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POLAR ACTIONS ON SYMMETRIC SPACES OF HIGHER RANK

ANDREAS KOLLROSS AND ALEXANDER LYTCHAK

Abstract. We show that polar actions of cohomogeneity two on simple compact
Lie groups of higher rank, endowed with a biinvariant Riemannian metric, are
hyperpolar. Combining this with a recent result of the second-named author,
we are able to prove that polar actions induced by reductive algebraic subgroups
in the isometry group of an irreducible Riemannian symmetric space of higher
rank are hyperpolar. In particular, this result affirmatively settles the conjecture
that polar actions on irreducible compact symmetric spaces of higher rank are
hyperpolar.

1. Introduction and main results

A proper isometric action of a Lie group on a Riemannian manifold is called polar
if there exists an immersed submanifold which meets every orbit and each such
intersection is orthogonal. Such a submanifold is called a section of the Lie group
action. If there is a section which is flat in its induced Riemannian metric, then the
action is called hyperpolar.

A typical example of a polar action is the following. Consider the orthogonal
group O(n), which acts on the space of real symmetric n×n-matrices by conjugation.
If this space is endowed with the scalar product given by 〈X, Y 〉 = tr(XY ), then
the action is isometric. It is a well-known fact of linear algebra that every real
symmetric matrix is conjugate to a diagonal matrix, which means that the linear
subspace consisting of the diagonal matrices meets every orbit of the group action
and it is easy to see that this subspace meets the orbits orthogonally. Hence the
action is polar (in fact hyperpolar) with the subspace of diagonal matrices as a
section. As this example suggests, one may think of the elements in a section as
canonical representatives of the group orbits. The word “polar” is used because of
the analogy to the usual polar coordinates on R

2 which can be regarded as being
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given by the polar action of O(2) on R
2, where the orbits are concentric circles

around the origin and any straight line through the origin is a section. Indeed, polar
actions on Riemannian manifolds are generalizations of the usual polar, cylindrical,
or spherical coordinates in Euclidean space to general Riemannian manifolds. For
surveys on polar actions, see [21] and [22].

Polar actions are closely related to Riemannian symmetric spaces. For example,
if G is the isometry group of a Riemannian symmetric space M and

K = {g ∈ G | g · p = p}

is the isotropy subgroup at a point p ∈ M of the G-action on M = G/K, then the
isotropy action of M , i.e. the action of K on M , is polar, in fact hyperpolar.

Indeed, this action is well known from the theory of symmetric spaces [9]; the
flats of a Riemannian symmetric space are the maximal totally geodesic and flat
subspaces; all flats are congruent under the action of the isometry group; the rank
of the symmetric space is defined to be the dimension of the flats. The sections of
the isotropy action are given by those flats of M which contain the point p. We say
that a symmetric space is of higher rank if the rank of M is greater than one.

The isotropy subgroup K also acts on the tangent space TpM by the differentials
of isometries. This linear representation of K is called the isotropy representation
of the symmetric space M ; it is hyperpolar and the sections are the linear subspaces
of TpM tangent to flats. Conversely, the main result of [5] says that all orthogonal
representations of compact Lie groups on Euclidean space which are polar are given
by this construction. More precisely, Dadok shows in his article [5] that any polar
representation is orbit equivalent to an isotropy representation of a Riemannian sym-
metric space, i.e. after a suitable isometric identification of the two representation
spaces, the connected components of the orbits coincide.

A special case of a Riemannian symmetric space is a connected compact Lie
group L equipped with a biinvariant Riemannian metric. These spaces are called
symmetric spaces of Type II in [9]. In this case, left and right multiplication with
arbitrary group elements are isometries and hence the group L×L acts isometrically
on L by

(1.1) (a, b) · ℓ := a ℓ b−1.

