the area via the simpler mini-
mization of the energy) does in fact work for some definitions of en-
ergy and area. As a byproduct we obtain new definitions of area which
are quasi-convex (topologically semi-elliptic in the language of [Iva08]),
which might be of some independent interest in convex geometry.

1.2. Energy and area minimizers. For a metric spaceX, the Sobolev
space W 1,2(D,X) consists of all measurable, essentially separably val-
ued maps u : D → X which admit some function g ∈ L2(D) with
the following property (cf. [Res97], see also [HKST15]): For any 1-
Lipschitz function f : X → R the composition f ◦u lies in the classical
Sobolev space W 1,2(D), and the norm of the gradient of f◦u is bounded
from above by g at almost every point of D. In L2(D) there exists a
unique minimal function g as above, called the generalized gradient of
u. This generalized gradient gu coincides with the minimal weak upper
gradient of a representative of u in the sense of [HKST15]. The square
of the L2-norm of this generalized gradient gu is the Reshetnyak energy
of u, which we denote by E2

+(u). A different but equivalent definition
of the Sobolev space W 1,2(D,X) is due to Korevaar-Schoen ([KS93])
and comes along with another definition of energy E2(u) generalizing
the classical Dirichlet energy.

If X is a Riemannian manifold then gu(z) is just the point-wise sup-
norm of the weak differential Du(z) for almost all z ∈ D. The Dirichlet-
Korevaar-Schoen energy E2(u) is obtained in this case by integrating
over D the sum of squares of eigenvalues of Du(z). It is the heart
of the classical approach to Plateau’s problem by Douglas and Rado,
extended by Morrey to Riemannian manifolds, that any minimizer of
the Dirichlet energy E2 in Λ(Γ, X) is conformal and minimizes the area
in Λ(Γ, X).

Turning to general proper metric spaces X, we recall from [LW15]
that for any Jordan curve Γ in X one can find minimizers of E2 and
E2

+ in the set Λ(Γ, X), whenever Λ(Γ, X) is not empty. The first spe-
cial case of our main result Theorem 4.3 identifies any minimizer of
the Reshetnyak energy E2

+ in Λ(Γ, X) as a minimizer of the inscribed
Riemannian area µi investigated by Ivanov in [Iva08], see also Subsec-
tions 2.3 – 2.4 below.
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THEOREM 1.1. Let Γ be any Jordan curve in a proper metric space
X. Then every map u ∈ Λ(Γ, X) which minimizes the Reshetnyak
energy E2

+ in Λ(Γ, X) also minimizes the µi-area in Λ(Γ, X).

Any minimizer u of the Reshetnyak energy as in Theorem 1.1 is
√

2-
quasiconformal. This means, roughly speaking, that u maps infinitesi-
mal balls to ellipses of aspect ratio at most

√
2, see [LW15] and Subsec-

tion 3.2 below. We emphasize that our notion of quasiconformal map
is different from the notion of quasiconformal homeomorphism studied
in the field of quasiconformal mappings. For any map v ∈ W 1,2(D,X)
there is an energy-area inequality E2

+(v) ≥ Areaµi(v); and for any u as
in Theorem 1.1 equality holds.

We find a similar phenomenon in the case of the more classical
Korevaar-Schoen energy E2, which generalizes the Dirichlet energy
from the Riemannian to the metric setting. However, the correspond-
ing Dirichlet definition of area µD seems to be new, see Subsection 3.3.

THEOREM 1.2. There exists a quasi-convex definition of area µD

such that the following holds true. For any Jordan curve Γ in a proper
metric space X, and for any map u ∈ Λ(Γ, X) with minimal Korevaar-
Schoen energy E2(u) in Λ(Γ, X), this map u minimizes the µD-area in
Λ(Γ, X).

Recall that quasi-convexity of the definition of area is a very impor-
tant feature in the present context, since it is equivalent to the lower
semi-continuity of the corresponding area functional in all Sobolev
spaces [LW15], Theorem 5.4, and therefore, closely related to the ques-
tion of the existence of area minimizers.

In order to describe the definition of area µD, we just need to fix
the values of the µD-areas of one subset in every normed plane V .
Considering the subset to be the ellipse arising as the image L(D) of
a linear map L : R2 → V (see Section 2 below), this value AreaµD(L)
equals

(1.1) AreaµD(L) =
1

2
inf{E2(L ◦ g) | g ∈ SL2}.

For any Sobolev map v ∈ W 1,2(D,X) the energy-area inequality E2(v) ≥
2 · AreaµD(v) holds true, with equality for any any minimizer u as in
Theorem 1.2. The minimizers in Theorem 1.2 are Q-quasiconformal
with the non-optimal constant Q = 2

√
2 +
√

6 ([LW15] and Subsec-
tion 3.3 below). An answer to the following question would shed light
on the structure of energy minimizers from Theorem 1.2, cf. [GM01],
p.723 for the ”dual” question.
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PROBLEM 1.3. For which g ∈ SL2 is the infimum in (1.1) attained?
Is it possible to describe the measure µD appearing in Theorem 1.2 in a
geometric way? What is the optimal quasiconformality constant of the
minimizers of the Korevaar-Schoen energy?

All definitions of area of Sobolev maps agree with the parametrized
Hausdorff area if X is a Riemannian manifold, a space with one-sided
curvature bound or, more generally, any space with the property (ET)
from [LW15], Section 11. In this case, Theorem 1.2 directly generalizes
the classical result of Douglas-Rado-Morrey.

Our results apply to all other quasi-convex definitions of energy, see
Theorem 4.2. We refer to Section 2 for the exact definitions and men-
tion as a particular example linear combinations a·E2+b·E2

++c·Areaµ,
where a, b, c ≥ 0 with a2 + b2 > 0 and where µ is some quasi-convex
definition of area. For any such energy E there exists a quasi-convex
definition of area µE such that a minimizer of E automatically provides
a quasiconformal minimizer of µE as in Theorem 1.1 and Theorem 1.2.
The definition of area µE is given similarly to (1.1).

Remark 1.1. We would like to mention a related method of obtaining
an area-minimizer for any quasi-convex definition of area µ. In the
Riemannian case this idea can be found in [HvdM99], cf. [DHS10],
Section 4.10: Consider the energy Eε = εE2

+ + (1 − ε) Areaµ. Then a
minimizer uε of Eε in Λ(Γ, X) can be found in the same way as the
minimizer of E2

+. This minimizer is automatically
√

2-quasiconformal
and minimizes the area functional (1 − ε) Areaµ +εAreaµi in Λ(Γ, X).
Due to the quasiconformality these minimizers have uniformly bounded
energy. Therefore one can go to the limit (fixing three points in the
boundary circle) and obtain a minimizer of Areaµ.

