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Abstract. We relate the existence of many infinite geodesics on
Alexandrov spaces to a statement about the average growth of
volumes of balls. We deduce that the geodesic flow exists and
preserves the Liouville measure in several important cases. The
developed analytic tool has close ties to integral geometry.

1. Introduction

1.1. Motivation and application. The following question in the the-
ory of Alexandrov spaces was formulated in a slightly different way in
[PP96] and remains open.

• Are there “many” infinite geodesics on any Alexandrov space
without boundary?

We address this question and obtain an affirmative answer in several
cases. The main new tool is the investigation of the Taylor expansion
of the average volume growth. The central results relate the first coef-
ficient of this expansion to the geodesic flow and show how to control
the Taylor expansion. This tool might be interesting in its own right,
beyond the realm of Alexandrov geometry.

In particular, we prove the existence of such infinite geodesics in the
most classical examples of non-smooth Alexandrov spaces:

THEOREM 1.1. Let X be the boundary of a convex body in Rn+1.
Then almost any direction in the tangent bundle TX is the starting
direction of a unique infinite geodesic on X. Moreover, the geodesic
flow is defined almost everywhere and preserves the Liouville measure.

Apparently, the existence of a single infinite geodesic has not been
known, even in the two-dimensional case [Zam92]. Our result might
appear somewhat surprising since on most convex surfaces most points
in the sense of Baire categories are not inner points of any geodesic;
see [Zam82].
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1.2. Metric-measure-boundary. On a smooth manifold with bound-
ary the geodesic flow is not defined for all times. The amount of
geodesics terminating at the boundary in a given time depends on the
the size of this boundary, due to Santalo’s integral formula.

We are going to capture the size of the boundary by estimating the
average volumes of small balls and their deviations from the corre-
sponding volumes in the Euclidean space.

Let (X, d) be a locally compact separable metric space, µ be a Radon
measure on X which takes finite values on the bounded subsets. For
x ∈ X and r > 0 denote by B(x, r) the open metric ball of radius r
around x. Consider the volume growth function br : X → [0,∞),

(1.1) br(x) := µ(B(x, r)).

For a natural number n > 0, let ωn be the volume of the n-dimensional
unit Euclidean ball. The deviation function

vr(x) = 1− br(x)

ωn·rn

measures in a very rough sense the deviation of the metric measure
space (X, d, µ) from Rn. Moreover, one can expect the behaviour of
vr at the origin r = 0 to reflect some curvature-like properties of the
space X, as in the following fundamental example.

Example 1.2. Let Xn be a smooth Riemannian manifold with Riemann-
ian volume µ. Then, vr(x) = 1

6·(n+2)
· scal · r2 up to terms of higher

order in r. Here scal denotes the scalar curvature of X.

In this paper we are interested in the order of vanishing of vr at
r = 0 and the first non-vanishing coefficient; in particular we assume
that vr converges to zero in some integral sense. In most interesting
metric spaces (X, d), at least in the cases investigated here, the only
reasonable choice of the measure µ for which vr is “sufficiently small”
in r is the n-dimensional Hausdorff measure Hn:

Example 1.3. Let X be a countably n-rectifiable metric space. Assume
that the Radon measure µ non-zero on open subsets of X. If µ = Hn

then the functions vr converge Hn-almost everywhere to 0. Moreover,
µ = Hn is the only measure with this property [AK00][Theorem 5.4].

Therefore, in the sequel, the number n will always be the Hausdorff
dimension of X and µ will be the n-dimensional Hausdorff measure.

As seen in Example 1.3, most points in reasonably nice spaces are
rather regular. It is conceivable, that by averaging the deviation func-
tions vr we will smooth out the “wildest singularities”. The obtained
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objects will experience better behaviour at r = 0 and tell us more
about the regularity of the space.

Thus, instead of looking on the point-wise behaviour of vr at r = 0
we define the deviation measure Vr of X as a signed Radon measure

(1.2) Vr = vr · µ ,
absolutely continuous with respect to µ.

The vector space M(X) of signed Radon measures on X is dual to
the topological vector space of compactly supported continuous func-
tions Cc(X). We consider the space M(X) with the topology of weak
convergence. Recall that a subset F ⊂ M(X) is relatively compact if
and only if it is uniformly bounded ; that is, if for any compact subset
K ⊂ X the values ν(K), ν ∈ F are uniformly bounded.

The next example, fundamental for this paper, can be obtained by
computations in local coordinates. Since it is formally not needed in the
sequel, we omit the details, however a rigorous proof can be extracted
from the proof of Theorem 1.7 in Section 7 below.

Example 1.4. Let X be a smooth n-dimensional Riemannian manifold
with boundary ∂X. Then, for r → 0, the measures Vr/r converge in
M(X) to cn · Hn−1

∂X , for some constant cn > 0 depending only on n.

This example suggests to view the first Taylor coefficient of Vr as
the “boundary” of the metric-measure space (X, d, µ). It motivates
the following definition.

Definition 1.5. Let (X, d, µ) be a metric measure space as above. Let
Vr be the deviation measure of X, as in (1.2). We say that X has
locally finite metric-measure boundary, abbreviated as mm-boundary,
if the family of signed Radon measures

{ Vr/r ; 0 < r ≤ 1 }
is uniformly bounded. If limr→0 Vr/r = ν in M(X), we call ν the mm-
boundary of X. If ν = 0 we say that X has vanishing mm-boundary.

We refer to Subsection 1.8 and Section 8 for a discussion of exam-
ples and questions, and state now our central result connecting mm-
boundaries to the existence of infinite geodesics in Alexandrov spaces:

THEOREM 1.6. Let X be an Alexandrov space. If X has vanishing
mm-boundary, then almost each direction of the tangent bundle TX is
the starting direction of an infinite geodesic. Moreover, the geodesic
flow preserves the Liouville measure on TX.

In different settings, geodesic flow on singular spaces have been in-
vestigated in [BB95] and [Bam16].
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1.3. Size of the mm-boundary in Alexandrov spaces. The next
theorem shows that, similarly to Example 1.4, the topological boundary
is closely related to the mm-boundary in Alexandrov spaces.

THEOREM 1.7. Let Xn be an n-dimensional Alexandrov space. Then

X has locally finite mm-boundary. If ν = lim
Vsj
sj

, for a sequence

sj → 0, then ν is a Radon measure and the following holds true.

(1) There is a Borel set A0 with Hn(X \ A0) = ν(A0) = 0.
(2) If the topological boundary ∂X is non-empty then ν ≥ c · Hn−1

∂X ,
for a positive constant c depending only on n.

(3) If the topological boundary ∂X is empty then ν(A) = 0, for any
Borel subset A ⊂ X with Hn−1(A) <∞.

We believe that an Alexandrov space with empty topological bound-
ary ∂X has vanishing mm-boundary, which would solve the question
about the existence of infinite geodesics. This conjecture will be proved
in two cases.

THEOREM 1.8. Let Xn be a convex hypersurface in Rn+1 or let X
be a two-dimensional Alexandrov space without boundary. Then X has
vanishing mm-boundary.

In combination with Theorem 1.6 this proves Theorem 1.1. The two-
dimensional case could be derived from the statement about convex
hypersurfaces and Alexandrov’s embedding theorems. Another proof
follows from a much stronger result discussed in the next subsection.

1.4. Metric-measure-curvature. Motivated by Example 1.2 one can
naively hope that the second Taylor coefficient at 0 of the map Vr : r 7→
M(X) describes the scalar curvature of the space.

Definition 1.9. LetX,Vr be as in Definition 1.5. If the family Vr/r2, r ≤
1 is uniformly bounded then we say that X has locally finite mm-
curvature. If the measures Vr/r2 converge to a measure ν, we call ν
the mm-curvature of X.

Clearly, local finiteness of mm-curvature as defined above implies
that the mm-boundary vanishes. Thus, the following result proves
Theorem 1.8 in the 2-dimensional case.

THEOREM 1.10. Let X be a 2-dimensional Alexandrov space with-
out boundary. Then X has locally finite mm-curvature.

This finiteness result holds true in the much greater generality of
surfaces with bounded integral curvature in the sense of Alexandrov–
Zallgaler–Reshetnyak [Res93], [AZ67], see Section 4.
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Note, however, that the mm-curvature in Theorem 1.10 does not
need to coincide with the “curvature measure” as defined in [AZ67],
even in the case of a cone; compare to Example 1.14. In particular,
this shows that the mm-curvatures in 2-dimensional Alexandrov spaces
are not stable under Gromov–Hausdorff convergence.

Remark 1.11. Nina Lebedeva and the third named author have found
in [LP17] a “scalar curvature measure” on all smoothable Alexandrov
spaces. There is a hope, supported by our proof of Theorem 1.10, that
a better understanding of this “stable curvature measure” will lead to
some control of the mm-boundary and mm-curvature discussed here.

1.5. Relation to the Lipschitz–Killing curvatures. Let M be a
compact smooth submanifold in Rn. Given r > 0, consider the volume
w(r) = Hn(B(M, r)) of the distance tube B(M, r) around M . The
function r 7→ w(r) is a polynomial, at least for small positive r. The
coefficients of w(r), called the Lipschitz–Killing curvatures of M , are
given as integrals of some intrinsically defined curvature terms. More-
over, these coefficients can be localized and considered as measures on
M . We refer to [Ale16] for a short account of the theory, connection
of the theory with [LP17] and further hypothetical relations with the
theory of Alexandrov spaces.

To make the formal similarity with our approach to mm-boundary
and mm-curvature more transparent, we observe that (at least for
a smooth n-dimensional manifold M) the number

∫
M
Hn(B(x, r)) ·

dHn(x) can be interpreted as the H2·n-measures of the distance tubes
B(∆, r√

2
) around the diagonal ∆ in the Cartesian product M ×M .

1.6. Idea of the proof of Theorem 1.6. The interpretation of the
tangent bundle of M as the normal bundle of the diagonal ∆ in M×M
gives a connection between the measure theoretical properties of the
tubes around ∆ and the dynamical properties of the geodesic flow.

