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Abstract. We prove that upper curvature bounds in the sense
of Alexandrov can be improved locally by using appropriate con-
formal changes. As a new technical tool we derive a generalization
to metric spaces and semiconvex functions of the classical differen-
tial geometric property that compositions of harmonic maps with
convex functions are subharmonic.

1. Introduction

1.1. Main results. There is a significant difference between the exis-
tence of global non-positive upper curvature bounds and the existence
of some upper curvature bound κ ∈ R. For instance, any complete
non-positively curved space is aspherical. On the other hand, any sim-
plicial complex carries a metric of curvature bounded from above by 1
in the sense of Alexandrov, [Ber83].

The following result confirms the expectation that in local consider-
ations the value of the upper curvature bound does not matter:

Theorem 1.1. For κ ∈ R let the metric space (X, d) be CAT(κ). Let
O = Br(x) be an open ball of radius r around x in X. If κ > 0 assume
r < π

2
√
κ

. Then there exists a complete CAT(-1) metric d′ on O, such

that the identity map (O, d)→ (O, d′) is locally bilipschitz.

In particular, in many questions concerning only local topological
properties of CAT(κ) spaces, like most of [Kle99], [LN19], [LN18], one
may always assume κ to be −1.

Besides the theory of minimal discs, Theorem 1.1 relies on a gen-
eralization of the classical observation that the restriction of a convex
function to a harmonic map is subharmonic, [Ish79], [KS93], [Che95],
[Fug05]. Here we derive the following natural extension to semi-convex
functions as a direct consequence of the contraction properties of gra-
dient flows of such functions.

Theorem 1.2. Let Ω be a domain in a Euclidean space Rn and let
u : Ω→ X be a harmonic map into a CAT(κ) space X. Let f : X → R
be a Lipschitz continuous λ-convex function.
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Then for the composition f◦u ∈ W 1,2
loc (Ω) the distributional Laplacian

∆(f ◦ u) is a signed locally finite measure which satisfies

∆(f ◦ u) ≥ λ · e2
u ,

where e2
u ∈ L1(Ω) is the energy density of u.

Recall that a function f : X → R is called λ-convex if the function

t→ f ◦ γ(t)− λ

2
· t2

is convex, for any unit speed geodesic γ in X.
Any Sobolev function with vanishing energy density has a constant

representative. As an immediate consequence we obtain:

Corollary 1.3. Let Ω be a domain in a Euclidean space Rn and let
u : Ω→ X be a harmonic map into a CAT(κ) space X. Let f : X → R
be Lipschitz and 1-convex. If the composition f ◦ u is constant then u
itself is a constant map.

1.2. Comments on Theorem 1.2. The proof of Theorem 1.2 does
not use any specific property of Ω and applies without changes to any
domain in a Riemannian manifold and to domains in admissible Rie-
mannian polyhedra in the sense of [Fug05], [DM10], [BFH+16].

The proof of Theorem 1.2 does not use the upper curvature bound
assumption in an essential way either. It only relies on the existence and
the contracting behaviour of gradient flows of semi-convex functions,
which is valid in much greater generality. For instance these features
are true in spaces with lower curvature bounds, [AKP16], [Pet07] and
in some spaces of probability measures, [AGS05], [Oht09].

The importance of the result for spaces of curvature bounded above
lies in a great variety of semi-convex functions. For instance, for every
point x in a CAT(κ) space X the function f(y) = d2(x, y) is 1-convex
if κ ≤ 0. If κ > 0 then the function f is ε-convex on the ball Br(x)
for any r < π

2
√
κ

and some ε = ε(r, κ) > 0. This in conjunction with

Theorem 1.4 below leads to the proof of Theorem 1.1.
Moreover, on any CAT(0) space X the distance function d : X×X →

R is convex. Similarly, for any closed ball B of radius less than π
2
√
κ

in any CAT(κ) space there exists a convex function ψ : B × B → R,
comparable (up to a bounded factor) with the distance d(x, y), [Ken91],
[Yok16]. This directly implies the uniqueness of solutions of the Dirich-
let problem and the continuous dependence of harmonic maps on their
traces. The existence of the harmonic maps with prescribed trace and
their regularity involve some finer arguments but are heavily based on
Theorem 1.2 for the functions d and ψ, respectively, [KS93], [Ser95].

1.3. Comments and generalizations of Theorem 1.1. The proof
of Theorem 1.1 follows [LS17] and defines the metric d′ via a conformal
change of the original metric d with a sufficiently convex function.
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We refer to [LS17] and Subsection 4.1 below for the definition and
basic properties of conformally changed spaces. We just note here that
the metric d′ provided by the proof of Theorem 1.1 has the following
additional properties. The distance to the central point x in (O, d′)
depends only on the distance to x in (O, d). Moreover, the tangent
spaces at any point y ∈ O with respect to both metrics d and d′ are
isometric. This condition implies that (O, d′) is geodesically complete
if (O, d) is locally geodesically complete, see [LN19].

The control of the upper curvature bound under conformal changes
is obtained by an application of the theory of minimal discs as in [LS17]
together with Theorem 1.2. The following more general statement pro-
vides the optimal analogue of the the formula expressing the curvature
of a Riemannian manifold after a conformal change.