In fact, the connected component of the isometry group of L with this metric is
covered by L× L =: G. The isotropy subgroup Ge at the identity element e ∈ L is
given by the diagonal {(ℓ, ℓ) | ℓ ∈ L} =: K. The isotropy action of the symmetric
space L at the identity element e is the restriction of (1.1) to K and hence coincides
with the action of L on itself by conjugation. The sections of this hyperpolar action
are the maximal tori of L. It is a well-known fact of Lie theory that if T ⊆ L is
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a maximal torus, then any element of a connected compact Lie group is conjugate
to some element in T , i.e. T meets all the orbits of the action of L on itself by
conjugation (and it can be easily checked that T meets the orbits orthogonally).
Indeed, in a symmetric space of Type II, the flats containing the identity element e
are exactly the maximal tori. In particular, the rank of a symmetric space of Type II
equals the dimension of the maximal tori.

Isotropy actions of Riemannian symmetric spaces provide examples of hyperpolar
actions, but there is also a more general construction which involves two (in general)
different symmetric spaces. Let G be a compact semisimple Lie group and let σ and
τ be two involutive automorphisms. Let H and K be subgroups of G such that
Gσ

o ⊆ H ⊆ Gσ and Gτ
o ⊆ K ⊆ Gτ , i.e. the groups H and K are open subsets of

the fixed point sets of σ and τ . Assume that G/K is endowed with the G-invariant
metric induced by the negative of the Killing form of g. In this way, G/K becomes
a Riemannian symmetric space whose connected component of the isometry group
is covered by G, see [9]. In particular, the closed subgroup H ⊆ G naturally acts by
isometries on G/K and this action is in fact hyperpolar, see [8]. Actions which arise
in this way are called Hermann actions since they were introduced in [10]. Of course,
the isotropy action described above is just the special case of this construction where
H = K

We show in this article that any polar action of cohomogeneity two on a simple
compact classical Lie group L of higher rank and endowed with a biinvariant Rie-
mannian metric is hyperpolar. As we will point out below, this result provides the
last step in the proof of the following theorem, which had been conjectured to be
true by Biliotti in [2].

Theorem 1.1. Any polar action on an irreducible compact Riemannian symmetric
space of higher rank which has an orbit of positive dimension is hyperpolar.

Note that we have to exclude the case of actions all of whose orbits are zero-
dimensional from the hypothesis of the theorem, since such actions are always polar
(the whole space is the section) and they would otherwise provide technical coun-
terexamples.

Theorem 1.1 has already been proved in a number of special cases. The first result
in this connection was obtained by Brück [4], who showed that polar actions with a
fixed point on irreducible Riemannian symmetric spaces (of compact or non-compact
type) are hyperpolar. Podestà and Thorbergsson [20] have shown that polar actions
on the complex quadric SO(n+2) / SO(n) SO(2) are hyperpolar. Their method relies
on the fact that polar actions on Hermitian symmetric spaces are coisotropic, i.e.
the normal spaces to principal orbits are totally real. (In fact, they have classified
the coisotropic actions on the complex quadric.) Using the same method, this result
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has been generalized by Biliotti and Gori [3] to the complex Grassmannians and
then by Biliotti [2] to all compact irreducible Hermitian symmetric spaces, leading
Biliotti [2] to formulate the statement of Theorem 1.1 as a conjecture. However,
this technique is not applicable to other (i.e. non-Hermitian) symmetric spaces and
different methods are needed to prove the conjecture in a more general setting.

In the special cases of symmetric spaces of Type I, i.e. Riemannian symmetric
spaces whose isometry group is a simple compact Lie group, the first-named author
has obtained a complete classification of polar actions [12], proving Theorem 1.1
in this special case. The other class of irreducible compact Riemannian symmetric
spaces are the symmetric spaces of Type II, i.e. compact Lie groups L with biinvari-
ant metric. These spaces have a non-simple isometry group; in fact, the connected
component of the isometry group is covered by L × L. The fact that the isometry
group is non-simple makes it considerably more difficult to apply the methods of [12]
in the case of symmetric spaces of Type II. However, the first-named author could
still prove Theorem 1.1 in the special case of exceptional compact Lie groups with
a biinvariant metric [13], again confirming the conjecture of Biliotti.