We clarify this abstract statement by explaining the main idea of
our proof of Theorem 1.6 in the case of a complete smooth Riemann-
ian manifold X = M . In this case the existence of geodesics is trivial.
Thus, we just sketch a new proof of the classical fact that the geo-
desic flow φ preserves the Liouville measure M on TM . This proof is
sufficiently stable to be transferred to the singular situation,

Denote by π : TM → M the tangent bundle of M . Let φt : TM →
TM be the geodesic flow for time t. Define E : TM →M ×M by

E(v) = (π(v), π(φ1(v)).

By construction, E(−φ1(v)) = J(E(v)), where J is the involution of
M ×M which switches the coordinates. Since J preserves the measure
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H2·n on M×M and v → −v preserves the Liouville measureM on TM ,
the statement that φ is measure preserving hinges upon the smallness
of measure-distortion of the map E : (TM,M)→ (M ×M,H2·n) close
to the 0-section.

In the present case of a Riemannian manifold, this property of φ1

is expressed by the fact that the differential of E is the identity (after
suitable identifications). Similarly, in the general case of Alexandrov
spaces, we observe that the “infinitesimal” deviation (via the canonical
map E) between J being measure preserving (which we know) and φ1

being measure preserving (which is what we want to show) is expressed
as the triviality of the mm-boundary.

1.7. Stability and relation with quasi-geodesics. Many Alexan-
drov spaces, for instance all convex hypersurfaces, appear naturally as
Gromov–Hausdorff limits of smooth Riemannian manifolds. However,
the properties of the geodesic flow, mm-boundaries and mm-curvature
are unstable under limit operations; see also the discussion at the end
of Subsection 1.4. Thus, there is no hope to deduce Theorem 1.10,
Theorem 1.8 or Theorem 1.1 by a direct limiting argument.

For instance, being a geodesic is a local notion, not preserved under
limits. However, any limit of geodesics in a non-collapsed limit of
Alexandrov spaces is a curve sharing many properties with geodesics.
These properties are used to define the so called quasi-geodesics ; see
[PP96], [Pet07] and the references therein. It was shown that any
direction is the starting direction of an infinite quasi-geodesic. One
motivation for the present paper was an attempt to prove Liouville’s
theorem for the “quasi-geodesic flow”, see Subsection 3.6.

1.8. Examples. The estimates of the mm-boundary and mm-curvature
are quite involved even in quite simple situations. The following exam-
ples are not needed in the sequel and we omit the somewhat tedious
computations. Examples 1.14, 1.15 and 1.16 should be compared with
[Ber03] and [Ber02] revealing further natural connections to the the-
ory of Lipschitz–Killing curvature on singular subsets of the Euclidean
space.

Example 1.12. Let X be a Riemannian manifold with a Lipschitz con-
tinuous metric. Then X has vanishing mm-boundary.

Example 1.13. If X is a manifold with two-sided bounded curvature
in the sense of Alexandrov then its mm-curvature is well-defined and
absolutely continuous with respect to the Hausdorff measure.
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Example 1.14. Let X be the Euclidean cone over the circle Sρ of length
ρ. The curvature measure and the mm-curvature are Dirac measures
concentrated at the tip of the cone. The mass of the curvature measure
is α = 2π−ρ. From example 1.2 one would expect the mass of the mm-
curvature to be m(α) = α

12
. However, a straightforward calculation

shows that m(α) = α
12

+ f(α), where f(α) = O(α2) is a non-zero
function.

Example 1.15. Let X be a finite n-dimensional simplicial complex with
an intrinsic metric d. Assume that the restriction of d to each simplex
is given by a smooth Riemannian metric. Then X has a finite mm-
boundary ν with the support on the (n− 1)-skeleton Xn−1.

Example 1.16. Assume that X as in the last example is a pseudo-
manifold. Then X has finite mm-curvature. If all simplices are flat
then the mm-curvature is concentrated on the (n− 2)-skeleton.

1.9. Structure of the paper. After preliminaries collected in Section
2, we prove Theorem 1.6 in Section 3 along the lines sketched above. In
Sections 4, 5 and 7 we prove the remaining theorems 1.10, 1.8 and 1.7
respectively. The proofs of these theorems all rely on a decomposition
of the space into a regular and a singular part, with a quantitative
estimate of the size of the singular part. Finally, on the regular part
we estimate the mm-curvature and mm-boundary by comparing it to
other natural measures on these spaces.

In the case of surfaces, this comparison measure is the classical cur-
vature measure, in the case of convex hypersurfaces, this comparison
measure is the mean curvature. Finally, in the case of a general Alexan-
drov space, the comparison is given by the derivative of the metric
tensor expressed in DC-coordinates, [Per95].

The needed control of the ball growth in terms of these measures is
given by a theorem of Mario Bonk and Urs Lang in the case of surfaces
and follows from classical convex geometry in the case of hypersur-
faces. The analytical comparison result needed for Alexandrov spaces
is established in Section 6.

In the final Section 8 we collect a number of comments and open
questions which naturally arose during the work on this paper.
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2. Preliminaries

2.1. Metric spaces. We refer to [BBI01] for basics on metric spaces.
The distance between points x, y in a metric space X will be denoted
by d(x, y). By B(x, r) we will denote the open metric ball of radius
r around a point x. For A ⊂ X we denote by B(A, r) the open r-
neighborhood B(A, r) = ∪x∈AB(x, r).

A minimizing geodesic γ in a metric space X is a map γ : I → X
defined on an interval I such that for some number λ ≥ 0 and all t, s ∈ I

d(γ(t), γ(s)) = λ · |t− s|.
In particular, we allow γ to have any constant velocity λ ≥ 0. A
geodesic is a curve γ : I→ X such that its restriction to a small neigh-
borhood of any point in I is a minimizing geodesic. Note that a geodesic
is a curve of constant velocity.

2.2. Metric measure spaces. We refer to [Fed69] and [EG15] for
basics on measure theory.

LetX be a locally compact separable metric space. A Radon measure
on X is a measure on X for which all compact subsets are measurable
and have finite measure. Any Radon measure defines an element of
M(X) the dual space to the topological vector space Cc(X) of compactly
supported continuous functions on X. All elements in M(X) are called
signed Radon measures. Any µ ∈ M(X) can be uniquely written as
µ+ − µ−, where µ± are a Radon measures concentrated on disjoint
subsets. The measure |µ| = µ+ + µ− is called the total variation of µ.

A family F of signed Radon measures on X is uniformly bounded if
for any compact subset K ⊂ X there exists a constant C(K) > 0 such
that |µ|(K) ≤ C(K) for any µ ∈ F . Any uniformly bounded sequence
of signed measures µi has a convergent subsequence.

The following lemma will be repeatedly used.

Lemma 2.1. Let X be a metric space with two Radon measures µ and
ν. Let r > 0 be arbitrary and let A ⊂ X be a Borel subset. Then∫

A

µ(B(x, r)) · dν(x) ≤
∫

B(A,r)

ν(B(x, r)) · dµ(x).

Proof. Due to Fubini’s theorem the left hand side is the volume of

S = { (y, x) ∈ X ×X ; y ∈ A, d(y, x) < r }
8



with respect to the product measure ν⊗µ. And on the right hand side
of the inequality is the volume of the larger set

T = { (y, x) ∈ X ×X ; x ∈ B(A, r), d(y, x) < r }

with respect to the same measure.
Since S ⊂ T , the statement follows. �

2.3. Alexandrov spaces. We are assuming that the reader is famil-
iar with basic theory of Alexandrov spaces and refer to [BGP92] as
an introduction to the subject. In this paper, an Alexandrov space is
a complete, locally compact, geodesic metric space of finite Hausdorff
dimension and of curvature bounded from below by some κ ∈ R. For
Alexandrov spaces, an upper index will indicate the Hausdorff dimen-
sion; that is, Xn denotes an n-dimensional Alexandrov space, equipped
with the n-dimensional Hausdorff measure Hn.

The set of starting directions of geodesics starting at a given point
x ∈ X carries a natural metric, whose completion is the tangent space
Tx = TxX of X at the point x. It is an n-dimensional Alexandrov
space of non-negative curvature. Moreover, it is the Euclidean cone
over the space Σx of unit directions. The Euclidean cone structure
defines multiplications by positive scalars λ ≥ 0 on TxX. The origin
of the cone TxX is denoted by 0 = 0x. Elements of TxX are called
tangent vectors at x, despite that TxX is not a vector space in general.
For v ∈ TxX the norm |v| of v is the distance of v from the origin 0x.

Geodesics in X do not branch, moreover, any two geodesics with
identical starting vectors coincide. For x ∈ X the exponential map expx
is defined as follows. Let Dx denote the set of all vectors v ∈ TxX for
which there exists an (always unique) minimizing geodesic γv : [0, 1]→
X with starting direction v. The exponential map is defined on Dx as

expx(v) = γv(1).

For any r > 0, the map expx sends Dx ∩ B(0x, r) ⊂ TxX surjectively
onto B(x, r) ⊂ X. Moreover, for a constant C = C(κ) ≥ 0 and all
r < 1

C
the map expx : Dx ∩B(0x, r)→ B(x, r) is (1 + C · r2)-Lipschitz

continuous.
By the theorem of Bishop–Gromov, the volume br(x) = Hn(B(x, r))

is bounded from above by the corresponding volume in the space of
constant curvature κ. In particular, br(x) ≤ ωn · rn + C · rn+2 for
all r ≤ 1

C
, where the constant C can be chosen as before. Thus, the

deviation measures Vr from (1.2) satisfy

Vr ≥ −C · r2 · Hn,
9



for all sufficiently small r. Here and in the previous paragraph, one can
set C = 0 if κ ≥ 0.

Denote by Xreg the set of all points x ∈ X with TxX isometric to the
Euclidean space. The set Xreg has full Hn-measure in X. Any inner
point of any geodesic starting on Xreg is contained in Xreg, [Pet98].

The topological boundary ∂X of X can be defined as the closure
of the set of all points x ∈ X with TxX isometric to a Euclidean
half-space. Up to a subset of Hausdorff dimension n − 2, ∂X is an
(n− 1)-dimensional Lipschitz manifold.

2.4. Volume and bi-Lipschitz maps. Let µ = Hn be a Radon mea-
sure on the metric space X. Let U ⊂ X and V ⊂ Rn be open and
assume that there is an (1 + δ)-bi-Lipschitz map f : U → V ; that is,

1

1 + δ
≤ |f(x)− f(y)|

d(x, y)
≤ 1 + δ

for any pair of distinct points x, y ∈ U .
LetA ⊂ U be given withB(A, (1 + δ) · r) ⊂ U andB(f(A), (1 + δ) · r) ⊂

V . Then, for all x ∈ A,

(2.1) (1 + δ)−2·n ≤ br(x)

ωn · rn
≤ (1 + δ)2·n.

