ON THE GEOMETRY OF SUBSETS OF POSITIVE
REACH

ALEXANDER LYTCHAK

ABSTRACT. We prove that sets of positive reach in Riemannian
manifolds and more generally, almost convex subsets in spaces with
an upper curvature bound have an upper curvature bound with
respect to the inner metric.

1. INTRODUCTION

The aim of this paper is to prove that almost convex subsets of spaces
with an upper curvature bound have an upper curvature bound with
respect to the inner metric. As special case we obtain:

THEOREM 1.1. Let M be a smooth Riemannian manifold, Z a com-
pact subset of M that has positive reach. Then Z has an upper curva-
ture bound with respect to the inner metric.

Recall that a subset Z of a manifold M is said to have positive
reach > r if for all z € M with d(z,Z) < r there is a unique point
p € X with d(z,p) = d(Z,z) ([Fed59]). For example compact convex
subsets or C1! submanifolds with boundary have positive reach. Thus
our theorem is a generalization of [ABB93].

In [Lyt] we prove that a subset Z of M has positive reach r > 0 iff
it is (C, 2, p)-embedded in the sense of the next definition for positive
C, p depending on r and the curvature bounds of M.

Definition 1.1. A subset Z of a metric space X is called (C, «, p)-
embedded if for all zg,2; € Z with s = d(20,21) < p there is a point
m € Z with d(z;,m) < 5(1+ Cs?®).

Therefore Theorem 1.1 is implied by the following more general:

THEOREM 1.2. Let X be a space with an upper curvature bound k.
Let 7 be a (C,2, p)-embedded subset of X. Then Z with respect to its
inner metric is a CAT (k) space with k = k(C, k, p).
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A regular sublevel set Z = f~![—o0,1] of a semi-convex function f
on a CAT (k) space X satisfies the assumptions of Theorem 1.2. Since
CAT (k) spaces admits many semi-convex functions we get a lot of new
spaces with an upper curvature bound. As an example we get:

Corollary 1.3. Let X be a CAT(1) space, x € X, r < w. Then the
closed ball B,.(x) around x has an upper curvature bound with respect
to the inner metric.

Remark 1.1. As the proof shows the curvature bound of Z depends only
on C and k. We have not tried to get the optimal curvature constants
as it was done in [ABB93]. However, it seems to be possible to go more
carefully through the proofs and to obtain optimal results.

Remark 1.2. Theorem 1.1 can be proved in an easier way. One has to
approximate sets of positive reach by tubular neighborhoods and apply
the result of [ABB93] to these tubes observing that they are manifolds
with boundary.

To prove Theorem 1.2 we proceed as follows. An upper curvature
bound for Riemannian manifolds can be expressed by some precise
semi-convexity of normal Jacobi fields. In general metric spaces no
differential tools such as Jacobi fields are available and one has to work
directly with distance functions. One observes that the existence of an
upper curvature bound on a metric space X is essentially equivalent
to the statement that the distance d, considered as a function on the
geodesic space X x X, is B - d semi-convex for some constant B € R,
i.e. for the restriction of d to each geodesic d” > Bd holds.

The idea is now to work not with the inner metric dZ on Z but to
consider the restriction of the metricd : X x X — R to Z x Z. This
restriction is (up to a factor) equal to the distance to the diagonal A
in X x X. We know from [Lyt| that the restriction h of d to Z x Z
is semi-convex, i.e. we have h” > A for some (negative) constant A.
However, this is not enough to conclude the proof, and we need the
deeper estimation h” > Bh.

To achieve this we observe that if the restriction of A onto a geodesic
v in the inner metric of Z X Z is not convex, we get a curve pin X x X
with the same endpoints of a smaller length. Choosing this curve in
the right way we see that the distance between this new curve p and
Z x Z is very small (much smaller then the distance between p and
7). Thus projecting p onto Z X Z we get a curve 7 in Z x Z with the
same endpoints, and the statement that its length is not less then the

length of v implies the right semi-convexity constant for A.
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2. PRELIMINARIES

In a metric space X a geodesic or more precisely an X-geodesic will
denote always a (globally) isometric embedding of an interval into X.
For a geodesic space X and a subset Z of X we will denote by d the
metric on X and its restriction to Z x Z and by d? the inner metric on
Z. For a subset K of a metric space X we denote by dx the distance
function dg(z) = d(K, z).

