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Abstract. We describe the topological structure of cocompact
singular Riemannian foliations on Riemannian manifolds without
conjugate points. We prove that such foliations are regular and
developable and have regular closures. We deduce that in some
cases such foliations do not exist.

1. Introduction

Riemannian manifolds of non-negative curvature often admit large
groups of isometries. Moreover, there are many famous examples of
Riemannian foliations on such spaces, like the Hopf fibrations and of
singular Riemannian foliations, such as isoparametric foliations. Sin-
gular Riemannian foliations on non-negatively curved manifolds tend
to be homogeneous and seem to be rather rigid objects. On the other
hand, (singular) Riemannian foliations on such spaces are often re-
lated to other rigidity questions (cf. [GG87], [GW88], [Tho91], [GP97],
[GW01b], [GW01a], [Wil01] [Chr02], [Wil04]).

If one changes the sign of the curvature then the situation seems
to be completely different on the first glance. For instance, in a sim-
ply connected negatively curved manifold there are infinite-dimensional
families of Riemannian submersions to the real line and there seem to
be no hope of getting any kind of control of such objects. However, for
compact manifold of non-positive curvature the situation seems again
be very similar to the “rigid” non-negatively curved world. The first
indication is the famous result of Bochner ([Boc46]) that describes con-
nected isometry groups of such spaces. In particular, the isometry
group of a compact negatively curved manifold turns out to be finite.
Indeed, this is the case for any Riemannian metric on such manifolds,
since they have positive minimal volume ([Gro82]). In [Car84] it is
shown that the existence of a Riemannian flow on a compact manifold
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forces its minimal volume to be zero, thus Riemannian flows do not ex-
ist on compact negatively curved manifolds. Finally, A. Zeghib proved
in [Zeg95], Theorem F that on a compact negatively curved manifold
there are no (regular) Riemannian foliations at all.

Remark 1.1. Previously, the non-existence of regular Riemannian folia-
tions on compact negatively curved manifolds was claimed in [Wal91b]
and, in special cases in [KW92] and [Wal93]. However, these proofs are
not correct, cf. [Wal91a] and the discussion in [Zeg95], pp.1435-1436.

Here, we generalize the non-existence theorem to singular Riemann-
ian foliations, a broad generalization of regular Riemannian foliations
and isometric group actions. We prove:

Theorem 1.1. Singular Riemannian foliations do not exist on compact

negatively curved manifolds.

Remark 1.2. In [T0̈7] the non-existence result was proved under the
assumption that the singular Riemannian foliations has horizontal sec-
tions, i.e., that the horizontal distribution in the regular part is inte-
grable.

In fact, in analogy with [T0̈7], we prove in a broader context that
a singular Riemannian foliation on a compact negatively curved mani-
fold cannot have singular leaves, i.e., it must be a regular Riemannian
foliation. Then we apply [Zeg95]. Our main result result used in Theo-
rem 1.1 describes the topology of singular Riemannian foliations in the
following more general situation.

Theorem 1.2. Let M be a complete Riemannian manifold without

conjugate points and let F be a singular Riemannian foliation on M
such that the space of leaves M/F has bounded diameter with respect

to the quotient pseudo-metric. Then F is a regular foliations and has

a regular closure F̄ . The quotient M/F̄ is a good Riemannian orbifold

without conjugate points. The leaves of the lift F̃ of F to the universal

covering M̃ of M are closed and contractible. They are given by a

Riemannian submersion p : M̃ → B to a contractible manifold B.

In the case of a simply connected total space M we deduce from the
last part of Theorem 1.2:

Corollary 1.3. Let M be a complete, simply connected Riemannian

manifold without conjugate points. Then there are no non-trivial sin-

gular Riemannian foliations F on M with a bounded quotient M/F .