Therefore, if δ is sufficiently small, |Vr|(A) ≤ 3 · n · δ · Hn(A).

3. Liouville measure and geodesics

3.1. Tangent bundle and Liouville measure. Let X be an n-
dimensional Alexandrov space. Denote by TX the disjoint union of
the tangent spaces at all points,

TX =
⊔
x∈X

TxX.

Let π : TX → X be the footpoint projection, so π(TxX) = {x} for
any x ∈ X. For a subset K ⊂ X denote by TK the inverse image
π−1(K) = ∪x∈KTxX. Given r > 0, denote by T rK the set of all
vectors in TK of norm smaller than r.

The Riemannian structure on the set of regular points discussed in
[OS94] (see also [KMS01], [Per95]) provides TXreg with a structure of a
Euclidean vector bundle over Xreg. In this topology, for any sequence of
geodesics γi in Xreg converging to a geodesic γ, the starting directions
of γi converge to the starting direction of γ.

On the Euclidean vector bundle TXreg over Xreg we have a natural
choice of measure, which locally coincides with the product measure
of Hn

X and the Lebesgue measures on the fibers. More precisely, it
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is the unique Borel measure M on TXreg such that for any Borel set
A ⊂ TXreg

M(A) =

∫
X

Hn(A ∩ TxX) · dHn(x).

We extend M to a measure on TX by setting M(TX \ TXreg) to be
0.

By the definition, a subset A ⊂ TX is M-measurable if and only if
there exists a Borel subset A′ ⊂ A∩TXreg such that for Hn-almost all
x ∈ X the intersection (A \ A′) ∩ TxX has Hn-measure zero in TxX.

For any λ > 0, we haveM(λ ·A) = λn ·M(A) for any measurable set
A ⊂ TX. The involution I : TXreg → TXreg, defined by I(v) = −v,
preserves M since it preserves the Lebesgue measure in each tangent
space.

3.2. Geodesic flow. Let us define the geodesic flow φ on a maximal
subset F of TX × R.

For any v ∈ TxX we set φ0(v) = v. If no geodesic starts in the
direction of v, the value φt(v) will not be defined for t 6= 0. If such
a geodesic γv exists, then γv can be uniquely extended to a maximal
possible half-open interval γv : [0, a) → X. For t ≥ a the value φt(v)
will not be defined. For 0 < t < a we set φt(v) to be γ+v (t) ∈ Tγv(t)X,
the starting direction of γv : [t, a)→ X at γv(t).

If the geodesic γv : [0, a)→ X extends to an (again uniquely defined,
maximal) geodesic γv : (b, a)→ X for some b < 0 then we define φt(v)
for b < t < 0 to be γ+v (t) as above.

We denote by F the set of all pairs (v, t) ∈ TX × R for which φt(v)
is defined.

For λ > 0, for t, s ∈ R and v ∈ TxX we have

φt(λ · v) = λ · φλ·t(v) and φt+s(v) = φt(φs(v)),

whenever the right hand side is defined.
The partial flow φ preserves the norm of tangent vectors. Since inner

points of geodesics starting in Xreg are contained in Xreg, the set TXreg

is invariant under the flow φ.
By construction, the domain of the definition of the geodesic flow

almost includes the domain of the definition of the exponential map.
More precisely, consider the set

D =
⋃
x∈X

Dx ⊂ TX;

that is, the set of all vectors v ∈ TX for which expπ(v)(v) is defined.
Note that λ · D ⊂ D for any 0 ≤ λ ≤ 1. Moreover, for all v ∈ D
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and all 0 ≤ λ < 1 the geodesic flow φ1(λ · v) is defined (equivalently
(λ · v, 1) ∈ F) and

π(φ1(λ · v)) = expπ(v)(λ · v).

Thus, for M-almost all v ∈ D we have the following

• v ∈ TXreg;
• φ1(v) ∈ TXreg is defined, hence (v, 1) ∈ F ;
• w = −φ1(v) ∈ D and

(3.1) (π(w), exp(w)) = (exp(v), π(v)) ∈ X ×X.

3.3. Measurability. In order to use measure theoretic arguments we
will need the following lemma, see also Subsection 3.6.

Lemma 3.1. The set F ⊂ TX × R is measurable with respect to the
product of the Liouville’s measureM on TX and the Lebesgue measure
on R. Moreover the map φ : F → TX is measurable.

Proof. Fix (v, τ) ∈ F and set γ(τ ·t) = φt(v), t ∈ [0, 1]. Note that there
exists some k > 0 such that the restriction of γ to any subinterval of
length 1

k
is a (minimizing) geodesic. We will call such γ a k-geodesic

and write (v, τ) ∈ Fk.
The limit of any converging sequence of k-geodesics is a k-geodesic.

Hence F ′k = Fk ∩ (TXreg ×R) is a closed set in TXreg ×R. Therefore,
F ∩ (TXreg × R) is a countable union of closed subsets F ′k, hence
measurable. Moreover, the restriction φ : F ′k → TXreg is continuous
and, therefore, φ : F ∩ (TXreg × R) → TXreg is a Borel-measurable
map.

Since M(X\Xreg) = 0 the statement follows. �

3.4. Liouville property. Denote by G the set of all vectors v ∈ TX
such that φt(v) is defined for all t ∈ R. Note that G contains the 0-
section; it is invariant under multiplications by any λ > 0 and it is
invariant under the geodesic flow φ. Moreover, G ∩ TXreg is invariant
under the involution I(v) = −v.

Definition 3.2. We say that an Alexandrov space X has the Liouville
property if M(TX \ G) = 0 and for any t ∈ R the geodesic flow
φt : G → G preserves the Liouville measure.

The Liouville property can be checked infinitesimally using the fol-
lowing lemma.

Lemma 3.3. An Alexandrov space X does not have the Liouville prop-
erty if and only if there is a compact subset K ⊂ X, a positive number ε
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and a sequence of positive numbers rm → 0 with the following property.
For every m, there exists a Borel subset Am ⊂ T rmK such that

(3.2) ε · rn+1
m ≤M(Am)−M(φ1(Am)).

Here φ1(Am) is the set of all φ1(v), v ∈ Am, for which φ1(v) is defined.

Proof. If at least one rm with the above property exists, then X does
not have the Liouville property by definition.

Assume that X does not have the Liouville property. Then, by
homogeneity of the geodesic flow, φ1 is either undefined on a subset of
TX with positive measure or it does not preserve the measure M. In
both cases we can find a compact subset K1 ⊂ Xreg, a Borel subset
A ⊂ T 1K1 and ε > 0 such that

ε <M(A)−M(φ1(A)).

Since

φ1(A) = 2 · φ2(
1
2
· A) =

= 2 · φ1 ◦ φ1(
1
2
· A),

we deduce
ε

2n
≤M

(
1
2
· A
)
−M

(
φ1(

1
2
· A)

)
+

+M
(
φ1(

1
2
· A)

)
−M

(
φ1

(
φ1(

1
2
· A)

))
.

Thus, taking either A 1
2

:= 1
2
· A or A 1

2
:= φ1(

1
2
· A) we infer

ε

2n+1
<M

(
A 1

2

)
−M

(
φ1(A 1

2
)
)
.

The set A 1
2

constructed above is contained in T
1
2K 1

2
, where K 1

2
=

B(K1,
1
2
).

Iterating the above procedure we obtain, for rm = 1
2m

, a subset
Arm ⊂ T rmKm where Km = B(Km−1, rm) and such that (3.2) holds
true.

The claim follows since all Km are contained in the set B(K1, 1),
whose closure is compact, by completeness of X. �

Remark 3.4. The completeness of the space X is used in the proof of
Theorem 1.6 only once, namely in the last line of the above proof.

3.5. Relation with the mm-boundary. Let us interpret the devia-
tion measures Vr from (1.2) in suitable geometric terms.

Let K ⊂ X be measurable and let r > 0 be arbitrary. Since Hn(X \
Xreg) = 0, we have

M(T rK) = ωn · rn · Hn(K).
13



Denote now by U r(K) the set of all pairs (x, y) ∈ X ×X with x ∈ K
and d(x, y) < r. By Fubini’s theorem the set U r(K) is Hn⊗Hn = H2·n

measurable and we have

H2·n(U r(K)) =

∫
K

br(x) · dHn(x).

Taking both equations together, we see that the signed measure Vr
expresses the difference between H2·n and M. More precisely,

(3.3) Vr(K) =
1

ωn · rn
·
(
M(T rK)−H2·n(U r(K))

)
.

The following statement is a reformulation of Theorem 1.6.

THEOREM 3.5. If an Alexandrov space X has vanishing mm-boundary
then it has the Liouville property.

Proof. Arguing by contradiction, assume that X does not have the
Liouville property. Consider the compact subset K ⊂ X, the posi-
tive numbers ε, rm and the Borel subsets Am ⊂ T rmK provided by
Lemma 3.3.

Let Y be the closure of B(K, 1). Recall that D ⊂ TX is the set of all
vectors at which the exponential map is defined. For r > 0, denote by
Dr the intersection of D with T rY and consider the “total exponential
map” E : Dr → X ×X given by

E(v) = (π(v), π(exp(v))).

As above, let U r = U r(Y ) be the set of all pairs (y, x) ∈ X ×X with
y ∈ Y and d(x, y) < r. Note that

(3.4) E(Dr) = U r.

Moreover, for any fixed x ∈ Y , the restriction of E to Dx ∩ Dr is
a (1 + Cr2)-Lipschitz continuous map from Dx ⊂ TxX onto the set
U r ∩ ({x} ×X) (see Subsection 2.3). Thus, for all sufficiently small r,
and any Borel subset S ⊂ Dx ∩Dr, we have

Hn(E(S)) ≤ (1 + 4·n·C·r2) · Hn(S).

Using the definition of the Liouville measure M and Fubini’s formula
for the product measure H2·n = Hn ⊗Hn on X ×X we obtain for any
M-measurable subset S of Dr

(3.5) H2·n(E(S)) ≤ (1 + 4·n·C·r2) · M(S).