For Lipschitz functions h, h on a geodesic space X the function A
will be called h-convex (and written A" > h), if for each geodesic vy in
X holds (ho7)” > hor in the weak sense. We refer to [BBI0O1] and
[AB03] for more on this subject.

By a CAT (k) space we denote a complete metric space, in which
all points with distance at most % are connected by a geodesic and

such that triangles are not thicker than triangles in the space M? of
constant curvature k. We refer to [BH99] for the theory of C AT (k)
spaces.

We will use the following easy observation. Let X be a CAT(0)
space, i a geodesic between o and z1, p € X a point. If d(p, u) =r,

then d(zg,p) + d(z1,p) > +/L(u)? + 4r2.

3. SIMPLIFICATIONS

First of all we simplify our task a little bit and recall some results
from [Lyt]. Assume that we are under the assumptions of Theorem 1.2.
By rescaling the metric we may assume that X is a CAT(1) space.
Considering now Z as a subset of the Euclidean cone CX and using
the fact that X is a (1, 2)-embedded subset of the Euclidean cone C X,
we may assume that X is a CAT(0) space. (The constants C' and p
will certainly change by this procedure). The intersection of Z with
each ball B,(z) of sufficiently small radius r is (C, 2, p)-embedded in
B, (z), hence we may assume that the diameter of X is arbitrary small.
In particular we may assume that the diameter is smaller than p and
forget about p.

By [Lyt] there is a number ry = 7(C), such that for each z € X with
d(z,Z) < ry there is a unique point p = P(z) € Z such that d(z, Z) =
d(x,p). Moreover the map P is Lipschitz and the Lipschitz constant of
P at z is not bigger than 1 + A - d(x, Z) for some A = A(C) > 0. We

will assume that the diameter of X is smaller than rg.
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We know ([Lyt]) that the inner metric dZ on Z is bounded by d? <
d(1 + Cd?) for some C = C(C). We may assume (making A bigger),
that C coincides with the constant A from above and that d? < 2d
holds.

Replacing X by its ultraproduct X“ and Z by Z“ C X¥ we may
assume that (Z,d?) is a geodesic space. In this step we use the fact
that a complete metric space Z is C AT (k) if and only if its ultraproduct
X% is CAT (k). This step is redundant if X is a proper space.

Each convex subset (in particular each Z-geodesic) in (Z, d?) is again
(A, 2)-embedded. For each 1-Lipschitz convex function f : X — R its
restriction to (Z,d?) is (—A)-convex, for some A = A(A).

By [Lyt] we know that each Z-geodesic 7 starting in a point z defines
a unique X-direction v = 7' € C, X. The angle between each two Z-
geodesics starting at the same point x measured in the inner metric
space (Z,d?) is well defined and coincides with the angle between the
starting directions of these two curves in X. For some constant A; the
angle between each Z-geodesic v : [0,t] — Z and the X-geodesic ¥
connecting v(0) and «(¢) satisfies Z(yT,5") < A;t.

Finally the distance function to dz : X — R to the subset Z is As-
convex in the d-tube around Z for some small number §. We assume
that X has diameter < 4 and increasing A we assume A = A; = Ay =
A. These assumptions imply that for g, z; € Z with d(zo,z;) =t and
the X-geodesic v between z and z; we have d(Z,v(e)) < 2Aet, if 0
has been chosen sufficiently small.

4. GENERALIZING THE THEOREM OF PYTHAGORAS

Let X be a CAT(0) space, K a closed convex subset of X, v :
[a,b] — X an arclength parametrized curve between zy = 7y(a) and
x1 = y(b). Denote by f the distance function d and by h its restriction
h = fovytoy. Let 7 be the projection of v onto K, i.e. we have
d(7(t),v(t)) = h(t). Let n; be the geodesic between ~y(t) and (t).

Lemma 4.1. In the above notations assume that r = h(‘%”)—M >

0. Then there is a curve u : [a,b] — X, such that u(t) € n;, u(a) =
v(a) = xg, u(b) = y(b) = x1 and such that L(y) > /L(u)? + 4r2.

