
RICCI CURVATURE IN DIMENSION 2

ALEXANDER LYTCHAK AND STEPHAN STADLER

Abstract. We prove that in two dimensions the synthetic notions
of lower bounds on sectional and on Ricci curvature coincide.

1. Introduction

1.1. The result. In this note we provide an affirmative answer to a
well-known conjecture in the theory of spaces with synthetic bounds
on Ricci curvature, formulated in print by Cédric Villani, [Vil16, Open
Problem 9].

Theorem 1.1. Let (X, d) be a metric space and let H2 be the 2-
dimensional Hausdorff measure on X. If (X, d,H2) is an RCD(κ, 2)
space then X is an Alexandrov space of curvature at least κ.

The converse of our theorem is due to Anton Petrunin, [Pet11]. A
combination of several recent results, [MN17], [DPG17], [BS18], [KL16],
[Han18], [Hon19] implies that the claim of Theorem 1.1 extends to all
compact RCD(κ, 2) spaces (X, d, µ) with arbitrary measures µ.

As a consequence of Theorem 1.1, all RCD(κ, 2) spaces (X, d,H2) are
topological surfaces, possibly with boundary. As another consequence,
any RCD(κ, 2) space (X, d,H2) is a metric-measure Gromov–Hausdorff
limit of a sequence of 2-dimensional smooth Riemannian manifolds with
convex boundaries and curvature at least κ.

1.2. Theory of RCD spaces. The synthetic theory of spaces with
lower Ricci curvature bounds, initiated in [Stu06] and [LV09], has ex-
perienced a tremendous growth over the last 15 years. We refer the
reader to the surveys [Vil16] and [Amb18] for an overview of the cur-
rent state of the theory and the huge bibliography.

The analytic aspects of the theory are highly developed. Most re-
sults, previously known on Riemannian manifolds with lower bounds
on Ricci curvature, now possess natural generalizations to the synthetic
framework, see for instance [AGS14], [Gig15], [CM15]. Moreover, there
is a sophisticated understanding of measure theoretic, or rather “almost
everywhere” properties of such spaces, [MN17], [BS18].
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On the other hand, gaining information on the “everywhere” metric
structure, or even less ambitious, on the topological structure of RCD
spaces, seems to be very difficult. Only a few results in this direction
are known, all of which require either a rigid setting, [Gig13], [DPG16],
or strong a priori assumptions on the geometry, [KK17], [KL16].

1.3. Central steps in the proof. The proof is a combination of ana-
lytic RCD-techniques, some basic results about Alexandrov spaces, the
canonical uniformization of singular surfaces introduced in [LW17b]
and Reshetnyak’s analytic theory of surfaces with integral curvature
bounds, [Res93].

In the first step, we use Bishop–Gromov comparison and the cone-
rigidity theorem, [DPG16], to study the infinitesimal structure of a
space X as in Theorem 1.1. More precisely, it is shown that unique
tangent spaces exist at all points and are Euclidean cones over either
intervals or circles. In analogy with the theory of Alexandrov spaces,
we call the set of points, at which the tangent space is homeomorphic
to a half-plane, the boundary of X and denote it by ∂X. Another
application of the Bishop–Gromov comparison implies that ∂X is a
closed subset of X. This is the content of Section 2.

In Section 3, we consider, for any δ > 0, the set of points Xδ at
which the density of X is δ-close to the density of the Euclidean plane.
The set Xδ is open, dense, disjoint from ∂X and, by the theorem
of Cheeger–Colding–Reifenberg, [CC97], Xδ is a topological surface
without boundary, once δ is small enough. Due to [CM18], Xδ satisfies
an isoperimetric inequality of Euclidean type.

The next two sections are the central pieces of the proof. In Sec-
tion 4, we use [LW17b], to find for any point x ∈ Xδ a small closed
neighborhood Ω̄ and a canonical parametrization φ : D̄ → Ω̄ obtained
by solving a Plateau problem. This parametrization is a quasisymmet-
ric map, which in addition is infinitesimally conformal. This implies,
in particular, that there exists a function f ∈ L2(D), the conformal
factor, such that the lengths of almost all curves in Ω̄ are obtained
by integrating f along the corresponding curve in D̄. In other words,
the metric in Ω̄ appears to be obtained from the flat metric in D̄ by a
“singular conformal change with factor f”.

In Section 5, we identify the Laplace operator of Ω in terms of D
and f and use the Bakry–Émery property of RCD spaces to derive an
analytic condition on f . This condition implies log-subharmonicity in
the case κ = 0 and a related property for general κ.

Using [Res93], we deduce in Section 6 that the metric on Ω is every-
where controlled by f , and has curvature bounded below by κ in the
sense of Alexandrov.

In order to finish the proof of the main theorem we show that Xδ is
a convex subset of X, a statement which is expected to be true in much
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greater generality, [CN12]. Once the convexity is verified, Toponogov’s
globalization theorem, in the form of [Pet16], provides that last step.
The proof of this convexity in Section 7, relies on the non-branching
property of RCD spaces, [RS14]. Assuming that a geodesic between
two non-boundary points passes through a point x on the boundary
∂X, we easily obtain many branching geodesics, once we know that
X is a topological surface with boundary near x. While in general,
topological control in RCD spaces is very difficult to achieve, here we
obtain the required statement by a twofold application of the Cheeger–
Colding–Reifenberg theorem.

1.4. Acknowledgment. The paper arose as a follow-up project to a
series of joint papers of the first author and Stefan Wenger. For this
and inspiring discussions the authors express their gratitude to Stefan
Wenger. We are grateful to Vitali Kapovitch and Anton Petrunin for
helpful conversations. For helpful comments on previous versions we
would like to thank Nicola Gigli, Martin Kell, Christian Ketterer and
Andrea Mondino. Both authors were partially supported by DFG grant
SPP 2026.

2. Basic structure

2.1. Notation. By D we denote the open unit disc in R2 and by D̄ its
closure. By Hk or Hk

X we denote the k-dimensional Hausdorff measure
on a metric space X.

In a metric space X we denote by d the distance and by Br(x) the
open ball of radius r around the point x. By `(γ) = `X(γ) we will
denote the length of a curve γ in a metric space X.

2.2. Setting. We assume some familiarity with the synthetic theory
of lower Ricci curvature bounds. In particular, we assume that the
reader is familiar with the notion of RCD(κ,N) spaces, which we will
not define.