Remark 1.3. In the case M =
�

n the last result was recently shown in
[Bol07] using different methods.
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The proof of Theorem 1.2 is divided into a geometric and a topo-
logical part. In the geometric part, similar to [T0̈7], we analyze the
structure of F̄ and prove that regular leaves of F̄ do not have focal
points (this already implies the first two claims in our theorem). The
idea of the proof is that focal points of regular leaves correspond either
to crossings of singular leaves or to conjugate points in the quotient.
Now, the Poincare recurrence theorem for the quasi-geodesic flow on
the quotient M/F̄ (cf. {citeexpl, Theorem 1.6, here we use the com-
pactness of the quotient) tells us that the existence of a single focal
point would imply the existence of a horizontal geodesic with arbitrary
many focal points. (This is a modified form of the statement that on
a compact Riemannian manifold with uniformly bounded number of
conjugate points along all geodesics, there are no conjugate points at
all). However, the absence of conjugate points on M implies that each
leaf has at most dim(M) focal points along any horizontal geodesic.
This contradiction finishes the geometric part of the proof.

The remaining part of the proof is finished by using the following
purely topological observation.

Proposition 1.4. Let M be an aspherical manifold with a complete

Riemannian metric. Let F be a Riemannian foliation on M with dense

leaves. Then the leaves of the lift F̃ of F to the universal covering

M̃ are closed and contractible. The lifted foliation F̃ is given by a

Riemannian submersion p : M̃ → B onto a contractible space B.

2. Preliminaries

A transnormal system F on a Riemannian manifold M is a decompo-
sition of M into smooth, injectively immersed, connected submanifolds,
called leaves, such that geodesics emanating perpendicularly to one leaf
stay perpendicularly to all leaves. A transnormal system F is called a
singular Riemannian foliation if there are smooth vector fields Xi on M
such that for each point p ∈ M the tangent space TpL(p) of the leaf L(p)
through p is given as the span of the vectors Xi(p) ∈ TpM . We refer to
[Mol88], [Wil04] and [LT07] for more on singular Riemannian foliations.
Examples of singular Riemannian foliations are (regular) Riemannian
foliations and the orbit decomposition of an isometric group action.

If M is complete then leaves of a transnormal system F are equidis-
tant and the distance between leaves define a natural pseudo-metric on
the space of leaves. This pseudo-metric space is bounded if and only
if some finite tubular neighborhood of a leaf coincides with the whole
space. If F is closed, i.e., if leaves of F are closed then the quotient
B = M/F is a complete, locally compact, geodesic metric space, that

3



is compact if and only if it is bounded. Moreover, B is an Alexan-
drov space with curvature locally bounded below. If it is compact, its
Hausdorff measure is finite.

Let F be a singular Riemannian foliation on the Riemannian mani-
fold M . The dimension of F , dim(F), is the maximal dimension of its
leaves. For s ≤ dim(F) denote by Σs the subset of all points x ∈ M
with dim(L(x)) = s. Then Σs is an embedded submanifold of M
and the restriction of F to Σs is a Riemannian foliation. For a point
x ∈ M , we denote by Σx the connected component of Σs through x,
where s = dim(L(x)). We call the decomposition of M into the mani-
folds Σx the canonical stratification of M . The subset Σdim(F) is open,
dense and connected in M . It is the regular stratum M . It will be
denoted by M0 and will also be called the set or regular points of M .
All other strata Σx are called singular strata.

Let F be a singular Riemannian foliation on a complete Riemannian
manifold M . Then the decomposition F̄ of M into closures of leaves
of F is a transnormal system, that we will call the closure of F . The
restriction of F̄ to each stratum Σ of M (with respect to F) is a singular
Riemannian foliation.

For a transnormal system F on M , we will call a point x ∈ M regular
if its leaf is regular, i.e., if it has the maximal dimension. The closure
of a singular leaf of a singular Riemannian manifold F on a complete
Riemannian manifold M is a singular leaf of F̄ . In particular, if F̄ does
not have singular leaves then F is a (regular) Riemannian foliation.

Let M,F , F̄ be as above. Then M gets a canonical stratification
with respect to F̄ that is finer than the canonical stratification with
respect to F , such that the restriction of F̄ to each stratum is a Rie-
mannian foliation. The main stratum M0 is again open and dense.
This defines a canonical stratification of the quotient B = M/F̄ into
smooth Riemannian orbifolds. The main stratum M0 is projected to
the main stratum B0 of B that is open and dense in B. If B is compact,
the orbifold B0 has finite volume.