This remark also shows that the set of quasi-convex areas obtained
via the minimization of energies as in (1.1) is a dense convex subset
in the set of all quasi-convex definitions of area. It seems to be a
natural question which definitions of area correspond in this way to
some energies. In particular, if it is the case for the most famous
Hausdorff, Holmes-Thompson and Benson definitions of area.

Remark 1.2. From Theorem 4.2 and Theorem 1.1 one can deduce the
quasi-convexity of the inscribed Riemannian area µi. However, a much
stronger convexity property of this area has been shown in [Iva08].

1.3. Regularity of energy minimizers. In the presence of quadratic
isoperimetric inequalities the regularity results for area minimizers ob-
tained in [LW15] imply regularity of energy minimizers, once we have
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identified energy minimizers as area minimizers in Theorem 4.3. Recall
that a complete metric space X is said to admits a (C, l0)-quadratic
isoperimetric inequality with respect to a definition of area µ if for
every Lipschitz curve c : S1 → X of length l ≤ l0 there exists some
u ∈ W 1,2(D,X) with

Areaµ(u) ≤ C · l2

and such that the trace tr(u) coincides with c. We refer to [LW15]
for a discussion of this property satisfied by many interesting classes
of metric spaces. If µ is replaced by another definition of area µ′ then
in the definition above only the constant C will change and it will be
changed by at most by the factor 2. If the assumption is satisfied for
some triple (C, l0, µ) we say that X satisfies a uniformly local quadratic
isoperimetric inequality.

As far as qualitative statements are concerned the constants and the
choice of the area do not play any role. As a consequence of Theo-
rem 1.2 and the regularity results for area minimizers in [LW15] we
easily deduce continuity up to the boundary and local Hoelder conti-
nuity in the interior for all energy minimizers in Λ(Γ, X) for any quasi-
convex definition of energy. We refer to Theorem 4.4 for the precise
statement.

1.4. Improved regularity of µ-minimal discs. We can use Theo-
rem 1.1 to slightly improve the regularity results for solutions of the
Plateau problem obtained in [LW15]. Assume again that Γ is a Jordan
curve in a proper metric space X and let µ be a definition of area. We
introduce the following

Definition 1.1. We say that a map u ∈ Λ(Γ, X) is µ-minimal if it
minimizes the µ-area in Λ(Γ, X), and if it has minimal Reshetnyak
energy E2

+ among all such minimizers of the µ-area.

Due to Theorem 1.1, for the inscribed Riemannian definition of area
µ = µi, a µ-minimal disc is just a minimizer of the Reshetnyak en-
ergy E2

+ in Λ(Γ, X). It follows from [LW15] that, for any quasi-convex
µ, one finds some µ-minimal disc in any non-empty Λ(Γ, X). More-
over, any such µ-minimal map is

√
2-quasiconformal. Assume further

that X satisfies the (C, l0, µ)-quadratic isoperimetric inequality. In
[LW15], we used the quasiconformality to deduce that any such map
has a locally α-Hoelder continuous representative with α = 1

8πC
. How-

ever, µ-minimal maps satisfy a stronger infinitesimal condition than√
2-quasiconformality, and this can be used to improve α by a factor

of 2 · q(µ) ∈ [1, 2] depending on the definition of area µ. The number
q(µ) equals 1 for the maximal definition of area µ = µi. For other
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definitions of area µ, the number q(µ) is smaller than 1 and measures
the maximal possible deviation of µ from µi, see (2.1). For instance,
q(µb) = π

4
for the Hausdorff area µb. Thus the following result improves

the above Hoelder exponent by 2 in the case of the inscribed Riemann-
ian definition of area µ = µi and by π

2
in the case of the Hausdorff area

µ = µb:

THEOREM 1.4. Let Γ be a Jordan curve in a proper metric space X.
Assume that X satisfies the (C, l0, µ)-quadratic isoperimetric inequality
and let u be a µ-minimal disc in Λ(Γ, X). Then u has a locally α-
Hoelder continuous representative with α = q(µ) · 1

4πC
.

For µ = µi we get the optimal Hoelder exponent α = 1
4πC

as examples
of cones over small circles show (see [MR02] and [LW15], Example 8.3).

1.5. Some additional comments. The basic ingredient in the proof
of Theorem 1.1 and its generalization Theorem 4.3 is the localized
version of the classical conformality of energy minimizers. This was
already used in [LW15]. This idea shows that almost all (approximate
metric) derivatives of any minimizer u of the energy E in Λ(Γ, X) have
to minimize the energy in their corresponding SL2-orbits, as in (1.1).

The proof of the quasi-convexity of µD, generalized by Theorem 4.2,
is achieved by applying an idea from [Jos91]. We obtain a special
parametrization of arbitrary Finsler discs by minimizing the energy
under additional topological constraints. This idea might be of in-
dependent interest as it provides canonical parametrizations of any
sufficiently regular surface.

Acknowledgements: We would like to thank Frank Morgan for
useful comments.

2. Preliminaries

2.1. Notation. By (R2, s) we denote the plane equipped with a semi-
norm s. If s is not specified, R2 is always considered with its canonical
Euclidean norm, always denoted by s0. By D we denote the open unit
disc in the Euclidean plane R2 and by S1 its boundary, the unit circle.
Integration on open subsets of R2 is always performed with respect
to the Lebesgue measure, unless otherwise stated. By d we denote
distances in metric spaces. Metric spaces appearing in this note will be
assumed complete. A metric space is called proper if its closed bounded
subsets are compact.
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2.2. Seminorms and convex bodies. By S2 we denote the proper
metric space of seminorms on R2 with the distance given by dS2(s, s

′) =
maxv∈S1{|s(v)−s′(v)|}. A seminorm s ∈ S2 is Q-quasiconformal if for
all v, w ∈ S1 the inequality s(v) ≤ Q · s(w) holds true. A convex body
C in R2 is a compact convex subset with non-empty interior. Convex,
centrally symmetric bodies are in one-to-one correspondence with unit
balls of norms on R2. Any convex body C contains a unique ellipse
of largest area, called the Loewner ellipse of C. The convex body is
called isotropic if its Loewner ellipse is a Euclidean ball (cf. [GM01]).
We call a seminorm s ∈ S2 isotropic if it is the 0 seminorm, or if s is
a norm and its unit ball B is isotropic. In the last case the Loewner
ellipse of B is a multiple t·D̄ of the closed unit disc. By John’s theorem
(cf. [APT04]) B is contained in

√
2 · t · D̄. Therefore, every isotropic

seminorm is
√

2-quasiconformal.