In the rest of the paper we fix a space X satisfying the assumptions of
Theorem 1.1. Thus, X is a geodesic, locally compact metric space. By
assumption, the space X is RCD(κ, 2) with respect to the reference
measure H2, whose support is X. In the terminology introduced in
[DPG17], this means that X is a non-collapsed RCD(κ, 2) space.

For x ∈ X and r > 0 we set

(2.1) b(x, r) = H2(Br(x)) .

Recall that the balls satisfy the Bishop–Gromov property, thus, for all
s < r, the quotient b(x, r)/b(x, s) is bounded from above by the corre-
sponding quotient in the 2-dimensional simply connected Riemannian
manifold M2

κ of constant curvature κ, [Stu06].



4 ALEXANDER LYTCHAK AND STEPHAN STADLER

Therefore, for any x ∈ X we have a well-defined positive density

0 < b(x) := lim
r→0

b(x, r)

πr2
≤ 1 ,

see [DPG17, Corollary 2.13].
Again by the Bishop-Gromov property, the space X is locally 2-

Ahlfors regular. Thus, for every compact subset K of X there exists
some L > 0, such that all x ∈ K and all 0 < r < 1 we have

1

L
· r2 ≤ H2(Br(x)) ≤ L · r2 .

2.3. Convergence and blow-ups. Any sequence (Yi, yi) of non-collapsed
RCD(κ, 2)-spaces has a subsequence converging in the pointed Gromov–
Hausdorff topology to a limit space (Y, y). This limit space Y is an
RCD(κ, 2)-space with respect to a limiting measure µ, see [AGS14],
[GMS15]. If there is ε > 0 such that H2(B1(yi)) ≥ ε, for all i, then the
limit space Y is non-collapsed and µ = H2, [DPG17, Theorem 1.2].

Moreover, in this situation the densities behave semi-continuously:

b(y) ≤ lim inf b(yi) .

In particular, the density function b : X → (0, 1] is lower semi-continuous.
As a special case of [DPG17, Theorem 1.2], for any sequence xi ∈ X

converging to a point x ∈ X and any sequence ri of positive numbers
converging to 0, there is a subsequence, such that the rescaled spaces
( 1
ri
X, xi) converge to a non-collapsed RCD(2, 0) space (Y, y). We call

any such space (Y, y) a blow-up of the space X. By the continuity ofH2

with respect to the convergence and by the Bishop–Gromov inequalities
in X, we have, for all z ∈ Y and all s ≥ 0,

(2.2) H2(Bs(z)) ≥ π · b(x) · s2 .

2.4. Tangent cones. A blow-up for a constant sequence of base points
xi = x is called a tangent cone of X at the point x. Relying on the
volume rigidity of metric cones, [DPG16], it has been shown in [DPG17,
Proposition 2.7], that any such tangent cone T of X at the point x is
isometric to a Euclidean cone C(Z) over a compact space Z. Moreover,
Z is an RCD(0, 1) space of diameter at most π, [Ket15].

As has been proved in [KL16], such a space Z is a closed interval
or a circle. Due to the stability of H2 and the definition of b(x), the
density b(x) coincides with the density of CZ at the vertex 0x of the
cone CZ. Therefore,

b(x) =
1

2π
H1(Z) .

Thus, at any point x ∈ X at most two different tangent cones can
exist.
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However, the following lemma, valid for all doubling metric measure
spaces and probably well-known to experts shows that there cannot
exist exactly two different tangent cones.

Lemma 2.1. The space T x of all metric measure tangent cones (Y, y,H2)
at the point x ∈ X is a connected subset of the space X of isomorphism
classes of all pointed, proper metric measure spaces, [GMS15].

Proof. Consider the map F : (0, 1] → X which sends a number r >
0 onto the pointed metric measure space (1

r
X, x,H2). The map is

continuous and the image of F has compact closure in X.
The set T x consists of all limit points limri→0 F (ri) of this continuous

curve. Thus, T x is an intersection of a nested sequence of compact
connected sets, the closures of the tails of F . Hence, T x is connected.

�

Therefore, we have shown:

Corollary 2.2. At any x ∈ X there exists a unique tangent cone. This
tangent cone is a Euclidean cone CZ, where Z is a circle or an interval.
Moreover, H1(Z) = b(x) · 2π and the diameter of Z is at most π.

We denote the unique tangent cone at the point x ∈ X by Tx = TxX.
By above Tx is homeomorphic to a plane or to a half-plane.

2.5. The boundary. We define the boundary ∂X of X to be the set
of all points x ∈ X for which the tangent space TxX is homeomorphic
to a half-plane.

Lemma 2.3. The boundary ∂X is a closed subset of X which contains
only points x with b(x) ≤ 1

2
.

Proof. By definition, x ∈ ∂X if and only if Tx is isometric to CZ, where
Z is an interval. Since Z has length b(x) · 2π and diameter at most π,
this implies b(x) ≤ 1

2
.

Let x ∈ X \ ∂X be arbitrary. Then Tx is a cone over a circle, thus
for any point z in Tx but the vertex 0x, the density of Tx at z is 1. For
any sequence xi ∈ X \ {x} converging to x, we choose ri = d(x, xi).
Then (possibly after choosing a subsequence) under the convergence of
( 1
ri
X, x) to (Tx, 0x) the points xi converge to a point z at distance 1

from 0x. The semi-continuity of densities implies that limi→∞ b(xi) = 1.
In particular, xi is not in ∂X, for i large enough.

Hence, X \ ∂X must be open. �

As a consequences of the splitting theorem we obtain:

Lemma 2.4. Let x ∈ X be a point which is an interior point of a
geodesic. If x ∈ ∂X then Tx is isometric to the Euclidean half-plane.
If x ∈ X \ ∂X then TxX is isometric to R2.
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Proof. The assumption implies that TxX contains a line (the tangent
space to the geodesic through x). By the splitting theorem [Gig13],
the space Tx splits off a line. This implies the claim, since Tx is a cone
over an interval or a circle. �

3. Almost regular parts

For any δ > 0, we call a point x ∈ X a δ-regular point if b(x) > 1−δ.
By Xδ we denote the set of all δ-regular points in X. We have the
following discreteness statement:

Lemma 3.1. The set Xδ is open in X, for any δ > 0. For any δ < 1
2
,

the set Xδ is disjoint from ∂X and the complement (X \ ∂X) \Xδ is
discrete in X \ ∂X.

Proof. The semi-continuity of the density function shows that Xδ is
open. Due to Lemma 2.3, the set Xδ is disjoint from ∂X, for δ < 1

2
.

