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Abstract. We prove that a locally compact space with an upper curvature

bound is a topological manifold if and only if all of its spaces of directions are
homotopy equivalent and not contractible. We discuss applications to homol-

ogy manifolds, limits of Riemannian manifolds and deduce a sphere theorem.

1. Introduction

1.1. Main results. We prove the following

Theorem 1.1. Let X be a connected, locally compact metric space with an upper
curvature bound. Then the following are equivalent:

(1) X is a topological manifold.
(2) All tangent spaces TpX of X are homeomorphic to the same space T , and

T is of finite topological dimension.
(3) All spaces of directions ΣpX are homotopy equivalent to the same space Σ,

and Σ is non-contractible.

Theorem 1.1 answers a folklore question about the infinitesimal characterization
of topological manifolds among spaces with upper curvature bounds, cf. [AB92]. It
implies an affirmative answer to a question of F. Quinn, [Qui06, Problem 7.2]:

Theorem 1.2. Let X be a metric space with an upper curvature bound. If X is a
homology manifold then there exists a locally finite subset E of X such that X \ E
is a topological manifold.

We refer the reader to [Mio00] and to Subsection 2.4 below for basics on homology
manifolds and to Section 6 for a stronger result.

If X in Theorem 1.1 is a topological manifold of dimension n then all tangent
spaces TpX turn out to be homeomorphic to Rn and all spaces of directions turn
out to be homotopy equivalent to Sn−1.

For n ≥ 5, the spaces of directions may not all be homeomorphic to Sn−1, [Ber99],
as a consequence of the double suspension theorem of R. Edward [Edw06], [Can79].
However, for n ≤ 4, all spaces of directions ΣpX are homeomorphic to Sn−1, see
Theorem 6.4. This answers a question of V. Berestovskii [Ber07, Problem 1].

We deduce the following topological stability theorem:
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2 A. LYTCHAK AND K. NAGANO

Theorem 1.3. For κ ∈ R and r > 0, let a sequence of complete n-dimensional
Riemannian manifolds Mi with sectional curvature ≤ κ and injectivity radius ≥
r converge in the pointed Gromov–Hausdorff topology to a locally compact space
X. Then X is a topological manifold and any space of directions ΣxX of X is
homeomorphic to Sn−1.

Moreover, if X is compact then Mi is homeomorphic to X, for all i large enough.

In particular, the double suspension of a non-simply connected homology sphere,
Example 2.5, is not a limit of CAT(κ) Riemannian manifolds, proving the conjecture
formulated in [Ber99].

1.2. Analogies and differences. For spaces with lower curvature bounds the
analogs of Theorem 1.1 and the stability part of Theorem 1.3 are special cases
of the fundamental topological stability theorem of G. Perelman, [Per91], [Kap07].
Moreover, Theorem 1.2 for Alexandrov spaces is a direct consequence of Perelman’s
stability theorem, as observed in [Wu97]. The analog of the additional statement
in Theorem 1.3 about the homeomorphism type of the spaces of directions (see also
Theorem 7.1 below, for a more general statement) has been proved for Alexandrov
spaces by V. Kapovitch in [Kap02].

However, for spaces with an upper curvature bound there is no analog of the
stability theorem, even for finite graphs. Moreover, already in dimension 2, locally
compact, geodesically complete spaces with an upper curvature bound do not need
to admit a topological triangulation, as has been observed by B. Kleiner, [Kle99].
Thus, unlike their analogs for Alexandrov spaces, our results are not special cases
of much more general statements.

On the other hand, our approach requires less geometric control and should be
applicable beyond our setting. For instance, it might simplify Perelman’s stability
theorem for Alexandrov spaces.

As in Perelman’s topological theory of Alexandrov spaces, a major role in our
topological results play the so-called strainer maps investigated in [LN18]. Perel-
man has proved in [Per91], that in the realm of Alexandrov spaces strainer maps
are local fiber bundles. Similarly to the failure of topological stability, the example
in [Kle99] demonstrates that in spaces with upper curvature bounds the local fiber
bundle structure can not be expected. Nevertheless, from the homotopy point of
view, strainer maps behave well and turn out to be (local) Hurewicz fibrations. This
result, Theorem 5.1, is deduced from general topological statements and the local
contractibility of fibers of strainer maps obtained in [LN18]. Theorem 5.1 might be
useful in further investigations of spaces with upper curvature bounds and beyond.

