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Abstract. We study the intrinsic structure of parametric min-
imal discs in metric spaces admitting a quadratic isoperimetric
inequality. We associate to each minimal disc a compact, geodesic
metric space whose geometric, topological, and analytic properties
are controlled by the isoperimetric inequality. Its geometry can be
used to control the shapes of all curves and therefore the geome-
try and topology of the original metric space. The class of spaces
arising in this way as intrinsic minimal discs is a natural general-
ization of the class of Ahlfors regular discs, well-studied in analysis
on metric spaces.

1. Introduction

1.1. Motivation. A smooth minimal surface in a Riemannian man-
ifold has vanishing mean curvature. The Gauss equation then forces
the intrinsic curvature of the minimal surface to be no larger than
that of the ambient space. This has strong implications on the intrin-
sic geometry and thus on the local and global shape of the minimal
surface. Given a smooth Jordan curve Γ in a Riemannian manifold
M of bounded geometry, the classical solution of the Plateau prob-
lem ([Dou31], [Rad30], [Mor48]) provides a minimal disc u : D → M
spanned by Γ. This solution, which is a priori constructed in a Sobolev
space, turns out to be a smooth map. Moreover, it is an immersion
up to finitely many branch points. In the absence of branch points,
the minimal disc with its induced Riemannian metric turns out to be
a smooth 2-dimensional Riemannian manifold Z with boundary given
by Γ. The map u factors as u = ū ◦ P , where P : D̄ → Z is a
diffeomorphism and ū : Z → M is a Riemannian immersion, thus ū
preserves the length of all curves. Moreover, the Gauss equation and
other implications of minimality provide restrictions on the geometry
of Z.
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The aim of the present article is to investigate the intrinsic geome-
try of minimal discs in the much broader setting of metric spaces with
quadratic isoperimetric inequality and to find structures analogous to
those observed in the setting of Riemannian manifolds. Given any min-
imal disc u : D̄ → X in such a metric space X we would like to find a
nice metric space Z whose properties reflect geometric properties of X,
and such that u factorizes into a homeomorphism from D̄ to Z and a
length preserving immersion Z → X. One cannot achieve this in full,
as examples will demonstrate, but almost as our results will show. The
geometric properties of the space Z control the shape of the Jordan
curve Γ and therefore the geometry of X. Results obtained in this pa-
per are used in [LW16d] to prove an isoperimetric characterization of
upper curvature bounds, in [LWY16] to study topological and asymp-
totic properties of spaces with quadratic isoperimetric inequality and
in [LW16b] to find natural parametrizations of Ahlfors 2-regular discs
and their generalizations.

1.2. Setting and construction. In [LW16a], we have found a solu-
tion to the classical Plateau problem in any proper metric space X.
Given any Jordan curve Γ ⊂ X one would like to find a disc bounded
by Γ with minimal (parametrized Hausdorff) area. As in the classical
situation, it is natural to look for a solution in the set Λ(Γ, X) of all
Sobolev maps v ∈ W 1,2(D,X), whose trace tr(v) is a weakly monotone
reparametrization of the curve Γ. If X is a proper metric space and
Λ(Γ, X) is not empty then there indeed exists a map u with minimal
area Area(u) in Λ(Γ, X), as we showed in [LW16a]. We found a special
area minimizer u ∈ Λ(Γ, X) which moreover has minimal (Reshetnyak)
energy E2

+(u) among all area minimizers in Λ(Γ, X). We will call such
a map u a minimal disc or solution of the Plateau problem for (Γ, X).

If no restrictions are imposed on X, then a solution u of the Plateau
problem can be as irregular as any Sobolev map. The situation changes
under the natural assumption that inX any Lipschitz curve γ : S1 → X
of length l ≤ l0 bounds a (Sobolev) disc v : D → X of area A ≤ Cl2,
where C, l0 > 0 are fixed constants. We say that X admits a (C, l0)-
isoperimetric inequality (for the Hausdorff area). Many geometrically
significant spaces like compact Lipschitz manifolds, compact spaces
with one-sided curvature bounds, Banach spaces and many others sat-
isfy this assumption.

Under this isoperimetric assumption the classical ”a priori Hoelder
estimates” apply, and any solution u ∈ W 1,2(D,X) of the Plateau
problem for (Γ, X) turns out to have a continuously extendible repre-
sentative u : D̄ → X. The continuity of the solution u makes it from
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an almost everywhere defined map to a geometric and topological ob-
ject. We borrow the recipe for the construction of the space Z from
the smooth situation. As to any continuous map one can associate to
u an intrinsic pseudo-distance du : D̄ × D̄ → [0,∞] by

du(z1, z2) := inf{length of u ◦ γ | γ curve in D̄ between z1 and z2}.
It turns out, cf. Proposition 1.1 below, that du is finite-valued. Hence,
identifying points on D̄ with du-distance 0 from each other we obtain
a metric space Z = Zu which we will call the intrinsic minimal disc
associated with u. Since Zu arises from D̄ by an identification of some
points we have a canonical projection P : D̄ → Z.

1.3. Properties of the intrinsic minimal disc. We fix the following
setting for the whole subsection.

General setting:

• X is a complete metric space admitting a (C, l0)-isoperimetric
inequality;
• Γ ⊂ X is a Jordan curve of finite length;
• u : D̄ → X is a solution of the Plateau problem for (Γ, X);
• du : D̄ × D̄ → [0,∞) is the pseudo-distance induced by u;
• Z = Zu is the intrinsic minimal disc associated with u;
• P : D̄ → Z is the induced canonical projection;

Morrey’s proof of the Hoelder regularity of minimal discs, generalized
in [LW16a] to metric spaces leads to:

Theorem 1.1. In the general setting and notations introduced above,
the pseudo-distance du assumes only finite values and is continuous.
The metric space Z = Zu obtained from the pseudo-metric du is com-
pact and geodesic. The canonical projection P : D̄ → Z is continuous.
The map u : D̄ → X has a canonical factorization u = ū ◦ P , where
ū : Z → X is a 1-Lipschitz map. For any curve γ in D̄ the lengths of
P ◦ γ and u ◦ γ coincide, thus ū preserves the length of P ◦ γ.

We are going to discuss the topological, geometric, and analytic prop-
erties of the constructed space Z.

Theorem 1.2. The intrinsic minimal disc Z is homeomorphic to D̄.
The Hausdorff area H2(Z) and the length `(∂Z) of the boundary circle
are finite. The domain Ω ⊂ Z enclosed by any Jordan curve of length
l < l0 in Z satisfies

(1.1) H2(Ω) ≤ C · l2.

The isoperimetric property of the topological disc Z has strong im-
plications: lower bound on the area growth, linear local contractibility
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and the existence of controlled decompositions into subsets of small
diameter. For the sake of simplicity, we formulate these consequences
here only in the case of short boundary curves Γ, referring to Section
8 for the general case.

Corollary 1.3. Let Z be as above and assume that the length l of the
boundary circle ∂Z is at most l0. Then

(i) For every z ∈ Z and any r ≤ d(∂Z, z) the area of the ball
B(z, r) of radius r around z is bounded by

(1.2) H2(B(z, r)) ≥
(π

4

)2

· 1

4C
· r2.

(ii) For any z ∈ Z and r > 0 the ball B(z, r) in Z is contractible
inside the ball B(z, (8C + 1) · r).

(iii) There exists a constant M = M(C) > 0 such that the following
holds true. For every n > 0 there exists a finite, connected
graph ∂Z ⊂ Gn ⊂ Z such that any component of Z \ Gn is a
disc of diameter at most l

n
and such that the number of these

components is at most M · n2.

Theorem 1.2 and Corollary 1.3 may be considered as weak analogues
of the statement that the curvature of a minimal surface is not larger
than that of the ambient space. Indeed, on a smooth surface the isoperi-
metric inequality is closely related to upper bounds on the curvature
and lower bounds on the injectivity radius, a circumstance which will
be analyzed in depth in [LW16d]. Similarly, lower bounds on the vol-
ume of balls are well-known to be related to the curvature bounds of
the manifold, for instance, by the Theorem of Bishop–Gromov. We will
deduce in [LW16d] from Corollary 1.3 that Z inherits from X upper
curvature bounds in the sense of Alexandrov, cf. [Pet99], [PS16]

Corollary 1.3 shows that Z is metrically very similar to the Euclidean
disc. According to (i) and (ii) of Corollary 1.3 and [BK02], [Wil08],
the space Z is locally quasi-symmetric to the unit disc if and only if
areas of balls in Z have a quadratic upper bound in terms of the radius.
However, this need not be the case in general. Indeed, Z might arise
from D̄ ⊂ R2 by collapsing a closed ball B ⊂ D̄ to a point, see Example
11.3. The decomposition result (iii) is a topological-geometric version
of a similar discrete statement in groups with quadratic Dehn function
proved by Papasoglu in [Pap96]. It immediately implies that the set
of isometry classes of spaces Z arising in Theorem 1.2 is a relatively
compact set with respect to the Gromov-Hausdorff topology, once C
and l0 are fixed and Γ has length at most l0.
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We emphasize that Corollary 1.3 follows only from the assumptions
that Z is a geodesic 2-dimensional disc with the isoperimetric property
(1.1). This observation is used in [LW16b] as the starting point of
further investigations of all such discs Z, also shedding new light on the
well-investigated theory of Ahlfors 2-regular discs, cf. [BK02], [Raj16]
and the literature therein.

The topological and analytic properties of the map P : D̄ → Z are
summarized in the next theorem.

Theorem 1.4. The canonical projection P : D̄ → Z is a uniform limit
of homeomorphisms Pi : D̄ → Z. Moreover,

(i) P ∈ Λ(∂Z, Z) ⊂ W 1,2(D,Z).
(ii) P : D → Z is contained in W 1,p

loc (D,Z) for some some p > 2
depending on C.

(iii) P : D → Z is locally α-Hoelder with α = π
4
· 1

4πC
.

(iv) The equality H2(P (V )) = Area(P |V ) = Area(u|V ) holds for all
open subsets V ⊂ D.

The claim that P is a uniform limit of homeomorphisms comes as
close as possible to the statement that P : D̄ → Z is a diffeomorphism
in the classical smooth case. Even in the smooth case, if branch points
are present, the natural map P : D̄ → Z is not biLipschitz. However,
in the smooth case, branch points are isolated and this forces the map
P to be a homeomorphism. In our general setting, the set of ”branch
points” does not have to be discrete. Indeed, the map u (and then also
P ) may send an open subset of D̄ to a single point of X (respectively
of Z), as in Example 11.3 already mentioned above.

Inequality (1.2) and the constant α in (iii) of Theorem 1.4 are optimal
at most up to the factor (π

4
)2 and π

4
, respectively, as the example of

a cone over a short circle Γ shows, see Example 11.1. This factor is
related to the co-area formula in normed planes. It can be replaced by 1
if only Euclidean norms appear as metric differentials of u, for instance,
in spaces with upper or lower curvature bounds, cf. Subsection 3.7.
Another possibility to get an optimal factor is to use instead of H2

another definition of area, see Subsection 1.4 below.
The next theorem describes the map ū : Z → X as an almost every-

where infinitesimal isometry, thus as an ”almost Riemannian immer-
sion”. In particular, ū preserves H2 up to multiplicities.

Theorem 1.5. Let ū : Z → X be the canonical map of the minimal disc
Z to X described in Theorem 1.1. There exists a decomposition Z =
S ∪1≤i<∞Ki with compact Ki and H2(S) = 0 such that the restrictions
ū : Ki → ū(Ki) of the 1-Lipschitz map ū are biLipschitz. Moreover,
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for any 1 ≤ i <∞ and any x ∈ Ki we have

lim
y→x,y∈Ki

dZ(x, y)

dX(ū(x), ū(y))
= 1.

The map ū sends ∂Z to Γ by an arclength preserving homeomorphism.

If Γ is a chord-arc curve, thus biLipschitz equivalent to S1, then one
can control the regularity of u, P and Z uniformly up to the boundary,
as is often the case in the investigation of the Plateau problem:

Theorem 1.6. Assume in addition that Γ is a chord-arc curve. Then
P ∈ W 1,p(D,Z) for some p > 2. In particular, P : D̄ → Z is globally
(1− 2

p
)-Hoelder continuous. Moreover, there exists δ > 0 such that for

all z ∈ Z and all 0 ≤ r < δ we have H2(B(z, r)) ≥ δ · r2.

The exponent p and the non-collapsing number δ are bounded in
terms of C, l0 and the biLipschitz constant of Γ.

1.4. Area minimizers for different areas. There are several nat-
ural ways of measuring the area of 2-rectifiable subsets in general
metric spaces, beyond the Hausdorff area used in the results above.
Any choice of a definition of area µ in the sense of convex geome-
try (see Section 2, [LW16c], [APT04] and the literature therein) pro-
vides a natural way to assign the µ-area Areaµ(u) to any Sobolev disc
u : D → X. Among such definitions of area the most important ones
are the (Busemann)-Hausdorff area H2, the Holmes-Thompson area
µht, the (Benson)-Gromov m∗-measure and (Ivanov’s) inscribed Rie-
mannian area µi. Due to [LW16a], for any quasi-convex definition of
area µ (for instance, for the four examples above) one can find a min-
imizer of the µ-area in any non-empty set Λ(Γ, X), whenever Γ is a
Jordan curve in a proper metric space X. As in the case of the Haus-
dorff measure, we can find a map u with minimal Reshetnyak energy
E2

+(u) among all such minimizers. We call such a map u ∈ Λ(Γ, X) a
µ-minimal map. Quasi-convexity of µ is essential for the existence of
µ-minimal maps, but does not play a role in the regularity questions
discussed in [LW16a] and here.

IfX admits a (C, l0)-isoperimetric inequality for the definition of area
µ (cf. Section 4 and [LW16a]), and if u ∈ Λ(Γ, X) is µ-minimal, then
again u has a continuous representative u : D̄ → X. All results above
apply to this more general setting. We just need to mention that the
constructed intrinsic minimal disc Z = Zu is a countably 2-rectifiable
set. The only difference from the special case of the Hausdorff area
discussed above is that the constant π

4
appearing in (1.2) and in (iii) of

Theorem 1.4, is replaced by a constant q(µ) ∈ [1
2
, 1] depending on the
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definition of area µ. This constant q(µ) is maximal q(µi) = 1 for the
inscribed Riemannian area µi, making the corresponding statements of
Theorem 1.2 and Theorem 1.4 optimal in this case.

All definitions of area coincide for all Sobolev maps with values
in X if the space X has the so-called property (ET) discussed in
[LW16a]. This is the case for many geometrically significant spaces
such as spaces with one-sided curvature bounds in the sense of Alexan-
drov, sub-Riemannian manifolds or infinitesimally Hilbertian spaces
with lower Ricci curvature bounds. Thus if X satisfies the property
(ET), one can replace the factor π

4
appearing in (1.2) and in (iii) of

Theorem 1.4 by 1 = q(µi).
Moreover, if X satisfies property (ET) then any minimal disc u ∈

Λ(Γ, X) is conformal and the map P ∈ W 1,2(D,Z) is conformal as
well. Without property (ET) the map P is

√
2-quasiconformal and the

constant
√

2 is optimal. We emphasize, that the quasiconformality and
conformality is understood here in the infinitesimal almost everywhere
sense (Subsection 3.7 and [LW16a]) and does not imply that P is a
homeomorphism.