Horizontal geodesics of the transnormal system F̄ are projected to
concatenations of geodesics in B. Each horizontal geodesic in the reg-
ular part M0 is projected to an orbifold-geodesic in B0. Let γ1 and
γ2 be horizontal geodesics whose projections η1 and η2 to B coincide
initially. Then η1 and η2 coincide on the whole real line (cf. [LT07] and
[AT07], for the case of singular Riemannian foliation and [Lyt01] and
[Bol07] for the case of closed transnormal systems). Therefore, the ge-
odesic flow on M restricted to the space of horizontal vectors projects
to a “quasi-geodesic” flow on the “unit tangent bundle” of B. Note,
finally, that for each regular leaf L of F̄ and each horizontal geodesic
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γ starting on L, each intersection point of γ with a singular leaf is a
focal point of L along γ.

We finish this section with an easy application of the Poincare re-
currence theorem:

Lemma 2.1. Let B0 be a not-necessarily complete Riemannian orb-

ifold with finite volume. Let V be a non-empty open subset of the unit

tangent bundle U0 of B0. Assume that the geodesic flow φt(v) is de-

fined for all v ∈ V and all t > 0. Let a positive real number T be

given. Then there is a non-empty open subset V0 ⊂ V and T̄ > T such

that φT̄ (V0) ⊂ V , and such that φt(v) is defined for all v ∈ V0 and all

t ∈ [−T, 0].

3. Geometric arguments

Using the preparation from the last section, we can now easily prove
the geometric part of Theorem 1.2.

Let M,F be as in Theorem 1.2. Consider the closure F̄ of F . Let B
denote the compact quotient B = M/F̄ with the projection q : M →
B. Let B0 be the regular part of B, i.e., the set of all regular leaves of
F̄ in M .

We are going to prove that all regular leaves of F̄ have no focal
points in M . Assume the contrary. Denote by M0 the regular part
of M (with respect to F̄ ; the original singular foliation F will not be
used in this section). Let H be the horizontal distribution on M0. Let
H1 be the space of unit vectors in H, with the foot point projection
p : H1 → M . For h ∈ H1 let γh : [0,∞) → M denote the horizontal
geodesic starting in the direction of h. By L(h) we denote the leaf
of F̄ through the foot point p(h) ∈ M . By f(h) we will denote the
L(h)-index of γh, i.e., the number of L(h)-focal points along γh. By Λh

we denote the Lagrangian space of normal Jacobi fields along γh that
consists of L(h)-Jacobi fields (cf. [Lyt07]). As in [Lyt07], we denote
for an interval I ⊂ (0,∞) by indΛh(I) the number of L(h)-focal points
along γh in γh(I).

Since there are no conjugate points in the manifold M , the function
f is bounded by dim(M) on H1 ([Lyt07], Corollary 1.2). Let m be
the maximum of the function f , that is positive by our assumption.
Choose some h0 ∈ H1 with f(h0) = m. Choose some T > 0 such that
all (precisely m, when counted with multiplicity) L(h0)-focal points
along γh0 come before T , i.e., indΛh0 ((0, T )) = m. By continuity of
indices and maximality of m, we find an open neighborhood V of h0 in
H1, with indΛh((0, T )) = m, for all h ∈ V .
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Since each intersection of γh with a singular leaf happens in a focal
point, for all h ∈ V , the geodesic γh : [T,∞) → M does not intersect
singular leaves. Thus, γh([T,∞)) is contained in M0 and, for its pro-
jection ηh = q ◦ γh, we have ηh([T,∞) ⊂ B0. Due to Lemma 2.1, we
find an open subset V0 of V and some T̄ > T such that for all h ∈ V0

we have γh[0,∞) ⊂ M0 and (γh)′(T̄ ) ∈ V0.
Choose now some h ∈ V0. Since γh is contained in M0, the pro-

jection ηh = q ◦ γh is an orbifold-geodesic in B0. Moreover, L(h)-focal
points along γh correspond to conjugate points along ηh. For the Jacobi
equation along ηh (in terms of [Lyt07], this is the transversal Jacobi
equation introduced in [Wil04]), we have the following picture. The
point ηh(T̄ ) has at least one conjugate point along ηh in the interval
(T̄ , T̄ + T ) (in fact, there are precisely m such points counted with
multiplicities). Therefore, ηh(0) has at least one conjugate point along
ηh in the interval (T̄ , T̄ + T ) ([Lyt07], Corollary 1.3). Since T̄ > T , by
assumption, we get an L(h)-focal point γh(t) along γh for some t > T ,
in contradiction to indΛh(0,∞) = indΛh(0, T ).