2.3. Definitions of area. While there is an essentially unique natural
way to measure areas of Riemannian surfaces, there are many different
ways to measure areas of Finsler surfaces, some of them more appro-
priate for different questions. We refer the reader to [Iva08], [Ber14],
[APT04] and the literature therein for more information.

A definition of area µ assigns a multiple µV of the Lebesgue measure
on any 2-dimensional normed space V , such that natural assumptions
are fulfilled. In particular, it assigns the number Jµ(s), the µ-Jacobian
or µ-area-distortion, to any seminorm s on R2 in the following way. By
definition, Jµ(s) = 0 if the seminorm is not a norm. If s is a norm then
Jµ(s) equals the µ(R2,s)-area µ(R2,s)(A) of the unit Euclidean square
A ⊂ R2. Indeed, the choice of the definition of area is equivalent to a
choice of the Jacobian in the following sense.

Definition 2.1. A (2-dimensional definition of) Jacobian is a map
J : S2 → [0,∞) with the following properties:

(1) Monotonicity: J(s) ≥ J(s′) whenever s ≥ s′;
(2) Homogeneity: J(λ · s) = λ2 · J(s) for all λ ∈ [0,∞);
(3) SL2-invariance J(s ◦ T ) = J(s) for any T ∈ SL2;
(4) Normalization: J(s0) = 1.

The properties (2) and (3) can be joined to the usual transformation
rule for the area: J(s ◦ T ) = | det(T )| · J(s). It follows that J(s) = 0 if
and only if the seminorm s is not a norm. Moreover, properties (1)-(3)
imply that J is continuous. This is due to the following crucial fact: If
norms si converge to a norm s in S2 then, for any ε > 0 and all large
i, the inequalities (1− ε) · si ≤ s ≤ (1 + ε) · si hold true.
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A definition of area µ gives rise to a Jacobian Jµ described above.
On the other hand, any Jacobian J : S2 → [0,∞) provides a unique
definition of area µJ in the following way. On any (R2, s) the definition
of area µJ assigns the J(s)-multiple of the Lebesgue area of R2. For any
normed plane V , we choose a linear isometry to some (R2, s) and pull
back the corresponding measure from (R2, s) to V . By construction,
the assignments µ→ Jµ and J→ µJ are inverses of each other.

Remark 2.1. We refer to another similar geometric interpretation of a
definition of area discussed in [Ber14].

There are many non-equivalent definitions of area/Jacobian. Any
two of them differ at most by a factor of 2, due to John’s theorem,
[APT04]. The most prominent examples are the Busemann (or Haus-
dorff) definition µb, the Holmes-Thompson definition µht, the Benson
(or Gromov mass∗) definition m∗ and the inscribed Riemannian (or
Ivanov) definition µi. We refer to [APT04] for a thorough discussion of
these examples and of the whole subject; and to [Iva08], [BI12], [Ber14]
for recent developments. Here, we just mention the Jacobians of these
four examples (cf. [Ber14]). In the subsequent examples, B will always
denote the unit ball of the normed plane (R2, s).

(1) The Jacobian Jb corresponding to the Hausdorff (Busemann)
area µb equals Jb(s) = π

|B| , where |B| is the Lebesgue area of B.

(2) The Jacobian Jht corresponding to the Holmes-Thomspon area

µht equals Jht(s) = |B∗|
π

, where |B∗| is the Lebesgue area of the
unit ball B∗ of the dual norm s∗ of s.

(3) The Jacobian J∗ corresponding to Benson (Gromov mass∗) def-
inition of area m∗ equals J∗(s) = 4

|P | , where |P | is the Lebesgue

area of a parallelogram P of smallest area which contains B.
(4) The Jacobian Ji corresponding to the inscribed Riemannian

definition of area µi equals Ji(s) = π
|L| , where |L| is Lebesgue

area of the Loewner ellipse of B.

2.4. Comparision of the definitions of area. Below we denote by
|C| the Lebesgue area of a subset C ⊂ R2. Let s be a norm on R2,
let B be its unit ball and let L ⊂ B denote the Loewner ellipse of B.
If sL denotes the norm whose unit ball is L, then s ≤ sL and sL is
Euclidean. Thus, for any definition of area µ with Jacobian Jµ we have
Jµ(sL) = π

|L| and Jµ(s) ≤ Jµ(sL).

For the inscribed Riemannian area µi and its Jacobian Ji we have
equality Ji(s) = Ji(sL) in the above inequality. Hence, for any other
definition of area µ we must have Ji ≥ Jµ. In particular, the inscribed
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Riemannian area is the largest definition of area. On the other hand,
by John’s theorem, Ji ≤ 2Jµ.

We set

(2.1) q(µ) := inf
Jµ(s)

Ji(s)
,

where s runs over all norms on R2. As we have just observed, q(µi) = 1
and 1/2 ≤ q(µ) < 1 for any other definition of area µ.

Lemma 2.1. For the Hausdorff area µb we have q(µb) = π
4
.

Proof. Let B be the unit ball of the norm s on R2. In order to compare
Ji(s) and Jb(s) we just need to evaluate µi and µb on B. For the
Busemann definition of area we have µb(B) = π. On the other hand,

µi(B) = π · |B||L| , where L is the Loewner ellipse of B. The volume ratio
|B|
|L| is maximal when B is a square, see [Bal97], Theorem 6.2, in which

case it is equal to 4
π
. �

Since we will not need further statements about the function q we just
summarize here some properties without proofs. For any definition of
area µ, there exists a norm s with q(s) ·Jµ(s) = Ji(s). Moreover, using
John’s theorem one can show that this norm s can be chosen to have
a square or a hexagon as its unit ball. One can show that q(µht) = 2

π
,

where again on the supremum norm s∞ the difference between Ji and
Jht is maximal. Finally, for Gromov’s definition of area m∗ one can

show that q(m∗) =
√

3
2

. Here the maximal deviation of Ji from J∗ is
achieved for the norm whose unit ball is a regular hexagon.