Finally, the last argument in the proof of Lemma 2.3 implies that any
point in X \ ∂X has a punctured neighborhood completely contained
in Xδ. This implies the last claim. �

The following observation is a very special and rough case of the
results obtained in [CC97] and [CM18].

Lemma 3.2. There exists some δ, C > 0 with the following property.
Every point x ∈ Xδ has a neighborhood Ux homeomorphic to D, such
that for any subset K of Ux homeomorphic to D̄,

(3.1) H2(K) ≤ C · (H1(∂K))2 .

Proof. Due to [DPG17, Theorem 1.2] and the Cheeger–Colding–Reifenberg
theorem, [CC97, Theorem A.1], there exists some δ > 0, such that any
point x ∈ Xδ has a neighborhood Ux homeomorphic to D.

It remains to prove, that, for sufficiently small δ, we have the isoperi-
metric inequality (3.1), for any closed topological disc K in some neigh-
borhood of any point in Xδ.

This statement is proved in [CM18, Corollary 1.6] (in a much more
general and precise form) with H1(∂K)2 on the right hand side of (3.1)
replaced by m2(K), where m(K) is the outer Minkowski content

m(K) := lim inf
r→0

H2(Br(K))−H2(K)

r
.

Here Br(K) denotes the set of points with distance at most r to K.
It suffices to prove 4π · H1(∂K) ≥ m(K) for any subset K of X

homeomorphic to a closed disc, compare [Fed69, Theorem 3.2.39].
If ∂K is not rectifiable there is nothing to prove. Otherwise, for any

natural n, we set r = 1
2n
·H1(∂K) and find an r-dense subset An in ∂K

with n points. Then Br(∂K) ⊂ B2r(An).



RICCI CURVATURE IN DIMENSION 2 7

By the Bishop–Gromov property, we deduce, for r small enough,

H2(Br(∂K)) ≤ H2(B2r(An)) ≤ n · 2 · π · (2r)2 = 4π · r · H1(∂K) .

This implies m(K) ≤ 4π · H1(∂K) and finishes the proof. �

4. Conformal parametrization

4.1. Choice of a domain. Let δ, C > 0 be as in Lemma 3.2, let
x0 ∈ Xδ be arbitrary and let Ux0 be an open neighborhood of x0 in X
provided by Lemma 3.2.

Any Jordan curve Γ in Ux0 determines a Jordan domain Ω ⊂ Ux0
homeomorphic to D, such that Ω̄ = Ω ∪ Γ is homeomorphic to D̄.

Starting with any Jordan curve Γ in Ux0 whose Jordan domain Ω
contains x0, we can replace Γ by a nearby curve and assume that Γ is
biLipschitz to the round circle S1, see [LW17b, Lemma 4.3].

We fix this curve Γ and domain Ω for the rest of the section.

4.2. Metric properties of Ω. Consider the set Ω̄ with its intrinsic
metric dΩ. Since Γ is a biLipschitz embedding of a circle, the metric
dΩ is biLipschitz to the induced metric dX on Ω̄. Moreover, dΩ and dX
locally coincide on Ω.

In order to apply the parametrization results of [LW17b], we need to
make sure that Ω̄ is Ahlfors 2-regular and is linearly locally connected
in the following sense.

A continuum is a compact connected space. A metric space Y
is called linearly locally connected if there exists a positive constant
0 < C < 1, such that for all y ∈ Y and all 0 < r < diam(Y ) the
following holds true. Any pair of points z1, z2 ∈ BC·r(y) is contained
in a continuum P ⊂ Br(y); any pair of points z1, z2 ∈ Y \ Br(y) is
contained in a continuum P ⊂ Y \BC·r.

If the space Y is geodesic, the first condition is always satisfied. Lin-
ear local connectedness is preserved under biLipschitz transformations.

Lemma 4.1. The space (Ω̄, dΩ) is 2-Ahlfors regular and linearly locally
connected.

Proof. Since the H2-measures with respect to dX and dΩ coincide on
Ω̄, a quadratic upper bound on the H2-area of balls in Ω follows from
the corresponding upper bound on the area of balls in X.

The existence of a lower quadratic bound on the area of balls in
Ω̄ is essentially proved in [LW18a, Theorem 9.4], as a consequence of
the quadratic isoperimetric inequality (3.1). We provide a simplified
version of the argument here.

Relying on the lower bound on the area of balls in X, it is sufficient
to find a constant C0 < 1 with the following property: For all small r
and any z ∈ Γ the ball B2r(z) contains a point y ∈ Ω with distance at
least C0 · r to Γ.
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By topological reasons, the distance sphere of radius r around z must
contain a continuum P , joining two points on Γ, locally separated on Γ
by z. From the biLipschitz property of the boundary curve Γ, we now
deduce the existence of C0 < 1, such that the continuum P contains a
point y as claimed above.

This finishes the proof of the Ahlfors 2-regularity of Ω̄.
In order to prove that Ω̄ is linearly locally connected, recall first from

[LW18a, Theorem 8.6], that the isoperimetric property (3.1) implies the
following statement. There exists a constant C1 > 1 such that, for any
y ∈ Ω̄ and any r > 0, the ball Br(y) is contractible inside BC1·r(y).

The space Ω̄ is geodesic and the boundary Γ is linearly locally con-
nected. Thus it suffices to prove the following claim. There exists
some C2 < 1, such that, for every y ∈ Ω̄, every r < diam(Ω̄) and every
z ∈ Ω̄ \Br(y) there is a curve connecting z with Γ outside of BC2·r(y).

Assume the contrary. By the Jordan curve theorem, there exists a
Jordan curve T in BC2·r(y), whose Jordan domain contains the point
z. But this implies that BC2·r(y) is not contractible in Br(y), which
provides a contradiction to the result [LW18a, Theorem 8.6], mentioned
above, once C2 is sufficiently small.

This finishes the proof of the Lemma. �

4.3. Moduli of families of curves and Newton-Sobolev maps.
For the convenience of the reader, we recall the notions of moduli of
families of curves and of Newton–Sobolev maps with values in a metric
space, [HKST15, Sections 5-7], in the special case used here.