Theorem 1.4. For c, C, κ, λ ∈ R, let X be a CAT(κ) space and let
f : X → [c, C] be a Lipschitz continuous λ-convex function. Further,
let Y = ef ·X denote the conformally equivalent space.

• If κ−4λ ≤ 0 then Y is CAT(κ̄) with κ̄ = e−2C · (κ−4λ).
• If κ− 4λ > 0 and λ > 0 then Y is CAT(κ̄) with
κ̄ = e−2c · (κ−4λ).

The proof of Theorem 1.4 provides also a local statement in the case
κ−4λ > 0 and λ ≤ 0, see Theorem 5.1. Moreover, as the proof of The-
orem 1.4 shows, one can localize the statement by writing the formulas
in Theorem 1.4 using only local bounds and local semi-convexity of f .

As another direct application of Theorem 1.4 we prove that any
CAT(0) space (X, d) admits another CAT(0) metric which is locally
negatively curved, see Theorem 5.2 below. This result also applies to
everywhere branching Euclidean buildings, where some rigidity might
have been expected, see [KL97], [Kra11]. However, in Theorem 5.2 the
local negative curvature bound needs to tend to zero at infinity. In-
deed, no conformal change of the Euclidean plane results in a complete
Riemannian manifold of curvature ≤ −1, [MT02, Corollary 7.3]. Thus,
the answer to the following question, very natural in view of [AB04]
and our Theorems 1.1, 5.2, cannot be obtained by means of this paper:

Question 1.5. Given a CAT(0) space X, does there exists a CAT(-1)
metric on X defining the same topology?

1.4. Structure of the paper. In the preliminaries we recall basics
of Sobolev maps and variation of length under gradient flows of semi-
convex functions. This variation is applied in Section 3 to obtain a
proof of Theorem 1.2. In Section 4, we recall some structural results
about spaces with upper curvature bounds, minimal discs and confor-
mal changes used in Section 5 to prove the main results of the paper.

1.5. Acknowledgments. We would like to thank Grigori Avramidi
for posing a question which has lead to Theorem 1.1.
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2. Preliminaries

2.1. Notations and spaces with upper curvature bounds. We
refer the reader to [BBI01], [BH99] and [AKP16] for basics on metric
geometry and CAT(κ) spaces. Here we just agree on notation, some
finer properties will be discussed in Subsection 4.3.

In this paper all CAT(κ) spaces will be complete length spaces by
definition. By d we will denote distances in metric spaces. We will let
D ⊂ R2 be the open Euclidean unit disc, D̄ ⊂ R2 the closed Euclidean
unit disc and S1 = ∂D̄ ⊂ R2 the unit circle.

For a Lipschitz function f : X → R on a metric space X we denote
by |∇−p f | ∈ [0,∞) the descending slope of f at p ∈ X defined by

|∇−p f | = max{0, lim sup
x→p

f(p)− f(x)

d(p, x)
}.

2.2. Semi-convex functions and their gradient flows. Let X be
a CAT(κ) space. For any Lipschitz continuous λ-convex function f :
X → R there exists the locally Lipschitz continuous gradient flow Φ :
[0,∞) × X → X of f , such that for any x the flow line t → Φt(x) is
the gradient curve of the function f starting at x.

As a reference one can use [OP17] or [Lyt05], see also [Pet07], [May98]
and [AGS05] for a general theory of gradient flows in metric spaces.

From all properties of gradient flows we will only need the following
distance estimate on the change of length under the gradient flow. In
[Pet07, Lemma 2.2.1, Lemma 2.1.4] it is proven for Alexandrov spaces
but the proof relies only on the first variation formula and is identical
in our setting of CAT(κ) spaces.

Corollary 2.1. Let X be CAT(κ) and let f a Lipschitz continuous
λ-convex function on X with gradient flow Φ. Let γ : [a, b]→ X be an
absolutely continuous curve and let ρ : [a, b]→ [0,∞) be Lipschitz.

Then η(s) := Φρ(s)(γ(s)) is an absolutely continuous curve and for
almost all s ∈ [a, b] its velocity is bounded by

|η′(s)|2 ≤ e−2λ·ρ(s)(|γ′(s)|2 − 2(f ◦ γ)′(s) · ρ′(s) + |∇−γ(s)f |
2 · (ρ′(s))2).

2.3. Sobolev maps and energy. By now there exists a well estab-
lished theory of Sobolev maps with values in metric spaces, [HKST15].
We will follow [LW17] and restrict our revision to the special case
needed in this paper.

Let X be a complete metric space. Let Ω ⊂ Rn be a Lipschitz
domain and denote by L2(Ω, X) the set of measurable and essentially
separably valued maps u : Ω → X such that for some and thus every
x ∈ X the function ux(z) := d(x, u(z)) belongs to L2(Ω).
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Definition 2.2. A map u ∈ L2(Ω, X) belongs to the Sobolev space
W 1,2(Ω, X) if there exists h ∈ L2(Ω) such that for every x ∈ X the
composition ux is contained in the classical Sobolev space W 1,2(Ω) and
its weak gradient satisfies |∇ux| ≤ h almost everywhere on Ω.

