
RIEMANNIAN FOLIATIONS OF SPHERES

ALEXANDER LYTCHAK AND BURKHARD WILKING

Abstract. We show that a Riemannian foliation on a topological
n-sphere has leaf dimension 1 or 3 unless n = 15 and the Riemann-
ian foliation is given by the fibers of a Riemannian submersion to
an 8-dimensional sphere. This allows us to classify Riemannian
foliations on round spheres up to metric congruence.

1. Introduction

We are going to prove the final piece of the following theorem:

THEOREM 1.1. Suppose F is a Riemannian foliation by k-dimensional
leaves of a compact manifold (M, g) which is homeomorphic to Sn. We
assume 0 < k < n. Then one of the following holds

a) k = 1 and the foliation is given by an isometric flow, with
respect to some Riemannian metric.

b) k = 3, n ≡ 3 mod 4 and the generic leaves are diffeomorphic to
RP3 or S3.

c) k = 7, n = 15 and F is given by the fibers of a Riemannian
submersion (M, g) → (B, ḡ) where (B, ḡ) is homeomorphic to
S8 and the fiber is homeomorphic to S7.

Furthermore all these cases can occur.

A big part of the Theorem follows by putting together various pieces
in the literature: Ghys ([Ghy84]) showed that the generic leaves of a
Riemannian foliation of a homotopy sphere are closed, unless the leaf
dimension is 1 and the foliation is given by an isometric flow with
respect to a possibly different Riemannian metric. Furthermore, the
generic leaves are rational homotopy spheres. Haefliger ([Hae84]) ob-
served that for any Riemannian foliation of a complete manifold M
with closed leaves, one can find a space M̂ homotopically equivalent to
M , such that M̂ is the total space of a fiber bundle, where the fibers
are homeomorphic to the generic leaves of the foliation (see section 2
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for further details). If M is a sphere then the fibers are contractible

in M̂ . Spanier and Whitehead observed ([SW54]) that for any such
fibration the fiber must be an H-space. Furthermore, closed manifolds
which are H-spaces and rational homotopy spheres were classified by
Browder ([Bro62]): they are homotopically equivalent to S1, RP3, S3,
RP7 or S7. With Perelman’s solution of the geometrization conjecture
one can improve the statement further to diffeomorphic if k = 3.

We are left to consider 7-dimensional foliations of homotopy spheres.
Our strategy will be to reduce the situation first to the case of n = 15
and then to show that the foliation is simple, i.e., given by the fibers
of a Riemannian submersion. By a result of Browder ([Bro62]) this
automatically rules out the possibility of an RP7-foliation.

To see that all examples can occur, we can again appeal to the lit-
erature for the only non-classical case: the existence of RP3 foliations
on S4k+3. It was shown by Oliver ([Oli79]), that contrary to a previ-
ous conjecture, there are almost free smooth actions of SO(3) ∼= RP3

on S4k+3 for k ≥ 1. The actions of Oliver extend to fixed point free
smooth actions on the disc D4k+4, different actions were later exhibited
by Grove and Ziller ([GZ00]).

Our topological result allows us to classify Riemannian foliations of
the round sphere up to metric congruence. We recall that Gromoll and
Grove ([GG88]) classified Riemannian foliations of the sphere up to leaf
dimension 3. Moreover, due to [Wil01], a Riemannian submersion of
the round S15 with 7-dimensional fibers is metrically congruent to the
Hopf fibration. Combining this work with Theorem 1.1 gives

Corollary 1.2. Let F be a Riemannian foliation on a round sphere
Sn with leaf dimension 0 < k < n. Then, up to isometric congruence,
either F is given by the orbits of an isometric action of R or S3 with
discrete isotropy groups or it is the Hopf fibration of S15 → S8(1/2)
with fiber S7.

As has been pointed out by Gromoll and Grove, a real representation
ρ : S3 → SO(n) induces an almost free action of S3 on the unit sphere
if and only if all irreducible subrepresentations are even dimensional.

The paper is structured as follows. In Section 2 we recall the results
stated after Theorem 1.1 and study the fibration M̂ → B̂ from a ho-
motopy n-sphere M̂ to the resolution B̂ of the orbifold B = M/F . The
fiber of the fibration is L, the principal leaf of F , and we only need
to consider the cases L = S7 and L = RP7. From this fibration we
compute the cohomology of B̂. The even-degree cohomology ring of
B̂ turns out to be a truncated polynomial ring Fp[a] at all odd primes
p. Using Steenrod powers at p = 3 we deduce that n must be equal
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to 15. In the two subsequent sections, we exclude the possibility that
the orbifold B is not a manifold. Here we use the local data of the
orbfold to find non-trivial cohomology classes of B̂ that cannot exist
by the previous computations. We rely on the fact that all isotropy
groups of B act freely on a 7-dimensional sphere or a projective space,
a severe restriction on the possible group structure. In Section 3, we
use the computation of the cohomology of B̂ at the prime 2, to de-
duce that all isotropy groups are cyclic of odd order. Here we detect
the forbidden classes by looking at single points of B, i.e., by finding
non-zero restrictions of the cohomology classes to the classifying spaces
of the isotropy groups. In Section 4, we exclude the possibility that
the set Bp of points with non-trivial p-isotropy is non-empty, otherwise
detecting forbidden cohomology classes by their non-trivial restriction
to a component of Bp.