1.5. Absolute minimal fillings. Our results apply to the problem
of finding a disc realizing the infimum of Gromov’s restricted minimal
filling area problem, cf. [Iva08]. Let µ be a definition of area. Let
(Γ, d0) be a metric space biLipschitz equivalent to the unit circle S1.
The restricted filling µ-area of Γ is defined as

mµ(Γ) := inf{µ(M)},

where M runs over all smooth Finsler metrics on the disc D̄ such
that for the induced distance function on ∂M one has a 1-Lipschitz
homeomorphism ∂M → Γ. Using the solution of the absolute Plateau
problem in [LW16a] and the results in the present paper we get:

Theorem 1.7. Let (Γ, d0) be a biLipschitz circle and let µ be a quasi-
convex definition of area. Then the restricted filling area mµ(Γ) is equal
to the Sobolev filling area defined as

mµ,Sob(Γ) = inf{Areaµ(u) : Y complete, Γ ⊂ Y , u ∈ Λ(Γ, Y )}.

There exists a compact, geodesic, countably 2-rectifiable metric space Z
homeomorphic to D̄ such that µ(Z) = mµ(Γ) and there exists a map
P : D̄ → Z such that the conclusions of Theorem 1.2, Theorem 1.4
and Theorem 1.6 hold true with C = 1

2π
, l0 = ∞, and with the con-

stant π
4

replaced by q(µ). Moreover, there exists a 1-Lipschitz arclength
preserving homeomorphism (∂Z, dZ)→ (Γ, d0).
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1.6. A useful technical result. We mention a technical achievement
of the paper. The geometrically obvious fact that the restriction of
a minimal disc to an open subdisc is again a minimal disc is indeed
non-trivial due to two problems: the boundary of the subdisc might
be wild, and even if it is smooth, the restriction of u to this boundary
might be very far from being Lipschitz continuous. Both problems are
solved in Section 4. The main implication for the present paper is the
following seemingly obvious but technically non-trivial statement.

Proposition 1.8. Let X admit a (C, l0)-isoperimetric inequality for
the definition of area µ. Let u : D̄ → X be a solution of the Plateau
problem as above. Let T ⊂ D̄ be a Jordan curve with Jordan domain
O. If the curve u|T has finite length l ≤ l0 then Areaµ(u|O) ≤ Cl2.

If the boundary curve T and the restriction of u to T are sufficiently
regular the proof of Proposition 1.8 is simple [LW16a], Lemma 8.6.

1.7. Possible variations of the construction. It is possible to de-
fine the intrinsic metric structure for a minimal disc u : D̄ → X in a
slightly different way. Namely, we can restrict the set of curves γ in
the definition of the pseudo-metric du to any of the following families
of curves: rectifiable, piecewise biLipschitz, or piecewise smooth curves
in D̄. Unlike the smooth situation, the arising pseudo-metric and thus
the associated metric space Z may depend on the choice of the family,
even if u is Lipschitz continuous, cf. [Pet10], Section 4 for related dis-
cussions. However, for any of these choices of the family of curves and
the corresponding associated metric space Z, all the theorems stated
above remain valid. The last statement of Theorem 1.1 is then only
true for curves γ in the corresponding family. The proofs remain the
same, see Section 9.3 for some remarks.

It is possible to view the space Z (and the variants of Z constructed
via different families of curves as above) from another classical perspec-
tive. The map u induces an L2-field z 7→ ap mduz of seminorms on
D, the analogue of the pull-back of the Riemannian metric, see Sub-
section 3.3. The length of almost any curve γ ⊂ D with respect to the
pseudo-distance du can be computed by the same formula as in Finsler
geometry, using this measurable field of seminorms. Thus, the space Z
is almost defined by the approximate metric differentials of u.

1.8. Structure of the paper. Sections 2, 3, 7 and 4, consist of pre-
liminaries and preparations. A reader familiar with the subject may
skip these sections. In Section 2 we collect preliminaries from metric
geometry, including definitions of area, as well as area and co-area for-
mulas for rectifiable sets. In Section 3 we collect some basics about
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Sobolev maps from domains in R2 to metric spaces. In Section 7 we
recall several statements from classical two-dimensional topology re-
lated to the Jordan curve theorem. In Section 4 we deal with fillings of
badly parametrized curves and gluings of Sobolev maps on non-regular
domains, preparing the proof of Proposition 1.8.

In Section 5 we recall the existence and regularity results for minimal
discs from [LW16a] and prove Proposition 1.8. We slightly reformulate
the regularity statements from [LW16a], emphasizing that the Hoelder
continuity is controlled via an estimate of the lengths of some image
curves, thus giving us control over the intrinsic structure of the minimal
disc. In Section 6 we fix a minimal disc u : D̄ → X, associate to u a
metric space Z as in Subsection 1.3 above and prove Theorem 1.1. We
observe that the approximate metric differentials of u and P coincide
at almost all points of D. In particular, this shows that P is as regular
as u. This includes all statements of Theorem 1.4 except the first and
main one that P is a uniform limit of homeomorphisms. Moreover,
it implies that Z is a countably 2-rectifiable space. What remains to
be controlled are the topological and isoperimetric properties of Z. In
Section 8 we prove the topological and isoperimetric properties of the
space Z stated in Theorem 1.2 and Corollary 1.3, using classical results
from 2-dimensional topology. In Section 9 we collect everything proven
so far and finish the proof of the main results. In Section 10 we discuss
the absolute filling problem and prove Theorem 1.7. In the last section
we collect examples mentioned above and some natural questions about
the structure of minimal discs.

Acknowledgements: We would like to thank Robert Young for a
discussion on [Pap96] which inspired (iii) of Corollary 1.3 above. We
thank Heiko von der Mosel, Anton Petrunin and Stephan Stadler for
helpful comments and discussions.

2. Preliminaries

2.1. Basic notation. The following notation will be used throughout
the paper. The Euclidean norm of a vector v ∈ Rn is denoted by |v|.
We denote the open unit disc in R2 by D. A domain will always mean
an open, bounded, connected subset of R2.

Metric spaces appearing in this paper will be assumed complete. A
metric space is called proper if its closed bounded subsets are compact.
We will denote distances in a metric space X by d or dX . Let X =
(X, d) be a metric space. The open ball in X of radius r and center
x0 ∈ X is denoted by

B(x0, r) = BX(x0, r) = {x ∈ X : d(x0, x) < r}.
9



A Jordan curve in X is a subset Γ ⊂ X which is homeomorphic to
S1. Given a Jordan curve Γ ⊂ X, a continuous map c : S1 → X
is called a weakly monotone parametrization of Γ if c is the uniform
limit of homeomorphisms ci : S

1 → Γ. For m ≥ 0, the m-dimensional
Hausdorff measure on X is denoted by Hm = Hm

X . The normalizing
constant is chosen in such a way that on Euclidean Rm the Hausdorff
measure Hm equals the Lebesgue measure Lm. By S2 we denote the
proper metric space of seminorms on R2 with the distance given by
dS2(s, s

′) = maxv∈S1{|s(v)− s′(v)|}.

2.2. Rectifiable curves. Let X = (X, d) be a metric space. The
length of a (continuous) curve c : I → X, defined on an interval I ⊂ R,
is given by

(2.1) `X(c) := sup

{
k+1∑
i=1

d(c(ti), c(ti+1)) : ti ∈ I, t1 < · · · < tk+1

}
.

The definition extends to continuous curves defined on S1. A continu-
ous curve of finite length is called rectifiable.

If c : I = [a, b]→ X is a rectifiable curve of length l then the length
function of c is the continuous monotone map s : I = [a, b] → [0, l]
given by s(t) = `(c|[a,t]). The curve c is parametrized by arclength if
s : I → [0, l] is an isometry. The curve c has the form c0 ◦ s, where
c0 : [0, l]→ X is the arclength parametrization of c.

A geodesic is an isometric embedding on an interval. A space X is
called a geodesic space if any pair of points in X is connected by a
geodesic. A space X is a length space if for all x, y ∈ X the distance
d(x, y) coincides with inf{`X(c)}, where c runs over the set of all curves
connecting x and y. A proper length space is a geodesic space by the
theorem of Hopf-Rinow.

A rectifiable curve c is called absolutely continuous if it sends subsets
of H1-measure 0 in R to subsets of H1-measure 0 in X. Equivalently,
the length function s of c is contained in the Sobolev space W 1,1(I). In
this case we have `(c) =

∫
I
s′(t)dt. Moreover, for almost all t ∈ I, the

value s′(t) is the metric differential of c at t, thus

(2.2) s′(t) = lim
ε→0

d(c(t), c(t+ ε))

|ε|
.

For a Borel function f : c→ [0,∞] we set as usual∫
c

f :=

∫ l

0

f(c0(t))dt.
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A rectifiable curve c : I → X with length parametrization s : I → R
is in the Sobolev space W 1,p(I,X), 1 ≤ p < ∞, if and only if s is in
the classical space W 1,p(I,R). A concatenation of Sobolev curves is a
Sobolev curve. If T is a metric space homeomorphic to an interval or
a circle and u : T → X is a continuous map, we can unambiguously
talk about the length of the curve u(T ), since it does not depend on
the special parametrization of T by an interval. If T is a metric space
biLipschitz equivalent to an interval or a circle and u : T → X a
continuous map to a metric space X we say that u is in the Sobolev
class W 1,2(T,X) if for the arclength parametrization c : I → T of T
we have u ◦ c ∈ W 1,2(I,X).

A continuous curve c : I → X is called a piecewise biLipschitz curve
if there exists a partition of I into a finite number of subintervals such
that the restriction of c to each subinterval is a biLipschitz map.

A Jordan curve Γ is a chord-arc curve if Γ is biLipschitz homeomor-
phic to S1. Due to [Tuk80] a (connected, bounded) domain Ω ⊂ R2 is
a Lipschitz domain if and only if Ω is a bounded component of R2 \ T ,
where T ⊂ R2 is a finite union of pairwise disjoint chord-arc curves.

2.3. Definitions of area. While there is an essentially unique natural
way to measure areas of Riemannian surfaces, there are many different
ways to measure areas of Finsler surfaces, some of them more appro-
priate for different questions. We refer the reader to [Iva08], [Ber14],
[LW16c], [APT04] and the literature therein for more information.

A definition of area µ assigns a multiple µV ofH2 on any 2-dimensional
normed space V , such that natural monotonicity assumptions are ful-
filled, cf. [APT04]. In particular, it assigns the number Jµ(s), the
µ-Jacobian, to any seminorm s on R2 in the following way. By defi-
nition, Jµ(s) = 0 if the seminorm is not a norm. If s is a norm then
Jµ(s) equals the µ(R2,s)-area of the unit Euclidean square in R2. In-
deed, a choice of a definition of area µ is equivalent to a choice of a
Jacobian Jµ : S2 → [0,∞) which satisfies natural transformation and
monotonicity conditions, cf. [LW16c], Section 2.3.

Any two definitions of area differ at most by a factor of 2. The
largest definition of area is the inscribed Riemannian definition of area
µi, introduced in [Iva08]. Other prominent examples are the Busemann
definition H2, the Holmes-Thompson definition µht, Gromov’s mass∗-
definition m∗. We refer to [APT04], [Iva08] for a thorough discussion of
these examples and of the whole subject and to [LW16c] for a detailed
description of the corresponding Jacobians.

For a definition of area µ, the number q(µ) ∈ [1
2
, 1] appearing in the

main theorems of this paper, cf. Subsection 1.4, is defined to be the
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maximal number q such that µV ≥ q · µiV holds true on any normed

plane V . Thus q(µ) equals to the infimum of the quotient Jµ(s)/Jµ
i
(s)

taken over all norms s. In particular, cf. [LW16c],

q(µi) = 1, q(H2) =
π

4
, q(µht) =

2

π
.

2.4. Lipschitz maps and rectifiable sets. Given a measurable sub-
set K ⊂ R2 and a Lipschitz map f : K → X to a metric space X, we
say that a seminorm s : R2 → [0,∞) is the metric differential of f at
the point z ∈ K and denote it by mdz f if

(2.3) lim
y→z

d(f(z), f(y))− s(y − z)

|y − z|
= 0.

Any Lipschitz map defined on a measurable subset K ⊂ R2 has a
uniquely defined metric differential at almost every point [Kir94]. More-
over, for any ε > 0, the set K can be decomposed as a disjoint union
K = S ∪1≤i<∞ Ki such that the following holds true. The set S is the
union of a set of H2-area 0 and the set of all points at which the metric
differential is not a norm. The sets Ki are compact. For any i, the
restriction f : Ki → f(Ki) ⊂ X is (1 + ε)-biLipschitz, if Ki is endowed
with the distance induced by the norm si = mdz f , for an arbitrary
z ∈ Ki. Finally, H2(f(S)) is zero, see [Kir94].

Recall that a metric space X is called countably 2-rectifiable if up to
a subset S ⊂ X of H2-measure 0, X is a countable union of Lipschitz
images fi(Ki) of compact subsets of Ki ⊂ R2. The above decomposi-
tion result shows that up to a set of H2-area 0, any rectifiable set is a
disjoint union of pieces which are arbitrary biLipschitz close to compact
subsets of normed planes [Kir94]. From this it follows that any defi-
nition of area µ provides a measure µX on any countably 2-rectifiable
set X uniquely determined by the following properties. The measure
µX is absolutely continuous with respect to H2

X , on Borel subsets of
normed planes µX is defined as above and, finally, any 1-Lipschitz map
between rectifiable sets does not increase the µ-area, cf. [Iva08].

The decomposition result above yields a way how to compute the
µ-area of the image of a Lipschitz map and thus of any rectifiable set,
cf. [Kir94, Theorem 7], [Iva08]:

Lemma 2.1. Let K ⊂ R2 be measurable, let f : K → X be a Lipschitz
map with Y = f(K) and let µ be a definition of area. Let N : Y →
[1,∞] be the multiplicity function N(y) = #{z ∈ K : f(z) = y}. Then:∫

Y

N(y)dµY (y) =

∫
K

Jµ(mdz f) dz.
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2.5. Co-area inequality with respect to µ. If X is a measurable
subset of R2 and f : X → R a 1-Lipschitz function then the classical
co-area formula ([Fed69], Theorem 3.2.22) implies

(2.4) H2(X) ≥
∫
R
H1(f−1(t)) dt.

In the realm of metric spaces one needs to insert an (optimal) factor
of π

4
on the right side, cf. [Fed69], Theorem 2.10.25, 2.10,26:

Lemma 2.2. For any proper metric space Y , any Borel subset X ⊂ Y
with finite H2(X) and any 1-Lipschitz function f : X → R we have

H2(X) ≥ π

4
·
∫
R
H1(f−1(t)) dt .

Note that the factor π
4

coincides with the number q(H2) introduced
in Subsection 2.3. Thus under the assumption that X is countably
2-rectifiable the lemma above is a special case of the following:

Lemma 2.3. Let X be a countably 2-rectifiable set and let f : X → R
be a 1-Lipschitz function. Then

µ(X) ≥ q(µ) ·
∫
R
H1(f−1(t)) dt.

Proof. By definition of q(µ), we have q(µ)−1 · µ ≥ µi, where µi is the
inscribed Riemannian area. Hence we only need to show

(2.5) µi(X) ≥
∫
R
H1(f−1(t)) dt.

Rademacher’s theorem [Kir94] and the decomposition ofX into small
pieces approximated by pieces of normed spaces as in Subsection 2.4
show that it suffices to prove the result in the case that X is a subset
of a normed plane (R2, s) and f : R2 → R is a linear map, cf. [AK00],
Section 9. Let s0 be the Euclidean norm whose unit ball is the Loewner
ellipse of the unit ball of s. Then s0 ≥ s, hence f : (R2, s0)→ R is still
1-Lipschitz. Moreover, by the definition of the inscribed Riemannian
area, the µi-area on (R2, s) coincides with the Lebesgue area of the
Euclidean plane (R2, s0). Thus (2.5) follows from (2.4). �

Remark 2.4. The co-area factor in Lemma 2.3 is optimal for some
definitions of area µ, but not for all. It can be shown, that the opti-
mal µ-dependent co-area constant in Lemma 2.3 equals 4

v
, where v is

the µ-area of the unit ball in the plane (R2, s∞) with the sup-norm.
Lemma 2.3 is optimal for the inscribed Riemannian, Hausdorff and
Holmes-Thompson, but not for the Benson definition of area.
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3. Sobolev maps

3.1. Exceptional families of curves. We refer to [HKST15] for more
details. Let Ω ⊂ R2 be a bounded domain and let 1 < p <∞ be given.
A family E of curves in Ω is called p-exceptional if there exists a Borel
function f : Ω → [0,∞] such that f ∈ Lp(Ω) and

∫
γ
f = ∞ for all

rectifiable curves γ in the family E . Note that the set of all non-
rectifiable curves is exceptional by definition. We say that a property
holds true for p-almost every curve if the set of curves for which the
property fails is p-exceptional.