2.5. Definitions of energy. An assignment of a definition of area or
Jacobian is essentially equivalent to the assignment of an area func-
tional on all Lipschitz and Sobolev maps defined on domains in R2,
see below. Similarly, the choice of an energy functional is essentially
equivalent to the following choice of a definition of energy :

Definition 2.2. A (2-dimensional conformally invariant) definition of
energy is a continuous map I : S2 → [0,∞) which has the following
properties:

(1) Monotonicity: I(s) ≥ I(s′) whenever s ≥ s′;
(2) Homogeneity: I(λ · s) = λ2 · I(s) for all λ ∈ [0,∞);
(3) SO2-invariance: I(s ◦ T ) = I(s) for any T ∈ SO2;
(4) Properness: The set I−1([0, 1]) is compact in S2.

Due to properness and homogeneity, we have I(s) = 0 only for s = 0.
The properness of I implies that a definition of energy is never SL2-
invariant, in contrast to a definition of area. The set of all definitions of
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energy is a convex cone. Moreover, for any Jacobian J, any definition
of area I and any ε > 0 the map Iε := J + ε · I is a definition of energy.
Thus the closure (in the topology of locally uniform convergence) of
the set of definitions of energy contains all definitions of area.

The following two definitions of energy are most prominent: the
Korevaar-Schoen-Dirichlet energy I2 given by

I2(s) =
1

π

∫
S1

s(v)2dv

and the Reshetnyak energy

I2
+(s) = sup{s(v)2|v ∈ S1}.

Due to properness and homogeneity any two definitions of energy are
comparable: For any definition of energy I there is a constant kI ≥ 1,
such that

(2.2)
1

kI
· I ≤ I2

+ ≤ kI · I.

2.6. Energy and area of Sobolev maps. We assume some experi-
ence with Sobolev maps and refer to [LW15] and the literature therein.
In this note we consider only Sobolev maps defined on bounded open
domains Ω ⊂ R2. Let Ω be such a domain and let u ∈ W 1,2(Ω, X) be
a Sobolev map with values in X. Then u has an approximate metric
derivative at almost every point z ∈ Ω ([Kar07],[LW15]), which is a
seminorm on R2 denoted by ap mduz. When ap mduz exists, it is the
unique seminorm s for which the following approximate limit is 0:

ap lim
y→z

d(u(z), u(y))− s(y − z)

|y − z|
= 0.

We refer the reader to [LW15], [Kar07] and mention here only that in
the case of locally Lipschitz maps u, the approximate metric derivative
is just the metric derivative defined by Kirchheim ([Kir94], cf. also
[AK00], [Iva08]). If the target space X is a Finsler manifold then the
approximate metric derivative at almost all points z is equal to |Dzu|,
where Dzu is the usual (weak) derivative and | · | is the given norm
on the tangent space Tu(z)X. A map u ∈ W 1,2(Ω, X) is called Q-
quasiconformal if the seminorms ap mduz ∈ S2 are Q-quasiconformal
for almost all z ∈ Ω.

For a definition of energy I, the I-energy of a map u ∈ W 1,2(Ω, X)
is given by

EI(u) :=

∫
Ω

I(ap mduz)dz
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This value is well-defined and finite for any u ∈ W 1,2(Ω, X), due to
(2.2). If I is the Korevaar-Schoen definition of energy I2, respectively
the Reshetnyak definition of energy I2

+ then EI(u) is the Korevaar-
Schoen respectively the Reshetnyak energy of u described in [KS93],
[Res97] and in the introduction. We will denote EI in these cases as
before by E2 and E2

+, respectively.
Similarly, given a definition of area µ and the corresponding Jacobian

Jµ one obtains the µ-area of u by integrating Jµ(ap mduz) over Ω. We
will denote it by

Areaµ(u) :=

∫
Ω

Jµ(ap mduz)dz

Pointwise comparision of µ with the inscribed Riemannian definition
of area µi discussed in Subsection 2.4 gives us for any Sobolev map u:

(2.3) q(µ)−1 · Areaµ(u) ≥ Areaµi(u) ≥ Areaµ(u).

2.7. Quasi-convexity. A definition of energy I : S2 → [0,∞) is
called quasi-convex if linear 2-dimensional subspaces of normed vec-
tor spaces have minimal I-energy. More precisely, if for every finite
dimensional normed space Y and every linear map L : R2 → Y we
have

(2.4) EI(L|D) ≤ EI(ψ)

for every smooth immersion ψ : D̄ → Y with ψ|∂D = L|∂D.
Similarly, one defines the quasi-convexity of a definition of area with

corresponding functional J : S2 → [0,∞), see Section 5 in [LW15].
As has been shown in [LW15], in extension of the classical results (cf.
[AF84]), a definition of energy is quasi-convex if and only if the map
u 7→ EI(u) is semi-continuous on any Sobolev space W 1,2(Ω, X) (with
respect to L2-convergence). Similarly, the quasi-convexity of a defi-
nition of area µ is equivalent to the semi-continuity property of the
µ-area on all Sobolev spaces W 1,2(Ω, X).

Recall that the Reshetnyak and Korevaar-Schoen definitions of en-
ergy are quasi-convex ([KS93], [Res97], [LW15]). The four definitions
of area mentioned in Subsection 2.3 are quasi-convex as well ([Iva08],
[BI12], [APT04], [LW15]).

We dwell a bit discussing the properties of a definition of area µ
which is not quasi-convex (cf. [Mor52]). Let L : R2 → Y be a linear
map to a finite-dimensional normed vector space and let ψ : D̄ → Y
be a smooth map which coincides with L on S1 and satisfies

Areaµ(ψ) < Areaµ(L|D).
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By enlarging Y if needed and by using a general position argument
we can assume that ψ is a diffeomorphism onto its image. Now we
can obtain a special sequence of maps ψm : D̄ → Y converging to
L : D̄ → Y and violating the semi-continuity property in the following
way. The map ψm differs from L on δ · m2 disjoint balls of radius
m−1, where δ > 0 is a sufficiently small, fixed constant. The difference
between ψm and L on any of these balls is given by the corresponding
translate of ψ, rescaled by the factor m−1.

Then there is a number K > 0, such that any of the maps ψm
is biLipschitz with the same biLipschitz constant K. The maps ψm
converge uniformly to the linear map L. Finally, for ε = Areaµ(L) −
Areaµ(ψ), we deduce Areaµ(ψm) = Areaµ(L) − δ · ε for all m. In
particular, Areaµ(L) > limm→∞(Areaµ(ψm)).