2. Topology

2.1. Recollection. Let (M,F) be as in Theorem 1.1 and assume that
the leaves have dimension k ≥ 2. Due to [Ghy84], all leaves of F are
closed. This in turn is equivalent to saying that F is a generalized
Seifert fibration on M , i.e., the space of leaves B = M/F carries the
natural structure of a smooth Riemannian orbifold, such that the in-
duced Riemannian distance corresponds to the distance between leaves
in M . Due to [Ghy84], the regular leaf L of F is a rational homology
sphere. Following Haefliger, we consider the SO(n − k) bundle FrM
over M given by all oriented horizontal frames in M . Then the Rie-
mannian foliation F induces a fiber bundle structure on FrM with the
fibers being diffeomorphic to L and with the base space being the ori-
ented frame bundle FrB of the orbifold B. Furthermore, the natural
fiber bundle map FrM → FrB is SO(n− k)-equivariant.

Thus one also gets a fiber bundle with total space given by M̂ =
FrM ×SO(n−k) ESO(n − k) with fiber L and with base space B̂ :=

FrB ×SO(n−k) ESO(n − k), f : M̂ → B̂. Clearly, M̂ is homotopically

equivalent to M and B̂ is the so called resolution (or classifying space)
of the orbifold B. Its cohomology is the so called orbifold cohomology of
B. As has been oberserved by Haefliger the natural projection B̂ → B
is a rational homotopy equivalence.

Since the fiber L is a k-dimensional manifold and M̂ ∼heq M ∼heq Sn
is k-connected, we see that the fiber is contractible in M̂ . Therefore
L is an H-space ([SW54]). Since L is a rational homology sphere, we
may apply [Bro62] and deduce that L is homotopy equivalent to RP3,
S3, S7 or RP7.
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The geometrization conjecture shows that for k = 3 the generic leaf
F is diffeomorphic to RP3 or S3. Moreover, the Gysin sequence with
Q-coefficients of the fibration M̂ → B̂ shows that the dimension n of
M is divisibly by k + 1 = 4, cf. the argument in the next subsection.
This finishes the proof of Theorem 1.1 in the case k = 3.

Thus we only need to consider the case k = 7. Hence, L is either
homeomorphic to S7 or it is homotopy equivalent to RP7 and its double-
cover is homeomorphic to S7. We call the first case the spherical case
and the second case the projective case.

2.2. Gysin sequence and dimension. Let R be any ring with unit.
In the projective case we assume in addition that 2 is invertible in R,
e.g., F3 or Q. Then H∗(L, R) = H∗(S7, R). Thus we find the Gysin
sequence of the fibration f with coefficients in R. The Euler class must
be a generator a ∈ H8(B̂, R) ∼= H0(B̂, R) ∼= R. Moreover, the cup

product ∪a : H2i(B̂)→ H2i+8(B̂) is an isomorphism, if 2i 6= n− 7.

Since B̂ has finite rational cohomology, we use this isomorphism for
R = Q to see that n = 8l + 7, for some positive integer l.

2.3. Reduction to n = 15. We want to show l = 1. Assume on
the contrary l ≥ 2. Then, due to the above isomorphism, we have
H∗(B̂,F3) = F3[a] in degrees ≤ 16. To obtain a contradiction, we first
show:

Lemma 2.1. Under the assumptions above there exists a space X and
an element c ∈ H8(X,F3) such that the cohomology ring H∗(X,F3)
equals the polynomial ring F3[c] in degrees ≤ 24.

Proof. For l > 2, one could just take X = B. In general, let Ef be

the mapping cylinder of f , which is a fiber bundle over B̂ with fiber
being the cone over L. Let X be the Thom space of the fibration f ,
which is obtained from Ef by identifying all points on the boundary of

Ef . For the subbundle E ′ = B̂ of the bundle Ef → B̂, we can apply

[Hat02], Theorem 4.D.8. Using the fact that the bundle M̂ → B̂ is
orientable, we deduce that there is an element c ∈ H8(E,E ′,F3) =
H8(X,F3) (the Thom class of the fibration), such that b → f ∗(b) ∪ c
induces an isomorphism between H∗(B̂) and the reduced cohomology
H̃∗+8(X,F3).

The claim follows from this isomorphism and the structure of H∗(B̂).
�

We now get a contradiction to the following application of Steenrod
powers, cf. [Hat02], Theorem 4.L.9.
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Lemma 2.2. Let X be a topological space. Assume that H12(X,F3) =
H20(X,F3) = 0. Then for all c ∈ H8(X,F3) we have c3 = 0.

Proof. Consider the Steenrod operations P i : Hn(X,F3)→ Hn+4i(X,F3).
We have c3 = P 4(c). On the other hand, by the Adem relations, P 4(c)
is a linear combination of P 1(P 3(c)) and P 3(P 1(c)), which must both
be zero, since P 1(c) and P 3(c) are zero by assumption. �

The contradiction shows l = 1, hence n = 15. Thus B has dimension
8 and B̂ has the rational homology of S8.

2.4. Cohomology of B̂. From the Gysin sequence of the fibration
f : M̂ → B̂ we deduce:

Lemma 2.3. Let p be a prime number, with p 6= 2 in the projective
case. Then either B̂ is an Fp-homology sphere, or the Fp-cohomology

ring of B̂ has the form

H∗(B̂, R) = R[a, b]/b2,

where b has degree 15 and a has degree 8.