Due to (3.3), the vanishing of the mm-boundary of X implies

(3.6) lim
r→0

1

rn+1
· |M(T rY )−H2·n(U r)| = 0.

14



Thus, up to terms of order higher than rn+1, the map E does not
increase the measure of subsets, but the total mass of the image coincide
with the total mass of the target. Therefore, E is measure preserving
up to terms of order higher than rn+1 on all subsets of T rY . More
precisely, for every δ > 0, there is s > 0 with the following property.
For all 0 < r < s and all measurable subsets S ⊂ Dr we have

(3.7)
0 ≤M(T rY )−M(Dr) < δ·rn+1,

|H2·n(E(S))−M(S)| < δ·rn+1.

Indeed, a violation of the first inequality would imply by (3.5) an up-
per bound on H2·n(U r) = H2·n(E(Dr)), which would contradict (3.6).
Similarly, (3.5) provides the right upper bound forM(S) in the second
inequality. On the other hand, (3.5) applied to T rY \ S together with
(3.6) imply the right lower bound for M(S).

For any measurable subset S ⊂ Dr ∩ TK we now claim

(3.8) |H2·n(E(S))−M(φ1(S))| < 2·δ·rn+1.

In order to prove (3.8), let S+ be the subset of all vectors v ∈ S for
which φ1(v) exists and is contained in TXreg. For all v ∈ S+, we have
−φ1(v) ∈ Dr and, due to (3.1),

E(−φ1(v)) = J(E(v)).

The involution I(v) = −v is M-preserving on TXreg. And the invo-
lution J : X × X → X × X given by J(x, y) = (y, x) preserves H2·n.
Therefore, from (3.7) we deduce

(3.9) |H2·n(E(S+))−M(φ1(S
+))| < δ·rn+1.

On the other hand, by construction,

M(S \ S+) = 0 and φ1(S \ S+) ∩ TXreg = ∅.

Hence, applying (3.7), we see

|H2·n(E(S))−H2·n(E(S+))| < δ·rn+1

and

M(φ1(S \ S+)) = 0.

Together with (3.9) this finishes the proof of (3.8).
Coming back to our subsets Am ⊂ T rmK, we have

ε · rn+1
m ≤M(Am)−M(φ1(Am)) ≤
≤M(Am)−M(φ1(Am ∩Drm)).

15



Setting Sm = Am ∩Drm we estimate the right hand side as the sum of
the following three terms:

|M(Am)−M(Sm)|,
|M(Sm)−H2·n(E(Sm))|,
|H2·n(E(Sm))−M(φ1(Sm)|.

Applying (3.7) and (3.8) this sum is bounded above by 4·δ·rn+1
m , for all

large m.
Therefore

ε · rn+1
m < 4·δ·rn+1

m

for all large m. Since δ is an arbitrary positive number, this leads to a
contradiction. �

3.6. Quasi-geodesics flow. Finally, we discuss some relations with
quasi-geodesics, referring the reader to [Pet07] for the basic properties
of such curves. Recall, that whenever a unit speed minimizing geodesic
γv : [0, a] → X start at a point x in the direction v then this is the
unique quasi-geodesic defined on the interval [0, a], [PP96], p.8, thus
the same statement is also true for (local) geodesics γv.

Using this and the fact that a limit of quasi-geodesics is a quasi-
geodesic, it is not difficult to conclude that the partial geodesic flow
φ : F ∩ TXreg → TXreg defined above is continuous. The latter state-
ment slightly strengthening Lemma 3.1.

As in Subsection 3.1, we have a canonical measure M1 on the unit
tangent bundle ΣX ⊂ TX of X, which we also call the Liouville mea-
sure. Whenever X has the Liouville property, then the geodesic flow
is definedM1 ⊗H1-almost everywhere on ΣX ×R and preservesM1.
In this case forM1-almost each unit direction there exists exactly one
quasi-geodesic starting in this direction.

Let now X be an Alexandrov space with topological boundary ∂X
and let Z be the doubling X t∂X X, which is an Alexandrov space
without boundary, [Per91]. Quasi-geodesics in X are exactly the pro-
jections of the quasi-geodesics in Z under the folding f : Z → X. From
this we deduce that if Z has the Liouville property, then M1-almost
each direction v ∈ ΣX is the starting direction of a unique infinite
quasi-geodesic in X. Moreover, in this case, the corresponding quasi-
geodesic flow preserves M1.

Finally, as an application of Theorem 1.6 and Theorem 1.7 we see
that the above assumptions are fulfilled whenever the complement X \
∂X has vanishing mm-boundary. Indeed, in this case the mm-boundary
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of Z must be concentrated on ∂X ⊂ Z, hence it must be trivial by
Theorem 1.7,(3).

4. Surfaces with bounded integral curvature in the sense
of Alexandrov

4.1. Preparations. We assume that the reader is familiar with the
theory of surfaces with bounded integral curvature; see [AZ67] and
[Res93].

Let X be a surface with bounded integral curvature; it is a locally
geodesic metric space, homeomorphic to a two-dimensional surface. It
has Hausdorff dimension 2 and the Hausdorff measure H2 is a Radon
measure on X. There is another signed Radon measure on X, the so
called curvature measure which will be denoted Ω, [Res93, Section 8].
We will not assume that X is complete.

We will derive Theorem 1.10 as a consequence of the following weak
local version of a theorem of Mario Bonk and Urs Lang, [BL03], which
relate the curvature measure to the volume of balls.

Lemma 4.1. There exists some δ0 > 0 with the following property.
Let X be a surface with bounded integral curvature and let Ω ∈ M(X)

be its curvature measure. Assume X is homeomorphic to a plane and
|Ω|(X) < δ0. Then for any point x ∈ X, and r > 0 such that B̄(x, r)
is compact we have ∣∣∣∣1− br(x)

π·r2

∣∣∣∣ ≤ 3 · |Ω|(B(x, r)).

Proof. Set δ = |Ω|(B(x, r)). By continuity, it is sufficient to prove that

|1− bs(x)
π·s2 | ≤ 3·δ for any s < r. Using approximations of the metric on

X by polyhedral metrics [Res93, Theorem 8.4.3, Theorem 8.1.9], we
assume from now on that X is polyhedral and homeomorphic to R2.

Claim: There exists a complete polyhedral surface X̂ homeomorphic
to a plane, which contains a copy of B(x, s) and such that the curvature

measure Ω̂ of X̂ satisfies |Ω̂|(X̂) < 3 · δ.
Once the claim is proven, [BL03] provides us a bi-Lipschitz map

f : X̂ → R2 with the constant L ≤ 1 + 3·δ
2·π−3·δ . Since δ is small, an

application of (2.1) finishes the proof of the lemma.
It remains to prove the Claim, certainly well-known to experts. Take

some r > t > s and consider the compact metric ball B̄(x, t) ⊂ B(x, r).
We may assume that the boundary St of B̄(x, t) does not contain singu-
lar points of X. By [Res93, Theorem 9.1, Theorem 9.3], the boundary
St is a (piecewise smooth) Jordan curve, once δ0 < 2·π, and the neg-
ative part κ− of the geodesic curvature κ of St satisfies |κ−|(St) ≤ δ.
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Since X is homeomorphic to a plane this implies that B̄(x, t) is home-
omorphic to a closed disk D̄2 in R2.

We find a polygonal Jordan curve Γ in B(x, t) approximating St such
that the negative part of the geodesic curvature of Γ is smaller than
2·δ. Consider the closed Jordan domain Y bounded by Γ, which can be
assumed to contain B(x, s). Now we glue to Y along any edge of Γ a
flat half-strip. The boundary of the arising polyhedral surface consists
of pairs of rays γ±i emanating from the vertices V1, . . . , Vk of Γ. The
rays γ±i enclose an angle equal to 2·π − αi, where π − αi is the angle

of Γ at Vi measured in Y . In order to finish the construction of X̂ we
glue a flat sector of angle αi between γ±i , if αi > 0 and we glue γ±i
together if αi ≤ 0. Since Y was a polyhedral disc, the arising space
X̂ is a complete polyhedral plane. All of the singularities of X̂ are
contained in B(x, s) ∪ {V1, . . . , Vk}. Moreover, by construction, the

curvature measure Ω̂ of X̂ satisfies

Ω̂(Vi) = min{0, αi}.
We deduce,

|Ω̂|(X̂) = |Ω(B(x, s))|+ |Ω̂|(Γ) ≤ δ + |κ−|(Γ) < 3·δ.
This finishes the proof of the claim and of Lemma 4.1. �

4.2. Local finiteness of mm-curvature. Now we are ready to prove
and prove the following generalization of Theorem 1.10.

THEOREM 4.2. Let X be an Alexandrov surface with integral curva-
ture bounds. Then, equipped with the Hausdorff measure H2, the space
X has locally finite mm-curvature.

Proof. Let again Ω denote the curvature measure of X. Let δ0 > 0
be sufficiently small and satisfy the conclusion of Lemma 4.1. The
statement of Theorem 4.2 is local, so we need to prove it only in a
small neighborhood of any point. Thus we may (and will) assume that
there is a point x0 ∈ X such that |Ω|(X \ {x0}) < δ0 and that X is
homeomorphic to a plane.

Let A ⊂ X be compact. Choose some ε > 0 such that the closure
of B(A, 2·ε) in X is compact and such that, for any 0 < 2·r < ε the
inequality H2(B(x0, 3·r)) < 1

ε
· r2 holds true; see [Res93, Lemma 8.1.1].

Let r < ε be arbitrary. For any x ∈ B(x0, 2·r) we have

br(x) = H2(B(x, r)) ≤ H2(B(x0, 3·r)) ≤ 1
ε
· r2.

For any x /∈ B(x0, r) we have |Ω|(B(x, r)) < δ0. Thus, by Lemma 4.1,

|1− br(x)

π·r2
| ≤ 3 · |Ω|(B(x, r)).
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For the deviation measures Vr from (1.2) we estimate:

|Vr|(A ∩B(x0, 2·r)) ≤ |Vr|(B(x0, 2·r)) ≤
≤ (1 + 1

ε
) · H2(B(x0, 2·r)) ≤

≤ (1 + 1
ε
) · 1

ε
· r2.