3. Area definition corresponding to an energy

3.1. General construction. Let now I be any definition of energy.
Consider the function Ĵ : S2 → [0,∞):

Ĵ(s) := inf{I(s ◦ T )|T ∈ SL2}
given by the infimum of I on the SL2-orbit of s. Due to the properness
of I, the infimum in the above equation is indeed a minimum, unless
the seminorm is not a norm. On the other hand, if s is not a norm
then the SL2-orbit of s contains the 0 seminorm in its closure, and
we get Ĵ(s) = 0. By construction, the function Ĵ : S2 → [0,∞) is

SL2-invariant. Since I is monotone and homogeneous, so is Ĵ . Finally,
Ĵ(s0) is different from 0. Thus, setting the constant λI to be 1

Ĵ(s0)
, we

see that JI(s) := λI · Ĵ(s) is a definition of a Jacobian in the sense of
the previous section. The definition of area which corresponds to the
Jacobian JI will be denoted by µI . By construction,

(3.1) JI(s) ≤ λI · I(s)

with equality if and only if I assumes the minimum on the SL2-orbit
of s at the seminorm s.

Definition 3.1. We will call a seminorm s minimal for the definition
of energy I, or just I-minimal, if I(s) ≤ I(s ◦ T ) for all T ∈ SL2.

Thus a seminorm s is I-minimal if and only if we have equality in
the inequality (3.1). By homogeneity and continuity, the set of all
I-minimal seminorms is a closed cone. Any I-minimal seminorm is
either a norm or the trivial seminorm s = 0. We therefore deduce by a
limiting argument:
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Lemma 3.1. There is a number QI > 0 such that any I-minimal
seminorm s is QI-quasiconformal.

3.2. The Reshetnyak energy and the inscribed Riemannian
area. We are going to discuss the application of the above construc-
tion to the main examples. In order to describe the Jacobian JI , the
normalization and the quasiconformality constants λI , QI induced by a
definition of energy I, it is crucial to understand I-minimal norms. By
general symmetry reasons one might expect that I-minimal norms are
particularly round. Our first result, essentially contained in [LW15],
confirms this expectation for the Reshetnyak energy:

Lemma 3.2. Let I = I2
+ be the Reshetnyak definition of energy. A

seminorm s ∈ S2 is I2
+-minimal if and only if s is isotropic in the

sense of Subsection 2.2.

Proof. For seminorms which are not norms the statement is clear. Thus
we may assume that s is a norm. After rescaling, we may assume
I2

+(s) = 1. Hence 1 = sup{s(v), v ∈ S1}, and D̄ is the largest Euclidean
disc contained in the unit ball B of the norm s.

Assume that s is I2
+-minimal and D̄ is not the Loewner ellipse of B.

Then there exists an area increasing linear map A : R2 → R2 such that
B still contains the ellipse A(D), hence I2

+(s ◦ A) ≤ 1. Consider the

map T = det(A)−
1
2 · A ∈ SL2. Then I2

+(s ◦ T ) < 1 since det(A) > 1.
This contradicts the assumption that s is I2

+-minimal.
On the other hand, if s is isotropic then D̄ is the Loewner ellipse of

B. Consider an I2
+-minimal norm s′ = s◦T in the SL2-orbit of s. Then

the Loewner ellipse T (D̄) of s′ must be a multiple of D̄, as we have
seen above. Hence T ∈ SO2. Since I2

+ is conformally invariant, we get
I2

+(s) = I2
+(s′), and s is I2

+-minimal. �

Now we can easily deduce:

Corollary 3.3. For the Reshetnyak definition of energy I = I2
+ the

normalization constant λI equals 1, the optimal quasiconformality con-
stant QI equals

√
2, and the induced definition of area µI is the in-

scribed Riemannian area µi.

Proof. We have λI = 1

Ĵ(s0)
= 1
I(s0)

= 1 since s0 is I2
+-minimal. Isotropic

seminorms are
√

2-quasiconformal by John’s theorem. The supremum
norm s∞ ∈ S2 is isotropic, hence I2

+-minimal. For s∞ the quasiconfor-

mality constant
√

2 is optimal.
In order to prove that the induced definition of area coincides with

the inscribed Riemannian area µi, it suffices to evaluate the Jacobians
13



on any I2
+-minimal norm s. By homogeneity we may assume again that

the Loewner ellipse of the unit ball B of s is the unit disc D̄. Then
JI(s) = 1 = Ji(s). �

3.3. The Korevaar-Schoen energy and the Dirichlet area. Un-
fortunately, in the classical case of the Korevaar-Schoen energy I = I2

we do not know much about the induced definition of area/Jacobian.
We call this the Dirichlet definition of area/Jacobian and denote it by
µD and JD, respectively. Only the normalization constant in this case
is easy to determine.

Lemma 3.4. For the Korevaar-Schoen energy I = I2, the canoni-
cal Euclidean norm s0 is I2-minimal. The normalization constant λI
equals 1

2
.

Proof. We have I2(s0) = 1
π
· 2π = 2. Therefore, it suffices to prove

the I2-minimality of s0. Since I2 and s0 are SO2-invariant, it suffices
to prove I2(s0 ◦ T ) ≥ I2(s0) for any symmetric matrix T ∈ SL2. In
this case, one easily computes I2(s ◦ T ) = 1

2
(λ2

1 + λ2
2), where λ1,2 are

the eigenvalues of T . Under the assumption λ1 · λ2 = det(T ) = 1 the
minimum is achieved for λ1 = λ2 = 1. Hence s0 is I2-minimal. �

From the corresponding property of I = I2, it is easy to deduce
that for norms s 6= s′ the inequality s ≥ s′ implies the strict inequality
JD(s) > JD(s′), in contrast to the cases of inscribed Riemannian and
Benson definitions of areas µi and m∗. In [LW15] it is shown that
for I = I2 the quasiconformality constant QI in Lemma 3.1 can be
chosen to be 2

√
2 +
√

6. However, the computation of QI in [LW15]
and the above strict monotonicity statement show that this constant
is not optimal.

Computing JD on the supremum norm s∞ it is possible to see that
µD is different from the Busemann and Holmes-Thompson definitions
of area. We leave the lengthy computation to the interested reader.

4. Main lemma and main theorems

4.1. Basic observations. Let I be a definition of energy and let µI

and JI be the corresponding definitions of area and Jacobian. Let λI
be the normalization constant from the previous section.

Let X be a metric space, Ω ⊂ R2 a domain and let u ∈ W 1,2(Ω, X) be
a Sobolev map. Integrating the point-wise inequality (3.1) we deduce:

(4.1) AreaµI(u) ≤ λI · EI(u)
14



Moreover, equality holds if and only if the approximate metric deriv-
ative ap mduz is I-minimal for almost all z ∈ Ω. In case of equality,
Lemma 3.1 implies that the map u is QI-quasiconformal.