We further mention, that the main theorems of [GPW90], ([GPW91]), [Fer94]
imply (in a more general situation) the finiteness of topological types of manifolds
in the sequence appearing in the final statement of Theorem 1.3. However, no
conclusion about the limit space itself can be deduced in the generality of [GPW90],
[Fer94] besides the fact that the limit space is a homology manifold.

Finally, Theorems 1.1, 1.2 in dimensions ≤ 3 and some related insights in di-
mension 4 are due to P. Thurston, [Thu96].

1.3. Two applications. In order to state yet another manifold characterization we
recall, [LN18], that a space X with an upper curvature bound is locally geodesically
complete if any local geodesic γ : [a, b]→ X can be extended as a local geodesic to
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some larger interval [a−ε, a+ε]. All homology manifolds, thus all spaces appearing
in the previous theorems, are always locally geodesically complete, Lemma 2.2.

Theorem 1.4. Let X be a connected, locally compact space which has an upper
curvature bound and is locally geodesically complete. If X is not a topological man-
ifold then it contains an isometrically embedded compact metric tree different from
an interval.

Theorem 1.4 states that a non-manifold must have geodesics which branch at an
angle at least π. It can be seen as a soft version of the following much more special
and rigid result. If a connected, locally compact space X with an upper curvature
bound is locally geodesically complete and has no branching geodesics then X is a
smooth manifold whose distance is defined by a continuous Riemannian metric g
(with some additional properties), [Ber02], [LN18, Theorem 1.3].

Theorem 1.4 is a consequence of Theorem 1.1 and the following sphere theorem.

Theorem 1.5. Let Σ be a compact, locally geodesically complete space with cur-
vature bounded from above by 1. If the injectivity radius of Σ is at least π and
Σ does not contain a triple of points with pairwise distances at least π then Σ is
homeomorphic to a sphere.

Our Theorem 1.5 has a well-known analog for spaces with lower curvature
bounds, due to K. Grove and P. Petersen, later reproved by A. Petrunin: An
Alexandrov space of curvature at least 1 and radius larger than π

2 is homeomorphic
to a sphere, [GP93], [Pet97b]. In terms of the packing radii investigated in [GM95],
[GW95], the assumption about the triple of points in X reads as pack3(X) < π

2 .
From Theorem 1.5 it is easy to deduce a volume sphere theorem, see Theorem

8.3 below, generalizing [CI91], [Nag02a].

1.4. Structure of the paper. After Preliminaries in Section 2, we study in Sec-
tion 3 homology manifolds with upper curvature bounds and prove those parts of
our main theorems, which do not rely on properties of strainer maps. In Section 4
we recall several topological results relating fibrations, fiber bundles and local uni-
form contractibility. In Section 5 we recall from [LN18] basic properties of strainer
maps and apply results from Section 4 to deduce Theorem 5.1 discussed above. In
Section 6, we apply the general topological statements inductively to strainer maps
and prove Theorems 1.1, 1.2. In Section 7 we discuss iterated spaces of directions
and prove Theorem 1.3 and its generalization. In the final Section 8 we discuss
basic properties of pure-dimensional spaces and derive the proofs of Theorems 1.4,
1.5, 8.3.

Acknowledgments. The authors would like to express their gratitude to Steve
Ferry for providing an elegant proof of the 5-dimensional case of Theorem 6.5. We
thank Valeriy Berestovskii and Anton Petrunin for helpful comments.

2. Preliminaries

2.1. Notations. We refer to [ABN86], [BH99], [BS07], [AKP16], [LN18] for the
basics on upper curvature bounds in the sense of Alexandrov.

We will stick to the following notations. By d we denote the distance functions
on metric spaces. For a point p in a metric space X, we denote by dx : X → R the
distance function to the point x. By Br(p) (respectively, by B̄r(p)) we denote the
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open (respectively, closed) metric ball of radius r around the point p. By B∗r (p)
we will denote the punctured ball Br(p) \ {p}. By Sr(p) we will denote the metric
sphere of radius r around the point p. Geodesics will always be globally minimizing
and parametrized by arclength.

For two maps ϕ,ψ from a set G into a metric space Y , we set

d(ϕ,ψ) := sup
x∈G

d
(
ϕ(x), ψ(x)

)
.

The dimension of a metric space X will always be the covering dimension and will
be denoted by dim(X).

A metric space X has curvature bounded from above by κ if every point of X
has a CAT(κ) neighborhood. If X is a space with an upper curvature bound and
x ∈ X a point, we denote by Σx or by ΣxX the space of directions at x and by
Tx or by TxX the tangent cone at x of X, which is canonically identified with the
Euclidean cone over Σx.