Recently, the second-named author obtained a result which generalizes Theo-
rem 1.1 to the more general case of polar foliations, where the leaves of the foliation
do not necessarily have to be homogeneous. He has shown that polar (singular
Riemannian) foliations of irreducible compact symmetric spaces of higher rank are
hyperpolar under the additional assumption that the codimension of the foliation is
at least three [15]. (See [22] for a survey article on singular Riemannian foliations.)
In order to finally complete the proof of Theorem 1.1, it now suffices to show that
a polar action of cohomogeneity two on a classical compact Lie group L endowed
with a biinvariant Riemannian metric is hyperpolar if rk(L) ≥ 2. This is done in the
present article by classifying all polar cohomogeneity two actions on classical com-
pact Lie groups with biinvariant metric; all such actions turn out to be hyperpolar.
See the last paragraph of Section 3 below for a summary of our proof.

Note that Theorem 1.1 does not generalize directly to non-compact symmetric
spaces. In fact, there are counterexamples of polar actions with non-flat sections
on non-compact symmetric spaces of higher rank, see [1, Proposition 4.2]. However,
an analogous statement as in Theorem 1.1 still holds for actions on non-compact
irreducible spaces if one requires the action to be given by a reductive algebraic
subgroup of the isometry group. (For example, semisimple subgroups and compact
subgroups of a semisimple Lie group are reductive algebraic subgroups, see [17].)
Hence we also obtain the following.

Theorem 1.2. Let M be an irreducible symmetric space. Let H be a reductive
algebraic subgroup of the isometry group of M . If the action of H on M is polar

4



and has orbits of positive dimension, then the action is hyperpolar or M is of rank
one.

Theorem 1.2 follows immediately from Theorem 1.1 and [14, Theorem 5.1]. It was
shown in [14] that hyperpolar actions of reductive algebraic subgroups in the isom-
etry group of irreducible symmetric spaces are of cohomogeneity one or Hermann
actions.

2. Symmetric spaces of Type II and their isometry groups

Following [9, Ch.X], there are two types of irreducible compact Riemannian sym-
metric spaces. The spaces of Type I are those with simple compact isometry group;
the spaces of Type II are given by simple compact Lie groups equipped with a bi-
invariant Riemannian metric. In the following, we study isometric group actions of
compact Lie groups on Riemannian symmetric spaces of Type II.

Let L be a compact connected simple Lie group equipped with a biinvariant Rie-
mannian metric. Any such biinvariant metric is unique up to a constant scaling
factor. To study polar actions, the choice of this scaling factors is of no relevance
and we may thus assume L is equipped with the biinvariant metric induced by the
negative of the Killing form. Then L together with this metric is a Riemannian
symmetric space [9]; indeed, L is a Riemannian homogeneous space (it acts isomet-
rically on itself by left and right translations) and the inversion map g 7→ g−1 turns
out to be an isometric geodesic symmetry at the identity element e of L.

The connected component of the isometry group of this symmetric space is covered
by L × L, see [9]. To study (effective) polar actions on L, it therefore suffices
to consider closed connected subgroups of L × L which act non-transitively. The
following proposition shows that we may distinguish between two types of maximal
non-transitive subgroups of L× L.

Proposition 2.1. Let H ⊂ L × L be a connected closed subgroup acting non-
transitively on L. Then H is contained in one of the following subgroups of L× L.

(i) A diagonal subgroup of the form

(2.1) ∆σL := {(ℓ, σ(ℓ)) | ℓ ∈ L}

where σ is an automorphism of L.
(ii) A subgroup of the form

(2.2) H1 ×H2 := {(h1, h2) | h1 ∈ H1, h2 ∈ H2},

where H1 and H2 are closed connected proper subgroups of L.