A countable union of p-exceptional families is p-exceptional. If S is
a subset of Ω with µ(S) = 0 then for p-almost all curves γ we have
H1(γ ∩ S) = 0. By Fubini’s theorem, a set of non-constant curves
in Ω parallel to a given line l is p-exceptional for some and then for
any p ∈ (1,∞) if and only if the projection of the set of curves to the
orthogonal line l⊥ has H1-measure 0.

3.2. Generalities on Sobolev maps. We assume some experience
with Sobolev maps with values in complete metric spaces X and refer
to [HKST15], [LW16a] and the literature therein. In this paper we con-
sider only Sobolev maps defined on open bounded domains Ω ⊂ R2,
intervals and circles. In [LW16a] we worked with the Soboev spaces
W 1,p(Ω, X) as defined in [KS93]. For the present work it is more nat-
ural to stick to the Newton-Sobolev spaces as defined in [HKST15].
Recall that both notions are equivalent, [HKST15], Theorem 7.1.20
and [Res04]. More precisely, every map in the Newton-Sobolev space
N1,p(Ω, X) is contained in W 1,p(Ω, X) and any element u ∈ W 1,p(Ω, X)
has a representative in N1,p(Ω, X), uniquely defined up to some p-
exceptional subset. Most maps appearing in this paper are continuous,
and a continuous map u ∈ W 1,p(Ω, X) is automatically in N1,p(Ω, X).
Thus the difference is not visible in the cases important in this paper.
Therefore, we will freely interchange between N1,p and W 1,p.

The space Lp(Ω, X) consists of those measurable and essentially sep-
arably valued maps u : Ω → X for which the composition f ◦ u with
the distance function f to some point in X is in the classical space
Lp(Ω). A map u : Ω → X is in the Newton-Sobolev space N1,p(Ω, X)
if u ∈ Lp(Ω, X) and if there exists a Borel function ρ ∈ Lp(Ω), such that
for p-almost all curves γ : I → Ω the composition u ◦ γ is a continuous
curve and the following inequality holds true:

(3.1)

∫
γ

ρ ≥ `X(u ◦ γ).
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Up to sets of measure 0, there exists a uniquely defined minimal
function ρu satisfying the condition above. It is called the generalized
gradient of u. The integral

∫
Ω
ρpu(z)dz coincides with the Reshetnyak

energy Ep
+(u) of u, see [HKST15], Theorem 7.1.20 and [LW16a], Section

4.

3.3. Approximate metric differentials. Let u ∈ W 1,p(Ω, X) be as
above. Then u has an approximate metric differential at almost every
point z ∈ Ω. This approximate metric differential is a seminorm s on
R2, denoted by ap mduz, which satisfies (2.3), where lim is replaced by
the approximate limit ap lim. We refer the reader to [Kar07],[LW16a],
Section 4 and recall here only the following two structural results that
a posteriori could be taken as the definition of the approximate metric
differential. The field of seminorms z 7→ ap mduz is a measurable map
contained in Lp(Ω,S2), thus, changing this map on a subset of measure
0, we may assume that z 7→ ap mduz is an everywhere defined Borel
map. There is a countable, disjoint decomposition Ω = S∪1≤i<∞Ki into
a set S of zero measure and compact subsets Ki such that the following
holds true. The restriction of u to any Ki is Lipschitz continuous, the
metric differential of the restriction u : Ki → X exists at any z ∈ Ki

and coincides with ap mduz.

3.4. Length of almost all curves. Let u ∈ N1,p(Ω, X) be given.
Then for p-almost all rectifiable curves γ : I → Ω parametrized by
arclength, the composition u ◦ γ is absolutely continuous ([HKST15],
Prop. 6.3.2). Using approximate metric differentials we can compute
the length of almost all curves by the usual formula:

Lemma 3.1. Let u ∈ N1,p(Ω, X) be given. Then for p-almost all
rectifiable curves γ : I → Ω parametrized by arclength we have

(3.2) `X(u ◦ γ) =

∫
I

ap mduγ(t)(γ̇(t))dt.

Proof. Fix a Borel representative of the map z 7→ ap mduz. For any
γ : I → Ω parametrized by arclength the integrand on the right hand
side of (3.2) is measurable, hence the right hand side is well-defined.
Consider the decomposition Ω = S ∪ Ki described above, such that
S has measure 0. Moreover, the sets Ki are compact, the restrictions
u : Ki → X are Lipschitz continuous and have metric differentials at
all points. Finally, these metric differentials coincide with ap mduz at
all z ∈ Ki. The set of curves γ : I → Ω whose intersection with S
has non-zero H1-measure is p-exceptional. The lemma follows, once we
have shown (3.2) for all γ : I → Ω outside this p-exceptional set and
such that u ◦ γ is absolutely continuous.
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For any γ as above set Ii = γ−1(Ki) ⊂ I and let Ji be the set
of all Lebesgue points of Ii in I, at which γ has a differential and
the absolutely continuous curve u ◦ γ has a metric differential. By
assumption on γ, the union J = ∪Ji has full measure in I. On the
other hand, for any t ∈ J the metric differential mdt(u ◦ γ)(1) must
coincide with ap mduγ(t)(γ̇(t)). Thus, integrating this equality and
using (2.2) we obtain (3.2). �

We deduce as consequences:

Corollary 3.2. Let X± be complete metric spaces. Let u± ∈ Lp(Ω, X±)
be two maps. Assume that for p-almost all curves γ ⊂ Ω the composi-
tions u± ◦ γ are continuous and

(3.3) `X+(u+ ◦ γ) = `X−(u− ◦ γ).

Then u+ ∈ N1,p(Ω, X+) if and only if u− ∈ N1,p(Ω, X−). In this case,
the approximate metric differentials ap mdu± of u± coincide almost
everywhere.

Proof. The first claim follows directly from the defintion of Newton-
Sobolev spaces N1,p.

Fix a unit vector v ∈ R2. Then for almost every z ∈ Ω we have
(3.3) and (3.2) for all sufficiently short segments γ centered at z and
in direction v. The Lebesgue Differentiation theorem thus implies that
ap mdu+

z (v) = ap mdu−z (v) for almost every z ∈ Ω. Applying this to
a countable dense set of directions v implies that the measurable fields
of seminorms ap mdu± are almost everywhere equal. �

3.5. Traces and gluings. Let Ω ⊂ R2 be a Lipschitz domain with
boundary ∂Ω and let u ∈ W 1,p(Ω, X) be given. Then u has a well-
defined trace tru ∈ Lp(∂Ω, X) with the following property, cf. [KS93].
For the distance function f : X → R to any point x ∈ X, we have
tr(f ◦ u) = f ◦ tru ∈ Lp(∂Ω), where on the left hand side the usual
trace of Sobolev real-valued functions is considered.

Let a curve S ⊂ Ω separate the Lipschitz domain Ω into two Lipschitz
subdomains Ω±. If u± ∈ W 1,p(Ω±, X) have the same trace on S then
u± define together a map u ∈ W 1,p(Ω, X), see [KS93].

3.6. Area of Sobolev maps. Let µ be a definition of area and con-
sider the corresponding Jacobian Jµ : S2 → [0,∞), see Subsection 2.3.
For u ∈ W 1,2(Ω, X) the µ-area of u is defined by

(3.4) Areaµ(u) :=

∫
Ω

Jµ(ap mduz) dz.
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The number Areaµ(u) is finite and satisfies Areaµ(u) ≤ E2
+(u), [LW16a],

Lemma 7.2. In view of the area formula for Lipschitz maps this is a
natural extension of the parametrized µ-area to Sobolev maps.

Recall that for any p > 2 any map u ∈ N1,p
loc (Ω, X) is continuous

and has Lusin’s property (N), thus it sends H2-zero sets to H2-zero
sets. From the decomposition of Ω into parts on which u is Lipschitz
and a set of measure 0, we deduce that the image u(Ω) is countably
2-rectifiable and of finite Hausdorff area. More precisely we deduce
from Lemma 2.1 (cf. [Kar07]):

Lemma 3.3. Let u ∈ N1,2(Ω, X) be a continuous map with Lusin’s
property (N). Let K be a measurable subset of Ω and Y = u(K). Let
N : Y → [0,∞] be the multiplicity function N(y) = #{z ∈ Ω : u(z) =
y}. Then the following holds true:

∫
Y

N(y) dµY (y) =

∫
K

Jµ(ap mduz) dz.

3.7. Special infinitesimal structure. A seminorm s ∈ S2 is Q-
quasiconformal for some Q ≥ 1 if for all v, w ∈ S1 the inequality
s(v) ≤ Q·s(w) holds true. A quasiconformal seminorm is either a norm
or the 0-seminorm. A map u ∈ W 1,2(Ω, X) is called Q-quasiconformal
if the seminorms ap mduz are Q-quasiconformal for almost every z ∈ Ω.
For Q = 1 we call such maps conformal.

For every definition of area µ and every Q-quasiconformal map u ∈
W 1,2(Ω, X) we have:

(3.5) Areaµ(u) ≥ Q−2 · E2
+(u).

The inequality above is the basic ingredient for most regularity re-
sults in [LW16a]. The

√
2-quasiconformality of a map u ∈ W 1,2(D,X)

can be guaranteed by the following lemma ([LW16c], Lemma 4.1, cf.
[LW16a], Theorem 1.2). This lemma also strengthens (3.5) replacing
the constant Q−2 = 1

2
by the µ-depending constant q(µ) ∈ [1

2
, 1].

Lemma 3.4. Let u ∈ W 1,2(D,X) be such that E2
+(u) ≤ E2

+(u ◦ φ)

for all biLipschitz homeomorphisms φ : D̄ → D̄. Then u is
√

2-
quasiconformal. Moreover, for any definition of area µ and any subdo-
main Ω ⊂ D we have

Areaµ(u|Ω) ≥ q(µ) · E2
+(u|Ω).

A space X satisfies property (ET) if for any map u ∈ W 1,2(D,X) the
seminorm ap mduz is either degenerate or comes from some Euclidean
product at almost every point z ∈ D. We refer to [LW16a] for a
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discussion of property (ET) and the classes of spaces satisfying it, see
also Subsection 1.4. We just recall here that if X satisfies property
(ET) then for any u ∈ W 1,2(D,X) the µ-area of u does not depend on
the definition of area µ. Moreover, in this case any map u satisfying
the assumption of Lemma 3.4 is conformal, and therefore the equality
Areaµ(u|Ω) = E2

+(u|Ω) holds for any subdomain Ω of D.

3.8. Lengths of circles. We will need a variation of the classical
Lemma of Courant-Lebesgue, cf. [LW16a], Lemma 7.3. Let X be a
complete metric space and let u ∈ N1,2(D,X). Let x ∈ D̄ be an arbi-
trary point. For t ≤ 1 denote by St = St(x) the set St(x) = {z ∈ D :
|z − x| = t}, which is either a circle or a circular arc. For almost all
t ≤ 1 the restriction u : St → X is absolutely continuous. Denote by lt
the length of u : St → X.

Lemma 3.5. In the above notations let 1 > r > 0 be given and set
er = E2

+(u|B(x,r)∩D). Then there exists a set S of positive measure in
the interval [2

3
r, r], such that for any t ∈ S we have l2t ≤ 6π · er.

Proof. For the generalized gradient ρu of u, we integrate ρ2
u in polar

coordinates around x, use Hoelder’s inequality and (3.1):

(3.6) er =

∫ r

0

(∫
St

ρ2
u

)
dt ≥

∫ r

0

1

2πt
·
(∫

St

ρu

)2

dt ≥ 1

2πr

∫ r

0

l2t dt.

If l2t > 6π · er for almost all t ∈ [2
3
r, r] then er >

1
2πr
· r

3
· 6π · er which is

absurd. This proves the claim. �

4. Quadratic isoperimetric inequality

4.1. Equal traces in irregular domains. For a bounded domain
Ω ⊂ R2, we denote by W 1,2

0 (Ω) the closure of the set of all smooth
functions with compact support in Ω with respect to the usual norm
in the Sobolev space W 1,2(Ω,R). By continuity, for any u ∈ W 1,2

0 (Ω)
the extension of u by 0 outside of Ω defines a function in W 1,2(R2,R).
We can now define equality of traces even for irregular domains, when
traces are not defined.

Definition 4.1. Let Ω ⊂ R2 be a bounded domain and let X be a
complete metric space. We say that f1, f2 ∈ W 1,2(Ω,R) have equal
traces if f1 − f2 ∈ W 1,2

0 (Ω). We say that u1, u2 ∈ W 1,2(Ω, X) have
equal traces if for every x ∈ X the compositions of u1 and u2 with the
distance function to x have equal traces.

If Ω is a Lipschitz domain then a function u ∈ W 1,2(Ω,R) is contained
in W 1,2

0 (Ω) if and only if tru : ∂Ω→ R equals 0 almost everywhere on
18



∂Ω. Therefore, for maps u1,2 ∈ W 1,2(Ω, X) on a Lipschitz domain Ω
the maps u1,2 have equal traces in the sense of the definition above if
and only if tru1 = tru2 almost everywhere on ∂Ω.

We have the following extension of the classical gluing statement:

Lemma 4.2. Let V ⊂ Ω be bounded domains in R2. Let u ∈ W 1,2(Ω, X)
and v ∈ W 1,2(V,X) be maps into a complete metric space X. Assume
that v and u|V have equal traces. Then the map û which equals u
on Ω \ V and v on V is contained in W 1,2(Ω, X). Moreover, û and
u have equal traces. Finally, for any definition of area µ, we have
Areaµ(û)− Areaµ(u) = Areaµ(v)− Areaµ(u|V ).

Proof. If û ∈ W 1,2(Ω, X) then the approximate metric differentials of
û and u must coincide at almost all points of Ω \ V . Thus the last
claim about the difference of areas follows from the definition (3.4) of
the area of Sobolev maps. In order to establish the first two claims
it suffices to prove the corresponding statements for compositions of
u and v with distance functions to points x ∈ X. Therefore, we may
assume that X = R. In this case the difference of u and û equals 0
outside of V and equals u − v on V . Thus u − û ∈ W 1,2(Ω,R), hence
û ∈ W 1,2(Ω,R). Moreover, u− û is a limit in W 1,2(Ω,R) of a sequence
of smooth functions with support contained in V , hence û and u have
equal traces. �

4.2. Conformal changes. Since the Reshetnyak energy is conformally
invariant, it is possible to control the pull-backs of Sobolev maps by
conformal diffeomorphisms even if they are not biLipschitz.

Lemma 4.3. Let F : Ω1 → Ω2 be a conformal diffeomorphism between
bounded domains in R2. Let X be a complete metric space and u ∈
N1,2(Ω2, X). Then v = u ◦ F : Ω1 → X is measurable and essentially
separable valued. The map v is contained in N1,2(Ω1, X) if and only if
v ∈ L2(Ω1, X). In that case we have E2

+(u) = E2
+(v) and Areaµ(u) =

Areaµ(v) for any definition of area µ.