On the other hand,

|Vr|(A \B(x0, 2·r)) ≤
∫

A\B(x0,2·r)

3 · |Ω|(B(x, r)) · dH2(x) ≤

≤ 3 ·
∫

B(A,r)\B(x0,2·r))

H2(B(x, r)) · d|Ω|(x),

where we have used Lemma 2.1 in the last step. For any x contained in
the domain of integration of the last integral, we have H2(B(x, r)) =
br(x) ≤ 2·π·r2, by Lemma 4.1, once δ0 has been chosen to be sufficiently
small. We deduce |Vr|(A \B(x0, 2·r)) ≤ 6·π·δ0·r2.

Thus, for some constant C = C(ε) and all r < ε, we obtain

|Vr|(A) = |Vr|(A \B(x0, 2·r)) + |Vr|(A ∩B(x0, 2·r)) ≤ C · r2.
This finishes the proof of the theorem. �

5. Convex hypersurface

In this section we are going to prove Theorem 1.1.
The proof will follow from Theorem 1.6 by comparing the mm-

boundary with the mean curvature measure on convex hypersurfaces.
It is possible to deduce the theorem without a reference to Theo-

rem 1.7, from Lemma 5.2 alone, but Theorem 1.7 shortens the proof.
All results in this section are local, but for simplicity, we consider

only closed convex hypersurfaces. The hypersurfaces will always be
equipped with the induced intrinsic metric.

We assume that the reader is familiar with the basics of the theory
of convex functions and convex geometry.

5.1. Mean curvature. Let X be a convex hypersurface in Rn+1. Re-
call that there exists a Radon measure K on X, called the mean cur-
vature measure; see [Sch93], [Fed59].

The measure K has the following properties. For smooth hypersur-
faces X, we have K = κ · Hn, where κ is the usual mean curvature
function of X. The mean curvature measure is stable under Hausdorff
convergence of convex hypersurfaces in Rn+1. If the hypersurface is
rescaled by λ, the mean curvature K is rescaled by λn−1.
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A point x in the convex hypersurface X is called smooth if there is
a unique supporting hyperplane of X at this point. For any smooth
point x ∈ X, any sequence xj ∈ X converging to x and any sequence of
positive numbers tj converging to 0, the sequence of convex hypersur-
faces Xj obtained from X by the dilatation by the factor 1

tj
centered

at the point xj converges to the tangent hyperplane of X at x.
The stability of the mean curvature measures K, vanishing of K on

flat hyperplanes and the behavior of K under rescalings gives us:

Lemma 5.1. Let X be a convex hypersurface in Rn+1. Let A be a
compact set of smooth points in X and δ > 0. Then there exists some
t > 0 such that

K(B(y, r)) ≤ δ · rn−1

for any y ∈ B(A, t) and any 0 < r < t.

Thus, the following lemma applies to all small balls in a neighbor-
hood of any smooth point.

Lemma 5.2. There exist numbers δ0, C > 0 depending only on n with
the following property. Let X be a convex hypersurface in Rn+1. Let
x ∈ X be a point and r > 0 be such that the mean curvature K satisfies
K(B(x, 6·r)) < δ · rn−1 with δ < δ0. Then

(5.1)

∣∣∣∣1− br(x)

ωn·rn

∣∣∣∣ < C · δ · K(B(x, 6·r)) · r1−n.

Proof. By rescaling, it suffices to prove the existence of δ0, C > 0 such
that the lemma holds for r = 1. By approximation, it is sufficient to
prove the result for smooth convex hypersurfaces.

Fix a sufficiently small ε0 > 0. The mean curvature vanishes on
B(x, 6) if an only if B(x, 6) is contained in a flat hyperplane. Due
to the stability of K under convergence, if δ0 is small, then the ball
U = B(x, 5) ⊂ X is close to a flat hyperplane in Rn+1. Thus, we
may assume that the tangent hyperplanes to points in U are ε0-close
to the tangent space W = TxX ⊂ Rn+1. Therefore, U is a graph
U = {(x, f(x))} of a convex function f : V → R defined on an open
subset V ⊂ W . Moreover, V contains the ball of radius 4 in W around
x. Denote by B(x, 2)W the ball of radius 2 in W around x. Set

a := sup { |∇f(y)| ; y ∈ B(x, 2)W } .
If δ0 is small, then a < ε0. The orthogonal projection P : U → V
is 1-Lipschitz and the restriction of the inverse P−1 to B(x, 2)W has
Lipschitz constant

√
1 + a2 ≤ 1 + a2 ≤ 1 + ε20.

20



Applying (2.1) we only need to prove that a < C · δ for a constant C.
Denote by |D2f | the largest eigenvalue of the Hessian D2f . Since f

is convex and ε0 is small, the mean curvature κ(x) at the point (x, f(x))
of the graph U of f satisfies κ(x) ≥ n

2
· |D2f |. Hence, the conclusion

follows from the following statement.
Claim: Let f : B → R be a smooth convex function on the open ball

B = B(0, 4) ⊂ Rn. If f(0) = |∇f(0)| = 0 then, for some C = C(n) > 0,

sup
y∈B(0,2)

|∇f(y)| ≤ C ·
∫
B

|D2f |.

By convexity, it is sufficient to find some C = C(n) > 0 with

(5.2) sup
y∈B(0,3)

|f(y)| ≤ C ·
∫
B

|D2f |;

see also [EG15, Theorem 6.7].
First note that f(z) ≥ 0 for all z since f(0) = |∇f(0)| = 0 and f is

convex.
In order to verify (5.2), we can multiply the function f by a constant

and assume that f takes its maximum on the closed ball B̄(0, 3) at the
point y0 and f(y0) = 1. Convexity of f implies that |y0| = 3. Since
f(0) = 0 and f is convex, we must have f(y) ≤ 1

3
for all y ∈ B(0, 1).

By convexity and the choice of y0, the restriction of f to the sup-
porting hyperplane H of B̄(0, 3) at y0 is bounded from below by 1.
Consider the ball S of radius 1

2
in H around y0. For any point z ∈ S

consider the restriction

fz(t) = f(z − t
3
· y0), t ∈ [0, 6]

to the segment of length 6 starting at z orthogonal to H. Then

fz(0) ≥ 1, fz(3) ≤ 1

3
, fz(6) ≥ 0.

Thus for some t ∈ (0, 3) we have f ′z(t) ≤ −2
9

and for some t ∈ (3, 6) we

have f ′z(t) ≥ −1
9
. Therefore

6∫
0

f ′′z (t) · dt ≥ 1

9
.

Integrating over S we obtain by Fubini’s theorem a uniform positive
lower bound on

∫
B
|D2f |. This finishes the proof of (5.2). Hence the

claim and Lemma follow. �
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5.2. The proof. The next theorem is the first part of Theorem 1.8;
the second part follows from Theorem 4.2. In combination with Theo-
rem 1.6 it also finishes the proof of Theorem 1.1.

THEOREM 5.3. Let X be a convex hypersurface in Rn+1. Then it
has vanishing mm-boundary.

Proof. Since X has locally finite mm-boundary by Theorem 1.7, it suf-
fices to prove that any partial limit measure ν of a sequence 1

rj
· Vrj for

rj → 0 must be the zero measure.
Fix a partial limit measure ν. Due to Theorem 1.7, ν(A) = 0 for

any Borel subset A ⊂ X with Hn−1(A) < ∞. Let Y ⊂ X be the set
of smooth points of X. The complement X \Y is a countable union of
subsets with finite (n− 1)-dimensional Hausdorff measure (see [Zaj79]
and [Sch93, Theorem 1.4]) therefore ν(X \ Y ) = 0. Therefore, it is
sufficient to prove ν(A) = 0 for any compact subset A ⊂ Y .

Fix a compact subset A ⊂ Y and let δ > 0 be an arbitrary sufficiently
small number. Consider a positive 1 > t > 0 provided by Lemma 5.1.
Let U be the open set B(A, t).

Assume 0 < r < t. Applying Lemma 5.2, for x ∈ U we get

|Vr|(U) ≤
∫
U

C · δ · r1−n · K(B(y, 6·r)) · dHn(y) ≤

≤ C · δ · r1−n ·
∫

B(A,7·t)

Hn(B(y, 6·r)) · dK(y) ≤

≤ C · δ · r1−n · (6·r)n · K(B(A, 7·t));
we have used Lemma 2.1 in the second and Bishop–Gromov inequality
in the last inequality. Hence

|ν|(A) ≤ |ν|(U) ≤ C · δ · 6n · K(B(A, 7)).

Since δ can be chosen arbitrary small, we obtain |ν|(A) = 0.
This finishes the proof of the claim and, therefore, of Theorem 5.3.

�

6. An integral inequality for Riemannian metrics

6.1. The smooth case. We start by estimating from above the de-
viation measure Vr on a smooth Riemannian manifold in terms of the
first derivatives of the metric. We do not know how to prove a similar
estimate from below, see Problem 8.3. However, for the applications
to Alexandrov spaces discussed in the next section, the estimate from
below is a consequence of the theorem of Bishop–Gromov.

22



For a smooth Riemannian metric g defined on an open subset U ⊂ Rn

we denote by |g′| : U → [0,∞) the sum Σi,j,k| ∂∂ xk gij|.

PROPOSITION 6.1. There exists a constant C = C(n) > 1 with
the following property. Let U ⊂ Rn be an open subset with a smooth
Riemannian metric g which is (1 + 1

C
)-bi-Lipschitz to the background

Euclidean metric. Let A ⊂ U be a Borel subset. Let r > 0 be such that
B(A, 2·r) is relatively compact in U . Then

Vr(A) ≤ C · r ·
∫

B(A,2·r)

|g′|.

Proof. We will denote by Ci various (explicit) constants which depend
only on n.

We will use the following notations. By | · | and Ln we denote re-
spectively the norm and the Lebesgue measure on the background Rn.
For x ∈ U we denote by gx the Riemannian tensor at the point x
and by | · |x the corresponding norm. The Hausdorff measure of the

Riemannian metric g has the form u · Ln, with u =
√
det(gij).

For x ∈ Rn, we consider the function K : U → [0,∞) given by

K(x) = sup
|v|x=1

d

dt

∣∣∣
t=0
|v|x+tv.