Proof. Follows from [6, Theorem 15.1], see also [11, Section 2.1]. �
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3. Criterion for polarity

The following criterion for polarity of isometric actions on symmetric spaces of
the compact type is well known, for a proof see for instance [12, Proposition 4.1].
By H ·eK we denote the H-orbit through the point eK ∈ G/K and by NeK(H ·eK)
its normal space at the point eK.

Proposition 3.1. Let G be a connected semisimple compact Lie group, let σ be
an involutive automorphism of G and let K ⊂ G be a closed subgroup such that
Gσ

o ⊆ K ⊆ Gσ; in particular, G/K is a Riemannian symmetric space of the compact
type. Let g = k⊕p be the decomposition into eigenspaces of dσe and identify TeKG/K
with p in the usual way. Let H ⊂ G be a closed subgroup. Assume the element eK
of G/K lies in a principal orbit of the H-action on G/K. Then the following are
equivalent.

(i) The H-action on G/K is polar with respect to any G-invariant Riemannian
metric on G/K.

(ii) The subspace ν := NeK(H · eK) ⊆ p is a Lie triple system such that the
Lie algebra ν ⊕ [ν, ν] generated by ν is orthogonal to h with respect to the
negative of the Killing form on g.

In particular, the H-action on G/K is hyperpolar if and only if the subspace ν is an
abelian subalgebra of p.

The proposition implies that the polarity of an action is determined on the Lie
algebra level. The Lie triple system ν which appears in the proposition corresponds
to the tangent space of a section in case of a polar action. (Note that sections of
polar actions are always totally geodesic submanifolds [18].)

In this article, we will apply Proposition 3.1 exclusively to the special case of
a Riemannian symmetric space of Type II. To this end, we use the homogeneous
presentation G/K of L where we define G := L × L and where the isotropy sub-
group K = Ge of the identity element e ∈ L for the action (1.1) is the diagonal
subgroup {(ℓ, ℓ) | ℓ ∈ L} of L × L. In this case the spaces k and p as defined in
Proposition 3.1 are of the following form

(3.1) k = {(X,X) | X ∈ l}

and

(3.2) p = {(X,−X) | X ∈ l},

where l denotes the Lie algebra of L.

Henceforth we will assume that L is a simple compact Lie group of rank greater
than one and H ⊂ L × L is a closed connected subgroup which acts polarly with
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non-flat sections and with cohomogeneity two on L by the restriction of (1.1) to H .
We will prove that no such subgroup exists.

Our proof proceeds as follows. By Proposition 2.1 we may assume that the group
H is contained in a group of the form (2.1) or of the form (2.2). The first case
has already been treated in [13] and hence may assume that H is contained in a
group of the form (2.2). In Lemma 5.1 we show that if H is of the special form
H = π1(H)× π2(H), where π1 and π2 denote the canonical projections on the first
or second factor of L × L, then the action is hyperpolar. Thus we may assume
in what follows that H is a proper subgroup of π1(H) × π2(H). Moreover, since
the action of π1(H)× π2(H) is not orbit equivalent to the H-action, it is either of
cohomogeneity one or transitive. However, in Section 6 we show that subactions
of cohomogeneity one actions cannot be polar, ruling out the first alternative. It
remains to consider the case where π1(H)×π2(H) acts transitively on L by (1.1) and
where both π1(H) and π2(H) are proper subgroups of L. Using the classification
of transitive actions [16], it is shown in Section 7 that there is no such action,
completing the proof of Theorem 1.1.

4. Subactions of σ-actions

We start our classification with actions by (closed subgroups of) diagonal sub-
groups in L.

Lemma 4.1. Let L be a simple compact Lie group and let σ be an automorphism
of L. If a closed connected subgroup H of ∆σL acts polarly on the simple compact
connected Lie group L of rank greater than one, then H = ∆σL or H = {e}; in
particular, the action of H on L is hyperpolar or trivial.

Proof. [13, Proposition 12]. �

Note that the action of ∆σL on L is well known to be hyperpolar. These actions
were named σ-actions in [8]. From now on, it suffices to consider those subgroups
of L × L which are contained in groups of the form (2.2). We will first look at a
special case.