We will need:

Lemma 2.4. H4(B̂,Z) = 0.

Proof. In the spherical case B̂ is 7-connected. In the projective case,
we know π2(B̂) = Z2 and πk(B̂) = 0 for k = 1 and 3 ≤ k ≤ 7. Hence

the canonical map from B̂ to the Eilenberg-MacLane space K(Z2, 2)
induces isomorphisms on all cohomologies in all degrees ≤ 7. The result
follows from the computations of the cohomology groups of K(Z2, 2)
(for instance, cf. [Cle02]). �

The last result about the cohomology of B̂ which we extract from the
fibre bundle M̂ → B̂ is the following application of the transgression
theorem of Borel ([Bor53], Theorem 13.1). This theorem applies (cf.
[Bro62], last paragraph on p. 370), since in the projective case, the
fiber L has the cohomology of RP7.

Lemma 2.5. Assume that L is homotopy equivalent to RP7. Then
the cohomology ring H∗(B̂,F2) up to degree 14 is freely generated by
elements u2, u3, u5 of degree 2, 3 and 5 respectively. In particular, we
have dimH10(B̂,F2) = 4 and dimH14(B̂,F2) = 6.
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3. Isotropy groups are cyclic groups of odd order

In this section we use characteristic classes to see that any 2-Sylow
subgroup of any isotropy group is cyclic of order at most 4. Then we
use that the isotropy groups act freely on the generic leaf L to show
that all isotropy groups are cyclic groups of odd order.

Consider B as the quotient space B = FrB/SO(8), where FrB is
the bundle of oriented frames of B with canonical action of SO(8).

Recall that the space B̂ is nothing else but the Borel construction
B̂ = FrB ×SO(8) ESO(8). We will often consider the canonical 8-
dimensional vector bundle (the tangent bundle of the orbifold)

TB̂ := FrB ×SO(8) ESO(8)× R8

over B̂.

Lemma 3.1. Let V be a vector bundle over B̂. Then the Stiefel-
Whitney classes w2(V ) and w4(V ) vanish.

Proof. We first assume w2(V ) = 0 and prove that this implies w4(V ) =
0.

By stabilizing with a trivial bundle we may assume that the rank
l of V is at least 5. Let pr : B̂ → BSO(l) be the classifying map of
the bundle V . In particular, the Stiefel-Whitney classes of V are given
by pull backs of Stiefel-Whitney classes of the universal bundle over
BSO(l). Since w2(V ) = 0, pr can be lifted to a map p̃r : B̂ → BSpin(l).
Suppose now on the contrary that w4(V ) 6= 0. Then

p̃r∗ : H4(BSpin(l),F2)→ H4(B̂,F2)

is not zero. SinceH4(BSpin(l),Z) ∼= Z there is a natural mapBSpin(l)→
K(Z, 4) to the Eilenberg-MacLane space K(Z, 4) that induces an iso-
morphism on 4-th cohomology with integral coefficients. Since this
map is 5-connected it also induces an isomorphism on 4-th cohomol-
ogy with F2-coefficients. By composing this map with p̃r we get a
map B̂ → K(Z, 4) which induces a nontrivial map on 4-th cohomology
with F2-coeffcients. On the other hand, the homotopy classes of maps
B̂ → K(Z, 4) are classified by H4(B̂,Z) = 0 (see Lemma 2.4) and thus

any map B̂ → K(Z, 4) is null homotopic – a contradiction.
Assume now w2(V ) 6= 0. Then w2(V )2 6= 0 as well (cf. Lemma 2.5).

Consider the bundle W = V ⊕ V . Then the total Stiefel-Whitney
classes satisfy w∗(W ) = w∗(V ) · w∗(V ). Since B̂ is simply connected,
w1(V ) = 0. We deduce w2(W ) = 0 and w4(W ) = w2(V )2. Applying
the previous observation to the bundle W , we deduce w4(W ) = 0. This
contradicts w2(V )2 6= 0.
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Lemma 3.2. Let Γx ⊂ SO(8) be an isotropy group. Then any element
of order 2 is given by −id ∈ SO(8). The 2-Sylow group of Γx is a cylic
group of order at most 4.

Proof. Let x̃ ∈ FrB be a point in the inverse image of x ∈ B such that
Γx is the isotropy group of the SO(8)-action on FrB at x̃. Notice that
the image of SO(8) ? x̃× ESO(8) ⊂ FrB × ESO(8) under the natural

projection FrB × ESO(8) → B̂ can be naturally identified with the

classifying space BΓx ⊂ B̂ of the isotropy group Γx. If we restrict the
canonical bundle TB̂ over B̂ to BΓx, we get an R8-bundle which is
isomorphic to EΓx×Γx R8 where Γx ⊂ SO(8) is acting by the canonical

representation on R8. Let Γ0 ⊂ Γx be a subgroup. If we pull back TB̂
via the covering map BΓ0 → BΓx ↪→ B, we thus get a bundle which is
isomorphic to V = EΓ0 ×Γ0 R8 over BΓ0. By Lemma 3.1, the second
and the fourth Stiefel-Whitney classes of V vanish.