Proof. Since F is locally biLipschitz, the composition with F defines
a bijection N1,2

loc (Ω2, X) → N1,2
loc (Ω1, X). In particular, v : Ω1 → X

is measurable and essentially separable valued. The map F : Ω1 →
Ω2 preserves 2-exceptional families of curves. Let ρ ∈ L2(Ω2) be the
minimal generalized gradient of u. Consider ρ̂ ∈ L2(Ω1) defined by
ρ̂2(z) := ρ2(F (z))·|detDF (z)|. Then for any O ⊂ Ō ⊂ Ω1, the function
ρ̂ is the minimal generalized gradient of v|O ∈ W 1,2(O,X), cf. [LW16a],
Lemma 6.4. Therefore, ρ̂ ∈ L2(Ω) is the minimal generalized gradient
of u ◦ F in the sense of (3.1), since this is true for all subdomains
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O ⊂ Ō ⊂ Ω1. Thus v ∈ N1,2(Ω1, X) if and only if v ∈ L2(Ω1, X).
The last equality statement for energies and areas follows from the
corresponding statements for the restrictions to subdomains O ⊂ Ō ⊂
Ω1, [LW16a], Lemma 6.4. �

The condition u ◦ F ∈ L2(Ω1, X) is automatically fulfilled if the
(essential) image of u is contained in a bounded set, in particular, if
u has a continuous extension to Ω̄2. In general, u ◦ F need not be
contained in L2(Ω1, X). However, this condition turns out to depend
only on the traces:

Lemma 4.4. Let F : Ω1 → Ω2 be a conformal diffeomorphism between
bounded domains in R2. Let u± be two maps in N1,2(Ω2, X) which have
equal traces. If u+ ◦ F ∈ N1,2(Ω1, X) then u− ◦ F ∈ N1,2(Ω1, X) and
the compositions u± ◦ F have equal traces.

Proof. Taking the composition with distance functions to points x ∈ X,
we may assume that X = R. Hence, considering the difference u+−u−,
it suffices to prove that v ◦ F ∈ W 1,2

0 (Ω1) for any v ∈ W 1,2
0 (Ω2). For

any smooth function v with compact support in Ω2 the composition
v ◦ F is smooth, has compact support in Ω1 and the same energy
as v. Since v has compact support in Ω1 the L2-norm of v ◦ F is
bounded by K · E2

+(v ◦ F ) for some constant K = K(Ω1), due to the
Sobolev inequality. This shows that the composition with F defines a
continuous map W 1,2

0 (Ω2)→ W 1,2
0 (Ω1) and finishes the proof. �

We infer that restrictions of area minimizers to subdiscs minimize
the area as well:

Corollary 4.5. Let the image of u ∈ N1,2(D,X) be contained in a
bounded set. Let F : D → O be a conformal diffeomorphism onto a
subdomain O ⊂ D. Then v := u ◦ F ∈ N1,2(D,X). If u has minimal
µ-area among all maps in N1,2(D,X) with the same trace as u then v
has minimal µ-area among all maps in N1,2(D,X) with the same trace
as v.

Proof. From Lemma 4.3 and the subsequent remark we deduce v ∈
N1,2(D,X). Assume that v+ ∈ N1,2(D,X) has the same trace and
smaller µ-area than v. Then w := v ◦ F−1 is contained in N1,2(O,X)
and u|O and w have equal traces by Lemma 4.4. Moreover, w has
smaller µ-area than the corresponding restriction of u. Now, define û
to be equal u on D \ O and equal w on O. The corresponding map û
is in W 1,2(D,X), has the same trace as u and smaller µ-area, due to
Lemma 4.2. This contradicts the minimality assumption. �
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4.3. Quadratic isoperimetric inequality. Let µ be a fixed defini-
tion of area. A space X admits a (C, l0)-isoperimetric inequality with
respect to µ, if for any Lipschitz curve γ : S1 → X of length l ≤ l0
there exists some u ∈ W 1,2(D,X) with trace γ and Areaµ(u) ≤ Cl2.
Then X admits a (2C, l0)-isoperimetric inequality with respect to any
other definition of area µ′. However, µ-minimal and µ′-minimal discs
may be completely different ([LW16a], Prop. 11.6).

In order to avoid many reparametrizations we state the following:

Lemma 4.6. Let X admit a (C, l0)-isoperimetric inequality with re-
spect to µ. Let T be a biLipschitz Jordan curve in R2 and let Ω be the
Jordan domain bounded by T . If γ ∈ W 1,2(T,X) is a curve of length
l ≤ l0 then there exists a map u ∈ W 1,2(Ω, X) with tru = γ and such
that Areaµ(u) ≤ C · l2.

Proof. The domain Ω is biLipschitz homeomorpic to D̄ ([Tuk80]). Since
compositions with biLipschitz homeomorphisms preserve the class of
Sobolev maps, lengths and areas, the statement follows from the cor-
responding statement in the case T = S1. In the case T = S1 the
statement was proved in [LW16a], Lemma 8.5. �

4.4. Filling area of curves. Let γ : S1 → X be a continuous curve
in a complete metric space X. We define the filling area of γ in X with
respect to µ as

Fill(γ) = FillX,µ(γ) := inf{Areaµ(u) | u ∈ W 1,2(D,X) , tr(u) = γ}.

We let I denote the unit interval and A denote the annulus S1 × I.
Any Sobolev map v ∈ W 1,2(A,X) has as a trace a map defined on the
boundary of A which consists of two copies of S1. Thus, the trace of v
consists of two maps γ0,1 ∈ L2(S1, X) and we say that u is a Sobolev
annulus connecting γ0 with γ1. Assume that the Sobolev annulus v
connects two continuous curves γ0 and γ1. Then gluing v to a disc
u arising in the definition of the filling area and reparametrizing the
arising map we deduce |Fill(γ0) − Fill(γ1)| ≤ Areaµ(v), cf. [LW16e],
Section 3.2. Any continuous curve γ ∈ W 1,2(S1, X) can be connected
by a Sobolev annulus contained in the image of γ to a constant speed
parametrization γ0 of γ. Thus, Fill(γ) = Fill(γ0), [LW16e], Lemma 2.6.

If γ : S1 → X is any rectifiable curve with constant speed parametriza-
tion γ0, then Fill(γ) might be infinite, while Fill(γ0) is finite. Even if
X = R2 there exist absolutely continuous curves γ : S1 → R2 which
do not bound any Sobolev disc at all, since they do not belong to the
fractional Sobolev space W

1
2
,2(S1,R2), cf. [Leo09], [Chi07].
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Finally, FillX,µ(γ) ≤ Cl2 holds for any Lipschitz curve γ : S1 → X of
length l ≤ l0 if and only if X admits the (C ′, l0)-isoperimetric inequality
with respect to µ for all C ′ > C.

4.5. Filling irregular curves. We are going to prove

Theorem 4.7. Let X be a space with a (C, l0)-isoperimetric inequality.
Assume that γ : S1 → X is a curve of length l ≤ l0 which is the trace
of a map u ∈ W 1,2(D,X). Then Fill(γ) ≤ Cl2.

This statement is not obvious even if X is Euclidean space Rn. How-
ever, in this case it is a consequence of the following analytic fact, cf.
[DHS10], p.283. For the harmonic map v : D → Rn with trace γ, the
length of images of concentric circles is non-decreasing as a function
of the radius. Thus one can find a small filling of γ by taking a small
annulus out of v which connects γ to a smooth curve η of length not
larger than l and then fill this smooth curve η. In general spaces X, it
might very well happen, that all curves outside of γ are much longer
than γ. Instead, we prove the following Lemma which immediately
implies Theorem 4.7:

Lemma 4.8. Let X be a space with a (C, l0)-isoperimetric inequal-
ity. Let the rectifiable curve γ : S1 → X be the trace of a map
u ∈ W 1,2(D,X). Then there exist Sobolev annuli û ∈ W 1,2(A,X)
of arbitrary small area which connect γ and its arclength parametriza-
tion γ0. In particular, FillX,µ(γ) = FillX,µ(γ0). If X is proper then the
annuli û can be chosen to be continuous and to satisfy Lusin’s property
(N).

Proof. We may assume u ∈ N1,2(D,X). We choose a very small δ
which will control the area of û. Then we choose a small ρ = sin(2π

n
)

such that the restriction of u to the ρ-neighborhood of S1 in D has
energy at most δ. We choose equidistant points p1, ...., pn on S1 with
pairwise Euclidean distance ρ. If ρ is small enough then the length of
γ on segments between consecutive points pi, pi+1 is smaller than δ.

Denote by Ei the energy of the restriction of u to B(pi, ρ) ∩D. Use
Lemma 3.5 to find some ri ∈ (2

3
ρ, ρ), such that the following holds true.

The restriction of u to the distance circle ci of radius ri around pi in D
is a continuous curve in W 1,2(ci, X) and the length li of u ◦ ci satisfies
l2i < 6π · Ei.

We define Bi to be the ball B(pi, ri). By construction, the boundary
η of ∪Bi in D is a biLipschitz Jordan curve, and the restriction of
u to η is in W 1,2(η,X). Let Ω denote the annulus in D between η
and S1 and note that Ω is biLipschitz to A. It suffices to find a map
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v ∈ W 1,2(Ω, X) of area going to 0 with δ, whose traces coincide with u|η
and γ0 respectively. Then after a biLipschitz identification of Ω with
A, we can glue both annuli v and u|Ω along η to obtain the desired
annulus û between γ and γ0.

In order to construct v we proceed as follows. The domain Ω is sub-
divided by the circular arcs ci in 2n Lipschitz discs Tj. The boundary
of any Tj consists of two or three parts of consecutive circles ci and a
part Ij of S1. By our assumption on ρ, any restriction γ : Ij → X has
length mj smaller than 2δ. We now consider the curve kj : ∂Tj → X
which coincides with u on the parts of the circles ci and whose restric-
tion to Ij parametrizes the corresponding part of γ proportionally to
arclength. Thus kj is just a reparametrization of u : ∂Tj → X and has
the same length aj = `(kj) as the restriction of u to ∂Tj.

By our choice of the circles ci, all the curves kj are Sobolev curves
kj ∈ W 1,2(∂Tj, X). Moreover, if ρ has been chosen small enough,
the length of any kj does not exceed l0. Lemma 4.6 provides a map
vj ∈ W 1,2(Tj, X) whose trace is kj and whose µ-area is at most C ·
a2
j . Whenever two domains Tj and Tl have a common part of the

boundary, the traces of vj and vl on this common part coincide (with
the restriction of u). Therefore, gluing the vj together we obtain a
well defined map v ∈ W 1,2(Ω, X) which coincide with vj on Tj for all
j. By construction, the trace of v coincides with the restriction of u
on η. On the outer circle S1, the trace of v is a Lipschitz continuous
reparametrization γ1 of γ0. Thus we can attach to v another annulus of
zero area connecting γ1 with γ0, Subsection 4.4, to obtain an annulus
with the required trace. Therefore, it remains to prove that the µ-area
of the constructed annulus v goes to 0 as δ goes to 0.

By construction, the µ-area of v is at most C ·
∑2n

j=1 a
2
j . The length

aj of kj = u ◦ ∂Tj has a contribution mj of a part of the boundary
circle S1. The rest of kj consists of two or three parts of circles ci.
We estimate those parts by the whole lengths li of the corresponding
circular arcs u ◦ ci. Parts of each circle ci appear as boundaries of at
most 5 different domains Tj. This implies

2n∑
j=1

a2
j ≤ K · (

2n∑
j=1

m2
j +

n∑
i=1

l2i ),

for some universal constant K. Using the bound l2i < 6π ·Ei we obtain

Areaµ(v) ≤ K1 · (
2n∑
j=1

m2
j +

n∑
i=1

Ei),

for some constant K1 depending on C.
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Since the balls Bi intersect at most pairwise, the sum
∑n

i=1 Ei is

bounded by 2 · E2
+(u|Ω) ≤ 2δ. On the other hand

∑2n
j=1mj is the

finite length l of γ, hence
∑2n

j=1m
2
j becomes arbitrary small once δ has

been chosen small enough. This finishes the proof that the constructed
annulus v has arbitrary small area, once δ is chosen small enough.

If X is proper, we may first replace u by the harmonic map with
the same trace, see [LW16e]. Then u is continuous on D̄ and sat-
isfies Lusin’s property (N). Also the fillings vj can be chosen to be
continuous and satisfy Lusin’s property (N), cf. [LW16e]. Then the
constructed annulus v is continuous as well and satisfies Lusin’s prop-
erty (N). Therefore, also the annulus û obtained from a gluing of v and
u will be continuous and satisfy Lusin’s property (N). �

5. Solutions of the Plateau problem

5.1. Setting. Let µ be a definition of area. Let X be a complete
metric space which admits a (C, l0)-isoperimetric inequality for the area
µ. Let Γ be a rectifiable Jordan curve in X. Denote as always in
this paper by Λ(Γ, X) the set of maps u ∈ W 1,2(D,X), whose trace
is a weakly monotone parametrization of Γ. Let u ∈ Λ(Γ, X) be a
solution of the Plateau problem for the curve Γ with respect to µ. Thus
Areaµ(u) is minimal in Λ(Γ, X) and u has minimal Reshetnyak energy
E2

+(u) among all minimizers of the µ-area in Λ(Γ, X). Due to [LW16a],
Theorem 9.1, u has a unique representative which continuously extends
to D̄. From now on we will fix this representative u : D̄ → X.

The map u is
√

2-quasiconformal and it is conformal if X satisfies
property (ET), Lemma 3.4 and the subsequent paragraph. Due to
[LW16a], Theorem 1.4, there exists a number p > 2 depending only on
the constant C such that u is contained in W 1,p

loc (D,X). Moreover, if
Γ is a chord-arc curve then one can improve the integrability globally:
there is some p > 2 depending on C and the biLipschitz constant of
Γ such that u ∈ W 1,p(D,X), [LW16e], Theorem 1.3, see also [LW16a],
Theorem 1.4 (iii). The last results and the Sobolev embedding theo-
rems ([LW16a], Proposition 3.3) imply that u is locally Hoelder con-
tinuous on D, respectively globally Hoelder continuous on D̄, with the
exponent 1− 2

p
.

5.2. Restrictions to subdomains. The next result generalizes Propo-
sition 1.8.

Proposition 5.1. Let u : D̄ → X be a solution of the Plateau prob-
lem as above. Let T ⊂ D̄ be a Jordan curve with Jordan domain O.
Assume that u|T is a curve of finite length l and let γ0 : S1 → X be a
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parametrization of u|T proportional to arclength. Then Areaµ(u|O) ≤
FillX,µ(γ0). In particular, if l ≤ l0 then Areaµ(u|O) ≤ Cl2.

Proof. Fix a conformal diffeomorphism F : D → O. Due to Corol-
lary 4.5, the map v = u◦F is contained in N1,2(D,X) and has minimal
area among all maps with the same trace. Since F extends to a home-
omorphism F : D̄ → Ō by the theorem of Caratheodory, v extends to
a continuous map on D̄. Thus the trace of v coincides with u ◦ F |S1 .
Therefore, the trace of v is a rectifiable curve of length l, and γ0 is a
reparametrization of this trace. Due to the minimality of v and Corol-
lary 4.5, Areaµ(v) = Areaµ(u|O) is the filling area of the curve u◦F |S1 .
From Lemma 4.8 we deduce Areaµ(u|O) ≤ FillX,µ(γ0). �

5.3. Intrinsic regularity. All regularity results in [LW16a] are based
on the estimate of lengths of some curves in the image of u. This
estimate goes back to Morrey’s classical proof of the a priori Hoelder
continuity, [Mor48], and is proven [LW16a], Proposition 8.7, in the
present setting of metric spaces with quadratic isoperimetric inequal-
ities. As shown in [LW16c], Theorem 4.5, the Hoelder exponent from
[LW16a], Proposition 8.7, can be slightly improved using Lemma 3.4.