Let Y be a metric spaces with finite H2(Y ). For a family of curves
C in Y , a Borel function σ : Y → [0,∞] is called admissible for C if∫
γ
σ ≥ 1 for every locally rectifiable curve in C. The modulus (more

precisely the 2-modulus) of the family is defined as

mod (C) := inf
σ

∫
Y

σ2 dH2 ,

where the infimum is taken over all Borel functions admissible for C.
A statement holds for almost every curve in Y , if the family C of all

curves in Y for which the statement does not hold has modulus 0.
A measurable map u : Y → Z into a separable metric space Z is

contained in the Newton–Sobolev space N1,2(Y, Z) if for some z ∈ Z
the composition dz ◦u : Y → R is contained in L2(Y ) and the following
statement holds true. There exists a function ρ ∈ L2(Y ), called a
weak upper gradient of u, such that for almost any curve γ in Y the
composition u ◦ γ is absolutely continuous and

(4.1) `(u ◦ γ) ≤
∫
γ

ρ .
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There is a unique weak minimal upper gradient ρu ∈ L2(Y ) of u such
that ρu ≤ ρ almost everywhere, for any weak upper gradient ρ of u.

Ch(u) = Ch2
Y (u) :=

1

2

∫
Y

ρ2
u dH2

is called the Cheeger energy of u. In [LW17b], [LW17a] the equivalent
notion of Reshetnyak energy E2

+(u) = 2 · Ch(u) has been used.

4.4. Canonical parametrization. We will not recall the definition
of quasisymmetric maps, see [HK98]. Instead we will use the theory
of quasisymmetric maps as a black-box, providing references for each
required statement.

From [LW17b, Theorem 1.1] and Lemma 4.1 above we deduce:

Corollary 4.2. Among all homeomorphisms u : D̄ → Ω̄ there exist a
homeomorphism φ ∈ N1,2(D̄, Ω̄) with minimal Cheeger energy ChΩ̄(φ).
This homeomorphism φ is quasisymmetric.

The inverse φ−1 : Ω̄→ D̄ is quasisymmetric as well, [Hei01, Proposi-
tion 10.6]. Since the disc D̄ satisfies the 1-Poincaré inequality, [HKST15,
Section 8], the space Ω̄ satisfies the q-Poincaré inequality for some
q < 2, [KM98, Theorem 2.3].

The map φ and its inverse have Lusin’s property N , thus φ and φ−1

preserve the class of sets of H2-measure 0, [HKST01, Theorem 8.12].
Due to [HK98, Theorem 9.3], φ ∈ N1,2(D̄, Ω̄) and φ−1 ∈ N1,2(Ω̄, D̄).

By [HKST01, Theorem 9.8], a family C of curves in D̄ has modulus
zero if and only if the image u ◦ C of this family has modulus 0 in Ω̄.

4.5. Conformality and its consequences. No tangent space of the
spaceX contains a non-Euclidean normed vector space. Due to [LW17a,
Proposition 11.2], X satisfies the property ET, introduced in [LW17a,
Definition 11.1]. The metric on Ω locally coincides with dX . Since Γ
has vanishing H2-measure, the space Ω̄ has the property ET as well.

Due to [LW17a, Theorem 11.3], the energy minimizer φ is a confor-
mal map in the sense of [LW17a, Definition 6.1], meaning that almost
all approximate metric differentials of φ are multiplies of the (fixed)
Euclidean norm on R2. Using [LW18a, Lemma 3.1] this reads as

(4.2) `Ω(φ ◦ γ) =

∫
γ

ρφ ,

for almost all curves γ in D. Here, as before, ρφ denotes a weak minimal
upper gradient of φ.

For any Borel subset E ⊂ D̄ we have, [LW18a, Lemma 3.3]

(4.3) H2
X(φ(E)) =

∫
E

ρ2
φ dH2

D̄ .

Since the inverse φ−1 has Lusin’s property N , the weak minimal upper
gradient ρφ must be positive almost everywhere.
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From (4.2), [LW18a, Lemma 3.1] and the absolute continuity on
almost all curves of the Sobolev maps φ, φ−1, [HKST15, Proposition
6.3.2], we deduce that for any non-negative Borel function h : D̄ → R
and almost every curve γ in D̄

(4.4)

∫
φ◦γ

h ◦ φ−1 =

∫
γ

ρφ · h .

Therefore, the Borel function

g :=
1

ρφ ◦ φ−1
: Ω̄→ [0,∞]

satisfies ∫
η

g = `D̄(φ−1 ◦ η) ,

for almost every curve η in Ω̄. This implies that g is a weak minimal
upper gradient of φ−1 ∈ N1,2(Ω̄, D̄).

5. Conformal factor

5.1. Setting and aim. We continue to use the notations from the
previous section. Thus, we have a domain Ω ⊂ X and a conformal
homeomorphism φ : D̄ → Ω̄, which is contained in N1,2(D̄, Ω̄). We let
f := ρφ : D̄ → [0,∞] be a weak minimal upper gradient of φ.

The aim of this section is the following result and its consequence,
Corollary 5.2.

Proposition 5.1. The function f−2 is contained in L∞loc(D). For any
harmonic function v : D → R the distributional Laplacian ∆D(f−2|∇v|2)
is a Radon measure on D and satisfies as a measure

(5.1) ∆D(f−2 · |∇v|2) ≥ 2κ · |∇v|2 · H2
D .

The proof will be a direct consequence of the Bakry-Émery inequality
on the RCD(κ, 2) space X, once we have identified via the conformal
homeomorphism φ the Sobolev spaces and Laplacians on D with the
corresponding objects on X.

5.2. Identifications. Whenever no confusion is possible we will use
the homeomorphism φ−1 to identify Ω̄ with D̄.

Due to (4.3), under this identification we have

(5.2) H2
X |Ω = H2

Ω = f 2 · H2
D .

We are going to identify the space of Sobolev functions N1,2(Ω) =
N1,2(Ω,R) with the ”classical” space N1,2(D) = W 1,2(D).

From (4.4) we draw the following conclusion. Let u : Ω → R be
measurable. A Borel function ρ : Ω→ [0,∞] is a weak upper gradient
of u, thus satisfies (4.1) for almost every curve γ in Ω, if and only if
(ρ ◦ φ) · f : D → [0,∞] is a weak upper gradient of the composition
u ◦ φ : D → R.
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Due to (5.2), ρ ∈ L2(Ω) if and only if (ρ ◦ φ) · f ∈ L2(D).
Since D̄ and Ω̄ satisfy the 2-Poincaré inequality, the 2-integrability

of a weak upper gradient implies that the function itself is 2-integrable,
[HKST15, Lemma 8.1.5, Theorem 9.1.2].

This shows that a map v : D → R is contained in N1,2(D) if and
only if u := v ◦ φ−1 is contained in N1,2(Ω). Moreover, in this case the
weak minimal upper gradients satisfy

(5.3) ρu =
ρv
f
◦ φ−1 =

|∇v|
f
◦ φ−1 .