By smoothness of the determinant and the square root, we find a con-
stant C1 such that for all x ∈ U we have

(6.1) |u′(x)| ≤ C1 · |g′(x)| and K(x) ≤ C1 · |g′(x)|.
We fix A ⊂ X and r > 0 as in the formulation of the proposition. For
x ∈ U denote by Bx the metric ball B(x, r) in U . By Bx we denote the
metric ball of radius r in the Euclidean norm | · |x. In this Euclidean
metric the ball Bx has measure

ωn · rn = u(x) ·
∫
Bx

dLn.

Thus, in order to estimate the deviation measure Vr, we only need to
control the summands on the right of the following inequality:

(6.2) ωn · rn − br(x) ≤ u(x) · Ln(Bx \Bx) +

∫
Bx

|u(x)− u(y)| · dLn(y).

We may assume that the bi-Lipschitz constant 1 + 1
C

is close to 1, so

that 1
2
< u < 2. Moreover, we may assume Bx and Bx are contained in

the ball of radius 4
3
r around x with respect to the background Euclidean

metric.
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In order to bound the first summand, for x ∈ A and |v|x = 1, we set
lxv to be the length of the segment [x, x+v] in the Riemannian metric g.
Then we compute

lxv − r =

r∫
0

|v|x+tv dt−
r∫

0

|v|x dt ≤

≤
r∫

0

(

t∫
0

K(x+ sv) ds) dt ≤

≤
r∫

0

(

r∫
0

K(x+ sv) ds) dt =

= r ·
r∫

0

K(x+ sv) ds.

Observe now that the intersection of Bx \Bx with the ray starting in x
in the direction of v has H1-measure ( with respect to the norm | · |x)
at most 2 · (lxv − r), once the bi-Lipschitz constant (1 + 1

C
) is close to 1.

Integrating in polar coordinates over the ball Bx ⊂ (Rn, | · |x) we infer:

u(x) · Ln(Bx \Bx) ≤ rn−1 ·
∫

v∈Sn−1
x

(
2 · r ·

r∫
0

K(x+ sv) ds
)
· dHn−1 =

= 2·rn ·
∫
Bx

K(y) · |y − x|n−1 · u(x) · dLn,

where Sn−1x is the unit sphere in (Rn, | · |x).
To get a similar estimate of the other summand in (6.2), we only

need to recall the following inequality from [EG15, Lemma 4.1], valid
for any C1 function u on a Euclidean ball∫
|x−y|<r

|u(y)−u(x)| ·dLn(y) ≤ C2 · rn ·
∫

|x−y|<r

|u′(y)| · |y−x|1−n ·dLn(y).

Taking both estimates together with (6.1), embedding Bx and Bx in
slightly larger Euclidean balls and using that 1

2
< u < 2, we conclude:

ωn · rn − br(x) ≤ C3 · rn ·
∫

|x−y|< 4
3
r

|g′(y)| · |y − x|1−n · dLn.
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We divide both sides by ωn · rn and integrate over A. Using that the
bi-Lipschitz constant is close to 1, we see:

Vr(A) ≤ C4 ·
∫
A

( ∫
|x−y|< 4

3
r

|g′(y)| · |y − x|1−n · dLn(y)
)
· dLn(x) ≤

≤ C4 ·
∫

B(A,2·r)

( ∫
|x−y|< 4

3
r

|g′(y)| · |y − x|1−n · dLn(x)
)
· dLn(y) =

=
4

3
· C4 ·

∫
B(A,2·r)

|g′(y)| · r · dLn(y),

where we have used Lemma 2.1 in the second inequality. This finishes
the proof of Proposition 6.1. �

6.2. Functions of bounded variations. Let U be an open subset
of Rn. A function f ∈ L1(U) is of class BV (bounded variation) if
its first partial derivatives, ∂f

∂xi
(here and below always in the sense of

distributions) are signed Radon measures with finite mass | ∂f
∂xi
|(U). We

denote by [Df ] the Radon measure
∑

i |
∂f
∂xi
| on U . If f : U → R is a BV

function, which is continuous on a subset R ⊂ U with Hn−1(U \R) = 0
then the Radon measure [Df ] vanishes on all Borel subsets A ⊂ U with
Hn−1(A) <∞, [GL80].

Let f : U → R be of class BV. Then for Hn-almost every point
x ∈ U there exists an affine function f̂x : Rn → R, such that for the
BV function hx = f − f̂x we have

(6.3) lim
r→0

1

rn+1
·
∫

B(x,r)

|hx| = 0 and lim
r→0

1

rn
· [Dhx](B(x, r)) = 0;

see [EG15, Theorem 6.1 (2),(3)] for the second and the Hölder inequal-
ity and [EG15, Theorem 6.1 (1)] for the first inequality.

6.3. Almost Riemannian metric spaces. The following definition
provides a suitable description of a large part of any Alexandrov space,
see Section 7.

Let C = C(n) be the constant determined in Proposition 6.1. We
will call a locally geodesic metric space X an almost Riemannian metric
space if it has the following properties (see [AB15] for a careful discus-
sion of such DC0-Riemannian manifolds in the language of [AB15] and
[Per95]):

(1) There is a Borel subset R ⊂ X, called the subset of regular
points with Hn−1(X \R) = 0.
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(2) Any minimizing geodesic γ in X can be approximated by curves
γi in R, such that the lengths of γi converge to the length of γ.

(3) For any x ∈ X, there is a neighborhood U of x, called a regular
chart, and a bi-Lipschitz map φ : U → O onto an open subset
O ⊂ Rn, with the bi-Lipschitz constant less than (1 + 1

C
).

(4) There is a continuous Riemannian tensor gij on φ(U ∩R) such
that gij is a function of bounded variation on O for each 1 ≤
i, j ≤ n.

(5) The length of any curve γ ⊂ R can be computed as the length
of φ(γ) via this Riemannian tensor g.

For any regular chart U as above, we set N0(U) to be the Radon
measure [g′] on U given as the sum of the Radon measures [Dgij] over
the coordinates gij of the metric tensor g. For an almost Riemannian
metric space X, we define an outer measure N on X in the following
way. For a subset A ⊂ X, we consider all coverings A ⊂ ∪Ui by
countably many regular charts Ui and let N (A) to be the infimum of
the sums

∑
iN0(Ui) over all such coverings. This is indeed an outer

measure, which takes finite values on compact subsets. SinceN satisfies
the Caratheodory criterion, [EG15, Theorem 1.9], it is indeed a Radon
measure. We will call N the minimal metric derivative measure on the
almost Riemannian metric space X.

Lemma 6.2. Let Xn be a almost Riemannian metric space and let N
be its minimal metric derivative measure. Then N (A) = 0 for any
Borel subset A ⊂ X with Hn−1(A) < ∞. There exists a Borel subset
C ⊂ X of full Hn-measure in X with N (C) = 0, thus N is absolutely
singular with respect to Hn.

Proof. Clearly, both claims are local. Hence we need to verify them
only in a regular chart U , which we identify with its image φ(U) ⊂ Rn.
The first statement follows directly from the continuity of the metric
tensor g on the subset U ∩R and the result of [GL80] cited above.

In order to verify the second claim we only need to show the following
statement; see also [EG15, Section 1.6]. For almost all x ∈ U there is
another regular chart x ∈ V , such that the derivative measure [h′] of
the Riemannian tensor h in this chart V , has n-dimensional density 0
at x, thus

(6.4) lim
r→0

1

rn
· [h′](B(x, r)) = 0.

Here and below, the ball B(x, r) over which we integrate can be equally
considered with respect to the Euclidean or to the original metric on
U , since both are bi-Lipschitz equivalent. In order to prove (6.4), we
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follow [Per95, Section 4.2] and consider the Riemannian tensor g of the
original chart U . Applying (6.3) to the coordinates of g, we find for
Hn-almost all x ∈ U a smooth symmetric 2-tensor ĝ = ĝx on U such
that for u = g − ĝ we have:

(6.5) lim
r→0

1

rn+1
·
∫

B(x,r)

‖u‖ = 0 and lim
r→0

1

rn
· [Du](B(x, r)) = 0.

The first statement implies that ĝ is indeed a Riemannian metric in a
neighborhood U0 of x.

Fix such a point x, neighborhood U0 and ĝ. Consider a small neigh-
borhood W of 0 in Rn and let ξ : W → U be the exponential map with
respect to the metric ĝ. Then ξ(0) = x, Dξ(0) = Id and the pull-back

Riemannian metric ĥ = ξ∗(ĝ) has zero derivative at 0. Since Dξ is
the identity, the bi-Lipschitz constant of the restriction F = ξ−1 ◦ φ
to a sufficiently small neighborhood V of the point x is still less than
(1 + 1

C
). Hence, F : V → Rn is a regular chart.

The Riemannian tensor h in this chart equals ĥ + ξ∗(g − ĝ). Now,

Dĥ(0) = 0, thus (6.4) holds for ĥ instead of h. For the other summand
ξ∗(u), the density estimate (6.4) follows from (6.5) and the fact that
ξ is a C2-diffeomorphism if W is sufficiently small. This finishes the
proof of Lemma 6.2. �

6.4. The upper bound on the deviation measures. Continuing
to denote by C = C(n) the constant from Proposition 6.1 we show:

Corollary 6.3. Let U regular chart of an almost Riemannian metric
space X. Identifying U with its image O = φ(U), let g be the metric
tensor and the measure N0 = [Dg] the derivative of the metric tensor.
For any Borel subset A ⊂ U and any r such that B(A, 3·r) is relatively
compact in U we have

Vr(A) ≤ 2 · C · N0(B(A, 3·r)) .

Proof. Consider a relatively compact open subset V ⊂ U , which con-
tains B(A, 2·r). Apply (coordinatewise) the standard mollifying con-
struction to the Riemannian tensor g. For all small positive ε, we thus
obtain smooth metrics gε on V with the following properties. The to-
tal derivatives |g′ε|, considered as measures, satisfy |g′ε| ≤ N0 on V ,
[Zie89, Theorem 5.3.1]. Since g is pointwise 1

C
-close to the background

Euclidean inner product, the same is true for gε. For all sufficiently
small ε the 2·r-tubular neighborhood around A with respect to gε is
contained in the 3·r-tubular neighborhood around A with respect to
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the original distance in X. Moreover, gε converges to g pointwise at all
points of R, [Zie89, Theorem 1.6.1].