Lemma 5.2. For any 1 > δ > 0 and A > 0 there is some L =
L(C, l0, δ, A) > 0 such that the following holds true whenever the µ-
area of the µ-minimal disc u is at most A. For any z1, z2 ∈ B(0, δ)
there is a piecewise affine curve γ from z1 to z2 such that

`X(u ◦ γ) ≤ L · |z1 − z2|α,
where α = q(µ) · 1

4πC
.

In fact, similarly to [LW16a], Proposition 8.7, the above result ap-
plies to the slightly more general situation where the µ-minimality of
u is replaced by the following slightly weaker assumption: the map u
minimizes the µ-area among all maps with the same trace as u, and u
satisfies the conclusion of Lemma 3.4. This extension is needed only
in the proof Lemma 5.3 below. In fact, the slightly smaller Hoelder
exponent used in [LW16a], Proposition 8.7, suffices for the conclusion
of Lemma 5.3.

5.4. Boundary continuity. For regular curves, the following result is
implicitly contained in the proof of the boundary regularity in [LW16a],
Section 9. We sketch the proof, referring to [LW16a] for details.

Lemma 5.3. For any ε > 0 there exists some s > 0 depending on C, l0
and ε with the following property. Let u ∈ Λ(Γ, X) be a solution of the
Plateau problem as above. Let T be a Jordan curve in D̄ with Jordan
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domain Ω. Assume that the restriction of u to Ω has µ-area at most
s. Then for any p ∈ Ω there exists a curve η ⊂ Ω connecting p with T
such that `X(u ◦ η) < ε.

Proof. Let 0 < s < 1 be small enough, to be determined later. Choose
a conformal map φ : D → Ω such that φ(0) = p. Denote by φ its contin-
uous extension to a homeomorphism from D̄ → Ω̄. As we have seen in
Corollary 4.5, the composition û := u◦φ is contained inW 1,2(D,X) and
has minimal µ-area among all maps in W 1,2(D,X) with the same trace
as û. Since φ is conformal it preserves the µ-area and the Reshetnyak
energy on all subdomains. Thus the composition û = u ◦ φ : D̄ → X
satisfies the conclusions of Lemma 3.4. As has been explained after
Lemma 5.2, the conclusion of Lemma 5.2 applies to the map û. Thus,
there exists some 1 > δ > 0 depending only on C, l0 and ε with the
following property. For any point θ ∈ S1 there exists some curve γθ in
D connecting 0 with δ · θ such that `X(û ◦ γθ) < ε

2
.

The restriction of û to the annulus Ω = {z | δ < |z| < 1} is
√

2-
quasiconformal and satisfies E2

+(û|Ω) ≤ 2 Areaµ(û|Ω) ≤ 2s. Denote by
ηθ the radial curve connecting δ · θ and θ and by ρ the minimal gen-
eralized gradient of û. Integrating in polar coordinates, using Hoelder
inequality and (3.1) we deduce

2s ≥ E2
+(û|Ω) =

∫
Ω

ρ2(z) dz ≥ δ

∫
S1

(∫
ηθ

ρ2

)
dθ ≥ δ

∫
S1

`X(û ◦ ηθ)2.

Thus, if s is small enough we find some θ ∈ S1 with `X(û ◦ ηθ) < ε
2
.

Now the concatenation γ = γθ ∗ηθ connects the origin 0 with θ ∈ ∂D
and ε > `X(û◦γ). Thus we obtain the required curve η as η = φ◦γ. �

We can now deduce:

Corollary 5.4. Let u ∈ Λ(Γ, X) be a solution of the Plateau problem
as above. Then for any ε > 0 there exists some ε > r > 0 with the
following property. For any pair of points x, y ∈ D̄ with |x − y| < r
there is some curve γ connecting these points inside B(x, ε) and such
that `X(u ◦ γ) < ε.

Proof. Using Lemma 5.3 it suffices to prove the following claim.
Claim: For any δ > 0 there exists some r > 0 such that any x, y ∈ D̄

with |x − y| < r are contained in the closure Ω̄ of a convex domain
Ω ⊂ D such that the quantities Areaµ(u|Ω), diam(Ω) and `X(u|∂Ω) are
bounded from above by δ.

The claim is proven by taking Ω to be the closure of the ball B(x, t) ⊂
D̄ of an appropriate radius t ∈ (r,

√
r) around x. Indeed, if r is small

enough then the diameter of any such ball is certainly smaller than δ.
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The boundary T := ∂Ω ⊂ D̄ of such balls consists of the distance circle
St = St(x) and, possibly, an interval T b = Ω∩∂D in the boundary circle
∂D. Since u : ∂D → Γ is rectifiable, the image u(T b) has arbitrary
small length, if the diameter of T b is small enough. On the other hand,
`X(u ◦ St) is controlled by the lemma of Courant-Lebesgue, [LW16a],
Lemma 7.3, see also Lemma 3.5 above. Therefore, `X(u ◦ T ) becomes
arbitrary small if r is small enough and t is chosen by the lemma of
Courant-Lebesgue. Finally, an upper bound on Areaµ(u|Ω) follows from
the upper bound on `X(u ◦ T ) and Proposition 5.1. �

6. Metric and analytic properties of the space Z

6.1. Setting, notations and basic properties. Throughout this
section, we fix a definition of area µ and constants C, l0 > 0. We fix
a complete metric space X admitting a (C, l0)-isoperimetric inequal-
ity. We fix a Jordan curve Γ of finite length in X. Finally, we let
u : D̄ → X be a solution of the Plateau problem for (Γ, X). Consider
the pseudo-distance du : D̄× D̄ → [0,∞] defined as in the introduction

du(z1, z2) := inf{`X(u ◦ γ) | γ ⊂ D̄ , γ connects z1 and z2}.
Now the statement of Corollary 5.4 immediately implies:

Lemma 6.1. For any ε > 0 there exists some r > 0 such that for
x, y ∈ D̄ with |x− y| < r we have du(x, y) ≤ ε.

As a direct consequence of the triangle inequality we deduce that
the pseudo-metric du : D̄ × D̄ → [0,∞] is finite-valued and continu-
ous. Consider the equivalence relation of D̄ identifying pairs of points
z1, z2 ∈ D̄ with du(z1, z2) = 0. Let Z be the set of equivalence classes of
points in D̄. We obtain a canonical surjective projection P : D̄ → Z.
The pseudo-metric du defines a metric dZ on the set Z. The continuity
of du implies that P : D̄ → Z is continuous. Thus Z is a compact
metric space. For any z1, z2 ∈ D̄ we have du(z1, z2) ≥ dX(u(z1), u(z2)).
Therefore, u admits a unique factorization u = ū ◦ P with a unique
ū : Z → X. Moreover, ū is 1-Lipschitz. Hence we have already verified
most statements in the following direct generalization of Theorem 1.1.

Proposition 6.2. The pseudo-distance du assumes only finite values
and is continuous. The metric space Z associated with the pseudo-
metric du is compact and geodesic, and the canonical projection P :
D̄ → Z is continuous. The map u : D̄ → X has a canonical factoriza-
tion u = ū ◦ P , where ū : Z → X is a 1-Lipschitz map. For any curve
γ : I → D̄ we have `X(u ◦ γ) = `Z(P ◦ γ), hence ū preserves the length
of P ◦ γ.
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Proof. It remains to prove the last equality and the fact that Z is a
geodesic space. Thus let γ : I → D̄ be given. Since u = ū ◦ P and ū
is 1-Lipschitz, we have `X(u ◦ γ) ≤ `Z(P ◦ γ). On the other hand, for
any [t, t′] ⊂ I we have dZ(P ◦ γ(t), P ◦ γ(t′)) ≤ `X(u ◦ γ|[t,t′]). Thus the
reverse inequality follows directly from the definition of length (2.1).

For any p1 = P (z1), p2 = P (z2) ∈ Z the definition of dZ(p1, p2) =
du(z1, z2) together with the equality of lengths proved above shows that
Z is a length space. Since Z is compact, the theorem of Hopf-Rinow
shows that Z is geodesic. �

Also the following result is general non-sense as well.

Lemma 6.3. Any fiber P−1(q) is a connected subset of D̄.

Proof. The set K = P−1(q) is closed, hence compact. If it is not
connected we find a decomposition K = K1∪K2 such that d(K1, K2) >
0. Let S be the compact set of all points in D̄ which are at the same
distance from K1 and K2. Choose k1 ∈ K1 and k2 ∈ K2. By continuity
and compactness, the function x 7→ du(k1, x) assumes a minimum ε on
S. Since S does not intersect K, we have ε > 0. By definition of du, we
find a curve γ connecting k1 and k2 with `X(u◦γ) < ε. This curve must
intersect the set S at some point p. We deduce du(p, k1) ≤ `X(u◦γ) < ε.
This contradiction finishes the proof. �

Since u : S1 → Γ is rectifiable the curve P : S1 → Z is rectifiable
as well. Since the restrictions of u and P to any subarc of S1 have
equal lengths and since u|S1 a weakly monotone parametrization of the
Jordan curve, Γ we conclude:

Lemma 6.4. The restriction P : S1 → Z is a weakly monotone
parametrization of a rectifiable Jordan curve Γ′. The restriction ū :
Γ′ → Γ is an arclength-preserving homeomorphism.

6.2. Analytic properties. From Lemma 5.2 we infer:

Lemma 6.5. The restriction P : D → Z is locally α-Hoelder continu-
ous with α = q(µ) · 1

4πC
.

Since `X(u ◦ γ) = `Z(P ◦ γ) for all curves γ in D̄ we deduce from
Corollary 3.2 and the corresponding property of u:

Lemma 6.6. The map P : D → Z is in the Sobolev class W 1,2(D,Z)
and in the local Sobolev class W 1,p

loc for some p > 2 depending on C.
The approximate metric differentials of P and u coincide at almost
all points z ∈ D. In particular, the restrictions of u and P to any
subdomain O ⊂ D have equal µ-area and equal energy.
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From Lemma 6.6 and the infinitesimal properties of u we get:

Corollary 6.7. The map P : D → Z is
√

2-quasiconformal. If the
space X satisfies property (ET) then P : D → Z is conformal.

From Proposition 5.1, Lemma 6.6 and the last statement in Propo-
sition 6.2 we directly deduce:

Lemma 6.8. Let T ⊂ D̄ be a Jordan curve with Jordan domain Ω. If
`Z(P |T ) ≤ l0 then Areaµ(P |Ω) ≤ C · `Z(P |T )2.

Since P ∈ W 1,p
loc (D,Z), for some p > 2, the map P satsifies Lusin’s

property (N). Thus, P (D) is countably 2-rectifiable and has finite H2-
area, Subsection 3.6. Since Z = P (D) ∪ Γ′ and H2(Γ′) = 0 we obtain:

Lemma 6.9. The space Z is countably 2-rectifable and H2(Z) <∞.

We consider the multiplicity function N : Z → [1,∞] defined by
N(z) = #{x ∈ D̄ : P (x) = z} which appears in the area formula.
Due to Lemma 6.3, the fibers of the map P are connected, thus the
function N can only assume the values 1 and ∞. From Lemma 3.3 we
deduce that for H2-almost all point z ∈ Z the value N(z) is exactly 1.
Another application of the area formula in Lemma 3.3 now gives us:

Lemma 6.10. For any open subset V ⊂ Z we have

µZ(V ) = Areaµ(P |P−1(V )∩D).

The measure µZ and hence H2 has the whole set Z as its support:

Lemma 6.11. For every z0 ∈ Z and every r > 0 we have

µZ(B(z0, r)) > 0.

Proof. Otherwise, we find some z0 = P (x0) and some r > 0 with
µZ(B(z0, r)) = 0. The set Ω := P−1(B(z0, r)) is open in D̄. It consists
of all points which can be connected to x0 by some curve γ with `X(u◦
γ) < r. Therefore, Ω is connected. Hence Ω∩D = Ω\∂D is connected
as well. From Lemma 6.10 we deduce Areaµ(P |Ω∩D) = 0. Since P is
quasi-conformal, the restriction of P to Ω ∩ D has vanishing energy.
Since Ω∩D is connected and P continuous we infer that P is constant
on Ω ∩D. By continuity, B(z0, r) = P (Ω) = {z0}. Since Z is geodesic
this implies that Z = {z0}. This is impossible since Γ′ = P (Γ) is a
Jordan curve in Z. �

7. Topological preliminaries

In this section we collect some well-known statements in 2-dimensional
topology and provide minor variants of these statements. A reader with
some experience in this area may proceed directly to the next section.
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7.1. Jordan’s curve theorem. By the theorem of Jordan, any Jor-
dan curve Γ ⊂ S2 divides S2 into two domains. These domains are
(homeomorphic to) open discs with boundary Γ and their closures are
homeomorphic to D̄.

Due to a theorem of Rado, these domains depend ”continuously” on
the Jordan curve in the following sense, [Pom92], Theorem 2.11. Let
a Jordan curve Γ be fixed, let O be one of the corresponding domains
and p ∈ O an arbitrary point. Then for any ε > 0 there is some δ > 0
with the following property. If f : Γ → S2 is a homeomorphism onto
the image Jordan curve Γ′ such that d(f(x), x) < δ for all x ∈ Γ then
there exists a homeomorphism F : Ō → Ō′ with d(F (x), x) < ε for all
x ∈ Ō. Here we denote by O′ the Jordan domain of Γ′ which contains
the point p.

Given disjoint subsets A,B,C of a topological space Y , we say that
A separates B from C if any connected subset S of Y which contains
points of B and C must intersect A. A Peano continuum is a compact,
connected, locally connected metric space. Any Peano continuum is
locally path connected. We will need the following simple observation.

Lemma 7.1. Let Y be a simply connected Peano continuum. Let K be
a compact subset of Y which separates two points x and y in Y . Then
K contains a minimal compact subset K ′ which still separates x and y.
Moreover, K ′ is connected.

Proof. If Kj is a chain of decreasing compact subsets separating x and
y then their intersection separates x and y as well. Indeed, any Kj

intersects any curve connecting x and y, hence so does K ′ = ∩Kj by
compactness.

By Zorn’s lemma there exists a minimal compact subset K ′ of K
which separates x and y. IfK ′ is not connected then it can be written as
the non-trivial disjoint union of compact subsets K ′ = K1 ∪K2. Since
Y is simply connected, it has trivial first homology group H1(Y,Z).
The exactness of the Mayer-Vietoris sequence in homology implies the
injectivity of the canonical map

H0(Y \K ′,Z)→ H0(Y \K1,Z)⊕H0(Y \K2,Z).

Therefore, if points x and y define the same element in H0(Y \K1,Z)
and in H0(Y \K2,Z) then they define the same element in H0(Y \K ′,Z),
hence are in the same component of Y \ K ′. Thus, either K1 or K2

must separate x and y, in contradiction with the minimality of K ′. �

We cite the following result from [Wil49], Theorem IV.6.7:
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Lemma 7.2. Let K be a Peano continuum in S2 which separates two
points x and y. Then K contains a Jordan curve which still separates
x and y.

We will need:

Lemma 7.3. Let K ⊂ S2 be closed and connected. Then any compo-
nent U of the complement S2 \K is homeomorphic to a disc.

Proof. Otherwise we find a Jordan curve T in U which is non-contractible
in U . Then K must contain at least one point in both Jordan domains
defined by T in S2. Then K cannot be connected. �

For the proof of the following result we refer to [Fre92, Corollary 2B]:

Lemma 7.4. Let K be a compact, connected metric space with finite
H1(K). Then K is a Peano continuum.

Taking Lemma 7.4 and Lemma 7.2 we arrive at:

Corollary 7.5. Let Y be a compact metric space homeomorphic to S2.
Let K ⊂ Y be a compact subset which separates two points x, y ∈ Y . If
l = H1(K) < ∞ then K contains a rectifiable Jordan curve of length
at most l which still separates x and y.