Suppose now that Γ0
∼= Z2 and suppose the non-zero element ι ∈

Γ0 ⊂ SO(8) has 2k times the eigenvalue −1. Then EΓ0 ×Γ0 R8 is a
bundle over RP∞ ∼= BΓ0 which decomposes as the sum of 2k canonical
line bundles and 8 − 2k trivial line bundles. Thus the total Stiefel-
Whitney class is given by (1+w)2k = (1+w2)k, where 1 is the generator
of H0(RP∞,F2) and w is the generator of H1(RP∞,F2) ∼= F2.

If k is odd, we get w2(V ) 6= 0 and if k = 2, we see that w4(V ) 6= 0.
Since w2(V ) = 0 and w4(V ) = 0 we obtain a contradiction in both
cases. This only leaves us with the possibility that ι has 2k = 8 times
the eigenvalue −1 and thus ι = −id.

Thus there is at most one order 2 element in Γx. Hence a 2-Sylow sub-
group S2 ⊂ Γx does not contain any abelian non-cyclic subgroup. This
implies that S2 is either cyclic or generalized quaternionic ([Wol67],
[Wal10]). In order to prove that S2 is cyclic it suffices to rule out the
possibility that we can realize the quaternion group with 8 elements
Q8 as a subgroup of an isotropy group Γx ⊂ SO(8). Suppose on the
contrary we can. As before, the bundle V8 = EQ8 ×Q8 R8 over BQ8

can be seen as a pull back bundle of the canonical bundle over B̂. By
Lemma 2.4, H4(B̂,Z) = 0 and thus the first Pontryagin class of V8

vanishes, p1(V8) = 0.
The embedding of Q8 ⊂ SO(8) is determined by the fact that the

center of Q8 is mapped to ±id. The representation of Q8 decomposes
into two equivalent 4-dimensional subrepresentations of Q8. Thus V8

is isomorphic to the sum of two copies of the 4-dimensional bundle
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V4 = EQ8 ×Q8 R4, where Q8 acts by its unique 4-dimensional irre-
ducible representation on R4. Since V4 admits a complex structure,
we have c1(V4 ⊗R C) = 0 and thus the first Pointryagin class is ad-
ditive: 2p1(V4) = p1(V8) = 0. In other words, p1(V4) ∈ Z2 ⊂ Z8

∼=
H4(BQ8,Z). If we pull back the bundle V4 to BZ4 via the natural
covering BZ4 → BQ8 we get a bundle V ∗4 which decomposes into
two 2-dimensional subbundles, whose Euler classes are generators of
H2(BZ4,Z) ∼= Z4. This in turn implies that p1(V ∗4 ) is given by the
order two element in H4(BZ4,Z) ∼= Z4. On the other hand, p1(V ∗4 )
is given by the image of p1(V4) under the natural homomorphism
H4(BQ8,Z) ∼= Z8 → Z4

∼= H4(BZ4,Z) – a contradiction since any
homomorphism Z8 → Z4 has p1(V4) ∈ Z2 ⊂ Z8 in its kernel.

Thus the 2-Sylow group is cyclic. It remains to rule out that there
are elements of order 8. Suppose on the contrary that Γ0 ⊂ Γx ⊂ SO(8)
is cyclic group of order 8 and fix a generator γ ∈ Γ0 ⊂ SO(8) . Let
ζ ∈ S1 ⊂ C be a primitive 8th root of unity, and choose numbers
m1, . . . ,m4 ∈ Z such that ζ±mi ∈ S1 ⊂ C (i = 1, . . . , 4) are the eigen-
values of γ ∈ SO(8) counted with multiplicity. Since we know γ4 = −id,
all mi are odd.

The bundle W8 = EΓ0 ×Γ0 R8 over BΓ0 decomposes into four ori-
entable 2-dimensional subbundles whose Euler classes are given by
±miη (i = 1, . . . , 4) where η is a generator of H2(BΓ0,Z) ∼= Z8.

It follows that the first Pontryagin class of the bundle is given by
−(
∑4

i=1m
2
i )η

2. As before p1(W8) = 0 and since η2 is a generator of
H4(BΓ0,Z) = Z8, this implies m2

1 + m2
2 + m2

3 + m2
4 ≡ 0 mod 8. But

for any odd number we have m2
i ≡ 1 mod 8 – a contradiction.

�

Lemma 3.3. Any isotropy group is either cyclic or isomorphic to a
semidirect product Zq o Z4, where Z4 acts on the cyclic group of odd
order q by an automorphism of order 2. Moreover, if Γ has even order
it has a nontrivial 4-periodic F2-cohomology.

Proof. Let Γ be a (not necessarily proper) subgroup of an isotropy
group. Since Γ acts freely on the generic leaf L, either Γ or a Z2-
extension of Γ acts freely on S7 and thus has 8-periodic cohomology
(cf. [Wal10], [Wol67] for this fact and subsequent results about groups
with periodic cohomology). Thus for all odd p, the p-Sylow groups are
cyclic. By Lemma 3.2, the 2-Sylow group is cyclic as well.

A classical theorem of Burnside implies that such a group is meta-
cyclic, that is, Γ is isomorphic to a semidirect product Zq o Zr where
q and r are relatively prime.
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It remains to check that the homomorphism β : Zr → Aut(Zq) does
not contain any elements of odd prime order p. In fact then Lemma 3.2
implies that the image of β has order at most 2.