Combining with (5.2) and identifying D and Ω this shows

(5.4) |∇v|2 · H2
D = ρ2

u · H2
Ω and ChΩ(u) = ChD(v).

5.3. Laplacians. By the RCD property, the spaces X and R2 are in-
finitesimally Hilbertian, meaning that ChX and ChR2 are quadratic
forms on N1,2(X) and N1,2(R2), respectively. Thus, D and Ω are in-
finitesimally Hilbertian as well, [Gig15, Proposition 4.22].

For Y = X,Ω, D,R2 we consider the corresponding bilinear forms
EY : N1,2(Y )×N1,2(Y )→ R, called Dirichlet forms,

EY (u1, u2) =
1

2
(ChY (u1 + u2)2 − ChY (u1 − u2)2) .

From (5.4) we see that for v1,2 ∈ N1,2(D) and u1,2 = v1,2◦φ−1 ∈ N1,2(Ω)

(5.5) EΩ(u1, u2) = ED(v1, v2) .

For Y = D,Ω, a function u ∈ N1,2(Y ) is in the domain of the (measure
valued) Laplacian on Y if there exists a Radon measure ν on Y with
the following property, [Gig15, Definition 4.4, Proposition 4.7, Lemma
4.26]: For all w ∈ N1,2(Y ) which are continuous and have compact
support in Y the equality

EY (u,w) = −
∫
Y

w dν

holds true. In this case, we set ∆Y (u) := ν.
From (5.5), a function u ∈ N1,2(Ω) is contained in the domain of the

Laplacian, if and only if v = u ◦φ is in the domain of the Laplacian on
D. Moreover, in this case

(5.6) ∆D(v) = ∆Ω(u) ,

where we identify Radon measures on D and Ω via φ.

5.4. The proof of Proposition 5.1. Due to (5.6), for any harmonic
function v : R2 → R, the composition u = v ◦ φ−1 satisfies ∆Ω(u) = 0,
thus u is a harmonic function on Ω.

Due to the regularity of harmonic functions on RCD spaces, the
function u : Ω → R is locally Lipschitz ([Jia14, Theorem 1.1], which
is a combination of [AGS14, Theorem 6.2], [AGS15, Corollary 2.3] and
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[KRS03, Theorem 1.1, Proposition 5.1]). Applying this observation to
the coordinate functions v1,2 we deduce that φ−1 : Ω → D is locally
Lipschitz. Since 1

f
◦φ−1 is a weak minimal upper gradient of φ−1 : Ω→

D, we deduce that f−1 is locally bounded on D.
Let now v : D → R be a harmonic function. Consider the composi-

tion u = v ◦ φ−1 ∈ N1,2(Ω). By (5.6), ∆Ω(u) = 0. Due to (5.3) and
(5.4) the right hand side of (5.1) is given by 2κ · ρ2

u · H2
Ω, where ρu is

the weak minimal upper gradient of u. Using (5.3) again, it remains
to show the following claim for any open subset O ⊂ Ō ⊂ Ω . A repre-
sentative of ρ2

u is contained in the domain of the Laplacian in N1,2(O)
and we have the comparison of measures

(5.7) ∆O(ρ2
u) ≥ 2κ · ρ2

u · H2
O .

The proof of (5.7) follows from the Bochner inequality [Gig15, Proposi-
tion 4.36], [AGS14, Remark 6.3], [AGMR15] by localization, as follows.

If the function u is a restriction to O of a test function û ∈ N1,2(X)
in the sense of [Amb18, Equation (7.2)] then (5.7) is precisely [Gig15,
Proposition 4.36], since ∆O(u) = 0. In general, we multiply u by a test
function which is constant 1 on O and has support in Ω (the existence
of such cut-off functions has been verified in [AMS16, Lemma 6.7]).
This provides a function û ∈ N1,2(X) which restricts to u on O and is
a test function on X, [Gig15, Proposition 4.17, Theorem 4.29].

This finishes the proof of Proposition 5.1.

5.5. An analytic conclusion. By a combination of a smoothing ar-
gument and a pointwise computation we are going to conclude:

Corollary 5.2. The function log(f 2) is contained in L1
loc(D). The dis-

tributional Laplacian ∆(log(f 2)) is a Radon measure on D and satisfies

(5.8) ∆(log(f 2)) ≤ −2κ · f 2 · H2
D .

For any domain O, compactly contained in D there exist a sequence
of smooth functions fn : O → (0,∞) such that fn satisfy (5.8) on O,
such that log(fn) converges to log(f) in L1(O) and such that ∆(log(f 2

n))
weakly converge to ∆(log(f 2)) as measures on O.

Proof. Consider the function h = f−2. Due to Proposition 5.1, the
function h is locally bounded on D. Moreover, for any harmonic func-
tion v on R2, the function h satisfies in the sense of measures on D

(5.9) ∆(h · |∇v|2) ≥ 2κ · |∇v|2 · H2
D .

We fix a ball O = B1−δ(0) ⊂ D for the rest of the proof. For
all δ > 2 · ε > 0 consider the mollifications hε : O → R obtained
by a convolution of h with the usual smooth mollifiers ρε : R2 →
[0,∞) whose support is in Bε(0) ⊂ R2. Since the function h is positive
almost everywhere, the smooth functions hε are positive on O. By a
direct computation (or using the observation that (5.9) is a system of
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linear inequalities on the function h, which is moreover, equivariant
with respect to translations), we see that hε satisfies (5.9) on O for all
harmonic functions v on R2.

The function h is bounded from above on the ε-neighborhood of O,
hence so is log(h). On the other hand, − log(h) = log( 1

h
) ≤ 1

h
. Thus,

the integrability of f 2 = 1
h

shows log(h) ∈ L1(O).

The convexity of the function t→ 1
t

and Jensen’s inequality imply

1

hε
≤
(

1

h

)
ε

,

where on the right side we have the mollifications of the function 1
h
.

Since ( 1
h
)ε converge in L1(O) to 1

h
as ε goes to 0, we deduce that 1

hε

converges to 1
h

is L1(O) as well.

Similarly, t→ − log(t) = log(1
t
) is convex and arguing as above with

Jensen’s inequality we see that log(hε) converges in L1(O) to log(h) as
ε goes to 0.

For all n > 2
δ

consider the smooth function fn on O such that f−2
n =

h 1
n
. Like above, log fn = −2 log h 1

n
converge to log f in L1(O). The

remaining statements follow by a continuity argument, once we have
verified ∆(log(f 2

n)) ≤ −2κ · f 2
n on O.