Proof. Consider the union of the geodesics 7; as a ruled surface i :
D — X. Denote by d the pulled-back metric i*d on D. Due to [Ale57]

(see also [Pet99] for a more general case) the space (D, d) is a compact
CAT(0) space. Since the projection of X onto K is 1-Lipschitz the
curve 4 becomes a (not arclength parametrized) geodesic in D. More-

over the function h(t) := d(7y(t),7) coincides with f. Since the map
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1: D — X is 1-Lipschitz and preserves the length of v we may replace
X by D.

Let p be the (arclength parametrized) geodesic (in D) between
and x;. Then p certainly lies on the union of the geodesics 7, and can
be parametrized in the needed way. Thus we only have to estimate

L(p).
Since the distance function (in D) to the convex subset 7 is convex,

for the midpoint m of y holds d(7,m) < M@ atb)
we obtain d(m,m) > r. i
Now Zmma; > 5 for i = 0 or 4 = 1. For this i we get d(x;, m) >

\/d(zi,m)2 +72. Since L(y) > 2d(z;,m) and L(u) = 2d(x;, m) we
obtain the desired inequality. U

. Hence for m = ~(

Let X, K,7,u be as above. Assume that « is in addition (C,2)-
embedded in X. Then 7, considered as a curve in D, is also (C, 2)-
embedded. Therefore if the length of v is small enough, then for each
s € [a, b] the angles between v and the geodesics in D connecting two
points on <y are at most 5.

Denote by [ : [a,b] — R the nonnegative function I(t) = d(K,y(t)) —
d(K, pu(t)). Set I = maxgepap 1(2).

Lemma 4.2. Under the assumptions of Lemma 4.1, assume in addition

that h is %—Lipschitz and that 7y is (C, 2)-embedded and of sufficiently

small length. Then L(vy) > \/L(p)? + 12 holds.

Proof. Again we may replace X by the ruled surface D and assume that
w is a geodesic (up to reparametrization). Let ¢ be such that () = [.
Set p = y(t) and ¢ = pu(t). Let ap resp. oy be the angle between pg and
qxo resp. between pq and gx;. Let 5y resp. (1 be the angles between
gp and . The assumption |h'(t)] < % implies that ; < 3T. Since
Bo + B1 > ™ we obtain §; > 7.

In the triangle pr;q we see that Zz;pq > § — 75 = %. Thus we obtain
a; < —Zxipg < T — %. Since ap + a; > 7 we get a; > £

Therefore d(p, ) > Isin(f) = 5. The remark in the preliminaries

I3
~ ~ 2'
implies L(7y) > d(zo,p) + d(z1,p) > /L(p)? + 12 O

5. THE PROJECTIONS

5.1. Setting. We assume that we are under the assumptions made in
Section 3.
Consider the direct product X x X with the product metric. Denote

by A the diagonal of X x X. It is a convex subset of the C AT (0) space
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X x X. The distance function f := da to the diagonal is given by

f(z,y)) = d**X((z,y),A) = d(;f’) The projection P2 : X x X — A

is given by P2((x,y)) = (m, m) where m is the midpoint of the geodesic

n : [0,a] — X between x and y. Moreover the geodesic 7 : [0, %] —
t a—t

X x X between (z,y) and (m,m) is given by 7(t) = (n(ﬁ),n(ﬁ))

The subset Z x Z is (A, 2)-embedded in X x X and (Z x Z, d? xd?) =
(Z,d?) x (Z,d?). By the last remark in Section 3 we see, that for a
point z = (21, 22) € ZxZ C X x X the geodesic 7 : [0, d(zl\/’;)] — X xX
between z and A satisfies d(n(s), Z x Z) < 2Asd(z1, z2)-

Since the function f is convex the restriction of f to each geodesic y
in Z x Z is A-convex. To prove Theorem 1.2 we have to improve the
convexity constant of f.

5.2. First projection. Let v : [t — e,t + ¢ — Z X Z be a d?*%-
geodesic for a small e. Assume that |(f 0 7)'| < 5. Denote by r the

value r = f(t) — w and assume r > 0.

Due to Lemma 4.1 we obtain a curve p: [t —¢€,t + €] = X X X con-
necting y(t+€) and (¢ —¢€) such that L(y[t—e,t+¢€]) > /L(u)? + 4r2.
Moreover for y : [a,b] = X x X the point u(t) lies on the geodesic 7
between () and A.