4.2. Main Lemma. Conformal invariance of I together with the usual
transformation rule ([LW15], Lemma 4.9) has the following direct con-
sequence: For any conformal diffeomorphism φ : Ω′ → Ω which is
biLipschitz and for any map u ∈ W 1,2(Ω, X), the composition u ◦ φ is
contained in W 1,2(Ω′, X), and it has the same I-energy as u.

The general transformation formula shows that for any definition of
area µ, any biLipschitz homeomorphism φ : Ω′ → Ω, and any u ∈
W 1,2(Ω, X) the map u ◦ φ ∈ W 1,2(Ω′, X) has the same µ-area as u.

Now we can state the main technical lemma, which appears implicitly
in [LW15]:

Lemma 4.1. Let I, µI , λI be as above. Let X be a metric space and
let u ∈ W 1,2(D,X) be arbitrary. Then the following conditions are
equivalent:

(1) AreaµI(u) = λI · EI(u).
(2) For almost every z ∈ D the approximate metric derivative

ap mduz is an I-minimal seminorm.
(3) For every biLipschitz homeomorphism ψ : D → D we have

EI(u ◦ ψ) ≥ EI(u).

Proof. We have already proven the equivalence of (1) and (2). If (1)
holds, then (3) follows directly from the general inequality (4.1) and
invariance of the Areaµ under diffeomorphisms.

It remains to prove the main part, namely that (3) implies (2). Thus
assume (3) holds. The conformal invariance of I and the Riemann map-
ping theorem imply that for any other domain Ω ⊂ R2 with smooth
boundary and any biLipschitz homeomorphism ψ : Ω→ D the inequal-
ity EI(u ◦ ψ) ≥ EI(u) holds true. Indeed, we only need to compose
ψ with a conformal diffeomorphism F : D → Ω, which is biLipschitz
since the boundary of Ω is smooth.

Assume now that (2) does not hold. Then it is possible to construct
a biLipschitz map ψ from a domain Ω to D such that EI(u◦ψ) < EI(u)
in the same way as in the proof of Theorem 6.2 in [LW15], to which
we refer for some technical details. Here we just explain the major
steps. First, we find a compact set K ⊂ D of positive measure such
that at no point z ∈ K the approximate metric derivative ap mduz is I-
minimal. MakingK smaller we may assume that the map z 7→ ap mduz
is continuous on K. By continuity, we find a Lebesgue point z of K,
a map T ∈ SL2 and some ε > 0 such that I(s ◦ T ) ≤ I(s)− ε for any

15



seminorm s which arises as the approximate metric derivative ap mduy
at some point y ∈ K ∩Bε(z).

We may assume without loss of generality that z is the origin 0 and
that T is a diagonal matrix with two different eigenvalues λ1 > λ2 =
1
λ1
> 0. Then (here comes the trick!) we define a family of biLipschitz

homeomorphisms ψr : R2 → R2 as follows. The map ψr coincides with
T on the closed r-ball around 0. On the complement of this r-ball, the
map ψr is the restriction of the holomorphic (hence conformal) map
fr : C∗ → C, defined by fr(z) = c · z + r2 · d · z−1, where the constants
c, d ∈ C are given by c = 1

2
(λ1 +λ2) and d = 1

2
(λ1−λ2). Then the map

fr coincides with T on the r-circle around 0. This map ψr is biLipschitz
on R2 (and smooth outside of the r-circle around 0). Moreover, the map
ψr preserves the I-energy of the map u on the complement of the r-
ball, due to the conformality of fr and the conformal invariance of I.
Finally, by construction of T , the map ψr decreases the I-energy of u
by some positive amount (at least 1

2
επr2), if r is small enough.

Thus EI(u ◦ ψr) < EI(u) for r small enough. This provides a con-
tradiction and finishes the proof of the lemma. �

4.3. Formulation of the main theorems. The proof of the following
theorem is postponed to the next section.

THEOREM 4.2. Let I be a quasi-convex definition of energy. Then
the corresponding definition of area µI is quasi-convex as well.

Theorem 4.2 generalizes the first statement of Theorem 1.2. Together
with Corollary 3.3 it shows that µi is quasi-convex, cf. Remark 1.2.

Before turning to the main theorem stating the connection of energy
and area minimizers, we recall an important step in the solution of
the Plateau problem ([LW15], Propostion 7.5, [KS93]): Let Γ be a
Jordan curve in a proper metric space X. Assume that the sequence of
maps wi ∈ Λ(Γ, X) has uniformly bounded Reshetnyak energy E2

+(wi).
Then there exist conformal diffeomorphisms φi : D → D such that the
sequence w′i = wi ◦φ ∈ Λ(Γ, X) converges in L2 to a map w̄ ∈ Λ(Γ, X).
Note that for any quasi-convex definition of area µ or energy I, we
have in this case ([LW15], Theorem 5.4):

(4.2) Areaµ(w̄) ≤ lim inf Areaµ(wi) and EI(w̄) ≤ lim inf EI(wi).

The proof of the following theorem will rely on Theorem 4.2.

THEOREM 4.3. Let I be a quasi-convex definition of energy. Let Γ
be a Jordan curve in a proper metric space X. Any map u ∈ Λ(Γ, X)
with minimal I-energy in Λ(Γ, X) has minimal µI-area in Λ(Γ, X).
Moreover, u is QI-quasiconformal.
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Proof. Let u ∈ Λ(Γ, X) with minimal I-energy among all maps v ∈
Λ(Γ, X) be given. Then EI(u) ≤ EI(u ◦ φ) for any biLipschitz home-
omorphism φ : D → D. Due to Lemma 4.1, AreaµI(u) = λI · EI(u).
Moreover, by Lemma 3.1, almost all approximate derivatives of u are
QI-quasiconformal. This proves the last statement.

Assume that u does not minimize the µI-area and take another el-
ement v ∈ Λ(Γ, X) with AreaµI(v) < AreaµI(u). Consider the set Λ0

of elements w ∈ Λ(Γ, X) with AreaµI(w) ≤ AreaµI(v). We take a
sequence wn ∈ Λ0 such that EI(wn) converges to the infimum of the
I-energy on Λ0. Due to (2.2), the Reshetnyak energy of all maps wn
is bounded from above by a uniform constant. Using the observation
preceding Theorem 4.3, we find some w̄ ∈ Λ(Γ, X) which satisfies (4.2).
Here we have used the quasi-convexity of µI , given by Theorem 4.2.