As we have seen above, the smooth positive functions h 1
n

satisfy (5.9)

on O, for all harmonic functions v : R2 → R. Therefore, we only need
to verify that for a smooth positive function h on a domain U in R2 the
validity of (5.9) for all harmonic functions v : R2 → R implies

(5.10) ∆(log(h)) =
∆(h)

h
− |∇h|

2

h2
≥ 2κ

h
.

It is sufficient to verify this pointwise statement at a single point z ∈ U
which we may assume to be z = 0.

Set e := ∇h(0). If e = 0 we choose v to be a linear non-zero function
on R2. Then (5.9) implies ∆(h)(0) ≥ 2 · κ, hence, (5.10).

If e 6= 0, fix λ ∈ R and consider the uniquely determined symmetric
traceless matrix A : R2 → R2 with A(e) = λ · e. The function

v(z) := 〈z, A(z) + e〉

is harmonic on R2 and satisfies ∇v(z) = e+ 2 · A(z). Therefore,

∇(|∇v|2)(z) = 4λ · e+ 8 · A2(z) and ∆(|∇v|2)(z) = 16λ2 .

Thus, the right hand side of (5.9) at z = 0 is just 2κ · |e|2.
For the left hand side of (5.9) at the point z = 0 we compute

∆(h) · |∇v|2 + 2
〈
∇h,∇(|∇v|2)

〉
+ h ·∆(|∇v|2) =

= ∆(h)(0) · |e|2 + 8λ · |e2|+ 16 · λ2 · h(0) .
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For λ = − |e|2
4·h(0)

the inequality (5.9) now reads

|e|2 ·
(

∆(h)(0)− |e|
2

h(0)

)
≥ 2κ · |e|2 .

Dividing by h(0) · |e|2 we deduce (5.10).
This finishes the proof of Corollary 5.2. �

6. Curvature bound in the regular part

6.1. Preliminaries from Alexandrov geometry. We refer to [BBI01]
for basics about Alexandrov geometry and just agree on notation here,
following [Pet16]. Let κ be a fixed real number as before. For points

p, x1, x2 in a metric space Y , we denote by ∠̃κ(px1x2) the κ-comparison

angle, whenever it exists. Thus, ∠̃κ(px1x2) is the angle in the constant
curvature surface M2

κ at the vertex p̃ of a triangle p̃x̃1x̃2 with the same
side-lengths as px1x2.

A subset O of a metric space Y satisfies the (1+3)-points comparison
if for any quadruple of points p;x1, x2, x3 ∈ O the inequality

∠̃κ(px1x2) + ∠̃κ(px2x3) + ∠̃κ(px3x1) ≤ 2π

holds true or one of the κ-comparison angles is not defined.
A metric space Y has curvature ≥ κ if every point y ∈ Y has a

neighborhood O which satisfies the (1+3)-points comparison and such
that every pair of points in O is connected in Y by a geodesic.

A complete geodesic metric space of curvature ≥ κ is called an
Alexandrov space of curvature ≥ κ.

If Y has curvature ≥ κ, the ball B̄2R(y) ⊂ Y is compact and any
pair of points in BR(y) is connected in Y by a geodesic, then BR(y)
satisfies the (1 + 3)-point comparison, [Pet16, p. 3].

Note finally that the (1 + 3)-point comparison property (of subsets)
is stable under Gromov–Hausdorff convergence.

The aim of this section is the following

Proposition 6.1. The subspace Xδ of δ-regular points in X has cur-
vature bounded from below by κ.

6.2. Reshetnyak’s theory. We continue to use the notation from
Section 4 and Section 5. For a homeomorphism φ : D → Ω ⊂ X the
length `X(φ ◦ γ) is given by (4.2), for almost all curves γ in D. The
conformal factor f = ρφ satisfies the conclusion of Corollary 5.2.

By Corollary 5.2, the function ∆(log f) is a Radon measure. Thus, on
any compactly contained domain O ⊂ D we can canonically represent
log(f) as a sum of a harmonic function and a Riesz potential, [Res93, p.
99]. Using this representative of f , the f -length `f (γ) of any rectifiable
curve γ on O is defined in [Res93, p. 100] by the formula (4.2).

This induces a new metric df on O by letting df (z1, z2) be the in-
fimum of all f -lengths of rectifiable curves connecting z1 and z2. The
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metric df induces the original Euclidean topology on O, [Res93, The-
orem 7.1.1]. We define the metric space Of = (O, df ) to be the disc O
equipped with the metric df .

The following statement is implicitly contained in [Res93, p. 140].
For convenience of the reader, we reduce the result to other more ex-
plicit statements in [Res93].

Lemma 6.2. The space Of has curvature bounded from below by κ.

Proof. We find smooth positive functions fn : O → R approximating f
as in Corollary 5.2. By [Res93, Theorem 7.3.1], the distance functions
dfn converge on O locally uniformly against df .

On the other hand, dfn is a smooth Riemannian metric. Its curvature

can be computed pointwise by the classical formula −∆(log(fn))
f2n

, [Res93,

p. 40]. Thus, (5.8) shows that the Riemannian manifold Ofn has
sectional curvature bounded from below by κ.

Hence, Ofn has curvature bounded from below by κ in the sense
of Alexandrov, [BBI01, Theorem 6.5.6]. Therefore, for any compact
metric ball B in (O, df ) and the concentric ball B′ with one-third the
radius of B, the set B′ ⊂ Ofn satisfies the (1 + 3)-point comparison,
for all large n. By continuity, B′ satisfies the (1 + 3)-point comparison,
when considered as a subset of Of . This completes the proof. �

6.3. Sobolev-to-Lipschitz. By construction, for almost all curves γ
in O, the length of φ ◦ γ in X is equal to the f -length of γ, hence to
the length of γ in the metric space Of . The easiest way to upgrade
the equality statement from almost all curves to all curves, is via an
application of the Sobolev-to-Lipschitz property of RCD-spaces, stated
as follows, [Gig13, p. 48], [AGS15]:

For any RCD(κ, 2) space X, any open subset W of X and any
u ∈ N1,2(W ) for which the constant function ρ = 1 is a weak upper
gradient, the function u has a locally 1-Lipschitz representative.

In fact, the Sobolev-to-Lipschitz property is defined and verified in
[Gig13, p. 48] only in the global case W = X, but the proof presented
there covers the local version formulated above.