Each Sobolev map u has an associated trace tr(u) ∈ L2(∂Ω, X),
see [KS93]. If u extends continuously to a map û on Ω̄, then tr(u) is
represented by the restriction û|∂Ω̄.

There are several natural definitions of energy for Sobolev maps, see
[LW17, Section 4]. We will only use the Korevaar–Schoen energy. It can
be defined in many different ways, for instance, using the approximate
metric differentials [LW17, Proposition 4.6]. The expression we are
going to use is the following one.

Any map u ∈ W 1,2(Ω, X) has a representative, also denoted by u,
which is absolutely continuous on almost all curves in Ω, [HKST15].
Then, for any vector v ∈ Rn the restriction of u to almost any segment
parallel to v is absolutely continuous, hence has a well defined finite
velocity at almost all times. Thus the function mu(x, v) which measures
the velocity of the curve t → u(x + tv) at t = 0 is well-defined almost
everywhere on Ω × Rn. We mention that, for almost all x ∈ Ω, the
function v → mu(x, v) is a semi-norm on Rn, the approximate metric
differential of u at x, which in fact is Euclidean, if X is CAT(κ), [KS93],
[LW17, Section 11].

The energy density of u is defined as

e2
u(z) =

1

ωn

∫
Sn−1

|mu(x, v)|2 dv ,

where ωn denotes the Lebesgue measure of the unit ball in Rn. The
Korevaar–Schoen energy of u is given by

E2(u) :=

∫
Ω

e2
u(z) dz .

The map u ∈ W 1,2(Ω, X) is called harmonic if for all w ∈ W 1,2(Ω, X)
with the same trace as u one has

E2(u) ≤ E2(w) .

If X is CAT(0) or a CAT(κ) space of sufficiently small diameter,
then any harmonic map is locally Lipschitz continuous and uniquely
determined by a prescribed trace [KS93], [Ser95], [Fug08], [BFH+16].

3. First variation of energy

For Sobolev maps in CAT(κ) spaces we have the following analog of
the classical first variation formula.

Lemma 3.1. Let X be a CAT(κ) space and f a Lipschitz continuous
λ-convex function on X with gradient flow Φ : [0,∞)×X → X.
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Let u ∈ W 1,2(Ω, X) be given. For any Lipschitz continuous test
function ρ : Ω→ [0,∞) with compact support in Ω, define a variation
ut of u by

ut(x) = Φ(tρ(x), u(x)).

Then ut ∈ W 1,2(Ω, X) and the following inequality holds

(3.1)
d

dt

+∣∣∣
t=0
E2(ut) ≤ −2

∫
Ω

(
λ · e2

u(x) · ρ(x) + 〈∇x(f ◦ u),∇xρ〉
)
dx

where the left-hand side is the upper Dini derivative.

Proof. We fix t > 0. As a composition of a Sobolev and a Lipschitz
map, the map ut is contained in W 1,2(Ω, X).

Consider the curves γ(s) = u(x+sv) and η(s) = Φ(t·ρ(x+sv), γ(s)).
By definition, for almost all x, v ∈ Ω × Sn−1, the velocities of γ

respectively η at s = 0 are exactly mu(x, v) and mut(x, v), the val-
ues of the corresponding approximate metric differentials. Applying
Corollary 2.1 we get the estimate, valid at all such x, v:

m2
ut(x, v) ≤ e−2λ·t·ρ(x)(m2

u(x, v)−2t 〈∇x(f ◦ u), v〉·〈∇xρ, v〉+t2|∇u(x)f |2·〈∇xρ, v〉2)

Averaging over Sn−1 and using the equality

1

ωn

∫
Sn−1

〈w1, v〉 · 〈w2, v〉 dv = 〈w1, w2〉 ,

valid for all w1, w2 ∈ Rn , we obtain the estimate of the energy densities,
valid pointwise almost everywhere on Ω:

e2
ut(x) ≤ e−2λ·t·ρ(x)(e2

u(x)− 2t 〈∇xρ,∇x(f ◦ u)〉+ t2|∇u(x)f |2 · |∇xρ|2) ≤

≤ (1− 2λρ(x) · t)(e2
u(x)− 2t 〈∇xρ,∇x(f ◦ u)〉) + Ct2 ,

for some constant C depending on λ, ρ, f and u.
The claim follows now directly by integration over Ω. �

Now we can easily derive:

Proof of Theorem 1.2. Appyling Lemma 3.1 and the definition of har-
monicity, we see that the right hand side of (3.1) must be non-negative
for any non-negative Lipschitz continuous function ρ with compact sup-
port in Ω. Thus the distributional Laplacian ∆(f ◦ u) satisfies

∆(f ◦ u)(ρ) = −
∫

Ω

〈∇x(f ◦ u),∇xρ〉 dx ≥ λ

∫
Ω

e2
u · ρ .

By the representation theorem of Riesz in distirbution theory, this is
sufficient to draw the conclusion. �
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4. Preparations

4.1. Length spaces and their conformal changes. The length of
a rectifiable curve γ in a metric space X is denoted by `(γ). A metric
space X is a length space if the distance between any two points is
equal to the greatest lower bound for lengths of curves connecting the
respective points. A curve c : [a, b] → X will be called geodesic if it is
an isometric embedding. The space X itself will be called geodesic if
any two points in X are joined by a geodesic.