5. Groups without diagonal factors

In this section we consider the special case where the subgroup H ⊂ L × L is
such that H = π1(H) × π2(H). It is more or less an immediate consequence of
Proposition 3.1 that such an action is hyperpolar.
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Lemma 5.1. Let L be a simple compact Lie group and let H1, H2 ⊂ L be closed
subgroups. Assume that the subgroup

(5.1) H1 ×H2 = { (h1, h2) | h1 ∈ H1, h2 ∈ H2 } ⊆ L× L

acts polarly and with cohomogeneity two on L by the restriction of the action (1.1).
Then the H1 ×H2-action on L is hyperpolar.

Proof. We may assume that the identity element e ∈ L lies in a principal orbit by
replacing H with a suitable conjugate group, if necessary. Let ν be the normal
space at the point e to the H-orbit through e as defined in Proposition 3.1 (ii). By
the hypothesis, the H-action is of cohomogeneity two, hence there are two linearly
independent vectors v, w ∈ ν. Furthermore, since the H-action is polar, it follows
from Proposition 3.1 that [v, w] is orthogonal to h. Since the elements of p (and
hence of ν) are of the special form (3.2), we have v = (X,−X), w = (Y,−Y )
for some vectors X, Y ∈ l. Consequently, we have [v, w] = [(X,−X), (Y,−Y )] =
([X, Y ], [X, Y ]). By our hypothesis, the group H is of the special form (5.1) and
hence an element (A,B) ∈ l× l is orthogonal to h if and only if A is orthogonal to h1
and B is orthogonal to h2. In particular, since the vector [v, w] = ([X, Y ], [X, Y ])
is orthogonal to h, we also have that the vector ([X, Y ],−[X, Y ]) ∈ p is orthogonal
to h and hence it is contained in the normal space ν.

Assume now the three vectors X , Y and [X, Y ] in l are linearly independent. Then
it follows that the three vectors (X,−X), (Y,−Y ), ([X, Y ],−[X, Y ]) in ν are linearly
independent, too. Since ν is the normal space at a principal orbit, it follows that
the cohomogeneity of the H-action is at least three, contradicting our hypothesis.

Thus it follows that the bracket [X, Y ] is contained in the span of X and Y .
Hence the vectors X and Y span a two-dimensional subalgebra of l. However, the
Lie group L is compact and hence any subalgebra of l is reductive. In particular,
any subalgebra of l decomposes as a direct sum of an abelian and a semisimple Lie
algebra. By the classification of semisimple real Lie algebras, it is known that any
simple Lie algebra (and hence any non-trivial semisimple Lie algebra) is at least of
dimension three. It follows that the Lie algebra spanned by X and Y is abelian and
Proposition 3.1 implies that the action is hyperpolar. �

As a consequence of Lemmas 4.1 and 5.1 we obtain the following.

Lemma 5.2. Let L be a simple compact Lie group and assume H ⊂ L × L is a
closed connected subgroup whose action on L is of cohomogeneity two and polar with
a non-flat section. Then there are closed connected proper subgroups H1 and H2

of L such that H is contained in H1×H2 and such that the action of H1×H2 on L
given by (h1, h2) · ℓ := h1 ℓ h

−1

2
is of cohomogeneity one or transitive.
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Proof. Define H1 and H2 to be the images of H under the natural projections onto
the first and second factors of L × L. Then H1 and H2 are compact connected
subgroups of L and H is contained in H1 × H2. If H1 = L or H2 = L, then h

contains an ideal isomorphic to l and it follows from Lemma 2.1 that H is contained
in a subgroup of the form (2.1). Hence it follows from Lemma 4.1 that the H-
action on L is hyperpolar, a contradiction. Thus H1 and H2 are proper subgroups
of L. Since we have H ⊆ H1 × H2, it follows that the H1 × H2-action on L is
cohomogeneity less or equal to two. If the cohomogeneity is two, then the H-action
and the H1 ×H2-action on L are orbit equivalent, leading to a contradiction, since
then by Lemma 5.1 the H1 ×H2-action is hyperpolar. Thus the H1 ×H2-action on
L is of cohomogeneity one or transitive. �

From now on, we may assume that the H-action on L is a subaction of a transitive
or cohomogeneity one action given by a subgroup of the form (2.2). (By the term
subaction we refer to an action which is given by restricting a Lie group action to
a closed subgroup.) We will prove in the next two sections that no such subaction
exists.