We denote by Hk(X,Y ) the k-th singular homology with integer coefficients of
the pair Y ⊂ X of topological spaces.

2.2. Basic topological properties of spaces with upper curvature bounds.
Any space X with an upper curvature bound is an absolute neighborhood retract,
abbreviated as ANR, [Ont05], [Kra11]. In particular, X is homotopy equivalent to
a simplicial complex. We have, [Kra11]:

Lemma 2.1. For any point x in a space X with an upper curvature bound, there
exists some r > 0 such that for each 0 < s ≤ r, the ball Bs(p) is contractible and
the punctured ball B∗s (p) is homotopy equivalent to the space of directions Σp.

Due to [Kle99], for any separable space X with an upper curvature bound, we
have

dim(X) = 1 + sup
x∈X

(dim(ΣxX)) = sup
x∈X

(dim(TxX)) .

Moreover, if dim(X) is a finite number n, then there exists some x ∈ X such that
Hn−1(ΣxX) is not 0.

2.3. Tiny balls, GCBA spaces. Let X be a locally compact space with an upper
curvature bound κ. We will say that a ball Br(x) is tiny if the closed ball with
radius 10 · r around x is a compact CAT(κ) space and if 100 · r is smaller than the
diameter of the simply connected, complete surface of constant curvature κ.

In a tiny ball all geodesics are determined by their endpoints.
A space X with an upper curvature bound is locally geodesically complete, if

every local geodesic defined on any compact interval can be extended as a local
geodesic beyond its endpoints. The following observation, [LS07, Theorem 1.5],
goes back to H. Busemann:

Lemma 2.2. Let X be a space with an upper curvature bound. If for any x ∈ X
there exist arbitrary small r such that the punctured ball B∗r (x) is non-contractible
then X is locally geodesically complete.

Due to the long exact sequence and the contractibility of small balls, the local
homology Hm(X,X \ {x}) at x coincides with Hm−1(B∗r (x)), for any x in a space
X with an upper curvature bound, any small r > 0 and any natural m. Thus, the
non-vanishing of H∗(X,X\{x}), for all x ∈ X implies, that X is locally geodesically
complete.
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As a GCBA space we denote a locally compact, separable metric space with an
upper curvature bound, which is locally geodesically complete. If X is GCBA then
so is any tangent space TxX and any space of directions ΣxX. Moreover, any space
of directions ΣxX is compact and any tangent space TxX is the limit in the pointed
Gromov–Hausdorff topology of rescaled balls around x, [ABN86], [LN18, Section
5].

Every GCBA space X has locally finite dimension, [LN18, Theorem 1.1], and
contains an open and dense topological manifold (possibly of non-constant dimen-
sion), [LN18, Theorem 1.2]. Moreover, X contains a dense set of points with tan-
gent spaces isometric to Euclidean spaces, possibly of different dimension, [LN18,
Theorem 1.3].

The following result has been shown in [LN18, Theorems 1.12, 13.1]:

Proposition 2.3. Let x be a point in a GCBA space X. Then there exists some
rx > 0 such that for all r < rx the following hold true:

(1) The metric sphere Sr(x) is homotopy equivalent to Σx.
(2) Let B10·r(xi) be a sequence of tiny metric balls in GCBA spaces Xi with

the same upper curvature bound κ. If B̄10·r(xi) converge to B̄10·r(x) in the
Gromov–Hausdorff topology then, for all i large enough, Sr(xi) is homotopy
equivalent to Sr(x).

2.4. Homology manifolds. We denote by Dn the closed unit ball in Rn. We call
D2 the unit disk and denote it by D.

Let M be a locally compact, separable metric space of finite topological dimen-
sion. We say that M is a homology n-manifold with boundary if for any p ∈M we
have a point x ∈ Dn such that the local homology H∗(M,M \ {p}) at p is isomor-
phic to H∗(D

n, Dn \{x}). The boundary ∂M of M is defined as the set of all points
at which the n-th local homologies are trivial. In the case where the boundary of
M is empty, we simply say that M is a homology n-manifold.

If M is a homology n-manifold with boundary then ∂M is a closed subset of M
and it is a homology (n− 1)-manifold by [Mit90].

Any homology n-manifold (with boundary) has dimension n. For n ≤ 2, we have
the theorem of R. Moore, see [Wil49, Chapter IX].

Theorem 2.4. Any homology n-manifold with n ≤ 2 is a topological manifold.