We can now deduce a corresponding separating result in discs:

Corollary 7.6. Let Z be a metric space homeomorphic to D̄. Let K
be a compact subset of Z with finite H1(K). If K separates points
x, y ∈ Z then K contains a minimal compact subset T separating x
and y. Either T is a Jordan curve which intersects ∂Z in at most one
point. Or T is homeomorphic to a compact interval which intersects
∂Z exactly at its endpoints.

Proof. We may assume without loss of generality that x, y 6∈ ∂Z. Due
to Lemma 7.1 we find a minimal compact T ⊂ K separating x and y,
and T is connected. The set T \ ∂Z separates x and y in the open disc
Z \∂Z. For any subset T0 of T \∂Z which separates x and y in Z \∂Z,
the closure T̄0 of T0 in Z separates x and y in Z, hence it coincides
with T by minimality. Thus T \∂Z does not contain any proper closed
subset separating x and y in Z \ ∂Z. Using a Mayer-Vietoris sequence
as in the proof of Lemma 7.1 we deduce that T \ ∂Z is connected.
Summarizing, we see that T \ ∂Z is connected and dense in T .

Using Lemma 7.4 we see that T is a Peano continuum. Consider the
doubling Y of Z along ∂Z and let T+ be the union of T and ∂Z. The
compact set T+ separates x and y in Y . If T does not intersect ∂Z
then T and ∂Z are connected components of T+. Since ∂Z does not
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separate x and y, we deduce that T separates x and y in Y . Due to
Corollary 7.5 and minimality T is a Jordan curve in this case.

Assume from now on that T intersects ∂Z. Then T+ is a Peano
continuum, as a connected union of the Peano continua T and ∂Z. Due
to Lemma 7.2, we find a Jordan curve T− ⊂ T+ which still separates
x and y in Y .

The set T− \ ∂Z ⊂ T separates x and y in the open disc Z \ ∂Z.
Due to the discussion at the beginning of the proof, T− \∂Z = T \∂Z.
Thus the connected set T \ ∂Z is an open subset of the Jordan curve
T−. We deduce that T is a connected subset of the Jordan curve T−.
Moreover, either T = T− and T intersects ∂Z in exactly one point, or
T is homeomorphic to a compact interval and T ∩ ∂Z consists of the
two endpoints of the interval. �

By induction we can derive the following extension of Corollary 7.6
to sets of finitely many points:

Lemma 7.7. Let Z be a metric space homeomorphic to D̄. Let F be
a finite set F = {p1, ...., pm} ⊂ Z \ ∂Z. Let K ⊂ Z \ F be a compact
subset which separates any pair of points of F . Then K contains a
minimal compact subset K0 which separates any pair of points of F in
Z. If H1(K) < ∞ then K0 ∪ ∂Z is homeomorphic to a finite graph.
Moreover, Z \ (K0 ∪ ∂Z) has exactly m connected components.

Proof. The existence of a minimal set K0 follows as in the case of two
points in Lemma 7.1. Thus we may assume that K = K0 has finite
H1-measure and need to prove that K ∪ ∂Z is a finite graph, whose
complement has exactly m components.

We proceed by induction on m. If m = 2, then the claim follows
from Corollary 7.6. Assume that m > 2 and the result is true for all
m′ < m. For any pair of distinct points pi, pj ∈ F the set K contains
a minimal compact subset Kij separating pi from pj. By minimality of
K, we get K = ∪1≤i<j≤mKij.

Assume that some of the sets Kij intersect ∂Z. Then any such Kij

is a simple arc or a Jordan curve and it divides Z into two closed discs
Y ± with common boundary (as subsets of Z) given by Kij. Then we
can apply the inductive hypothesis to the intersection of F and K with
those discs. This implies that Y ±\(K∪∂Y ±) has as many components
as points in F ∩Y ±. Moreover, the union of ∂Y ± and Y ±∩K is a finite
graph. It follows that K is a finite graph as well, and that Z \(K∪∂Z)
has exactly m connected components.

If, on the other hand, none of the sets Kij intersects ∂Z, then any
Kij is a Jordan curve and K is disjoint from ∂Z. We embed Z into its
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double Y homeomorphic to S2. The sphere Y is divided by the Jordan
curve K12 into two closed discs Y ± and we can apply the inductive
hypothesis to Y ±, F± = F ∩ Y ± and K± := K ∩ Y ±. As above, we
deduce that K is a finite graph and that Y \K has exactly m connected
components, each of them containing exactly one point of F . Since
K does not intersect ∂Z, the union K ∪ ∂Z is again a finite graph.
Moreover, the complement of Z in Y is an open disc O contained in
one component U of Y \K. Then U contains ∂Z and U \O = U ∩Z is
connected. We deduce that Z\(K∪∂Z) has exactly m components. �

7.2. Cell-like maps. The following definitions and statements can be
found in [HNV04, p. 97], see also [Edw80].

Definition 7.8. A compact space is called cell-like if it admits an em-
bedding into the Hilbert cube Q in which it is null-homotopic in every
neighborhood of itself. A continuous surjection f : X → Y between
metric spaces X and Y is called cell-like if f−1(q) is cell-like for every
q ∈ Y .

LetX and Y be compact metric spaces of finite topological dimension
and f : X → Y a continuous surjection. If f : X → Y is cell-like and
X is an absolute neighborhood retract then so is Y . If X and Y are
absolute neighborhood retracts then f is cell-like if and only if for
every open set U ⊂ Y the restriction f : f−1(U) → U is a homotopy
equivalence.

Basic examples of cell-like sets are contractible sets. Any cell-like
subset of S1 is a closed interval. In S2 the situation is slightly more
complicated but it is still very well understood:

Example 7.9. A compact subset K ⊂ S2 is cell-like if and only if K
and S2 \K are connected.

The most important class of cell-like maps between absolute neigh-
borhood retracts is given by uniform limits of homeomorphisms. Some-
times, all cell-like maps are of this type. The next example is a direct
consequence of the above characterizations of cell-like subsets of S1:

Example 7.10. Let Y be a compact metric space. A continuous sur-
jection f : S1 → Y is cell-like if and only if Y is homeomorphic to S1

and f is a weakly monotone parametrization of Y .

In the 2-dimensional case the corresponding result is a milestone in
classical geometric topology and goes back to Moore.

Theorem 7.11. Let X be a compact 2-dimensional manifold without
boundary and let f : X → Y be a cell-like map. Then Y is homeomor-
phic to X and f is a uniform limit of homeomorphisms.
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In order to recognize the topology of our minimal disc we will need
a similar result for manifolds with boundary. Unfortunately, we could
not find a reference and, therefore, provide the proof of the following
consequence of Theorem 7.11:

Corollary 7.12. Let Z be a compact metric space and ϕ : D̄ → Z a
cell-like map. Then Z is a contractible and locally contractible space
which is homeomorphic to the complement of some open topological disc
O in S2. As a subset of S2, the boundary of Z is exactly ϕ(S1).

If the restriction ϕ|S1 : S1 → ϕ(S1) is cell-like then ϕ is a uniform
limit of homeomorphisms ϕi : D̄ → Z. In particular, Z is homeomor-
phic to D̄ in this case.

Proof. Denote by Y the space obtained by attaching a copy D̄′ of D̄ to
Z along the map ϕ|S1 . Denote by ι : D̄′ → Y the natural projection.
View S2 as the union of D̄ and D̄′, glued along S1. Define f : S2 → Y
by f = ϕ on D̄ and f = ι on D̄′. Then f is well-defined and cell-like.
Therefore, by Theorem 7.11, the space Y is homeomorphic to S2 and Z
is homeomorphic to the complement of the image of D′ in the sphere S2.
This shows that Z is homeomorphic to the complement of some open
topological disc in Y . Moreover, as a subset of Y , the boundary of Z is
ϕ(S1). Since ϕ is cell-like, D̄ is a 2-dimensional absolute retract and Z
has dimension at most 2, it follows that Z is an absolute neighborhood
retract and, in particular, locally contractible. Moreover, since ϕ is a
homotopy equivalence it follows that Z is contractible. This proves the
first statement.

If ϕ|S1 is cell-like as a map to ϕ(S1) it follows that ϕ(S1) is a Jordan
curve by Example 7.10. Since Y is homeomorphic to S2 the Schoenflies
theorem shows that ϕ(S1) divides Y into two domains Ω1 and Ω2 such
that Ω1 and Ω2 are homeomorphic to D̄. Clearly, one of the two do-
mains is exactly Z, viewed as a subset of Y . Thus Z is homeomorphic
to D̄.

Due to Theorem 7.11 the map f : S2 → Y is a uniform limit of
homeomorphisms fi : S2 → Y . Then Zi = fi(D̄) and Z = f(D̄) are
closed discs in the sphere Y = S2 and fi converges uniformly to f . To
obtain homeomorphisms ϕi : D̄ → Z we just need to change fi by a
homeomorphism ψi : Zi → Z which is close to the identity. But the
existence of such ψi follows from the theorem of Rado, mentioned in
Subsection 7.1. �

7.3. A curve cutting lemma. In order to find a suitable Jordan
curve inside some non-injective curve we will use the following obser-
vation (only) in the case of a punctured disc Y .
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Lemma 7.13. Let Y be a locally contractible metric space. Let the
curve γ : S1 → Y be non-contractible in Y . Then there exists a weakly
monotone parametrization η : S1 → Y of a Jordan curve T ⊂ γ(S1)
which is non-contractible in Y and such that for every continuous map
F : Y → X to another metric space X we have `X(F ◦ η) ≤ `X(F ◦ γ).

Proof. Consider the set G of all curves η : S1 → Y with the following
property. If η(t) 6= γ(t) for some t ∈ S1 then t is an inner point of an
interval on which η is constant. For any maximal interval, on which
η ∈ G is constant, the boundary points of I are mapped by γ to the
same point in Y . The curve γ is contained in G. The family G of curves
is equi-continuous: the modulus of continuity of γ gives also a modulus
of continuity for any η ∈ G.

Denote by G+ the set of all not-contractible curves η ∈ G. For any
η ∈ G, let O(η) ⊂ S1 be the open set of points around which η is locally
constant. We claim that there exists some η0 ∈ G+ for which O(η0) is
maximal among all {O(η)|η ∈ G+}. Assume that ηi ∈ G+ is a sequence,
such that O(ηi) ⊂ O(ηi+1) for all i. The curves ηi are equicontinuous
curves in the compact set γ(S1) ⊂ Y . By the theorem of Arzela-Ascoli
we find a subsequence ηj converging uniformly to a curve η0 : S1 → Y .
Due to the local contractibility of Y , ηj is homotopic to η0 for j large
enough, thus η0 is non-contractible. If η0(t) 6= γ(t) then t ∈ O(ηj) for
all j large enough. We deduce that η0 ∈ G and that O(η0) contains
all subsets O(ηj). An application of Zorn’s lemma finishes the proof of
the claim.

If η0 is not a weakly monotone parametrization of a Jordan curve we
find some t, t′ ∈ S1 such that η0(t) = η0(t′) but η0 is not constant on
any of the two intervals I± of S1 bounded by t, t′. Let η± be the curve
that coincides with η0 on I± and is constant on the complementary
interval I∓. By definition, η± are contained in G and their constancy
sets are strictly larger that O(η0). By the maximality of O(η0) we
deduce that η± /∈ G+. Thus η± are contractible curves. But up to
a reparametrization, η0 is a concatenation of η+ and η−. Thus η0 is
contractible, in contradiction with η0 ∈ G+. This contradiction shows
that η0 is a weakly monotone parametrization of a Jordan curve.

By the definition of length, the inequality `X(F ◦ η) ≤ `X(F ◦ γ)
holds true for any continuous map F : Y → X and any η ∈ G. �

8. Topological and isoperimetric properties of Z

We proceed using the notation from Section 6.

8.1. Topology. With our topological preparations we are in position
to describe the topology of Z.
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Theorem 8.1. The space Z is homeomorphic to D̄ and P : D̄ → Z is
a uniform limit of homeomorphisms.

Proof. The restriction P : ∂D → Γ′ ⊂ Z is weakly monotone by
Lemma 6.4, hence cell-like by Example 7.10. Due to Corollary 7.12
it suffices to prove that P : D̄ → Z is cell-like. Thus we need to prove
that for any q ∈ Z the preimage K = P−1(q) is a cell-like subset of D̄.

Due to Lemma 6.3, the set K is connected. Consider D̄ as the
lower hemisphere of S2. Due to Example 7.9 it is enough to prove
that S2 \ K is connected. Assume otherwise. Then there exists at
least one component O of S2 \ K which does not intersect the closed
upper hemisphere, hence O is contained in D. Due to Lemma 7.3,
O is homeomorphic to a disc, since K is connected. By the Riemann
mapping theorem we find a conformal diffeomorphism F : D → O. Due
to Corollary 4.5 the composition v = u ◦ F is contained in W 1,2(D,X)
and has minimal µ-area among all maps with the same trace as v.
We claim that tr v is a constant curve. By construction, u(K) is a
single point p = ū(q). For any sequence zj ∈ D converging to ∂D the
points F (zj) subconverge to some point in K. Therefore, the sequence
v(zj) = u ◦ F (zj) converges to the point p. This proves the claim.

The constant curve tr v : S1 → X can be filled by the constant
disc. By minimality of Areaµ(v) we deduce that v has zero area. But
Areaµ(v) = Areaµ(u|O) which is non-zero, since u is quasi-conformal
and u is non-constant on O. This contradiction finishes the proof. �

8.2. Isoperimetric inequality. We can approximate arbitrary Jor-
dan curves in Z by P -images of Jordan curves in D̄ and use Proposi-
tion 5.1 to control the isoperimetric properties of Z:

Theorem 8.2. Every Jordan curve T in Z bounds a unique open disc
Ω ⊂ Z. Furthermore, if `Z(T ) < l0 then

(8.1) µZ(Ω) ≤ C`Z(T )2.

Proof. Existence and uniqueness of Ω is a consequence of the Jor-
dan curve theorem and Theorem 8.1. Since P is a cell-like map,
P : P−1(O) → O is a homotopy equivalence, for any open subset
O ⊂ Z. In particular, P−1(Ω) ⊂ D is contractible, hence an open
disc. In order to estimate the area of Ω we fix a small ε > 0 with
`Z(T ) + ε < l0. We fix some open disc U ⊂ Ω, such that U ⊂ Ω is
homeomorphic to D̄ and

µZ(U) ≥ µZ(Ω)− ε.

Set V := P−1(U). Then V is contractible, hence homeomorphic to D.
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Fix a homeomorphism γ : S1 → T . Choose δ > 0 so small that the
open δ-neighborhood N(T, δ) of T in Z does not intersect U and such
that every ball of radius δ based at a point of T is contractible in Z \U .
Let {t0, t1, . . . , tk, tk+1 = t0} be a partition of S1 such that

γ([ti, ti+1]) ⊂ BZ(γ(ti), δ/2)

for every i. Choose xi ∈ D̄ with P (xi) = γ(ti). By the definition of the
metric in Z, there exists a curve γi in D̄ from xi to xi+1 such that

`Z(P ◦ γi) < min

{
δ

2
, dZ(γ(ti), γ(ti+1)) +

ε

k + 1

}
.

It follows that γi does not intersect V . Let γ̃ be the concatenation of
the curves γi for i = 0, . . . , k. Then γ̃ is a closed curve and

`Z(P ◦ γ̃) < `Z(γ) + ε < l0.

Moreover, γ̃ does not intersect V and P ◦γ̃ is homotopic to γ in Z\U . In
particular, γ̃ is not null-homotopic in D̄\V . By Lemma 7.13 there exists
a non-contractible Jordan curve η in D̄\V with `Z(P ◦η) ≤ `Z(P ◦γ̃). It
follows that the Jordan domain enclosed by η in D̄ contains V . Hence,
Lemma 6.10 and Lemma 6.8 imply

µZ(Ω)− ε ≤ µZ(U) = Areaµ(P |V ) ≤ C`Z(P ◦ η)2 ≤ C(`Z(γ) + ε)2.