Lemma 6.3. The open embedding φ : Of → X is a local isometry.

Proof. Set W = φ(Of ) and consider the inverse map ψ = φ−1 : W →
Of . By construction, ψ preserves the length of almost any curve γ in
W . Therefore, the map ψ is contained in the Sobolev space N1,2(W,Of )
and the constant function 1 is a weak upper gradient of ψ.

Therefore, for any point y ∈ Of , the composition ψy ∈ N1,2(W ) of ψ
with the distance function inOf to the point y has the constant function
1 a weak upper gradient. By the Sobolev-to-Lipschitz property, this
implies that ψy is locally 1-Lipschitz. Since X is a geodesic space, and
y was arbitrary, this implies that ψ is locally 1-Lipschitz.
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In order to prove that φ is locally 1-Lipschitz, we apply the same ar-
gument. (Alternatively, this can be seen directly, as in [LW18b, Lemma
9.3]). Firstly, H2

Of
= f 2 · H2

O and the same computation as in Section
4 shows that any family of curves of modulus 0 in O has modulus 0
in Of . Thus, the map φ preserves the lengths of almost all curves in
Of . Therefore, φ ∈ N1,2(Of , X) and the constant function 1 is a weak
upper gradient of φ. Arguing as above we deduce that φ is locally
1-Lipschitz, once the Sobolev-to-Lipschitz property has been verified
locally in Of .

But any point in Of has a compact neighborhood isometric to an
Alexandrov space, by [Pet07, Theorem 7.1.3]. This implies the Sobolev-
to-Lipschitz property, as a consequence of [Pet11] and [Gig13, p. 40].

Since φ and φ−1 are locally 1-Lipschitz, φ is a local isometry. �

For any δ-regular point x0 ∈ X, we choose a domain Ω containing
x0 as in Section 4. Lemma 6.3 and Lemma 6.2 imply the existence of
a neighborhood of x0 in Ω which has curvature bounded below by κ.
This finishes the proof of Proposition 6.1.

7. Extension to the singular points

7.1. Topological statement. Most of this rather long section is de-
voted to the proof of the following topological statement.

Proposition 7.1. Any point z ∈ ∂X with b(z) = 1
2

has an open neigh-
borhood U in X homeomorphic to the closed half-plane H, such that z
lies in the boundary line ∂H.

Before we embark on the proof of this proposition, we explain why
this statement is sufficient to finish the proof of our main theorem.

Lemma 7.2. The validity of Proposition 7.1 implies that the set Xδ is
strongly convex in X. Thus any geodesic γ with endpoints x, y ∈ Xδ is
completely contained in Xδ.

Proof. Assume the contrary and consider a point z ∈ X \ Xδ on γ
closest to the point x.

Due to Lemma 2.4, the point z is contained in ∂X and satisfies
b(z) = 1

2
. Applying Proposition 7.1 we find a neighborhood U of z

homeomorphic to H, such that z lies on the boundary line ∂H.
The part γ+ of the geodesic γ between x and z is contained in Xδ

(up to the point z) hence it intersects ∂H only in the point z. By
choosing the neighborhood U smaller we can therefore assume that γ+

separates U into two components.
Fix a point q on the part of γ between z and y sufficiently close to z

and let U+ be the component of U \γ+ which does not contain q. Thus,
for any point m ∈ U+, sufficiently close to z, any geodesic between q
and m intersects γ+.
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In particular, the point z lies on a geodesic between m and q. This
statement, valid for the fixed point q and an open set of points m,
contradicts the essentially non-branching property of the RCD space
X, [GRS16, Theorem 1.2, Corollary 1.4]. �

Therefore, the validity of Proposition 7.1 implies that the space Xδ

is a geodesic space. Since X is the completion of Xδ, we would deduce
from [Pet16] that X is an Alexandrov space with curvature ≥ κ and
finish the proof of Theorem 1.1.

7.2. Interior points. Consider a point x ∈ X \ ∂X. Assume that x
is not contained in Xδ. By Lemma 3.1, we find some r > 0 such that
B2r(x)\Xδ contains only the point x. By Proposition 6.1, B2r(x)\{x}
has curvature ≥ κ in the sense of Alexandrov.

Due to Lemma 2.4, for any y, z ∈ Br(x) \ {x}, any geodesic connect-
ing y and z in X is contained in B2r(x)\{x}. Toponogov’s globalization
theorem in the version of [Pet16], now shows that Br(x) \ {x} satis-
fies the (1 + 3)-point comparison. By continuity, Br(x) satisfies the
(1 + 3)-point comparison as well.

We have just verified:

Corollary 7.3. The subspace X \ ∂X of X has curvature ≥ κ.

7.3. Setting. We now fix a point z ∈ ∂X with b(z) = 1
2
. We consider a

sequence of points xi ∈ X converging to z and a sequence ri of positive
numbers converging to 0. After choosing a subsequence we may and
will assume that the blow-up (Y, y) = lim( 1

ri
X, xi) exists.

Furthermore, we consider the sequence of non-negative numbers si =
d(xi, ∂X). By choosing a further subsequence, we may and will assume
that the following limit exists:

A := lim
i→∞

si
ri
∈ [0,∞] .

As we have seen in Section 2, any ball of any radius t in the blow-up Y
has H2-measure at least π

2
t2. From the volume-cone rigidity, [DPG16],

and Lemma 2.3 we deduce:

Lemma 7.4. The RCD(0, 2) space Y can have non-empty boundary
only if Y is isometric to the flat half-plane H.

Our next aim is to show that (non) boundary points of X converge
to (non) boundary points in the blow-up Y . After that we will show
that the blow-up Y is isometric to a plane or a half-plane.

7.4. Stability of the boundary. In the previous notation we are
going to show:

Lemma 7.5. If A > 0 then the point y is not contained in ∂Y .
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Proof. Assume the contrary. By Lemma 7.4, Y is isometric to the
half-plane H and y ∈ ∂H.

By rescaling, we may assume that A > 9. Thus, for all i large
enough, the compact ball B̂i in Xi = 1

ri
X of radius 6 around xi does

not contain boundary points. Due to Corollary 7.3, the open ball Bi

of radius 3 around xi in Xi satisfies the (1 + 3)-point comparison, see
Section 6 and [Pet16].

A contradiction to the fact that the surfaces without boundary Bi

converge to a surface with boundary (the ball in H around the limit
point y) can now be deduced in several ways. We choose a way rely-
ing on (the simplest case of) Perelman’s topological stability theorem,
[Per91], [Kap07].