We argue by contradiction and assume that Γ ∼= ZqoZr is a minimal
counterexample. The minimality easily implies that q is a prime and
that r is a prime power r = pk, where p 6= q are both odd.

We consider the normal covering BZq → BΓ whose deck transfor-
mation group is generated by an element ι of order pk. Since the order
is prime to q, the induced map H∗(BΓ,Fq)→ H∗(BZq,Fq) is injective
and its image is given by the fixed point set of ι∗ where ι∗ is the induced
map on cohomology. Clearly ι∗ acts on H2(BZq,Fq) by an element of
order p. This in turn implies that H2k(BZq,Fq) is fixed by ι∗ if and only
k is divisible by p. Hence the minimal period of H∗(Γ,Z) is divisible
by 2p – a contradiction since we know that Γ has 8-periodic cohomol-
ogy. Thus Γ is cyclic and has 2-periodic cohomology, or Γ ∼= Zq o Z4,
where Z4 acts by an automorphism ι of order two on Zq. To see that in
the latter case Γ has 4-periodic cohomology we construct a free linear
action of Γ on S3. Let Zm ⊂ Zq be the fixed point set of ι. Since
ι has order 2, the numbers m and q/m are relatively prime. In par-
ticular Γ ∼= Zm × (Zq/m o Z4). We can now embed Γ into U(2) by
mapping the factor Zm injectively to a central subgroup of U(2) and
by mapping (Zq/m o Z4) injectively to a subgroup of SU(2). Clearly,
the induced action on S3 is free and thus Γ has 4-periodic cohomology.
The F2-cohomology of Γ can not be trivial as H1(BΓ,F2) ∼= F2. �

Lemma 3.4. The isotropy groups are cyclic groups of odd order.

Proof. By Lemma 3.3 it suffices to show the isotropy groups have odd
order. By Lemma 3.2 the subset B2 ⊂ B of points whose isotropy
groups have even order is finite B2 = {p1, . . . , ph}. Let Γ1, . . . ,Γh
denote the corresponding isotropy groups. Suppose on the contrary
that B2 is not empty.

Let FrB2 denote the inverse image of B2 in the frame bundle FrB →
B and B̂2 = FrB2×SO(8)ESO(8) the corresponding subset in the Borel

construction B̂ = FrB×SO(8) ESO(8). By assumption there is a tubu-

lar neighbourhood U of B̂2 in B̂ which is homeomorphic to the normal
bundle of B̂2 in B̂. By excision and Thom isomorphism the relative
cohomology group H∗(B̂, B̂ \ B̂2,F2) is given by ⊕hj=1H

∗−8(BΓj,F2).

Furthermore, the F2-cohomology of B̂ \ B̂2 coincides with the F2-
cohomology of B \B2 and thus is zero in degrees above 8. Since Γi has
nontrivial 4-periodic F2-cohomology we can combine all this with the
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exact sequence of the relative cohomology of the pair (B̂, B̂ \ B̂2) to see

that B̂ has nontrival 4-periodic F2-cohomology in all degrees ≥ 9.
In the spherical case we get a contradiction to Lemma 2.3. In the

projective case this contradicts Lemma 2.5. �

Remark 3.1. Once one has established that any order two element in
an isotropy group is given by −id, one can also proceed differently to
rule out isotropy groups of even order altogether: As above, there are
only finitely many points xi ∈ B whose isotropy groups Γi, i = 1, . . . , h
have even order. Moreover, the 2-Sylow group of Γi is either cyclic or
generalized quaternionic. By a theorem of Swan [Swa60] this implies
that the F2-cohomology of Γi is nontrivial and 4-periodic. One can
then directly pass to the proof of Lemma 3.4.

4. All isotropy groups are trivial

We have seen in the last section that all isotropy groups are cyclic
groups of odd order, Lemma 3.4. We fix an odd prime p. In this section
we plan to prove that the order of any isotropy group is not divisible
by p. We argue by contradiction and assume the set Bp of points in B
whose isotropy group has p-torsion is not empty.

In any isotropy group Γx with x ∈ Bp there is a unique normal
subgroup of Γx which is isomorphic to Zp. This implies that Bp is a
smooth suborbifold of B. Let X denote a connected component of Bp.

Let FrX denote the inverse image of X in the frame bundle FrB →
B and X̂ = FrX ×SO(8) ESO(8) the corresponding subset in the Borel

construction B̂ = FrB×SO(8)ESO(8). By assumption there is a tubular

neighbourhood U of X̂ in B̂ which is homeomorphic to the normal
bundle of X̂ in B̂.

Lemma 4.1. The image H∗(B̂,Fp)→ H∗(X̂,Fp) contains the kernel of

H∗(X̂,Fp)→ H∗(ν1X̂,Fp), where ν1X̂ denotes the unit normal bundle

of X̂ in B̂. If the normal bundle is orientable and e ∈ H∗(X̂,Fp)
denotes its Euler class then the kernel of the latter map is given by the
image of H∗(X̂,Fp)→ H∗(ν1X̂,Fp), x 7→ x ∪ e.

Proof. Consider the Mayer Vietoris sequence of B̂ = U ∪ (B̂ \ X̂)

H∗(B̂)
j→ H∗(U)⊕H∗(B̂ \ X̂)→ H∗(U \ X̂).