We refer to [LS17] for more details on what follows here. Let X be
a length space and f : X → (0,∞) be a continuous function.

We define the f -length of a rectifiable curve γ : [a, b]→ X by

(4.1) `f (γ) =

∫ b

a

f(γ(t)) · |γ̇(t)| dt ,

where |γ̇(t)| denotes the velocity of the curve γ at time t. The confor-
mally changed metric df on the space X is defined by

(4.2) df (x, y) = inf
γ
{`f (γ) ; γ Lipschitz curve from x to y} .

The space f ·X := (X, df ) is a length space called the metric space
conformally equivalent to X with conformal factor f .

The identity map idf : X → f ·X is a locally bilipschitz homeomor-
phism. If f is bounded from below by a positive constant and X is
complete then f ·X is complete as well.

We will need the following observation:

Lemma 4.1. Let X be a length space and assume X = Br(x) for some
x ∈ X and r > 0. Let ξ : [0, r) → (0,∞) be continuous and consider
the function f(y) := ξ(d(x, y)) on X. Then, in the conformally changed
space f ·X, the distance function to x can be computed as:

df (x, y) =

∫ d(x,y)

0

ξ(t) dt .

Proof. Consider concentric metric spheres Ss(x) of radii s ≤ d(x, y)
around x. Then for any 0 ≤ s0 < s1 ≤ d(x, y) and any point z ∈ Ss1(x)
we can estimate the df -distance from z to Ss0(x) as

|s1 − s0| · min
s0≤s≤s1

ξ(s) ≤ df (z, Ss0(x)) ≤ |s1 − s0| · max
s0≤s≤s1

ξ(s) .

The proof of the lemma follows by writing the integral
∫ d(x,y)

0
ξ(t) dt

as a limit of Riemann sums as on the right and left hand sides of the
above inequality.

�
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4.2. Recognizing CAT(κ) spaces. For us it will be important that
CAT(κ) spaces can be recognized without referring to geodesic tri-
angles. By a Jordan curve in a metric space X we denote a subset
homeomorphic to a circle.

We say that a metric space Y majorizes a rectifiable Jordan curve Γ
in a metric space X if there exists a 1-Lipschitz map P : Y → X which
sends a Jordan curve Γ′ ⊂ Y bijectively in an arc length preserving way
onto Γ. The following is proved in [LS17, Proposition 2] for CAT(0)
spaces. Along the same lines we deduce:

Proposition 4.2. Let κ ∈ R and Λ > 0 be such that Λ ≤ π√
k

if κ > 0.

Let X be a complete length metric space.
If any Jordan curve Γ in X of length < 2Λ is majorized by some

CAT(κ) space YΓ, then any closed ball B in X of any radius r < Λ
2

is
convex in X and CAT(κ) .

Moreover, if κ > 0 and Λ = π√
k

then X is CAT(κ).

Proof. The argument in [LS17, Proposition 2] shows that any pair of
points in X at distance less than Λ is connected by a unique geodesic in
X. Moreover, such geodesics depend continuously on their endpoints.

As in [LS17, Proposition 2] the assumption implies that any trian-
gle in X of perimeter less than 2Λ is not thicker than its comparison
triangle in the constant curvature surface.

For κ > 0 and Λ = π√
k

this implies by definition, that X is CAT(κ).

For general Λ, the condition implies that X is locally CAT(κ) and
the statement follows from [Bal04, 6.10], see Lemma 4.3 below. �

4.3. Local-to-global in CAT(κ) spaces. The basic local-to-global
theorem about CAT(κ) spaces is the theorem of Cartan–Hadamard,
saying that a complete length space, which is locally CAT(κ) with
κ ≤ 0, is a CAT(κ) space if and only if it is simply connected.

In order to describe related local-to-global statements for all κ, we
recall that the injectivity radius of a local CAT(κ) space X is the
supremum of all r > 0, such that any pair of points x and y in X at
distance less than r are connected by a unique geodesic and that this
geodesic depends continuously on the endpoints.

Combining [Bal04, 6.10] and [AKP16, 8.11.3] we obtain the following.

Lemma 4.3. Let X be a complete length space which is locally CAT(κ).
Let r > 0 be such that r < π

2
√
κ

for κ > 0.

If the injectivity radius of X is larger than r then any ball B̄r(x) is
a convex CAT(κ) subset of X.

The next local-to-global result is also well-known.

Lemma 4.4. Let X be a complete length space which is locally CAT(κ).
Let Λ > 0 be such that Λ ≤ π√

κ
if κ > 0.
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Assume that for any closed curve Γ of length less than 2Λ there exists
a homotopy Γt, t ∈ [0, 1] from Γ = Γ0 to a constant curve Γ1 such that
the length of Γt is less than 2Λ for all t.

Then any closed ball of radius less than Λ
2

in X is convex and CAT(κ).

Proof. Let Γ be a closed curve of length less than 2 Λ. Our assumptions
allow to apply [AKP16, 8.13.4], to conclude that Γ is majorized by a
CAT(κ) space. The claim now follows from Proposition 4.2. �

Corollary 4.6 below will slightly strengthen the next result.