2.5. Examples. The following example is well-known, [Ber94],[GP93].

Example 2.5. Consider a closed Riemannian (n − 2)-manifold Y which has the
homology of Sn−2 but is not simply connected (such manifolds exists in all n ≥ 5).
Rescaling the metric we may assume that Y is CAT(1). The spherical suspension
X1 = S0 ∗Y of Y is a CAT(1) space which is a homology manifold and has exactly
two non-manifold points. The double suspension X = S1 ∗Y of Y is a CAT(1) space
homeomorphic to Sn by the double suspension theorem, [Can79], [Edw06]. But for
any point x on the S1-factor, the space of directions ΣxX is isometric to X1, hence
not homeomorphic to Sn−1.

Some additional assumption on the tangent spaces and spaces of directions are
needed in Theorem 1.1:

Example 2.6. Let X be the Hilbert cube, hence a compact CAT(0) space. At any
x ∈ X the space of direction Σx is contractible. Moreover, at any x ∈ X the
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tangent space Tx is homeomorphic to the Hilbert space, as can be deduced from
[BBMW86], [Tor81].

3. Homology manifolds with upper curvature bounds

3.1. General observations. We start with the following:

Lemma 3.1. Let X be a locally compact space with an upper curvature bound. X
is a homology n-manifold if and only if H∗(Σx) = H∗(Sn−1), for all x ∈ X. In this
case, X is locally geodesically complete.

Proof. For any x ∈ X and r > 0 as in Lemma 2.1, Σx is homotopy equivalent to
B∗r (x) and H̃k(B∗r (x)) = Hk+1(X,X \ {x}), for any k.

Thus, if X is a homology n-manifold, then any space of directions ΣxX has the
homology of Sn−1.

If all spaces of directions have the homology of Sn−1 then they are non-contractible
and, therefore, X is locally geodesically complete. For any x ∈ X, we have
Hm(X,X \ {x}) = Hm(Sn−1). Thus, X has the same local homology as Rn. Since
X, as any GCBA space, has locally finite dimension, X is locally a homology n-
manifold. Thus X has topological dimension n and it is a homology n-manifold. �

Using the contraction along geodesics to the center of a ball, [Mit90] and the
Poincaré duality, [Bre97], we obtain [Thu96, Proposition 2.7]:

Lemma 3.2. Let Br(x) be a tiny ball in a homology n-manifold X with an upper
curvature bound. Then B̄r(x) is a compact, contractible homology manifold with
boundary Sr(x). In particular, Sr(x) is a homology (n− 1)-manifold with the same
homology as Sn−1.

3.2. Stability under convergence. The following observation is (essentially) a
special case of result of E. Begle, [Beg44], see also [GPW90, Theorem 2.1]. In our
situation the proof can be simplified using the homotopy properties of distance
spheres.

Lemma 3.3. Let Xi be compact CAT(κ) spaces converging in the Gromov–Hausdorff
topology to a compact space X. Let xi ∈ Xi converge to x ∈ X and let r > 0 be such
that for all i, the ball Br(xi) ⊂ Xi is a homology n-manifold. Then Br(x) ⊂ X is
a homology n-manifold.

Proof. Due to Lemma 3.1, the open balls Br(xi) are GCBA spaces, hence so is
Br(x), compare [LN18, Example 4.3]. In particular, the dimension of Br(x) is
locally finite.

It remains to prove that H∗(ΣzX) = H∗(Sn−1) for all z ∈ X. Write z as a limit
of points zi ∈ Br(xi). By Proposition 2.3 we find some r > t > 0, such that St(z)
is homotopy equivalent to ΣzX and to St(zi), for all i large enough. Thus, the
homology of ΣzX coincides with the homology of Sn−1 by Lemma 3.2. �

As a consequence we deduce:

Corollary 3.4. Let X be a homology n-manifold with an upper curvature bound.
Then, for any x ∈ X, the tangent space TxX is a homology n-manifold and Σx is
a homology (n− 1)-manifold.
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Proof. The space X is GCBA by Lemma 3.1. Thus, the tangent space (TxX, 0) is a
limit of rescaled metric balls around x in X. Due to Lemma 3.3, Tx is a homology n-
manifold. The homology n-manifold Tx\{0} is homeomorphic to Σx×R. Therefore,
Σx is a homology (n− 1)-manifold. �

3.3. Simple implications in the main theorem. We can already discuss the
simple implications in our main theorem. We start with the following (folklore)
result, compare [BB98, Proposition 3.12]:

Lemma 3.5. Let X be a topological n-manifold with an upper curvature bound.
Then any space of directions Σx is homotopy equivalent to Sn−1.