Due to Lemma 4.2 for | = max(f(y(t)) — f(u(t))) holds L(y) >

VL(w)? +1%2. Since L(y) < L(p) + AL(p)?, we see that r and [ are
very small in comparison to L(u).

Hence we obtain L(y) > L(u)4/1 —|— %22)2 > L(p)(1+ L(u) ). In the

same way we see L(vy) > L(u)(1 + ) Using L(u) < 2e we obtain

(1) L(p) < L(y)(1 - 13;)'
(2) L(w) < L(3)(1 — 552).

5.3. Second projection. Since the point p(t) lies on the geodesic 7
between y(t) € Zx Z and A we obtain from Subsection 5.1: d(u(t), Z x
7Z) < 2A1/2f(~(t)). Therefore if f(7(t)) < D we see that the projec-
tion of  onto Z x Z is a curve 7 connecting (¢ — €) and (¢ + €) and
satisfying L() < L(u)(1 + 2v/242ID). Since L(¥) > L(7y) we obtain

(1) (1 — %) - (1+2v2A4%D) > 1;
(2) (1— 5) - (1+2V24%D) > 1.

Separating the cases r > [ and r < [ we obtain in both cases that
r < BDe¢?, for some constant B. Thus we have proved:

4L(
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Lemma 5.1. Let v : [a,b] — Zx Z be a d?*%-geodesic. If the inequality
|(foy)| < % holds for all t € [a,b], then (f o)" > —B(f o~) for
some fized positive constant B.

6. THE CONCLUSION

Let Z, X be as in the last section. Since the function f is a multiple
of the metric d : X x X — R we see, that the restriction of d to
(Z x Z,d?*?) is a v/2-Lipschitz function, that satisfies d" > —A and
for each Z x Z-geodesic 7 the assumption |(d o ¥)'| < 1 implies the
much stronger semi-convexity (d ov)” > —B(d o 7) for some positive
constant B = k2. We may assume that the diameter of X is at most
vk We are going to prove that Z is a CAT (k) space.

Remark 6.1. Actually we prove that Z is a CAT (%) space.

Let v, : [0,a] = Z,7 : [0,b] — Z be d?-geodesics starting at the
same point x. Recall that the angle at x in the inner metric space
(Z,d”) between ~y; and 7, is well defined and coincides with the angle
between these two curves in X. We have to prove that d”(v;(a), y2(b))
is not less then the corresponding distance for the comparison hinge in
the simply connected surface M? of constant curvature k.

Let z be a fixed point and let v, be fixed, y = 71(a). It is enough to
prove that for some € > 0 (that may depend on z and 7;) each point
z € X with d(y,2) < € and each Z-geodesic 7, connecting x and z
the comparison angle at z in the space M? is not less than the angle
between 7; and 7s.

Consider #; : [0,a] — M2 and 7, : [0,b] — M? geodesics in M? start-
ing at the same point Z and such that d(7(a),¥2(b)) = d(v1(a), y2(b)).
Remark that on the right hand side of the equation we consider the
induced distance d of X and not the inner distance d?. Since d? > d it
is enough to show that the angle between v, and ~, is not bigger than
the angle between #; and #,.

Consider the Z x Z-geodesic v : [0,va? + b?| — Z X Z given by

at

V() = (7)) ’yQ(\/a’;—t—W). Denote by ¥ t}le corresponding geodesic
in M? x M?. Finally set h = d*** oy and h =do 7.

By definition we have h(0) = h(0) = 0 and h(v/a2 + b2) = h(v/a2 + b2).
If € was chosen small enough in comparison to a, we get A" < —k?h for
all t. Moreover choosing € small enough we may achieve |h'| < 1.

On the other hand we have h” > —A and if |#’'| < 1 on some interval,
then A" > —k?h on this interval. Assume h/(ty) < —1 for some ¢y. Then
the semi-convexity and the small size of X show, that h'(t) < —% for

all t < ty. In particular h(0) > h(ty). But A(0) = 0 and this is not
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possible. On the other hand if A'(¢y) > 1 (which certainly can occur),
we get A'(¢) > 3 > I'(t) for all ¢ > .

Assume that the angle between 7, and v, is bigger than the angle
between 7; and . This amounts to A'(0) > h'(0). Taking now all the
comparison results, the standard arguments provide h(t) > h(t) for all

t and thus a contradiction to h(va? + b?) = h(vVa? + b?).
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