Since U is homotopy equivalent to X̂ and H∗(U \ X̂) is homotopy

equivalent to ν1(X̂) the first statement follows. The second statement is
an immediate consequence of the exactness of the Gysin sequence. �
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We will use that the cohomology H l(BZp,Z) is given by 0 for all
odd l and by Zp for all even positive l. It is generated by elements in
degree 0 and 2. Furthermore H∗(BZp,Fp) ∼= Fp[x, y]/x2Fp[x, y] where
x has degree 1 and y has degree 2.

We distinguish among three cases.

4.1. Case 1. The normal bundle of X̂ is orientable. Let x ∈ X
be a point and let BΓx ⊂ X̂ be the fiber of x with respect to the
natural projection B̂ → B.

Then there is a unique normal subgroup Zp ⊂ Γx and there are natu-

ral mapsBZp → BΓx → X̂. Consider the induced map α∗ : H∗(X̂,Fp)→
H∗(BZp,Fp). The Euler class e ∈ H t(X̂,Fp) of the normal bundle of

X̂ ⊂ B̂ is mapped to the Euler class α∗e of the bundle EZp ×ρ νx(B̂),

where ρ : Zp → O(νx(B̂)) denotes the natural representation. The
representation ρ decomposes into 2-dimensional irreducible subrepre-
sentation and, by construction, each of these 2-dimensional subrepre-
sentations is effective. This in turn implies that the Euler class α∗e of
the bundle is a generator of H t(BZp,Fp), where t is the codimension
of X. Hence (α∗e)k is not zero, for all k ≥ 0. By Lemma 4.1, this

non-zero element lies in the image of H∗(B̂,Z) → H∗(BZp,Fp). We

deduce that Hkt(B̂,Fp) does not vanish for all k ∈ N. Combining with

Lemma 2.3 this gives t = 8. Thus X is a single point and X̂ = BΓx.
Since Γx is cyclic we have H l(BΓx,Fp) ∼= Fp for all l ≥ 0. Finally,

since cupping with the Euler class induces an isomorphism, we can use
Lemma 4.1 once more to see that H l(B̂,Fp) 6= 0 for all l ≥ 8 – this
contradicts Lemma 2.3.

4.2. Case 2. dim(X) 6= 4 and the normal bundle of X̂ is not
orientable. Since B is an orientable orbifold, this assumption implies
that X is a nonorientable orbifold and, in particular, X is not a point.
Thus t = (8− dim(X)) ∈ {2, 6}.

We consider the twofold cover X̃ → X̂ such that the pull back of
the normal bundle is orientable. The map H∗(X̂,Fp) → H∗(X̃,Fp) is
injective and its image is given by the fixed point set of ι∗, where ι∗ is
the map induced by the nontrivial deck transformation ι of X̃.

By the non-orientability assumption, the Euler class e of the pull
back bundle satisfies ι∗e = −e. As before we deduce that the image of
e in H∗(BZp,Fp) does not vanish. Therefore, el ∈ H lt(X̃,Fp) is a non-

trivial element in the kernel of H lt(X̃,Fp)→ H lt(ν1(X̃),Fp) for l ≥ 1.

If l is even el is the pull back of an element f l/2 ∈ H lt(X̂,Fp), with f ∈
H2t(X̃,Fp). Clearly, f l/2 is in kernel of H lt(X̂,Fp) → H lt(ν1(X̂),Fp)
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and, by Lemma 4.1, H lt(B̂,Fp) 6= 0 for all even l. Since t ∈ {2, 6}, this
is a contradiction to Lemma 2.3.

4.3. Case 3. dim(X) = 4 and the normal bundle of X̂ is not
orientable. This case is technically more involved and we subdivide
its discussion into several steps.

Step 1. Each normal space νy(X̂) of a point y ∈ X̂ decomposes into
two inequivalent 2-dimensional subrepresentations of Zp ⊂ Γy.

It is clear that νy(X̂) decomposes into two subrepresentations of Zp ⊂
Γy. If the two representations would be equivalent then each element
g ∈ Zp would naturally induce a complex structure J on the normal
space, and up to the sign the complex structure would not depend on
the choice of g. Since ±J induce the same orientation on 4-dimensional
spaces, this would imply that ν(X̂) is orientable – a contradiction.

Again, instead of working directly with X̂ we go to a suitable cover
X̃. This time we consider a fourfold cover in which the pull-back of the
bundle ν is orientable and decomposes into the sum of two orientable
2-dimensional subbundles determined by the first step above. We sum-
marize the properties of this cover X̃, which are intuitively rather clear,
but whose exact derivation requires some tedious considerations:

Step 2. There is a normal cover X̃ of X̂ whose group of deck transfor-
mation is generated by one element ι of order 4, such that the following
holds true:

(1) The pull-back bundle ν(X̃) of ν to X̃ is orientable and sum of
two orientable 2-dimensional subbundles. The map ι exchanges
the subbundles and the map ι2 changes the orientation of each
of them.

(2) The unit bundle ν1(X̃) has vanishing cohomology in degrees
≥ 8 with coefficients in Fp.

(3) X̃ is the total space of a fiber bundle X̃ → Ỹ with fiber BZp
and connected structure group.

(4) The restrictions of both 2-dimensional subbundles of ν(X̃) to a
fiber BZp have Euler classes which generate H2(BZp,Z).