Denote by dε the distance function induced by gε. From the last
statement and the properties (2),(5) in the definition of an almost Rie-
mannian metric space we deduce that

lim
ε→0

sup { |dε(x, y)− d(x, y)| ; x, y ∈ V, d(x, y) < r } = 0.

Finally, the Hausdorff measures of the Riemannian metrics gε converge
on V to the Hausdorff measure of V with respect to the original metric.

Now the result follows directly from Proposition 6.1 applied to the
metrics gε, by letting ε go to 0. �

As a consequence of Corollary 6.3, the minimal metric derivative
measure bounds from above the deviations measure Vr on any almost
Riemannian metric space:

Lemma 6.4. Let X be a almost Riemannian metric space with the
metric derivative measure N . Then for any compact subset A ⊂ X,
there exists some r0 > 0 such that for all r < r0 we have

Vr(A) ≤ r · 2 · (n+ 2) · C · N (A) .

Proof. Cover A by finitely many regular charts Ui such that
∑
N0(Ui)

is sufficiently close to N (A). Since the covering dimension of X is n,
we find a finite covering Vj of A, which refines the first covering but
has intersection multiplicity less than (n + 2). Considering each Vj as
a subchart of the corresponding chart Ui we see that∑

N0(Vj) ≤ (n+ 2) ·
∑
N (A).

Consider r0 > 0 such that for any x ∈ A the ball B(x, 4·r0) is contained
in one of the sets Vj. Denote by Aj the set of all such x. Then Vr(A) ≤∑
Vr(Aj) and, due to Corollary 6.3, Vr(Aj) ≤ 2 ·C ·N0(Vj). Combining

these inequalities finishes the proof. �

7. Alexandrov spaces

7.1. Strained points. Strainers and strainer maps are basic tools for
Alexandrov spaces; see also [BGP92], [OS94], [KMS01] and will play
an important role in the proof of Theorem 1.7.

Let us list main properties of the subsets of strained points. We fix a
natural number n. Then for all sufficiently large A and any 0 < r, δ ≤
1
A2 the following properties hold true for all n-dimensional Alexandrov
spaces X of curvature ≥ −1:

(1) The set Xr,δ of points in X which have an Ar-long (n, δ)-strainer
is open in X. For s < r, we have Xr,δ ⊂ Xs,δ, [BGP92, 9.7].
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(2) Assume a sequence (Xn
i , xi) of Alexandrov spaces of curvature

≥ −1 converges to an n-dimensional Alexandrov space (X, x)
in the pointed Gromov–Hausdorff topology. If x ∈ Xr,δ then,
for all large i, the point xi has an Ar-long (n, δ)-strainer in Xi.

(3) Rescaling X with a constant λ ≥ 1 sends the subset Xr,δ to a
subset of (λX)λr,δ of the rescaled Alexandrov space λX.

(4) The union Xδ := ∪r>0Xr,δ contains the set Xreg of all regular
points of X. The Hausdorff dimension of the set X \ (Xδ ∪∂X)
is at most n− 2 [BGP92, 10.6, 10.6.1, 12.8].

(5) For any point x ∈ Xr,δ there are natural distance coordinates
φ : B(x, 3·r)→ Rn which are (1 + ε)-bi-Lipschitz onto an open
subset O ⊂ Rn. Here, ε→ 0 as A→∞, [BGP92, 9.4].

(6) The chart φ can be smoothed to satisfy the following prop-
erty, [OS94, Theorem B]. There exists a continuous Riemann-
ian metric g on φ(Xreg ∩B(x, 3·r)) ⊂ O such that for any curve
γ ⊂ Xreg∩B(x, 3·r) its length coincides with the length of φ(γ)
with respect to the Riemannian metric g.

(7) The metric tensor g on a chart O defined above is of bounded
variation on O, [Per95, 4.2] (see also [AB15]).

The last three statements in the above list together with the density
and convexity of the set Xreg of regular points imply the following.

Corollary 7.1. In the above notations, the subset Xδ ⊂ X is an almost
Riemannian metric space, once A is sufficiently large.

In fact, the arguments in [Per95, 4.2], provide a slightly more precise
version of (7) in the above list:

Lemma 7.2. In the notations above, the constant A can be chosen
sufficiently large, so that the following holds true. The derivative mea-
sure [g′] of the Riemannian tensor g in the canonical distance chart O

satisfies [g′](Ô) ≤ A · rn−1, where Ô is the image φ(B(x, 2·r)) ⊂ O =
φ(B(x, 3·r)).

Proof. We only sketch the proof, referring to [Per95] for details. First
we fix r = 1

A2 .
The fact that g has bounded variation in the chart O follows in

[Per95, Section 4.2], by writing the coordinates of g as a universal
smooth map Φ(f1, . . . , fα) of a finite number of distance functions fj
on X and their partial derivatives, both expressed in the chart φ. It
is shown in [Per95, Section 3], that any such distance function fj is
expressed in the chart O as a difference of two L-Lipschitz and λ-
concave functions, where L, λ depends only on the semi-concavity of
the corresponding distance functions in X. Since we have fixed r > 0,
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these numbers λ, L can be chosen independently of X. Thus, fj can
be written in the chart O as the difference of two convex functions
with universal Lipschitz constants L′. Therefore, for any unit vector
v ∈ Rn, we have a uniform bound on the total mass of the Radon

measure [
∂2fj
∂2v

](Ô). This implies that all partial second derivatives of f

have uniformly bounded mass on Ô; see also [EG15, Theorem 6.8].

From this we deduce a uniform bound A′ on the total mass [g′](Ô),
for the fixed value of r0 = 1

A2 .
For any r < r0 we rescale the space by r0

r
. The total mass of the

Riemannian tensor g is then rescaled by ( r0
r

)n−1. Thus,

[g′](Ô) ≤ A′ · (r0)1−n · rn−1.
We finish the proof by replacing A by max(A,A′r1−n0 ). �

Now we use Corollary 6.3 to conclude:

PROPOSITION 7.3. Let C = C(n), A = A(n) be the constants from
Proposition 6.1 and Lemma 7.2. For any point x ∈ Xr,δ, any s < r
and any Borel subset K ⊂ B(x, r) the deviation measure Vs satisfies
Vs(K) ≤ 2 · C · A · rn−1.

7.2. Decomposition in good balls. Let the constant A be as above.
A ball B(x, r) in Xn will be called good if x ∈ Xr,δ. A ball B(x, r) in
X will be called bad if it is not good.

In this subsection we give a controlled covering result; see also Prob-
lem 8.10.

PROPOSITION 7.4. Let Xn be an n-dimensional Alexandrov space
without boundary. For every compact W ⊂ X, every α > n − 2 there
exists a positive number q = q(W,α) > 0 with the following property.
For every x ∈ W and every s < 1 there exists a countable collection of
good balls Bm = B(xm, rm) ⊂ X such that

(1) rm < s for all m.
(2) Hn

(
B(x, s) \ (∪mBm)

)
= 0.

(3)
∑

m r
α
m < q · sα.

The proof will be obtained by a recursive application of the following
lemma.

Lemma 7.5. There is an integer N = N(W,α) with the following
property. For any p ∈ W and ρ < 1 the ball B(p, ρ) can be covered by
at most N balls Bi = B(xi, ri) such that ri < ρ, for all i, and∑

i∈BAD

rαi <
1
2
· ρα,
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where i ∈ BAD means that Bi is a bad ball.

Proof. Assume the contrary. Thus we can find a sequence of balls
Kl = B(pl, ρl) such that pl ∈ W , ρl < 1 and one needs at least l balls
to cover Kl, so that the conditions in the lemma are fulfilled.

Taking a subsequence we may assume that the following limit exists
in the pointed Gromov–Hausdorff metric.

( 1
ρm
·X, pm)−→GH (Y, p).

Since the points pm range over a compact subset of X and ρm < 1,
the sequence is non-collapsing, i.e. Y is an n-dimensional Alexandrov
space. By Perelman’s stability theorem, ∂Y is empty. Therefore, S :=
(Y \ Yδ) ∩ B̄(p, 2) is a compact set of Hausdorff dimension ≤ n− 2.

By the definition of Hausdroff dimension, we can cover S by a finite
number of balls Bi = B(xi, ri) such that∑

i

rαi < (1
2
)α.

Any point in the remaining compact set K\(∪iBi) is contained in
Yδ. Therefore a small ball centered at any point of this set is good. By
compactness, we can cover K\(∪iBi) by a finite number of good balls.
Let N be the total number of balls in the obtained covering of K.

Lifting the constructed covering to Kl, for all large l, we cover the
ball Kl by at most N balls satisfying the conditions of the lemma. This
contradiction to our assumption finishes the proof of the lemma. �

Proof of Proposition 7.4. Cover B(x, s) by N balls as in Lemma 7.5
and call this covering F1. Now cover every bad ball from the covering
F1 by at most N balls provided by Lemma 7.5. Together with the good
balls from F1 the new balls define a covering F2 of B(x, s). Proceeding
in this way define for each natural number k a covering Fk of B(x, s).

Denote by g+l and g−l the sum of rαi over good, respectively bad balls
B(xi, ri) in the covering Fl. Then, by construction, g−l+1 <

1
2
g−l and

g+l+1 ≤ g+l + N · g−l . Therefore, g−l ≤ 2−l · g−1 and g+l is uniformly
bounded form above. The volume of the union of bad balls in Fl is at
most g−l and converges to 0 as l goes to ∞.

Let F be the set of all good balls Bj = B(xj, rj) from all the coverings
Fl. Then Hn(B(x, s) \ (∪FBj) ≤ liml→∞ g

−
l = 0. On the other hand,

by construction, ∑
Bj∈F

rαj = lim
l→∞

g+l ≤ 3·N ·sα.

Setting q = 3 ·N finishes the proof. �
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7.3. Final step. Now we can provide the

Proof of Theorem 1.7. LetX be a fixed n-dimensional Alexandrov space.
By the inequality of Bishop–Gromov, the deviations measures Vr are
uniformly bounded from below by a quadratic term in r. Thus in order
to control the mm-boundary we only need to bound Vr from above on
balls in X.

Let the constants A,C be chosen as above, so that Proposition 7.3
can be applied.