From [Pet07, Theorem 7.1.3] we deduce the existence of some δ >
0 and closed compact convex subsets Ci ⊂ Bi containing the ball
Bδ(xi) ⊂ Bi. The spaces Ci are compact 2-dimensional Alexandrov
spaces converging (after choosing a subsequence) to an Alexandrov
space C ⊂ H which contains the ball Bδ(y) ⊂ H. By Perelman’s sta-
bility theorem [Per91], [Kap07], for all large i, there exists a homeomor-
phism Φi : Ci → C close to the identity. Since Bδ(xi) is a 2-manifold
without boundary, we deduce that y must have in Y a neighborhood
homeomorphic to a 2-manifold without boundary which is impossible.

This contradiction finishes the proof. �

Lemma 7.6. If A = 0 then Y is isometric to the half-plane H and y
is on the boundary ∂H.

Proof. Consider points zi ∈ ∂X with d(zi, xi) = si = d(∂X, xi). The
assumption A = 0 implies that the points zi ∈ Xi = 1

ri
X converge to

the same point y ∈ Y .
Since zi ∈ ∂X, we see that the density b(y) at Y is at most 1

2
. The

volume-cone rigidity argument implies that b(y) = 1
2

and Y is isometric
to the Euclidean cone TyY . It remains to show that TyY cannot be the
Euclidean cone over the circle of length π.

We assume that Y is a Euclidean cone over a circle and are going to
derive a contradiction.

For all i large enough, there exist no points pi in ∂X with ri <
d(pi, zi) < 2ri, since Y \ {y} is locally Euclidean. Denote by Ki the set

∂X ∩ B̄ri(zi) and by K̂i the complement ∂X \Ki. Then, for all i large

enough, Ki is compact and K̂i is closed in ∂X. Moreover,

d(z, zi) ≥ ti := d(Ki, K̂i) ≥ ri .

Consider points ki ∈ Ki and k̂i ∈ K̂i realizing the distance between
Ki and K̂i and take the blow-up (choosing a subsequence) (Ŷ , k) =
lim( 1

ti
X, ki).

As before, the volume-cone rigidity implies that Ŷ is either a half-
plane or a cone over a circle. However, the points k̂i converge (after
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taking a subsequence) to a non-Euclidean point k̂ ∈ Ŷ with distance 1

to k. Therefore, Ŷ must be isometric to H and the geodesic between
k and k̂ must lie on the boundary ∂H.

Hence, the midpoints mi of any geodesic between ki and k̂i in X
converge to a point on the boundary of Ŷ .

But, by construction, the point mi in X has distance ti
2

from ∂X.
We obtain a contradiction with Lemma 7.5 and finish the proof. �

Lemma 7.7. If A =∞ then Y is isometric to R2.

Proof. Due to Lemma 7.6 and Lemma 7.5, the sequence ( 1
si
X, xi) con-

verges to a half-plane (H, ŷ) where ŷ has distance 1 from ∂H. There-
fore, H2(B1(ŷ)) = π. Stability of the Hausdorff measures implies,

H2(Bsi(xi))

s2
i

→ π .

Applying the Bishop–Gromov inequality, and the assumption A =∞,
we see that for any fixed t > 0,

b(xi, t · ri)
ri

→ πt2 .

Thus, the ball Bt(y) in Y has H2-measure π · t2. Since t is arbitrary,
the volume-cone rigidity implies that Y is isometric to TyY = R2. �

Combining the last three statements we easily arrive at

Corollary 7.8. The space Y is either R2 or the half-plane H. The
case Y = H happens if and only if A <∞. Moreover, in this case ∂H
coincides with the limit of the boundary ∂X.

Proof. The only statement not directly contained in Lemma 7.5, Lemma
7.6 and Lemma 7.7 is that for 0 < A <∞ the space Y is isometric to
H. However, if A < ∞ we can replace the base points xi by closest
points zi ∈ ∂X and apply Lemma 7.6 to deduce the statement. �

7.5. Reifenberg’s lemma twice. We can now finish the

Proof of Proposition 7.1. Due to Corollary 7.8, for any sequence zi ∈
∂X converging to z and any sequence ri → 0 the sequence ( 1

ri
∂X, zi)

converges to the line ∂H = R. Applying the Cheeger–Colding–Reifenberg
Lemma, [CC97, Theorem A1], we deduce that a neighborhood of z in
∂X is homeomorphic to an interval.

Consider now the doubling W = X ∪∂X X of X with its natural
length metric, compare [Per91, Section 5].

We claim that for any sequence xi ∈ W converging to z and any se-
quence of positive numbers ri converging to 0 the blow-up lim( 1

ri
W,xi)

is isometric to R2.
Choosing a subsequence and using the symmetry we may assume

that xi ∈ X ⊂ W and that for si := d(xi, ∂X) the quotients si/ri
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converge to a number A ∈ [0,∞]. Applying Corollary 7.8, we see that
in the case A =∞, the blow-up coincides with lim( 1

ri
X, xi) = R2.

On the other hand, if A <∞, we can change the base points xi and
assume xi ∈ ∂X, without changing the isometry class of the blow-up.
Then the limit lim( 1

ri
W,xi) is the doubling of H = lim( 1

ri
W,xi) along

the boundary ∂H = lim( 1
ri
∂X, zi).

Having proved the claim, we can now apply the Cheeger-Colding-
Reifenberg Lemma a second time and deduce that a neighborhood V
of z in W is homeomorphic to an open disc. Passing to a smaller
subdisc if necessary, we obtain a homeomorphism between V and the
plane which takes V ∩ ∂X to a line.

By connectedness reasons we see that X ∩V must be homeomorphic
to a half-plane. �
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[BS18] E. Brué and D. Semola. Constancy of the dimension for RCD(K,N)
spaces via regularity of Langranian flows. arXiv:1804.07128, 2018.

[CC97] J. Cheeger and T. Colding. On the structure of spaces with Ricci cur-
vature bounded below. I. J. Differential Geom., 46(3):406–480, 1997.

[CM15] F. Cavalletti and A. Mondino. Sharp and rigid isoperimetric inequalities
in metric measure spaces with lower ricci curvature bounds. Invent.
Math., to appear, 2015.

[CM18] F. Cavalletti and A. Mondino. Almost euclidean isoperimetric in-
equalities in spaces satisfying local ricci curvature lower bounds.
arXiv:1703.02119, 2018.

[CN12] T. Colding and A. Naber. Sharp Hölder continuity of tangent cones for
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