Thus, we have proved, that all regular leaves of F̄ have no focal
points. Hence F̄ has no singular leaves. Therefore, F and F̄ are
regular Riemannian foliation. Moreover, since focal points of leaves of
a closed regular Riemannian foliation correspond to conjugate points
in the quotient orbifold, we deduce that the quotient B = M/F̄ has
no conjugate points.

4. Topological arguments

First, we are going to prove Proposition 1.4. Thus let M be an
aspherical manifold with a complete Riemannian metric. Let F be a
Riemannian foliation on M with dense leaves. Let M̃ be the universal
covering of M . Denote by Γ the group of deck transformations of M̃ .
Let F̃ be the lift of F to M̃ and denote by F1 the closure of F̃ . Since
F̃ is invariant under the action of Γ, so is its closure F1. Thus F1

induces a singular Riemannian foliation F2 on M whose leaves contain
the leaves of F . Since the leaves of F are dense so must be the leaves
of F2. In particular, F2 and, therefore, F1 must be regular Riemannian
foliations. Consider the Riemannian orbifold B = M̃/F1. Since F2 has
dense leaves, the natural isometric action of Γ on B must have dense
orbits. In particular, B must be a homogeneous Riemannian manifold.

Thus, the projection p : M̃ → B is a Riemannian submersion. From
the long exact sequence of the fibration p (and the contractibility of M̃)
we deduce that B must be simply connected. Since B is homogeneous,
its homotopy and homology groups are finitely generated. From the
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long exact sequence of p we deduce that the homotopy groups of the
fibers L of p (these are leaves of F1) are abelian and finitely generated.
Hence, the homology groups of L are finitely generated as well. Now,
we can apply the spectral sequence for the fiber bundle p, as in [GP97],
p. 599, and deduce that the homology groups of L and B must vanish
in positive degrees. We conclude that L and B are contractible.

It remains to prove that the leaves of F̃ are closed, i.e., that F̃ and
F1 coincide. Assume the contrary and take a non-closed leaf L. Then
its closure L̄ is a leaf of F1, hence it is contractible. Thus the restriction
of F̃ to L̄ is a Riemannian foliation with dense leaves on a complete,
contractible manifold L̄. But this is impossible ([Hae88]). This finishes
the proof of Proposition 1.4.

Now we can finish the proof of Theorem 1.2. Namely, we already now,
that the closure F̄ is a regular Riemannian foliation on M . Moreover,
the leaves of F̄ have no focal points, and M/F̄ is a Riemannian orbifold
without conjugate points. Now, the proof of [Heb86], Theorem 2 reveals
that the lift F1 of F̄ to the universal covering M̃ is a simple foliation.
Moreover, the quotient B̂ = M̃/F1 is a Riemannian manifold without

conjugate points. From the long exact sequence we deduce that B̂ is
simply connected. Therefore, it is diffeomorphic to

�
n. Each leaf L

of F1 has no focal points. Therefore, its normal exponential map is
a diffeomorphism. Thus the distance function dx : L →

�
to each

point x ∈ M \ L is a Morse function on L with only one critical point.
Therefore, L is diffeomorphic to a Euclidean space as well.

In particular, the leaves of F̄ are aspherical. From Proposition 1.4 we
deduce that the lift F̃ of F to M has closed and contractible leaves. In
particular, all leaves of F̃ have trivial fundamental group and therefore
no holonomy. Therefore, F̃ is a simple foliation. From the long exact
sequence we deduce that the quotient B1 = M̃/F̃ is a contractible
space.
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