Proof. Any space of directions Σx is an ANR and compact homology (n − 1)-
manifold with the homology of Sn−1, Lemma 3.1, Corollary 3.4.

If n ≤ 3 then Σx is homeomorphic to Sn−1 by Theorem 2.4.
If n ≥ 3 then Σx by Whitehead’s theorem it suffices to prove that Σx is simply

connected.
Consider a small neighborhood U of x homeomorphic to a Euclidean ball and

small numbers r1, r2 > 0 such that Br1(x) ⊂ U ⊂ Br2(x). The inclusion B∗r1(x)→
B∗r2(x) is a homotopy equivalence factoring through the simply connected space
U \ {x}. This implies that all small punctured balls B∗r (x) are simply connected.
Due to Lemma 2.1, Σx is simply connected, finishing the proof. �

Lemma 3.6. Let X be a locally compact space with an upper curvature bound.
Assume that all spaces of directions ΣxX are homotopy equivalent to the same
non-contractible space Σ. Then Σ is homotopy equivalent to Sn−1, for some n, and
X is a homology manifold.

Proof. By assumption, all spaces of directions are non-contractible. By Lemma
2.2, X is a GCBA space. Any GCBA space has a point with space of directions
isometric to a sphere Sn−1, [LN18, Theorem 1.3]. Then, by assumption, all spaces of
directions are homotopy equivalent to Sn−1. By Lemma 3.1, X must be a homology
n-manifold. �

Lemma 3.7. Let X be a locally compact space with an upper curvature bound. As-
sume that all tangent spaces TxX are homeomorphic to the same finite-dimensional
space T . Then T is homeomorphic to Rn, for some n, and all spaces of directions
are homotopy equivalent to Sn−1.

Proof. For points x, y ∈ X there is, by assumption, a homeomorphism I : Tx =
C(Σx) → Ty = C(Σy). Restricting I to a large distance sphere in Tx around the
origin, we obtain an embedding I : Σx → C(Σy) \ {y} = (0,∞) × Σy. Composing

with the projection to the second factor we obtain a map Î : Σx → Σy, and it is

easy to see (using the cone structures of Tx and Ty) that Î is a weak homotopy

equivalence. Since the spaces of directions are ANRs, Î is a homotopy equivalence.
Thus, all spaces of directions are homotopy equivalent.

Due to [Kle99], X has finite dimension n, equal to the dimension of T . Then, by
[Kle99] there exists some x such that Σx is not contractible. By Lemma 3.6, there
exists some n such that all spaces of directions are homotopy equivalent to Sn−1.

Moreover, X is a homology n-manifold and a GCBA space by Lemma 3.1. By
[LN18] there exists a point x ∈ X with tangent space isometric to Rn. Therefore,
T is homeomorphic to Rn. �
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4. Homotopy stability and Hurewicz fibrations

4.1. Uniform local contractibility. Following [Pet97a] we say that a functions
ρ : [0, r0)→ [0,∞) is a contractibility function if ρ(0) = 0, ρ(t) ≥ t, for all t ∈ [0, r0),
and ρ is continuous at 0.

Definition 4.1. We say that a family F of metric spaces is locally uniformly
contractible if there exists a contractibility function ρ : [0, r0) → [0,∞) such that
for any space X in the family F , any point x ∈ X and any 0 < r < r0, the ball
Br(x) is contractible within the ball Bρ(r)(x).

For example, the family of all CAT(κ) spaces is locally uniformly contractible
with ρ : [0, π√

κ
)→ [0,∞) being the identity map.

A compact, finite-dimensinal space is locally uniformly contractible if and only
if it is an ANR.

We will use the notion of ε-equivalence, [CF79], a controlled version of homotopy
equivalence. A continuous map f : X → Y between metric spaces is called an ε-
equivalence if there exists a continuous map g : Y → X with the following property.
There exist homotopies F and G of f ◦ g and g ◦f to the respective identity map of
Y and X such that the F -flow line of any point in Y and the f -image of the G-flow
line of any point in X has diameter less than ε in Y .

The following result is due to P. Petersen, [Pet97a, Theorem A]:

Theorem 4.2. For any n, ε > 0 and any family F of locally uniformly contractible
metric spaces of dimension at most n, there exists some δ > 0 such that the following
holds true. Any pair of spaces X,Y ∈ F , with Gromov–Hausdorff distance at most
δ are ε-equivalent.