Since ε > 0 was arbitrary this yields (8.1). �

Remark 8.3. The proof of Theorem 8.2 shows the following slightly
stronger statement. Let T be any Jordan curve of finite length l in
Z with Jordan domain Ω ⊂ Z. Then for every ε > 0 there exists a
Jordan curve η : S1 → D̄ such that `X(u ◦ η) < l + ε and such that
FillX,µ(u ◦ η) + ε ≥ µZ(Ω). Moreover, reparametrizing η if needed and
using Lemma 4.8 we may assume that u ◦ η is Lipschitz continuous.

Remark 8.4. All subsequent results of this section are derived only
using Theorem 8.2 and the co-area inequality, Lemma 2.3. If we just
assume that a metric space Z satisfies the conclusions of Theorem 1.2
and do not assume that Z is countably 2-rectifiable, the proofs below
remain valid once every reference to Lemma 2.3 is replaced by a refer-
ence to Lemma 2.2. We obtain as conclusions all theorems below with
µZ replaced by H2 and q(µZ) replaced by q(H2) = π

4
.

8.3. Area growth. In the sequel we will denote the Jordan curve
Γ′ = P (S1) ⊂ Z by ∂Z, since it is the boundary circle of the topological
disc Z. It is well known that isoperimetric inequalities often imply lower
bounds on volume growth:
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Theorem 8.5. Let z0 ∈ Z. Then

(8.2) µZ(B(z0, r)) ≥ min

{
q(µ)2 · 1

4C
· r2 , Cl20

}
for every 0 ≤ r < dZ(z0, ∂Z).

Proof. Fix any z0 ∈ Z \ ∂Z. Assume that there exists some r0 > 0,
which we fix from now on, such that (8.2) does not hold. We set b(r) :=
µZ(B(z0, r)) for r ≤ r0. Then the ball B(z0, r0) does not intersect ∂Z
and b(r0) < Cl20. Therefore, b(r) < Cl20 for all r ≤ r0. Let h : Z →
R be the 1-Lipschitz distance function defined by h(z) := dZ(z, z0).
Applying the co-area inequality (Lemma 2.3) to the restriction h :
B(z0, r)→ R we deduce:

(8.3) b(r) ≥ q(µ) ·
∫ r

0

H1(h−1(s)) ds

for all r ≤ r0. In particular, the compact set Sr = h−1(r) has finite
H1(Sr) for almost every 0 ≤ r ≤ r0.

We denote by F (r) the right hand side of (8.3). Then the function
F : [0, r0]→ R is absolutely continuous and

(8.4) F ′(r) = q(µ) · H1(Sr)

for almost all 0 < r ≤ r0. We claim

(8.5) b(r) ≤ C · H1(Sr)
2

for all r ≤ r0. Indeed, fix an embedding of Z into S2. The compact
subset Sr separates z0 from every point z ∈ Z with dZ(z, z0) > r, hence
from any point q on ∂Z which we fix now. On the other hand, the ball
B(z0, r) is connected, since the metric on Z is intrinsic. If H1(Sr) =∞
then (8.5) is valid. On the other hand, if H1(Sr) is finite we can apply
Corollary 7.5 and find a Jordan curve T ⊂ Sr which still separates z0

from q. Then p and therefore the whole ball B(z0, r) must be contained
in the Jordan domain of T . Since `Z(T ) ≤ H1(Sr) we deduce (8.5) from
Theorem 8.2.

Taking (8.3), (8.5) and (8.4) we deduce for almost all r ≤ r0 the
inequality

(8.6) F (r) ≤ b(r) ≤ C · q(µ)−2 · [F ′(r)]2.

Due to Lemma 6.11, we have F (r) > 0 for all r > 0. Thus integrating
(8.6) yields b(r0) ≥ F (r0) ≥ q(µ)2 · 1

4C
· r2

0, in contradiction with our
assumption. This contradiction finishes the proof. �
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8.4. Linear local contractibility. The isoperimetric inequality and
the lower bound on the area growth of balls imply uniform linear local
contractibility of the space Z:

Theorem 8.6. Let Z be as above. For any 0 < r < l0
2

and any z ∈ Z,
the ball B(z, r) in Z is contractible inside the ball B(z, (8C + 1) · r).

Proof. Fix a point z ∈ Z and consider the open connected sets O =
B(z, r) and U = B(z, (8C + 1) · r), where r < l0

2
. Assume that O is

not contractible in U . Note that O has trivial higher homotopy groups
as does any open subset of the disc. Thus we find a curve γ : S1 → O
which is non-contractible in U . Since O is locally contractible, we
may replace parts of γ of small diameter by short geodesic segments.
Thus we may assume that γ is a concatenation of short geodesics γ =
γ1 ∗γ2 ∗ · · · ∗γk. Connect the starting and end point of γi by a geodesic
η±i with the point z. We may assume η−i+1 = η+

i for all i. For any 1 ≤
i ≤ k, these geodesics η±i together with γi provide a closed piecewise
geodesic curve ci of length smaller than 2r. Moreover, γ is homotopic
to the concatenation c1 ∗ c2 ∗ · · · ∗ ck. Thus one of the curves ci is
non-contractible in U . Hence we may assume `Z(γ) < 2r < l0. Using
Lemma 7.13 we may further assume that γ is a Jordan curve.

Consider the Jordan domain Ω of γ in Z and deduce from Theo-
rem 8.2 that µZ(Ω) < 4Cr2. Since γ is contractible in Ω̄, we find a
point y ∈ Ω \ U , hence dZ(z, y) ≥ (8C + 1)r. Due to the triangle
inequality, the distance dZ(y, γ) from y to the curve γ is larger than
8Cr. The connected open ball B(y, 8Cr) does not intersect γ, hence
it does not intersect ∂Z and is completely contained in Ω. In par-
ticular, its area is bounded from above by the area of Ω, which is at
most 4Cr2 < Cl20. From Theorem 8.5 and using q(µ) ≥ 1

2
, we deduce

µZ(Ω) ≥ q(µ)2 · 1
4C
· (8Cr)2 ≥ 4Cr2.

This contradiction finishes the proof. �

Using that Z is a closed disc we directly deduce:

Corollary 8.7. Let V be a subset of Z homeomorphic to a closed disc.
If the boundary circle ∂V of V has diameter r < l0

2
then V has diameter

at most (8C + 1) · r.

Finally, note that the assumption r < l0
2

in Theorem 8.6 was only
needed in one step, namely to assure that the area of some domain in
Z does not exceed Cl20, a condition which is automatically satisfied if
l = ∂Z < l0. Thus no bound on r is needed in this case. In particular,
Corollary 8.7 can be applied to the whole disc V = Z, using that ∂Z
has diameter at most l

2
in this case. Thus we have:
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Corollary 8.8. If ∂Z has length l smaller than l0 then Z has diameter
at most (4C+ 1

2
)·l. Moreover, no bounds on r are needed in Theorem 8.6

and Corollary 8.7.

8.5. Equi-compactness. The area growth of balls implies that the
number of disjoint balls of a given radius in Z can be bounded in terms
of the area of Z. More precisely:

Theorem 8.9. Let Z be as above. Set A = µ(Z) and l = `Z(∂Z). For
any integer n > l

8Cl0
there exists some l

n
-dense subset Fn in Z with at

most 2n+ 64C · A
l2
· n2 elements.

Proof. Let Un denote the l
2n

-tubular neighborhood of ∂Z in Z and

Vn = Z \ Un. Let F+
n denote a maximal l

n
-separated subset in Vn and

let F−n denote a maximal l
2n

-separated subset in ∂Z. Then F+
n is l

n
-

dense in Vn and F−n is l
n
-dense in Un. Hence the union Fn of F+

n and

F−n is l
n
-dense in Z. Since ∂Z is a 1-Lipschitz image of the circle of

length l, the set F−n has at most 2n elements.
On the other hand, for any p ∈ F+

n the ball Bp := B(p, l
2n

) does not

intersect ∂Z. From Theorem 8.5, the general estimate q(µ) ≥ 1
2
, and

the assumption on n we infer:

(8.7) µ(Bp) ≥ min

{
1

16C
· l

2

4n2
, Cl20

}
=

l2

64C · n2
.

Moreover, all these balls Bp are disjoint. Thus, the number of elements
in F+

n times the right-hand side of (8.7) is not larger than A. Hence
F+
n has at most 64C · A

l2
· n2 elements. This finishes the proof. �

If l < l0 then A
l2
≤ C and, moreover, no bound on n is needed to

conclude (8.7). Therefore:

Corollary 8.10. Assume that the length l of ∂Z is smaller than l0.
For any integer n the set Z contains some l

n
-dense subset Fn with at

most 2n+ 64C2n2 elements.

8.6. Decomposition of Z by a graph. The following result is a
topological version of a similar discrete statement proved in [Pap96]
for curves in groups with quadratic isoperimetric inequality.

Theorem 8.11. Let Z be as above. There exists a constant M depend-
ing on l0 and the upper bounds of C, the area A of Z, and length l of
∂Z such that the following holds true. For any integer n there exists a
finite connected graph ∂Z ⊂ G ⊂ Z, such that Z \G has at most M ·n2

components, and such that any of these components is a topological disc
of diameter at most l

n
.
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Proof. It suffices to prove the result for all n satisfying n ≥ l
8Cl0

and
4l
n
< l0

2
. Due to Theorem 8.9, we find an l

n
-dense subset F = Fn in Z

with elements p1, ...., pm for some m ≤M1 · n2 for some M1 depending
on the upper bounds of C, l, A. Since Z \ ∂Z is dense in Z, we may
assume that F is contained in the open disc Z \ ∂Z.

The idea is now to consider the Voronoi domains defined by the set
F . However, we need a few minor modifications. For all 1 ≤ i ≤ m, let
f̂i : Z → R be the distance function to the point pi. Since the functions
f̂i are 1-Lipschitz, we deduce from Lemma 2.3 that for almost all ε > 0
the fiber (f̂i − f̂j)−1(ε) has finite H1-measure, for any 1 ≤ i, j ≤ m.

Thus we find arbitrary small ε > 0 such that (f̂j− f̂i)−1(kε) has finite
H1-measure for any 1 ≤ i, j ≤ m and any 1 ≤ k ≤ m. We fix such ε
satisfying

4m · ε ≤ inf{d(pi, pj), j 6= i} ≤ 2l

n
.

Consider the modified distance functions fi : Z → R given by fi(z) :=
d(pi, z) + i · ε. By construction, for any i 6= j the set Sij of points z
with fi(z) = fj(z) has finite H1-measure.

Let Ui be the set of points z ∈ Z with fi(z) < fj(z) for all j 6= i. The
sets Ui are open. By assumption on ε, we have pi ∈ Ui. The functions fj
are 1-Lipschitz and decrease with velocity 1 on any geodesic connecting
z with pj. Therefore, for any z ∈ Ui any geodesic from z to pi is entirely
contained in Ui. In particular, Ui is connected. Since F is l

n
-dense in

Z, and due to the smallness of ε, any point z ∈ Ui has distance at most
2l
n

to pi. Therefore, the diameter of Ui is at most 4l
n

.
Set K = Z \ (∪mi=1Ui) and note that K ⊂ ∪1≤i<j≤mSij. Then K is a

compact subset of Z, which has finite H1-measure and separates points
pi pairwise. The complement Z \K has exactly m connected compo-
nents Ui. Let K0 denote a minimal compact subset of K which still
separates the points from F pairwise. We deduce from Lemma 7.7 that
K1 = K0∪∂Z is a finite graph, whose complement Z\K1 has exactly m
connected components W1, ...,Wm containing the corresponding points
pi. Since Ui is connected, we obtain Ui ⊂ Wi. Since K1 is nowhere
dense in Z, the sets Ui are dense in Wi for all i. Thus the diameter of
any Wi is also bounded by 4l

n
.

Let now G be the connected component of ∂Z in K1. This is a finite
connected graph, which is open in K1. Any component V of Z \G must
intersect at least one of the components Wj, hence V must contain this
component Wj in this case. We deduce that Z \ G has at most m
components.
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It remains to control the size of these possibly larger components of
Z \G. By Lemma 7.3, any component V of Z \G is homeomorphic to
an open disc. We claim that the boundary ∂V of this disc has diameter
at most 4l

n
. Indeed, some neighborhood O of ∂V in V̄ intersects K1

only in ∂V . Hence, choosing such a connected neighborhood O, we
deduce that O \ ∂V is contained in one of the components Wj. Thus
its diameter is bounded by 4l

n
. We deduce the same bound for Ō, hence

for ∂V . From Corollary 8.7 we infer that V has diameter at most
(8C + 1) · 4l

n
.

We set N = n
4·(8C+1)

. Then the diameter of any component of Z \G
is at most l

N
. Moreover, Z \ G has at most m ≤ M1 · n2 = M · N2

components for a constant M depending only on M1 and C, hence only
on the upper bounds of l, A and C. �

Note again that if the length l of ∂Z is smaller than l0 then one
does not need any additional assumption on n in the first lines of the
above proof. Recall that C ≥ 1

8π
, [LW16a], Corollary 1.6. Thus, we

can estimate 4(8C + 1) by k · C and 2n + 64C2 · n2 by kC2 · n2 for a
universal constant k. Thus, from Corollary 8.10 and the last lines of
the proof of Theorem 8.11 we obtain:

Corollary 8.12. If the length l of the boundary curve ∂Z is smaller
than l0 then the constant M in Theorem 8.11 can be chosen to be M̂ ·C4

for some universal constant M̂ .

9. Collecting the harvest

We now provide the proofs of the main theorems stated in the intro-
duction. We formulate them for the general definition of areas µ and
continue to use the notations of the previous sections.

9.1. General case. We begin with the following generalization of The-
orem 1.2. Recall that π

4
in Theorem 1.2 is equal to q(H2).

Theorem 9.1. The metric space Z is homeomorphic to D̄. It is count-
ably 2-rectifiable with finite H2(Z). For any Jordan curve η in Z of
length l < l0, the domain Ω of the disc Z enclosed by η satisfies

(9.1) µZ(Ω) ≤ C · l2.

Proof. The space Z is homeomorphic to D̄ by Theorem 8.1. It is count-
ably 2-rectifiable with finite H2(Z) by Lemma 6.9. The isoperimetric
property (9.1) is exactly Theorem 8.2. �

The results stated in Corollary 1.3 have been all proven in the more
general form in the previous Section. Namely, under the assumptions
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of Corollary 1.3 the µ = H2-area of Z is less than the critical value Cl20.
The area growth (i) of Corollary 1.3 is exactly the statement of Theo-
rem 8.5. The uniform local contractibility (ii) is contained in Proposi-
tion 8.6 and Corollary 8.8. Finally, the decomposition statement (iii)
of Corollary 1.3 is contained in Theorem 8.11 and Corollary 8.12.

The next theorem generalizes Theorem 1.4.

Theorem 9.2. The canonical projection P : D̄ → Z is a uniform limit
of homeomorphisms Pi : D̄ → Z. Moreover,

(i) P ∈ Λ(∂Z, Z) ⊂ W 1,2(D,Z).
(ii) The map P : D → Z is contained in W 1,p

loc (D,Z) for some
some p > 2 depending on C.

(iii) The map P : D → Z is locally α-Hoelder with α = q(µ) · 1
4πC

.
(iv) The equality µZ(P (V )) = Areaµ(P |V ) = Areaµ(u|V ) holds true

for all open subsets V ⊂ D.
(v) The map P is

√
2-quasiconformal. If X has property (ET)

then P is conformal.