Thus, w̄ is contained in Λ0 and minimizes the I-energy in Λ0. In
particular, EI(w̄ ◦ φ) ≥ EI(w̄), for any biLipschitz homeomorphism
φ : D → D. Applying Lemma 4.1 to the map w̄ we deduce

λI · EI(u) = AreaµI(u) > AreaµI(v) ≥ AreaµI(w̄) = λI · EI(w̄).

This contradicts the minimality of EI(u). �

4.4. Regularity of energy minimizers. The regularity of energy
minimizers is now a direct consequence of [LW15]. Recall that a Jordan
curve Γ ⊂ X is a chord-arc curve if the restriction of the metric to
Γ is biLipschitz equivalent to the induced intrinsic metric. A map
u : D → X is said to satisfy Lusin’s property (N) if for any subset S
of D with area 0 the image u(S) has zero two-dimensional Hausdorff
measure.

THEOREM 4.4. Let X be a proper metric space which satisfies a
uniformly local quadratic isoperimetric inequality. Let I be a quasi-
convex definition of energy and let Γ be a Jordan curve in X such that
the set Λ(Γ, X) is not empty. Then there exists a minimizer u of the
I-energy in Λ(Γ, X). Any such minimizer has a unique locally Hoelder
continuous representative which extends to a continuous map on D̄.
Moreover, u is contained in the Sobolev space W 1,p

loc (D,X) for some
p > 2 and satisfies Lusin’s property (N). If the curve Γ is a chord-arc
curve then u is Hoelder continuous on D̄.

Proof. The existence of a minimizer u of the I-energy in Λ(Γ, X) is
a consequence of [LW15], Theorem 5.4 and Proposition 7.5, see also
Theorem 7.6.

Any map u minimizing the I-energy in Λ(Γ, X) is quasiconformal
and minimizes the µI-area in Λ(Γ, X), by Theorem 4.3. The result
now follows from [LW15], Theorems 8.1, 9.2, and 9.3. �
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4.5. Optimal regularity. We are going to provide the proof of The-
orem 1.4. Thus, let u ∈ W 1,2(D,X) be as in Theorem 1.4. Then for
any biLipschitz homeomorphism ψ : D → D we have Areaµ(u ◦ ψ) =
Areaµ(u) and therefore E2

+(u ◦ ψ) ≥ E2
+(u). Applying Lemma 4.1 and

Lemma 3.2 we see that u is infinitesimally isotropic in the following
sense.

Definition 4.1. A map u ∈ W 1,2(D,X) is infinitesimally isotropic if
for almost every z ∈ D the approximate metric derivative of u at z is
an isotropic seminorm.

Theorem 1.4 is thus an immediate consequence of the following the-
orem.

THEOREM 4.5. Let Γ be a Jordan curve in a metric space X. As-
sume that X satisfies the (C, l0, µ)-quadratic isoperimetric inequality
and let u ∈ Λ(Γ, X) be an infinitesimally isotropic map having min-
imal µ-area in Λ(Γ, X). Then u has a locally α-Hoelder continuous
representative with α = q(µ) · 1

4πC
.

Proof. Due to [LW15], u has a unique continuous representative. For
any subdomain Ω of D we have

(4.3) E2
+(u|Ω) = Areaµi(u|Ω)

by Lemma 4.1. Looking into the proof of the Hoelder continuity of u
in [LW15], Proposition 8.7, we see that the quasiconformality factor
Q of u (which, as we know, is bounded by

√
2) comes into the game

only once. Namely, this happens in the estimate (40) in Lemma 8.8,
where the inequality E2

+(u|Ω) ≤ Q2 ·Areaµ(u|Ω) appears for open balls
Ω ⊂ D.

Using (4.3) together with (2.3) we can replace this estimate (40) by

E2
+(u|Ω) = Areaµi(u|Ω) ≤ q(µ)−1 · Areaµ(u|Ω).

Hence we can replace the factor Q2 in the proof of [LW15], Proposi-
tion 8.7 by the factor q(µ)−1. Leaving the rest of that proof unchanged,
we get α = q(µ) · 1

4πC
as a bound for the Hoelder exponent of u. �

5. Quasi-convexity of µI

This section is devoted to the

Proof of Theorem 4.2. Assume on the contrary, that the definition of
energy I is quasi-convex, but that µI is not quasi-convex. Consider a
finite-dimensional normed vector space Y , a linear map L : R2 → Y
and a sequence of smooth embeddings ψm : D̄ → Y as in Subsection
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2.7, such that the following holds true. The maps ψm coincide with L
on the boundary circle S1, they are K-biLipschitz with a fixed constant
K, and they converge uniformly to the restriction of L to D̄. Finally,
for some ε > 0 and all m > 0, we have

AreaµI(L|D) ≥ AreaµI(ψm) + ε.

We will use this sequence to obtain a contradiction to the semi-continuity
of EI . The idea is to modify ψm by (almost) homeomorphisms, so that
the new maps satisfy equality in the main area-energy inequality (4.1).
We explain this modification in a slightly more abstract context of
general biLipschitz discs.

The first observation is a direct consequence of the fact that the
diameter of a simple closed curve in R2 equals the diameter of the
corresponding Jordan domain.

Lemma 5.1. Let Z be a metric space which is K-biLipschitz to the disc
D̄ and let u : D̄ → Z be any homeomorphism. Then for any Jordan
curve γ ⊂ D̄ and the corresponding Jordan domain J ⊂ D̄ we have
diam(u(γ)) ≥ K2 · diam(u(J)).

By continuity, the same inequality holds true for any uniform limit
of homeomorphisms from D̄ to Z, the class of maps we are going to
consider now more closely. Let again the space Z be K-biLipschitz to
the unit disc, let us fix three distinct points p1, p2, p3 on S1 and three
distinct points x1, x2, x3 on the boundary circle Γ of Z. Let Λ0(Z)
denote the set of all continuous maps u : D̄ → Z, which send pi to xi,
which are uniform limits of homeomorphisms from D̄ to Z, and whose
restrictions to D are contained in the Sobolev space W 1,2(D,Z).