Let us first assume that ∂X is empty. Let W ⊂ X be an arbi-
trary compact subset. Fix α = n − 3

2
and choose the constant q as

in Proposition 7.4. For any x ∈ W and s < 1 consider the good
balls Bi = B(xi, ri) provided by Proposition 7.4 and set K ′ = ∪iBi.
Let r < 1

A2 be sufficiently small. Since Hn(K \ K ′) = 0 we have
Vr(K) = Vr(K ′).

For all m with r < rm, we apply Proposition 7.3 and infer

Vr(Bm ∩K) ≤ 2 · C · A · r · rn−1m

On the other hand, for rm < r, we have

Vr(Bm ∩K) ≤ Hn(Bm) ≤
≤ 2 · ωn · rnm <

< 2 · ωn · r · rn−1m

Summing up and using rn−1m < rαm we obtain

(7.1)
Vr(K) ≤

∑
m

Vr(Bm ∩K) ≤

≤ (2 · C · A+ 2 · ωn) · q · r · sα.

This proves that X has locally finite mm-boundary. As already men-
tioned and used above, any signed Radon measure ν obtained as a limit
of a sequence Vrj/rj for some rj → 0 must be non-negative, hence a
Radon measure. We fix such ν.

Inequality (7.1) implies that ν has finite α-dimensional density at
every point of X, in particular, ν vanishes on subsets of Hausdorff
dimension ≤ n− 2. Thus ν(X \Xδ) = 0.

Recall that Xδ is an almost Riemannian space. Denote, by N its
minimal metric derivative measure. We extend it to a measure on all
of X (still denoted byN ) by setting it to be 0 on X\Xδ. By Lemma 6.4
the Radon measure ν is absolutely continuous with respect to N on
compact subsets of Xδ. Now (1) and (3) of Theorem 1.7 follow from
Lemma 6.2. This finishes the proof in the case ∂X = ∅.
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Assume now that ∂X 6= ∅ and consider the doubling Y = X t∂X X
of X. Consider X as a convex subset of Y and let K ⊂ X be compact.
We find a constant L > 0 such that for all sufficiently small r > 0,
we have Hn(K ∩ B(r, 2·)(∂X)) ≤ L · r. (This follows, for example, by
the coarea formula using the Lipschitz properties of the gradient flow
of the distance function d(·, ∂X) which is semiconcave.) On the other
hand, for x ∈ K \ B(∂X, r), the volumes of the r-ball in X and in Y
coincide. Using that Y has locally finite mm-boundary, we deduce that
Vr(K) (computed in the space X) is bounded from above L ·r+ Ṽr(K),
where Ṽr(K) is the deviation measure of K considered as a subset of
Y . This implies that Vr/r is uniformly bounded for r → 0. Thus X
has locally finite mm-boundary as well.

Any limit of a sequence Vrj/rj for some rj → 0 must be again non-
negative, hence a Radon measure. Outside of ∂X ν coincides with the
restriction of the corresponding measure defined on Y . From the cor-
responding statement about Y we deduce that ν is absolutely singular
with respect to Hn. Moreover, ν vanishes on subsets S ⊂ X \ ∂X with
finite Hn−1(S).

It remains to prove (2), i.e. to show that the restriction of ν onto
∂X is at least c · Hn−1 for universal constant c = c(n). This statement
is local on ∂X and needs to be verified only in small neighborhoods of
points x whose tangent TxX are isometric to flat halfspaces.

We fix such a point x ∈ ∂X. We further fix a sufficiently small ε > 0
and find a small neighborhood U of x in X which is (1+ε)-bi-Lipschitz
to a half-ball in the Euclidean space. Choose an arbitrary s > 0 such
that B(x, 2·s) ⊂ U . Let K = B̄(x, s)∩∂X be the closed ball of radius s
in ∂X with respect to the ambient metric. Due to [EG15, Section 1.6],
it is sufficient to prove that ν(K) ≥ c0 · sn−1 for a universal constant
c0 depending only on the dimension.

In order to prove this inequality, we consider any open neighborhood
V of K in X. For all small r > 0, the neighborhood V contains
B(K, 2·r). Once ε has been chosen sufficiently small, the ball B(z, r) in
X has volume at most (1−k1)·ωn·rn, for any point z ∈ B(K, 1

10
·r). Here

k1 = k1(n) > 0 is a universal constant. Moreover, the set B(K, 1
10
·r)

has volume at least 1
20
· r · ωn−1 · sn−1. Integrating over V (and using

the inequality of Bishop–Gromov on the complement of B(K, 1
10
·r)) we

deduce:

Vr(V ) ≥ k1 · 1
20
· ωn−1 · r · sn−1 − k3 · r2,

for some k3 depending only on the volume of V and independent of
r. Dividing by r and letting it go to 0 we obtain ν(V ) ≥ k4 · sn−1,
for a universal constant k4 > 0. Since the neighborhood V of K was
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arbitrary, we infer the same inequality for K instead of V , finishing the
proof. �

8. Questions and Comments

8.1. Manifolds. The notions of mm-boundary and mm-curvature are
very easy to define but difficult to control. For instance, the examples
mentioned in the introduction require some amount of computations
and estimates. On the other hand, interesting examples seem to be
difficult to construct as well. The first question in this direction is:

PROBLEM 8.1. Construct a closed manifold with a continuous Rie-
mannian metric that does not have finite mm-boundary.

The following problem is motivated by our approach to Theorem 1.7
in Sections 6, 7.

PROBLEM 8.2. Let X be an almost Riemannian space. Can the
minimal metric derivative measure be non-zero?

In the language of DC-calculus as discussed in [AB15], this ques-
tion can be reformulated as follows. Given a compact subset K on
any DC0-Riemannian manifold and any ε > 0, can one cover K by
charts such that the total mass of the derivative of the metric tensor
in these coordinates is bounded by ε? Note that the minimal metric
derivative measure must vanish if the metric can be locally defined by
a Riemannian tensor of class W 1,1, since the metric derivative mea-
sure is absolutely singular with respect to the Hausdorff measure by
Lemma 6.2.

The following question is motivated by Lemma 6.4 and potential
applications to geodesic flows of spaces with curvature bounded from
above; see also Problem 8.12.

PROBLEM 8.3. Let X be an almost Riemannian space. Can one use
the minimal metric derivative measure in order to control the deviation
measures Vr from below?

8.2. Surfaces and hypersurfaces. The answer to the following ques-
tion is not trivial in view of Example 1.14.

PROBLEM 8.4. Can one express the mm-curvature of an Alexandrov
surface in terms of its curvature measure?

In view of Theorem 1.10 it is reasonable to expect an affirmative
answer to the following question

PROBLEM 8.5. Do convex hypersurfaces of Rn have locally finite
mm-curvature?
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A natural approach to this question is related to the following con-
jectural generalization of Bonk–Lang theorem [BL03]:

PROBLEM 8.6. Let X be a convex hypersurface sufficiently close to
a flat hyperplane. Can we bound the optimal bi-Lipschitz constant for
maps into the Euclidean space in terms of the total scalar curvature?

Some natural generalizations of our Theorem 5.3 are possible. Prob-
ably, slightly refined arguments can be used to prove that any DC-
submanifold of a Euclidean space has vanishing mm-boundary. Using
the embedding theorem of Nash, this would also provide an easy gen-
eralization of Theorem 5.3 and Theorem 1.1 to convex hypersurfaces
of smooth Riemannian manifolds.

8.3. Alexandrov geometry and beyond. As the next generaliza-
tion of Theorem 1.1, one should study the case of smoothable Alexan-
drov spaces.

PROBLEM 8.7. Does the mm-boundary vanish in smoothable Alexan-
drov spaces? Are there relations to scalar curvature measures defined
in [LP17]?

Due to the observation after Problem 8.2, the vanishing of mm-
boundary would follow from the existence of slightly smoother coor-
dinates than the ones provided by Perelman’s DC-structure.

PROBLEM 8.8. Let X be an Alexandrov space. Can one introduce
coordinates on a neighborhood of the set of regular points, such that the
metric is locally given by a Riemannian tensor of class W 1,1?

In the two-dimensional case, the answer to this question is “yes” by
the work of Reshetnyak [Res93], see also [AB16].

Due to Theorem 1.6, an affirmative answer to the following question
should be expected. A partial answer to it has been announced by
Jerome Bertrand.

PROBLEM 8.9. Are there further connections between the size of the
mm-boundary of an Alexandrov space X, the existence of the geodesic
flow and the “average size” of the cut loci of points in X?

Should one have a chance to go beyond mm-boundary and towards
mm-curvature, one would definitely need to improve the decomposition
statement Proposition 7.4, which provides a geometric control of the
size of the set of singular points of an Alexandrov space.

PROBLEM 8.10. Can one replace α > n − 2 by α = n − 2 in the
statement of Proposition 7.4?
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An affirmative answer has been announced by Aaron Naber.
It is interesting to understand if our results provide a quantitative

version of bi-Lipschitz closeness of small balls to Euclidean balls. It
is known [BGP92] that there exists κ(n, δ) → 0 as δ → 0 such that if
X = Xn is an Alexandrov space of curvature ≥ −1, x ∈ X such that
ωn·rn −Hn(B(x, r)) ≤ δ · rn then B(x, r

4
) is (1 + κ(n, δ))-bi-Lipschitz

to a Euclidean ball.

PROBLEM 8.11. Can κ(n, δ) above be chosen of the form C(n) · δ?

It is also natural to look at what happens for spaces with curvature
bounded above:

PROBLEM 8.12. Can one obtain similar estimates and applications
for the mm-boundary in geodesically complete spaces with upper curva-
ture bounds? Note that such spaces share many properties with Alexan-
drov spaces, see [LN18].

Finally, it seems reasonable to expect some generalizations to spaces
with Ricci curvature bounds, for instance:

PROBLEM 8.13. Can one control the mm-boundary of noncollapsed
limits of Riemannian manifolds with Ricci curvature bounded below?
Can one expect something like a geodesic flow in this setting?

From the work of Jeff Cheeger and Aaron Naber [CN15] it should fol-
low that on any non-collapsed limit of manifolds with both-sided Ricci
curvature bounds, the mm-curvature is locally finite and mm-boundary
is zero. Vanishing of the mm-boundary should then imply that the ge-
odesic flow is defined almost everywhere and preserves the Liouville
measure by the same argument as in the proof of Theorem 1.6.
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