Proof. The first statement was proved in Theorem 8.1. In Lemma 6.6
we showed that P ∈ W 1,2(D,Z) and (ii). Since P restricts to a weakly
monotone parametrization P : ∂D → ∂Z by Lemma 6.4, we deduce
P ∈ Λ(∂Z, Z). The statement of (iii) is contained in Lemma 6.5. The
second equality of (iv) is contained in Lemma 6.6. The first equality
follows from the definition of the µ-area (3.4)and the fact that the mul-
tiplicity function N appearing in the area formula Lemma 3.3 equals 1
almost everywhere on Z, as proven after Lemma 6.9. Statement (v) is
contained in Corollary 6.7. �

Now we turn to the generalization of Theorem 1.5.

Theorem 9.3. For every ε > 0 there exists a decomposition Z =
S ∪1≤i<∞ Ki with compact Ki and µZ(S) = 0 such that the restric-
tions ū : Ki → ū(Ki) of the 1-Lipschitz map ū are (1 + ε)-biLipschitz.
Moreover, for any 1 ≤ i <∞ and any x ∈ Ki we have

(9.2) lim
y→x,y∈Ki

dZ(x, y)

dX(ū(x), ū(y))
= 1.

Moreover, ū : ∂Z → Γ is an arclength preserving homeomorphism.

Proof. Since the map P : D̄ → Z satisfies Lusin’s property (N), we
combine Subsection 3.3 and Subsection 2.4 and obtain a disjoint decom-
position D̄ = S0 ∪1≤i<∞ Li with the following properties. The subsets
Li are compact and H2(P (S0)) = 0. The restriction P : Li → P (Li)
is a biLipschitz map, which has a metric differential at each point.
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Moreover, this metric differential is a norm at each point z ∈ Li and
coincides with the approximate metric differential ap mdPz. Finally,
if one considers Li with the metric determined by any of these norms
ap mduz then P : Li → P (Li) is (1 + ε)-biLipschitz.

Since u = ū ◦ P , the restriction u : Li → u(Li) is a Lipschitz map.
Due to Lemma 6.6 at almost all points of Li its metric differential co-
incides with ap mduz = ap mdPz. Decompose every Li in a negligible
set and countably many compact sets on which u is (1 + ε)-biLipschitz
with respect to the appropriate norm. Taking all these negligible sub-
sets together into a set S1 with H2(S1) = 0, we obtain a decomposition
D̄ = S0 ∪ S1 ∪1≤j<∞ Mj, with S0 from above, such that the follow-
ing holds true. The sets Mj are compact, the restrictions of u and P
to Mj have equal metric differentials at all points of Mj. Moreover,
u : Mj → u(Mj) and P : Mj → P (Mj) are (1 + ε)-biLipschitz if Mj is
equipped with the norm ap mduz for some z ∈Mj.

Hence, for the compact set Kj = P (Mj), the restriction ū : Kj →
u(Mj) is (1 + ε)2-biLipschitz. Moreover, since P and u have the same
metric differentials at all z ∈Mj, we get (9.2). We note that µZ(P (S0)) =
0 by construction and µZ(P (S1)) = 0, since P has Lusin’s property (N).
Thus, with S = P (S0 ∪ S1) we have written Z = S ∪1≤j<∞ Kj, such
that µZ(S) = 0 and the restriction of ū to any Kj has all the required
properties. It can happen that this union is not disjoint. Then we make
it disjoint by a further subdivision, noting that with Kj any compact
subset of Kj has the property required in the statement of the theorem.

The last statement is contained in Lemma 6.4. �

9.2. The chord-arc case. We are generalizing Theorem 1.6 now.

Theorem 9.4. Assume in addition that Γ is a chord-arc curve. Then
P ∈ W 1,p(D,Z) for some p > 2 depending on C and the biLipschitz
constant L of some parametrization S1 → Γ. In particular, P : D̄ → Z
is globally (1− 2

p
)- Hoelder continuous.

There exists δ > 0, depending only on C, l0 and L, such that for all
z0 ∈ Z and all 0 ≤ r ≤ δ we have

(9.3) µZ(B(z0, r)) ≥ δ · r2.

Proof. There exists some p > 2 depending only on C and L such that
u ∈ W 1,p(D,X), by [LW16e], Theorem 3.1. Due to Lemma 6.6, we get
P ∈ W 1,p(D,Z).

It remains to prove (9.3). We fix a sufficiently small δ, to be de-
termined later and proceed in analogy with the proof of Theorem 8.5.
We may assume δ3 < Cl20. Consider an arbitrary z0 ∈ Z and set
b(r) = µZ(B(z0, r)). We consider the distance function h : Z → R from
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the point z0 and the corresponding level sets Sr, the distance spheres
around z0. Finally, we fix a point q ∈ ∂Z with maximal distance on
∂Z from z0 and note that dZ(z0, q) > δ if 2δ < diam(∂Z).

If for some r0 < δ we have b(r0) ≥ Cl20 then (9.3) holds true for all
r0 ≤ r ≤ δ. Arguing as in the proof of Theorem 8.5, we only need to
find some constant k > 0, such that for all r < δ with b(r) < Cl20 the
following inequality holds true:

(9.4) k · H1(Sr)
2 ≥ b(r).

The inequality is trivially fulfilled if H1(Sr) =∞. For all 0 < r ≤ δ,
the set Sr separates p from q. For all r with finite H1(Sr), we apply
Corollary 7.6 and find a subset γ of Sr still separating p from q such that
one of the following two possibilities holds true. Either γ is a Jordan
curve. Then the same argument as in the proof of Theorem 8.5 gives
us C · H1(Sr)

2 ≥ C · H1(γ)2 ≥ b(r). Or otherwise, γ is a simple curve
connecting two points on ∂Z, and not intersecting ∂Z in further points.
The shorter part of ∂Z between these two points has length bounded
from above by L · `Z(γ), due to the chord-arc condition. Moreover, if δ
has been chosen small enough, this shorter part of ∂Z does not contain
the point q. Therefore, the Jordan curve γ̂ consisting of γ and the piece
of ∂Z we have found, has length bounded from above by (1+L) ·`Z(γ).
Moreover, the closure of the Jordan domain of γ̂ contains z0, hence the
whole ball B(z0, r) by construction. Now we apply the isoperimetric
inequality Theorem 8.2 to the curve γ̂ to deduce that C ·H1(γ̂)2 ≥ b(r).
Since (1 +L) · H1(Sr) ≥ (1 +L) · H1(γ) ≥ `Z(γ̂) we obtain the desired
inequality (9.4) with k = C · (1 + L)2. �

9.3. Different choices of the family of curves. As already men-
tioned in Section 1.7, all of our results concerning the space Z remain
valid if in the definition of the pseudo-metric du one uses rectifiable,
piecewise biLipschitz, or piecewise smooth curves instead of continuous
curves. Taking into account the following observations, the proofs re-
main literally the same as the ones given above. Firstly, Corollary 3.2
remains valid if (3.3) is only assumed for p-almost all piecewise smooth
curves. Secondly, the curves constructed in Lemma 5.3 and Corol-
lary 5.4 are piecewise smooth. Thirdly, in Lemma 6.2, the last equation
remains valid for all curves γ in the chosen family.

10. The absolute minimal filling

10.1. The proof of Theorem 1.7. Let us fix a quasi-convex defini-
tion of area µ and a biLipschitz circle Γ. We consider an isometric
embedding of Γ into its injective hull i : Γ → Y . Concerning the
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definition and properties of injective metric spaces and injective hulls
we refer e.g. to [Lan13], [Isb64]. Recall that Y satisfies the (C,∞)-
isoperimetric inequality for any µ and C = 1

2π
, [LW16a], Lemma 10.3.

As proved in [LW16a], Corollary 10.4, the Sobolev filling area

mµ,Sob(Γ) := inf{Areaµ(u) : G complete, Γ ⊂ G, u ∈ Λ(Γ, G)}

is realized by a solution u of the Plateau problem for (Γ, Y ) with respect
to µ. Denoting by γ0 : S1 → Γ a parametrization proportional to
arclength, we deduce from Lemma 4.8, cf. also [LW16e], Corollary 3.3:

(10.1) mµ,Sob(Γ) = inf{Areaµ(u) : u ∈ Λ(Γ, Y ) , tr(u) = γ0}.

In order to compare the Sobolev filling area mµ,Sob(Γ) with Gro-
mov’s restricted filling area mµ(Γ), we recall the following result of
S. Ivanov proven in [Iva08]. The restricted filling area mµ(Γ) is the
infimum over all µ-areas of Lipschitz maps v : D̄ → G into some
metric space G containing Γ, such that the restriction of v to S1 is a
biLipschitz parametrization of Γ. Since any such map v is a Sobolev
map in Λ(Γ, G), we get:

mµ,Sob(Γ) ≤ mµ(Γ).

The reverse inequality is a direct consequence of (10.1) and the follow-
ing lemma, whose proof is essentially contained in [HKST15], Theorem
8.2.1.

Lemma 10.1. Let Y be an injective metric space and let u ∈ W 1,2(D, Y )
be such that trace tr(u) : S1 → Y is Lipschitz continuous. Then for
every ε > 0 there exists a Lipschitz map v : D̄ → V with tr(v) = tr(u)
and Areaµ(v) < Areaµ(u) + ε.

Proof. We denote by B the ball B(0, 2) ⊂ R2. We extend u to a map
û ∈ W 1,2(B, Y ) by û(rz) = u(z) for r > 1, z ∈ S1. By assumption, the
map û is Lipschitz continuous on B \D and Areaµ(û) = Areaµ(u).

Fix ε > 0. As in the proof of [HKST15], Theorem 8.2.1, there exist
a sufficiently large t > 0 and a set Et ⊂ B such that û : B \ Et → Y
is t-Lipschitz continuous. Moreover, the Lebesgue measure of Et is at
most ε

t2
. Finally, by the construction in [HKST15], Theorem 8.2.1, for

sufficiently large t > 0 the set Et is contained in the ball B(0, 3
2
). Since

Y is injective, we find some t-Lipschitz extension v : B → Y of û|B\Et .
Since v and û coincide on B \ Et and since Areaµ(v|Et) ≤ t2 · ε

t2
= ε

it follows that Areaµ(v)− Areaµ(u) ≤ ε. Moreover, after rescaling the
ball B so that v is defined on D we clearly have tr v = tru. �
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Remark 10.2. The statement of Lemma 10.1 (and its proof, up to
minor modifications) remains valid if Y is 1-Lipschitz connected up to
some scale, see [LWY16], Proposition 3.1.

The remainder of Theorem 1.7 is a consequence of the previous re-
sults. Indeed, consider our µ-minimal map u ∈ Λ(Γ, Y ) withmµ,Sob(Γ) =
Areaµ(u). Consider its unique continuous extension u : D̄ → Y and
the intrinsic metric space Z defined via the pseudo-distance du on D̄.
Consider the corresponding projection P : D̄ → Z. The space Z is com-
pact, geodesic and homeomorphic to D̄ by Lemma 6.3. The remaining
statements of Theorem 1.7 are direct consequences of Theorem 9.1,
Theorem 9.2, Theorem 9.3 and Theorem 9.4.

10.2. Absolute minimizers. Following [Iva08], [Iva11] we say that
a geodesic metric space M biLipschitz homeomorphic to D̄ is an ab-
solute minimal filling (of its boundary with respect to the definition
of area µ) if µ(M) = mµ(∂M). Due to Theorem 1.7, this implies
mµ,Sob(∂M) = µ(M). The following classes of spaces are important
examples of absolute minimal fillings.

Example 10.3. Let V be a two-dimensional normed space and let M
be any closed subset of V biLipschitz homeomorphic to D̄. Then M
with its induced intrinsic metric is an absolute minimal filling with
respect to any quasi-convex µ. Indeed, consider the injective hull W of
V . Then W is a Banach space which contains V as a linear subspace,
[Isb64]. By the definition of quasi-convexity, µ(M) equals the infimum
of µ-areas of Lipschitz discs in W which have ∂M as their boundaries.
Due to the injectivity of W this implies µ(M) = mµ(∂M).

Example 10.4. Let M be a two-dimensional smooth Finsler manifold
homeomorphic to D̄. If all local geodesics in M are globally minimiz-
ing then M is an absolute minimal filling with respect to the Holmes-
Thompson definition of area µht, see [Iva11].

For any biLipschitz circle Γ, Theorem 1.7 provides a generalized min-
imal filling of Γ, which may be slightly less regular than a biLipschitz
disc. We hope to investigate further properties of such generalized min-
imal fillings in a continuation of this paper, cf. Question 11.7 below.

11. Examples and Questions

The first example is well known, see [MR02].

Example 11.1. Let X be the Euclidean cone over a circle Γ of length
2πα with 0 < α ≤ 1. The space has property (ET) and admits a (C, l0)-
isoperimetric inequality for any l0 and C = 1

4πα
, for any definition of
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area µ. The unique solution of the Plateau problem for the curve Γ is
α-Hölder continuous, but not β-Hölder continuous for any β > α. The
arising space Z coincides with X and P coincides with u. The balls of
radius r < 1 around the origin have area α · πr2 = 1

4C
r2.

In the last example, the map P is not Lipschitz continuous for α < 1,
but Z is still biLipschitz equivalent to D̄. Moreover, for α → 1 the
isoperimetric constant tends to the critical value 1

4π
. Nevertheless,

the solution of the Plateau problem need not be Lipschitz continu-
ous. Therefore, the answer to the next question must involve very fine
invariants of spaces.

Question 11.2. What conditions, apart from upper curvature bounds,
imply that solutions of the Plateau problems are Lipschitz? Under which
conditions is Z biLipschitz homemomorphic to a disc?

Natural examples to study in connection with the last question might
be Finsler manifolds and Riemannian manifolds with non-smooth met-
rics. The next example mentioned in the introduction is a typical
counterexample for many results valid in the smooth case.

Example 11.3. Choose a compact metric ball T ⊂ D and consider
the quotient metric space X = D̄/T with the quotient metric, see
e.g. [BBI01, Definition 3.1.12]. Then X is a geodesic space, homeo-
morphic to a disc, and X is flat outside a single thick point, the image
of T . It follows from the Euclidean isoperimetric inequality that X ad-
mits a (C,∞)-isoperimetric inequality with optimal constant C = 1

2π
.

The ”worst” curves, enclosing the maximal area, are projections of tiny
circles which meet the boundary of T orthogonally.

The canonical projection u : D̄ → X is a conformal solution of the
Plateau problem. The metric space Z coincides with X and u coincides
with P . The minimal disc u has the set T as the set of ”branch points”.
Moreover, small balls around non-thick points in Z = X have quadratic
area growth and small balls around the thick point have a linear area
growth. Thus, the Hausdorff area is not a doubling measure on Z. In
particular, Z is not biLipschitz homeomorphic to a disc.

In view of the nature of this example it seems possible that the
isoperimetric constant 1

2π
is the critical value for the constructions of

this type. Note that this value C = 1
2π

is also very interesting in view
of the absolute Plateau problem.

Question 11.4. Can the set of branch points of a solution of the
Plateau problem be large if the isoperimetric constant C is smaller than
1

2π
? Can the map P be non-injective in this case?
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The fibers of P , which are a priori allowed by the statement that P
is a uniform limit of homeomorphisms, can be arbitrary cell-like sets,
for instance any continuous simple arc. We do not know if such general
fibers can indeed occur.

Question 11.5. Can fibers of the canonical map P be non-contractible?
Are such fibers always Lipschitz retracts?

The following question is closely related to the previous one. Due to
Theorem 1.1 the question has an affirmative answer if we find controlled
approximations of any curve in Z by P -images of curves in D̄.

Question 11.6. Does the map ū : Z → X preserve the lengths of all
curves in Z?

Finally, we do not know to what extent the conclusions about abso-
lute minimizers are optimal.

Question 11.7. Are solutions of the absolute Plateau problem Lip-
schitz continuous? What can be said about their geometry?
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