Proposition 4.5. Let Z be a compact geodesic space homeomorphic to
D̄. If Z is locally CAT(1) and has Hausdorff area H2(Z) less than 2π,
then Z is CAT(1).

Proof. Otherwise Z contains an isometric embedding Γ of a round circle
S1

2l of length 2l < 2π in Z, [Bal04, 6.9]. The closed Jordan domain Z1

cut out of Z by Γ is convex, hence locally CAT(1) and its Hausdorff
area is also less than 2π.

Doubling Z1, thus gluing two copies of it along Γ, we obtain a space
homeomorphic to the 2-dimensional sphere, which has Hausdorff area
less than 4π and which is locally CAT(1), by Reshetnyak’s gluing the-
orem, [AKP16, Theorem 8.9.1].

But this contradicts the Gauss-Bonnet formula, [Res93, (8.15)]. �

As a consequence we deduce the following analog of [LW18, Propo-
sition 12.1] for κ 6= 0.

Corollary 4.6. Let Ẑ be a length space homeomorphic to the open disc
D. For κ ∈ R let Ẑ be locally CAT(κ) and assume that for κ > 0 the

area H2(Ẑ) is at most 2π
κ

. Then the completion Z of Ẑ is CAT(κ).

Proof. We exhaust the space Ẑ by compact closed discs Zn with bound-
ary being a geodesic polygon as in the proof of [LW18, Proposition
12.1]. As in [LW18, Section 11.2], we readily see that these subsets Zn
are locally CAT(κ ) in their intrinsic metrics.

Moreover, a limiting argument as in [LW18, Proposition 12.1] shows
that it suffices to verify that the closed discs Zn are globally CAT(κ).

For κ ≤ 0, this statement follows directly by the theorem of Cartan–
Hadamard. For κ > 0, we may rescale the space and assume κ = 1.
Any open non-empty subset of Z0 has positive H2-area, [LN19, Theo-
rem 1.2], thus H2(Zn) < 2π, for any n. The global CAT(1) property of
Zn is exactly Proposition 4.5. �

4.4. Surfaces. In the case of flat domains the curvature of conformally
changed metrics has been investigated in detail by Yuri Reshetnyak,
see [Res93] and the references therein. In this case it is even possible to
relax the continuity and positivity assumptions on conformal factors.
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We say that a function f : U → [0,∞) on a domain U ⊂ R2 is
κ-log-subharmonic, if f is upper semi-continuous, contained in L1

loc and
satisfies weakly

∆ log f +
κ

2
f 2 ≥ 0 .

For a κ-log-subharmonic function f one can use formulas (4.1) and
(4.2) to define the conformally changed metric on U . Indeed, we have
the following result due to Reshetnyak, see Theorem 7.1.1 in [Res93],
see also [Mes01, Theorem 6.1] and [LW18, Theorem 8.1, Section 17].

Theorem 4.7. Let U ⊂ R2 be a domain and f a κ-log-subharmonic
function on U . Then f ·U is locally CAT(κ) and idf : U → f ·U is a
homeomorphism.

The next computational lemma will provide control on double con-
formal changes.

Lemma 4.8. Let c, C, κ, λ ∈ R. Let U ⊂ R2 be a domain and ϕ
a κ-log-subharmonic function on U . Suppose that ψ : U → [c, C] is
a continuous function which safisfies ∆ψ ≥ µ · ϕ2 weakly. Then the
product eψ · ϕ is κ̄-log-subharmonic, with

• κ̄ = e−2C · (κ−2µ) if κ−2µ ≤ 0;
• κ̄ = e−2c · (κ−2µ) if κ−2µ ≥ 0.

Proof. Suppose κ−2µ ≤ 0. Then −(κ−2µ) ≥ −κ̄ · (eψ)2 and the claim
follows from

∆ log(eψϕ) = ∆ψ + ∆ logϕ ≥ µ · ϕ2 − κ

2
ϕ2 = −1

2
(κ− 2µ)ϕ2

The case κ− 2µ ≥ 0 is analogous. �

Combining Theorem 4.7 and Lemma 4.8 leads to:

Lemma 4.9. Let c, C, κ, µ ∈ R and set

• κ̄ = e−2C · (κ−2µ) if κ−2µ ≤ 0;
• κ̄ = e−2c · (κ−2µ) if κ−2µ ≥ 0.

Suppose that ϕ is a κ-log-subharmonic function on D and let ϕ ·D be
the conformally changed disc. Let Z denote the completion of ϕ ·D. If
κ̄ > 0, assume in addition H2(ϕ ·D) ≤ e−2C · 2π

κ̄
. Finally, let ψ : Z →

[c, C] be a continuous function on Z such that the restriction of ψ to
D satisfies ∆ψ ≥ µ · ϕ2 weakly. Then eψ ·Z is CAT(κ̄).

Proof. The proof of Lemma 4 of [LS17] implies eψ ·Z is the completion
of the length space eψ · (ϕ ·D). Moreover, it shows that (eψ ·ϕ) ·D is
isometric to eψ · (ϕ ·D). Hence Lemma 4.8 together with Theorem 4.7
imply that (eψ ·ϕ) ·D is locally CAT(κ̄).