Moreover, p ≡ 1 mod 4.

Proof. As before, FrX ⊂ FrB denotes the inverse image of X in the
frame bundle of B. Let x ∈ X be a point, with isotropy group Γx ⊂
SO(8). Let Γ be the unique normal subgroup of Γx isomorphic to Zp.

12



We have seen above that Γ acts on R8 as the sum of two inequivalent
representations and a trivial four-dimensional representation. There-
fore, the normalizer N of Γ which is contained in O(4)×O(4)∩SO(8) has
connected component N0 = SO(4) × T2. Moreover, N0 coincides with
the centralizer of Γ. We see that N has either two or four connected
components.

Let L ⊂ FrX be a fixed point component of Γ, whose projection to
X is surjective. Then L is N0-invariant. If L is not N-invariant, or if N
has only two connected components, then we could make a continuous
choice of pairs {g, g−1} ∈ Γ along L. We can then argue, similarly to

the first paragraph of Case 3, that the normal bundle of X̂ is orientable,
in contradiction to the assumption.

We deduce that N/N0 has 4 elements. Thus N is isomorphic to
SO(4)o (T2 oZ4) where Z4 acts effectively on T2 and T2 oZ4 acts on
SO(4) as Z2. Moreover, N acts on Γ as the group Z4. In particular,
p ≡ 1 mod 4 because otherwise Aut(Zp) does not contain elements of
order 4.

The generator ι of this group Z4 exchanges the 2-dimensional Γ-
invariant subspaces of R4 ⊂ R8. The square ι2 preserves the subspaces
and changes the orientation on each of them.

Since all isotropy groups of points in L with respect to the SO(8)-
action on FrX are contained in N and the SO(8)-orbit through any
point of FrX intersects L, we see that FrX is SO(8)-equivariantly

diffeomorphic to L×N SO(8). This in turn shows that X̂ = FrX×SO(8)

ESO(8) is homotopy equivalent to L×N EN.

We now consider the 4-fold cyclic cover X̃ = L×N0EN of X̂ with the
group of deck transformations N/N0 = Z4. Note that the normal bundle
ν(L) decomposes as a sum of N0-invariant orientable 2-dimensional
subbundles. Hence, the bundle ν(L) ×N0 EN decomposes as a sum
of orientable 2-dimensional subbundles. But this bundle is just the
pull-back to X̃ of the normal bundle of X̂.

The description the action of ι on R4 above finishes the proof of (1).

The unit bundle ν1(X̃) is a covering of the unit bundle ν1(X̂). The
latter space is homotopy equivalent to the resolution of a 7-dimensional
orbifold without p-isotropy. This implies (2).

In order to see (3), observe that Γ = Zp lies in the kernel of the
action of N on L. Thus we have a canonical action of N/Γ (which is
isomorphic to N) on L. Consider now the canonical action of N on
EN and via N/Γ on E(N/Γ). Then, for the diagonal action of N on
L×EN×E(N/Γ), we see that X̃ is homotop to L×N0 (EN×E(N/Γ)).
The canonical projection of this space to Ỹ := L×N0 E(N/Γ) is a fiber
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bundle with fiber BΓ. Moreover, the structure group of this bundle is
the connected group N0.

The restriction of each of the 2-dimensional subbundles to the fiber
BZp is given by EZp×(Zp,ρi)R2 where ρ1 and ρ2 are the two inequivalent
faithful representations mentioned at the beginning. This proves (4).

�

The last statement, namely p ≡ 1 mod 4, implies that any endomor-
phism of order 4 on any finite-dimensional Fp-vector space is diagonal-
izable with eigenvalues λ ∈ Fp satisfying λ4 = 1 ∈ Fp. In particular, it

applies to the endomorphism ι∗ of H∗(X̃,Fp).
If e denotes the Euler class (with any coefficients) of the bundle ν(X̃)

and ei denote the Euler classes of the two 2-dimensional subbbundles,
then the first statement of the above lemma reads as follows: e1∪e2 = e;
ι∗ preserves the set of four elements {±e1,±e2}; and (ι∗)2(ei) = −ei,
for i = 1, 2.

Step 3. Let I∗ denote the graded subalgebra of H∗(X̃,Fp) that con-

sists of ι∗-invariant elements divisible by the Euler class e of ν(X̃).
Then dim(I8) = 1 and Ik = 0 for 0 < k < 15, k 6= 8.

The natural map H∗(X̂,Fp) → H∗(X̃,Fp) is injective and as in Case
2 its image is given by the ι∗-invariant elements. The subalgebra I∗
is thus isomorphic to the kernel of H∗(X̂,Fp)→ H∗(ν1(X̂),Fp). Com-
bining Lemma 4.1 and Lemma 2.3, Step 3 follows.

Step 4. H1(X̃,Fp) = 0.

Otherwise, choose a non-zero eigenvector w ∈ H1(X̃,Fp) of ι∗. In the

subspace H2(X̃,Fp) spanned by e1 and e2 we can find an eigenvector f
of ι∗ which is not in kernel of the restriction to H2(BZp,Fp). Of course,
the Euler class e satisfies ι∗e = −e. Since f 2 restricts to a generator of
H4(BZp,Fp), we see that ι∗f = hf with h2 ≡ −1 mod p.