6. Subactions of cohomogeneity one actions

Proposition 6.1. Let M be a compact irreducible symmetric space of higher rank
with a polar and not hyperpolar action of a group H of cohomogeneity two. Then
H is not a subgroup of a larger group H ′ which acts on M isometrically and with
cohomogeneity one.

Proof. Assume that such a group H ′ does exist. We may assume that H and H ′ are
connected. Denote by ∆ the quotient space M/H . By polarity of the action of H ,
∆ is a finite quotient of a section Σ, which is a totally geodesic submanifold of M
and hence a two-dimensional symmetric space. By assumption Σ is non-flat. Thus
it is either the round sphere or the round projective space, which, after rescaling,
may be assumed to be of constant curvature one. In any case, ∆ is the quotient of
the universal covering S2 of Σ by a finite Coxeter group W .

In [15, Section 7] it is shown that if the Coxeter group W is reducible, the space
M must be of rank one. Thus we may assume that W is irreducible. Then ∆ is a
spherical triangle with angles π/2, π/3, π/m, with m = 3 or m = 4. (In fact, the
case m = 3 can be excluded using the ideas of [15], cf. [7], but this will not be used
in the sequel). Hence, the triangle ∆ has two vertices x and y such that the angles
at these points are equal to π/m with (possibly different) m > 2.

Let p ∈ M be any point in the H-orbit corresponding to x. Then the isotropy
group Hp acts on the normal space V to the orbit H · p with cohomogeneity two,
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such that the quotient V/Hp is the tangent space to ∆ at x, i.e. the cone over the
interval of length π/m. Hence the action of Hp on V is irreducible. Therefore, the
larger isotropy group H ′

p of H
′ at p cannot act on a proper non-trivial subspace of V .

It follows that the normal space to the orbit H ′ · p at p coincides with V . Thus the
orbits H ′ · p and H · p coincide.

The same argument works for a point q over the vertex y. Thus we deduce that
the orbits of H and of H ′ through p and q coincide. Therefore, H · p and H · q are
the only singular orbits of the cohomogeneity-one-action of H ′ on M .

Take any regular point o in the section Σ from above. Then this point o must
lie on a shortest H ′-horizontal geodesic from H · p to H · q. This geodesic is also
H-horizontal, hence contained in Σ. For a generic choice of o in Σ, we obtain a
contradiction. �

Remark 6.2. If, under the assumptions of Proposition 6.1, the space M is reducible
and H ′ acts with cohomogeneity one, then (possibly after enlarging the group H
without changing the orbit equivalence class) we are in the following situation. The
space M splits as M = M1×M2 and H splits as H1×H2, such that Hi acts trivially
on M2−i. Moreover, H2 acts transitively on M2 and M1 is of rank one, see [15,
Section 7].

7. Subactions of transitive actions

Lemma 7.1. Let L be a simple compact Lie group of rank greater than one. Then
there is no closed subgroup H ⊂ L × L such that the H-action on L is polar of
cohomogeneity two with a non-flat section and such that the action of π1(H)×π2(H)
on L is transitive.

Proof. Consider the ideals h′
1
:= ker(π2|h) and h′

2
:= ker(π1|h) of h, where π1 and π2

are the natural projections onto the two simple factors of the Lie algebra of L× L.
Let h∆ be an ideal which is complementary to h′

1
+ h′

2
in h. Then we have π1(h) =

π1(h∆)⊕h′
1
and π2(h) = π2(h∆)⊕h′

2
. Since h is a proper subalgebra of π1(h)×π2(h),

we have h∆ 6= 0.