The claim then follows from Corollary 4.6. �
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4.5. Minimal discs. A general solution of the classical Plateau’s prob-
lem has been provided in [LW17] for proper metric spaces and in
[GW17] for complete CAT(0) spaces. We need to discuss an appro-
priate extension to non-proper CAT(κ) spaces with κ > 0.

Lemma 4.10. Let X be a CAT(κ) space and let Γ be a Jordan curve
in X of finite length l. If κ > 0 assume in addition, that l < 2π√

κ
. Then

there exists a closed ball B = B̄r(x) which contains Γ. Moreover, if
κ > 0 we can choose r < π

2
√
κ

.

The space Λ(Γ, B) of all maps v ∈ W 1,2(D,B) such that tr(v) is
a weakly monotone parametrization of Γ is non-empty and contains a
map u0 of smallest energy E2(u0) < 1

π
· l2 in Λ(Γ, B).

Moreover, any such map u0 has a unique representative which ex-
tends continuously to D̄.

Proof. Without loss of generality, we may assume κ = 1. By Reshet-
nyak’s majorization theorem there exists a closed convex domain C in
the open unit hemisphere and a 1-Lipschitz map P : C̄ → X which
sends ∂C in a an arclength preserving bijective way onto Γ. Due to the
isoperimetric inequality in the unit sphere we have

l2 = `2(Γ) > 2π · H2(C) .

Any closed convex subset C of an open unit hemisphere contains a
point p such that

r = sup{d(p, q) ; q ∈ C} < π

2
.

(Cf. [LRC11, 2.1.2].) Therefore, P (C̄) and, in particular, Γ is contained
in the ball B = B̄r(P (p)).

We find a conformal parametrization f : D̄ → C. Then the en-
ergy E2(f) equals the area of C. Since the map P is 1-Lipschitz, the
composition u = P ◦ f is an element of Λ(Γ, B) and has energy

E2(u) ≤ E2(f) = H2(C) <
1

2π
· l2 .

If B is compact, the existence of an energy minimizer in Λ(Γ, B) is
proved in [LW17]. The same classical argument, extended in [LW17]
to proper metric spaces also works in the present non-compact case as
follows.

As in the classical case, we can precompose with Moebius maps and
restrict to the subspace Λ0(Γ) of all maps in Λ(Γ) whose trace sends
three fixed points in S1 to three prescribed points in Γ, [LW17, Section
7]. Take an energy minimizing sequence un in Λ0(Γ). For any un, we
find a unique harmonic map vn ∈ Λ0(Γ) with the same trace as un,
[Ser95], [Fug08, Theorem 4], since r < π

2
. In particular, E(vn) ≤ E(un)

and vn is an energy-minimizing sequence as well.
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By the lemma of Courant–Lebesgue, the traces tr(vn) are uniformly
continuous, [LW17, Section 7]. By [Ser95], [Fug08, Theorem 2], the
maps vn have unique representatives, which continuously extend to D̄.
Moreover, these representatives converge uniformly, once their traces
converge uniformly. Thus, using the semi-continuity of energy, we ob-
tain an energy minimizer in Λ0(Γ) by taking a uniform limit of a sub-
sequence of the maps vn. The so obtained map u0 of minimal energy
clearly satisfies

E2(u0) ≤ E2(u) <
1

2π
· l2 .

The statement about the continuous extendability of u0 follows from
[Fug08, Theorem 2]. �

We call a continuous map u0 : D̄ → B provided by the above result
a minimal filling of Γ in B and are going to summarize its properties:

Theorem 4.11. Let Γ be a Jordan curve of length l in a CAT(κ) space
X, with l < 2π√

κ
if κ > 0. As in Lemma 4.10, let B = Br(x) be a closed

ball which contains Γ and let u : D̄ → B be a minimal filling of Γ.
Then the following hold true:

(1) u is harmonic and E2(u) < 1
π
l2.

(2) There exists a function ϕ ∈ L2(D), the conformal factor of u,
such that the approximate metric differential satisfies mu(z, v) =
ϕ(z) · ‖v‖ for almost all z ∈ D and all v ∈ R2.

(3) The conformal factor ϕ can be chosen to be κ-log-subharmonic.
(4) The completion Z of ϕ ·D is a CAT(κ) space.
(5) The space Z is homeomorphic to D̄, the map u : ϕ ·D → X is

1-Lipschitz and extends to a majorization v : Z → X of Γ.

Proof. (1) follows by definition of a minimal filling and Lemma 4.10.
(2) is verified in [LW17, Theorem 11.3]
(3) is verified in [Mes01].
In order to verify (4), we use (3) and Theorem 4.7 to see that ϕ ·D

is locally CAT(κ). The area of ϕ ·D can be computed as H2(ϕ ·D) =∫
D
ϕ2 = 1

2
E2(u) < 1

2π
l2. In particular, if κ > 0, we haveH2(ϕ·D) < 2π

κ
.

Thus, (4) is a consequence of Corollary 4.6.
Finally, (5) is verified in [LS17, Theorem 9] for κ = 0, hence also for

κ ≤ 0. The proof applies without changes to the case κ > 0. �

5. Main result

5.1. Local control of curvature under conformal changes. Along
the lines of [LS17], we are going to prove the following local version of
Theorem 1.4.