As uniform limits of homeomorphisms, any map u ∈ Λ0(Z) has the
whole set Z as its image. When applied to all circles γ contained in
D, the conclusion of Lemma 5.1 shows that any u ∈ Λ0(Z) is K2-
pseudomonotone in the sense of [MM95]. Fixing a biLipschitz homeo-
morphism ψ : D̄ → Z, we see that ψ−1 ◦u : D̄ → D̄ is pseudomonotone
as well. Using [MM95], we deduce that ψ−1 ◦ u satisfies Lusin’s prop-
erty (N), for any u ∈ Λ0(Z). Hence, any u ∈ Λ0(Z) satisfies Lusin’s
property (N) as well. See also [Kar07], Theorem 2.4.

Lemma 5.2. For all elements u ∈ Λ0(Z) the value AreaµI(u) is inde-
pendent of the choice of u.

Proof. Fix again the biLipschitz homeomorphism ψ : D̄ → Z and
consider v = ψ−1 ◦u ∈ Λ0(D̄). Since v is a uniform limit of homeomor-
phisms, any fiber of v is a cell-like set ([HNV04], p.97), in particular,
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any such fiber is connected. Applying the area formula to the contin-
uous Sobolev map v : D → D̄ which satisfies Lusin’s property (N) (cf.
[Kar07]), we see that for almost all z ∈ D the preimage v−1(z) has only
finitely many points. By the connectedness of the fibers, we see that
almost every fiber v−1(z) has exactly one point. Now we see:

AreaµI(u) =

∫
D

JI(ap mduz)dz =

∫
D

| det(dzv)|JI(mdψv(z))dz.

The area formula for the Sobolev map v : D → D ([Kar07]) gives us:

AreaµI(u) = JI(mdψy)dy = AreaµI(ψ).

�

The next lemma is essentially taken from [Jos91]:

Lemma 5.3. For any C > 0, the set ΛC
0 (Z) of all elements u in Λ0(Z)

with E2
+(u) ≤ C is equi-continuous.

Proof. The equi-continuity of the restrictions of u to the boundary
circle S1 is part of the classical solution of the Plateau problem, see
[LW15], Propostion 7.4. By the Courant-Lebesgue lemma ([LW15],
Lemma 7.3), for any ε > 0 there is some δ = δ(ε, C) such that for

any x ∈ D̄ and any u ∈ ΛC
0 (Z) there is some

√
δ > r > δ such that

∂Br(x) ∩ D̄ is mapped by u to a curve of diameter ≤ ε.
If Bδ(x) does not intersect the boundary circle S1 then u(Bδ(x))

has diameter ≤ K2 · ε by Lemma 5.1. On the other hand, if Bδ(x)
intersects S1, then we see that the image of the intersection of Bδ(x)
with S1 has diameter bounded as well by some ε′ > 0 depending only
on δ and going to 0 with δ, due to the equi-continuity of the restrictions
u|S1 . We may assume ε = ε′. Then the Jordan curve consisting of the
corresponding parts of ∂Bδ(x) and boundary S1 has as its image a
curve of diameter at most 2ε. Thus using the biLipschitz property of
Z as in Lemma 5.1, we see that the ball Bδ(x) is mapped onto a set of
diameter ≤ 2K2 · ε. �

The proof above shows that the modulus of continuity of any u ∈
ΛC

0 (Z) depends only on the constants C,K, the boundary circle Γ ⊂ Z
and the choice of the fixed points xi ∈ Γ.

Corollary 5.4. There is a map u ∈ Λ0(Z) with minimal I-energy in
Λ0(Z). This element u satisfies AreaµI(u) = λI · EI(u).

Proof. Take a sequence un ∈ Λ0(Z) whose I-energies converge to the
infimum of I on Λ0(Z). By (2.2), E2

+ is bounded by a multiple of I.
Therefore, we can apply Lemma 5.3 and deduce that the sequence un
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is equi-continuous. By Arzela-Ascoli, we find a map u : D̄ → Z as a
uniform limit of a subsequence of the un. This map u is a uniform limit
of uniform limits of homeomorphisms, hence u itself is a uniform limit
of homeomorphisms. Moreover, u(pi) = xi for i = 1, 2, 3. Finally, the
map is contained in W 1,2(D,X) as an L2-limit of Sobolev maps with
uniformly bounded energy, hence u ∈ Λ0(Z). Since I is quasi-convex,
we have EI(u) ≤ limn→∞EI(un), see [LW15], Theorem 5.4. Therefore,
u has minimal I-energy in Λ0(Z).

If φ : D̄ → D̄ were a biLipschitz homeomorphism with EI(u ◦ φ) <
EI(u) we would consider a Möbius map φ0 : D̄ → D̄, such that φ ◦ φ0

fixes the points pi. Then the map u′ := u ◦ φ ◦ φ0 is in Λ0(Z) and
has the same I-energy as u ◦ φ, due to the conformal invariance of I.
This would contradict the minimality of EI(u) in Λ0(Z). Hence such
a homeomorphism φ cannot exist and we may apply Lemma 4.1, to
obtain the equality AreaµI(u) = λI · EI(u). �

Now it is easy to use ψn to obtain a contradiction to the quasi-
convexity of I. Denote by Zn the image ψn(D̄) and by Z the ellipse
L(D̄). By construction, all Zn and Z are K-biLipschitz to D̄ and share
the same boundary circle. We denote it by Γ and fix the same triple
x1, x2, x3 in Γ for all Zn and Z.

Consider a map vn ∈ Λ0(Zn) with minimal I-energy in Λ0(Zn). By
Corollary 5.4, such vn exists and satisfies AreaµI(vn) = λI · EI(vn).
Moreover, by Lemma 5.3 and the subsequent observation, the maps
vn are equi-continuous. Finally, by Lemma 5.2, we have AreaµI(vn) =
AreaµI(ψn).

The images of the maps vn : D̄ → Zn → Y are contained in a
compact set. Hence, by Arzela-Ascoli after choosing a subsequence, the
maps vn uniformly converge to a map v : D̄ → Z. Moreover, identifying
Zn with Z by some uniformly biLipschitz homeomorphisms point-wise
converging to the identity of Z, we see that the limiting map v can be
represented as a uniform limit of homeomorphisms from D̄ to Z. Since
the vn have uniformly bounded energies, the limit map v lies in the
Sobolev class W 1,2(D,Z). Thus, by construction, v ∈ Λ0(Z). Finally,
by the semi-continuity of I, we must have EI(v) ≤ lim infn→∞EI(vn).

Taking all inequalities together we get for large n:

AreaµI(v) = AreaµI(L|D) ≥ AreaµI(ψn) + ε = λI · EI(vn) + ε

≥ λI · EI(v) +
1

2
ε.

But this contradicts the main inequality (4.1) and finishes the proof of
Theorem 4.2. �
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