We claim that w∪f l∪e 6= 0, for all l ≥ 0. We choose a circle S1 ⊂ Ỹ
in the base of the fiber bundle X̃ → Ỹ (see Step 2 (3)), such that w
restricts to a nonzero element in the first Fp cohomology group of the

inverse image S̃ of S1 in X̃. We get a fiber bundle BZp → S̃ → S1

and since the structure group is connected, this bundle must be trivial.
Since f and e restrict to nonzero elements of the Fp-cohomology of the
fiber BZp the claim follows.

Depending on the eigenvalue of w, we can choose some l ∈ {0, 1, 2, 3}
such that w∪f l∪e is fixed by ι∗. The existence of this non-zero element
of Ik with k ∈ 5, 7, 9, 11 contradicts Step 3.
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Step 5. For all j > 0, we have dim(H2j(X̃,Fp)) ≥ 2.

Proof. By the previous step H1(X̃,Fp) = 0. The group H1(X̃,Z) is

finite without p-torsion, thus H2(X̃,Z) does not have p-torsion either.
Let R be the ring obtained by localizing Z at p, i.e.

R = Z
[
{1/q | q is a prime with q 6= p}

]
⊂ Q

From the universal coefficient theorem H1(X̃, R) = 0 and H2(X̃, R) =
Rr, for some r. Let ê1, ê2 ∈ H2(X̃, R) denote the Euler classes with
R coefficients of the two 2-dimensional subbundles of ν(X̃). Due to
Step 2, they restrict to generators of H2(BZp, R) ∼= Zp. In particular
êi 6= 0. Moreover (ι∗)2êi = −êi. Thus ι∗ acts as an endomorphism of
order four on H2(X̃, R) = Rr. Therefore r ≥ 2.

We consider the fibration BZp → X̃ → Ỹ . Clearly H2(Ỹ , R) has
rank at least 2 as well. We look at the cohomology Serre spectral
sequence with coefficients in R corresponding to this fibration. Since
the action of the fundamental group on the cohomology of the fiber
is trivial, the E2 page is given by Ei,j

2 = H i(Ỹ , Hj(BZp, R)). The 0-

th column E0,j
2 survives throughout the sequence since H∗(X̃, R) →

H∗(BZp, R) is surjective. Therefore also the 0-th entry E2,0
2 of the

second column survives throughout. In the second column of the E2-
page, all odd entries are zero while the even positive entries are all
isomorphic to H2(Ỹ ,Zp). For each of these even dimensional entries

the natural image of H2(Ỹ , R)→ H2(Ỹ ,Zp) coincides with the image

of E0,2j
2 ⊗E2,0

2 in E2,2j
2 with respect to the multiplicative structure since

the multiplicative structure is induced by the cup product. Clearly
these subgroups survive till the E∞ term. Notice that the image of
H2(Ỹ , R) in H2(Ỹ ,Zp) is given by (Zp)r for some r ≥ 2. Therefore

H2k(X̃, R) is the domain of a surjective homomorphism to (Zp)2 for all
positive k. �

A contradiction in Case 3 now arises as follows. Since ν1(X̃) can be
seen as a resolution of a 7-dimensional orbifold whose isotropy groups
do not have p-torsion, it follows that H i(ν1(X̃),Fp) = 0 for all i ≥ 8.

We see from the Gysin sequence for ν1(X̃) that cupping with e induces
an isomorphism of the cohomology groups in degrees ≥ 5. Since e =
e1 ∪ e2 the same holds for cupping with e1. Moreover, cupping with e
is surjective onto H8(X̃,Fp).

By Step 5 we can choose an ι∗-eigenvector w ∈ H8(X̃,Fp), which is
linear independent to the fixed point e2.
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If ι∗w = w, then dim(I8) ≥ 2. If ι∗w = −w, then w∪e ∈ H12(X̃,Fp)
would be a nonzero element of I12. In both cases we get a contradiction
to Step 3.

Otherwise we have that (ι∗)2w = −w. Then w ∪ e1 is a nonzero
fixed point of (ι∗)2. This in turn implies that H10(X̃,Fp) contains an
eigenvector of ι∗ to the eigenvalue of 1 or −1. In the latter case cupping
with e gives a nontrivial element of I14. In the former case we have
a nonzero element in I10, providing a contradiction to Step 3 in both
cases.

5. Final Remarks.

In summary we have ruled out all orbifold singularties in B. Thus B
is a Riemannian manifold, and F is given by the fibers of a Riemannian
submersion M → B. By [Bro62] (or Lemma 2.5), it follows that we are
in the spherical case. From the homotopy sequence of the fiber bundle,
we see that the base B of the submersion is a homotopy sphere, hence
B is a topological sphere. This finishes the proof of Theorem 1.1.

Remark 5.1. It is well known ([Shi57]) that there are many exotic 15-
spheres that fiber over S8. Of course, the base manifold B in part c) of
the main theorem can also be an exotic sphere, in fact one can just pull
back the Hopf fibration to the exotic 8-sphere by a smooth degree 1 map
from the exotic 8-sphere to S8. What is not known however is whether
the fibers of such a fibration can be exotic 7-spheres. This seems to
be closely related to the question on how closely the diffeomorphism
group of an exotic 7-sphere is linked to the diffeomorphism group of
S7.
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