Theorem 5.1. For c, C, κ, λ ∈ R there exists some ρ0 = ρ0(c, C, κ, λ) >
0 with the following property.
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Let X be a CAT(κ) space and let f : X → [c, C] be a Lipschitz
continuous λ-convex function. Further, let Y = ef · X denote the
conformally equivalent space. Then any closed ball of radius at most ρ0

in Y is CAT(κ̄), where

• κ̄ = e−2C · (κ−4λ) if κ−4λ ≤ 0;
• κ̄ = e−2c · (κ−4λ) if κ−4λ ≥ 0.

Proof. Set Y = ef · X. Since f is bounded, the identity map from Y
to X is a bilipschitz homeomorphism. Thus any complete subset of X
is also complete in Y . Rescaling Y by the factor e−c, thus subtracting
the constant c from f we may assume that c = 0.

Choose a positive constant Λ < e−C · 2π√
κ
.

We claim that any Jordan curve Γ in Y of length < Λ is majorized
by a CAT(κ̄) space. Fix Γ and denote by Γ̂ the curve Γ considered in

X. Since the identity map Y → X is 1-Lipschitz, the length of Γ̂ in X
is at most Λ < 2π√

κ
.

By Lemma 4.10, we obtain a minimal filling u of Γ̂ in X, whose
properties are described in Theorem 4.11. Denote by ϕ the conformal
factor of u. By Theorem 4.11, u : ϕ·D → X extends to a majorization
v : Z → X, where the completion Z of ϕ ·D is CAT(κ). Moreover, the
area of Z is less than 1

2π
Λ2 < e−2C · 2π

κ
.

Due to Theorem 1.2 and the conformality of u, the composition f ◦u
fulfills ∆(f ◦ u) ≥ 2λ ·ϕ2 weakly. Hence, Lemma 4.9 ensures that

e(f◦v)·Z is CAT(κ̄). Moreover, the majorization v : Z → X of Γ̂ defines
a majorization v : e(f◦v) ·Z → ef ·X = Y of Γ.

Thus, any Jordan curve Γ of length less than Λ in Y is majorized by
a CAT(κ̄) space. We finish the proof by setting ρ0 = Λ

4
and applying

Lemma 4.4.
�

5.2. Global versions. Now we can turn to the main theorems.

Proof of Theorem 1.4. Due to Theorem 5.1, the space Y is a complete
length space, which is locally CAT(κ̄). It remains to globalize the
statement.

Assume first that λ > 0 and consider the gradient flow Φt of the
function f on the space X. Let Γ denote a rectifiable closed curve in
Y . Considering Γ as a curve in X, we apply the gradient flow Φt to
Γ and obtain closed curves Γt in X. The value of f (and hence of ef )
does not increase along flow lines of Φ. Since Φt contracts length in X,
at least by a factor of e−λt, Lemma 3.1, we deduce the following two
consequences. Firstly, the ef -length of Γt (thus the length of Γt in Y )
is non-increasing in t. Secondly, for any Γ as above, any ε > 0 and any
sufficiently large t, the length of Γt in Y is less than ε.

Taking ε to be smaller than ρ0 in Theorem 5.1 and appyling the
globalization Lemma 4.4, we deduce that Y is CAT(κ̄).
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It remains to deal with the case λ ≤ 0 and κ − 4λ ≤ 0. But then
κ ≤ 0, hence X is simply connected. Since X is homeomorphic to Y , we
deduce from the theorem of Cartan–Hadamard that Y is CAT(κ̄). �

5.3. Conclusions. We can now easily prove:

Theorem 5.2. Let x be a point in a CAT(0) space X. Define the
function f : X → R by f(y) := 1

2
d2(x, y). Then the space Y = ef ·X

is CAT(0). Moreover, for any R > 0, the closed ball B̄R(x) around x
in Y is CAT(κ) for some κ = κ(R) < 0.

Proof. The function f is 1-convex and Lipschitz continuous on bounded
balls. Thus, Y is CAT(0) by [LS17].

By Lemma 4.1, the closed ball B̄R(x) in Y has the form ef ·B, where
B is the closed ball B̄r(x) in X and r(R) is such that∫ r

0

e
1
2
t2 dt = R .

From Theorem 1.4 we deduce that ef ·B is CAT(κ) with

κ = −4 · e−r2 .
�

Finally we can provide

Proof of Theorem 1.1. Clearly, we may assume κ > 0 and, by rescaling,
even κ = 1.

Thus let X be a CAT(1) space and let O = Br(x) be an open ball
in X with r < π

2
.

We can replace X by the closed ball B̄r(x). In order to simplify
the calculation we proceed as follows. First we improve the curvature
bound on the closed ball to 0. In a second step, we change the metric
on the open ball, to make it complete and simultaneously decrease the
upper curvature bound to −1.

There exists A > 0 depending only on r, such that the function
g(y) = A · d2(x, y) is 1-convex on X. Due to Theorem 1.4, the space
Z = eg ·X is a CAT(0) space. Moreover, by Lemma 4.1, the subset
eg ·O ⊂ Z is an open ball in Z around the point x. Replacing the space
X by Z we have reduced our task to the case κ = 0. In this case the
function g(y) = 1

2
d2(x, y) is 1-convex on X.