All transitive actions of groups H1 × H2 on simple compact Lie groups L given
by (1.1), where H1, H2 ⊂ L are closed proper subgroups, were determined by
Onǐsčik [16]; the result is given in Table 1. Inspection of the table shows that
for L simple there is only one case where the Lie algebras of H1 and H2 have a non-
trivial isomorphic ideal, namely the case of the Spin(7) × SO(7)-action on SO(8).
However, in this case h = h∆ would be isomorphic to the 21-dimensional Lie algebra
so(7), obviously contradicting the assumption that H acts on the 28-dimensional
Lie group SO(8) with cohomogeneity two. �
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H1 L H2

Sp(n) SU(2n) S(U(2n−1)U(1))
SU(2n−1)

SO(2n−1) SO(2n) U(n)
SU(n)

SO(4n−1) SO(4n) Sp(n) · Sp(1)
Sp(n) ·U(1)

Sp(n)
G2 SO(7) SO(6)
G2 SO(7) SO(5) SO(2)

SO(5)
Spin(7) SO(8) SO(7)
Spin(9) SO(16) SO(15)

Table 1. Transitive actions.

Remark 7.2. It should be noted that Table 1 has to be interpreted on the Lie
algebra level. Indeed, e.g. the transitive actions on SO(8) of Spin(7)× [SO(6) SO(2)]
and of Spin(7)×[SO(5) SO(3)] correspond to the actions of SO(7)×U(4) and SO(7)×
[Sp(2) · Sp(1)] under a triality automorphism of Spin(8), cf. [11, Proposition 3.3]. In
particular, some entries of [16, Table 7] do not appear in our Table 1 exactly for this
reason.

8. Concluding remarks

It follows from the main result of [15] that polar actions on compact irreducible
Riemannian symmetric spaces of higher rank are hyperpolar if the cohomogeneity is
greater than two. In this article, we have shown that polar actions of cohomogeneity
two on the classical compact Lie groups of higher rank with biinvariant Riemannian
metrics are hyperpolar. Without restriction on the cohomogeneity, this was shown
in [12] for symmetric spaces of Type I and for exceptional symmetric spaces of
Type II in [13]. Thus we have now completed the proof of Theorem 1.1. In particular,
this finally settles the conjecture of Biliotti [2] affirmatively.

It now follows from the results of [11] that any polar action of a compact Lie
group on a compact irreducible Riemannian symmetric space of higher rank is of
cohomogeneity one or orbit equivalent to a Hermann action (it can be both, as
there are many Hermann actions of cohomogeneity one). See [11, Theorem B] for
the classification of cohomogeneity one actions up to orbit equivalence. Let us recall
the two types of Hermann actions in the case where the symmetric space G/K is
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isometric to a simple compact Lie group L with biinvariant Riemannian metric.
In this case we may assume G = L × L and any involutive automorphism of G
is either of the form (ℓ1, ℓ2) 7→ (σ−1(ℓ2), σ(ℓ1)), where σ is an automorphism of L
(of arbitrary order) or of the form (ℓ1, ℓ2) 7→ (σ(ℓ1), τ(ℓ2)) where both σ and τ are
involutive automorphisms of L. In the first case, the fixed point set of the involution
is ∆σ = {(ℓ, σ(ℓ)) | ℓ ∈ L} ⊂ G. In the latter case, the fixed point set is given by
the cartesian product of the fixed point sets Lσ × Lτ .

As stated in Lemma 4.1, any subgroup of L × L whose action on L is orbit
equivalent to the action of ∆σ is actually conjugate to ∆σ. However, in case of the
action of Lσ × Lτ on L, there are many examples of orbit equivalent subgroups,
see [12].

On the compact rank-one symmetric spaces, polar actions have been classified
in [19].
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