Now consider the function h : [0, r
2

2
)→ R given by

h(t) = − log(
r2

2
− t) .

Then the function h is convex and lim
t→ 1

2
r2
h(t) =∞. Moreover,

h′(t) = eh(t) .
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Consider the locally Lipschitz continuous function f(y) := h(g(y)) on
O = Br(x) and the space Y = ef ·O.

For an arbitrary point y ∈ O, we choose a small closed ball U around
y, such that for all z ∈ U holds

h′(g(z)) ≥ 1

2
h′(g(y)) =

1

2
eh(g(y)) and h(g(z)) ≤ 2h(g(y)).

Due to the convexity of h and the 1-convexity of g, the restriction
of f to any geodesic γ in O is at least λ-convex, where λ denotes the
minimum of h′ on the image g(γ) ⊂ [0, r

2

2
).

Hence for any such ball U , the space ef ·U is CAT(-1), by Theorem
1.4. This shows that the space Y is locally CAT(-1).

For any s < r we deduce from Lemma 4.1, that the subset ef·B̄s(x) ⊂
ef ·O coincides with the closed ball in Y around x of radius

R(s) =

∫ s

0

h(
1

2
t2) dt = −

∫ s

0

log(
r2 − t2

2
) dt

Moreover, this ball is CAT(0) by Theorem 1.4. Since R(s) converges to
infinity as s converges to r, we deduce that Y is CAT(0). In particular,
it is complete, simply connected and geodesic. Since we have already
seen that Y is locally CAT(-1), this finishes the proof. �
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[Ish79] Tôru Ishihara. A mapping of Riemannian manifolds which preserves
harmonic functions. J. Math. Kyoto Univ., 19(2):215–229, 1979.

[Ken91] W. Kendall. Convexity and the hemisphere. J. London Math. Soc. (2),
43(3):567–576, 1991.

[KL97] B. Kleiner and B. Leeb. Rigidity of quasi-isometries for symmetric spaces

and Euclidean buildings. Inst. Hautes Études Sci. Publ. Math., 86:115–
197, 1997.

[Kle99] B. Kleiner. The local structure of spaces with curvature bounded above.
Math. Z., 231:409–456, 1999.

[Kra11] L. Kramer. On the local structure and homology of CAT (κ) spaces and
buidlings. Advances in Geometry, 11:347–369, 2011.

[KS93] N. Korevaar and R. Schoen. Sobolev spaces and harmonic maps for
metric space targets. Comm. Anal. Geom., 1(3-4):561–659, 1993.

[LN18] A. Lytchak and K. Nagano. Topological regularity of spaces with an
upper curvature bound. arXiv:1809.06183, 2018.

[LN19] A. Lytchak and K. Nagano. Geodesically complete spaces with an upper
curvature bound. Geom. Funct. Anal., 29:295–342, 2019.

[LRC11] Bernhard Leeb and Carlos Ramos-Cuevas. The center conjecture for
spherical buildings of types F4 and E6. Geom. Funct. Anal., 21(3):525–
559, 2011.

[LS17] A. Lytchak and S. Stadler. Conformal deformation of CAT (0) spaces.
Math. Ann., Online first, 2017.

[LW17] A. Lytchak and S. Wenger. Area minimizing discs in metric spaces. Arch.
Ration. Mech. Anal., 223(3):1123–1182, 2017.

[LW18] Alexander Lytchak and Stefan Wenger. Isoperimetric characterization
of upper curvature bounds. Acta Math., 221(1):159–202, 2018.

[Lyt05] A. Lytchak. Open map theorem for metric spaces. Algebra i Analiz,
17(3):139–159, 2005.

[May98] U. Mayer. Gradient flows on nonpositively curved metric spaces and
harmonic maps. Comm. Anal. Geom., 6(2):199–253, 1998.

[Mes01] C. Mese. The curvature of minimal surfaces in singular spaces. Comm.
Anal. Geom., 9(1):3–34, 2001.

[MT02] R. Mazzeo and M. Taylor. Curvature and uniformization. Israel J.
Math., 130:323–346, 2002.

[Oht09] S. Ohta. Gradient flows on Wasserstein spaces over compact Alexandrov
spaces. Amer. J. Math., 131(2):475–516, 2009.

[OP17] S. Ohta and M. Pálfia. Gradient flows and a Trotter-Kato formula of
semi-convex functions on CAT(1)-spaces. Amer. J. Math., 139(4):937–
965, 2017.

[Pet07] A. Petrunin. Semiconcave functions in Alexandrov’s geometry. In Sur-
veys in differential geometry. Vol. XI, pages 137–201. Int. Press,
Somerville, MA, 2007.



IMPROVEMENTS OF UPPER CURVATURE BOUNDS 17

[Res93] Yu. G. Reshetnyak. Two-dimensional manifolds of bounded curvature.
In Geometry, IV, volume 70 of Encyclopaedia Math. Sci., pages 3–163.
Springer, Berlin, 1993.

[Ser95] T. Serbinowski. Harmonic maps into metric spaces of curvature bounded
from above. Thesis, University of Utah, 1995.

[Yok16] T. Yokota. Convex functions and barycenter on CAT(1)-spaces of small
radii. J. Math. Soc. Japan, 68(3):1297–1323, 2016.