When dealing with the family of fibers of a map the following variant of Definition
4.1 seems more suitable, compare [Ung69].

Definition 4.3. Let F : X → Y be a map between metric spaces. We say that F
has locally uniformly contractible fibers if the following condition holds true for any
point x ∈ X and every neighborhood U of x in X. There exists a neighborhood
V ⊂ U of x in X such that for any fiber F−1(y) with non-empty intersection
F−1(y) ∩ V , this intersection is contractible in F−1(y) ∩ U .

For X compact, a map F : X → Y has locally uniformly contractible fibers in
the sense of Definition 4.3 if and only if the family of the fibers is locally uniformly
contractible in the sense of Definition 4.1.

4.2. Relation to Hurewicz fibrations. A map F : X → Y between metric
spaces is called a Hurewicz fibration if it satisfies the homotopy lifting property
with respect to all spaces, [Hat02, Section 4.2], [Ung69].

The map F is called open if the images of open sets are open. It is called proper
if the preimage of any compact set is compact.

Any locally compact metric space carries a complete metric. This allows us to
formulate Theorems 4.4, 4.5, 4.6 below for locally compact metric spaces, while the
original formulations in [Mic56], [Ung69] are done for complete metric spaces.

We formulate a special case of the continuous selection theorems of E. Michael,
[Mic56, Theorem 1.2], as in in [DH58, Theorem M]:
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Theorem 4.4. Let F : X → Y be an open map with locally uniformly contractible
fibers between finite dimensional, locally compact metric spaces. Then, for any
x ∈ X, there exist a neighborhood U of F (x) in Y and a continuous map s : U → X
such that F ◦ s is the identity.

The following result is proved in [Ung69, Theorem 1], see also [Add72] and [Fer78]
for related statements.

Theorem 4.5. Let X,Y be finite-dimensional, compact metric spaces and let Y
be an ANR. Let F : X → Y be an open, surjective map with locally uniformly
contractible fibers. Then F is a Hurewicz fibration.

In the locally compact case one can not expect that an open, surjective map with
locally uniformly contractible fibers is a Hurewicz fibration, as we see by restricting
a Hurewicz fibration to a complicated open subset. However, the following result is
deduced in [Ung69, Theorem 2] from the selection theorem of Michael mentioned
above.

Theorem 4.6. Let X,Y be finite-dimensional locally compact metric spaces. As-
sume that an open, surjective map F : X → Y has locally uniformly contractible
fibers. If, in addition, all fibers F−1(y) of the map F are contractible then F is a
Hurewicz fibration.

4.3. Fibrations and fiber bundles. In some situations, Hurewicz fibrations turn
out to be fiber bundles. Most results in this direction are based on the famous α-
approximation theorem, proved by T. Chapman and S. Ferry in dimensions n ≥ 5,
[CF79], and extended by S. Ferry and S. Weinberger to dimension n = 4, [FW91,
Theorem 4], and by W. Jakobsche to dimensions n = 2, 3, [Jak83], [Jak88]. Note
that the 3-dimensional statement in [Jak88] relies on the resolution of the Poincaré
conjecture. For n = 1, the α-approximation theorem is rather clear.

Theorem 4.7. Let the metric space M be a closed topological n-manifold. For any
α > 0 there is some ε = ε(M,α) > 0 such that for any closed topological n-manifold
M ′ and any ε-equivalence f : M ′ →M there exists a homeomorphism f ′ : M ′ →M
with d(f, f ′) < α.

This theorem combined with the fiber-bundle recognition developed in [DH58]
implies [Fer91, Theorems 1.1-1.4], [Ray65, Theorem 2]:

Theorem 4.8. Let X,Y be finite-dimensional locally compact ANRs. Let F : X →
Y be a Hurewicz fibration. If all fibers of F are closed n-manifolds then F is a locally
trivial fiber bundle.

We will also apply the following local variant of this global result proved in
[Fer91, Proposition 4.2]. The case n = 3, excluded in [Fer91, Proposition 4.2], need
not be excluded due to the solution of the Poincaré conjecture (and [Jak88]):

Theorem 4.9. Let F : X → I be a Hurewicz fibration from a metric space X to
an open interval I. Assume that all fibers are topological n-manifolds. Then X is
a topological (n+ 1)-manifold.

4.4. Fibrations and homology manifolds. Finally, we will use the following
result proved by F. Raymond in [Ray65, Theorem 1]. Relying on the the local ori-
entability of homology n-manifolds [Bre97], Raymond’s Theorem 1 can be slightly
strengthened as explained in [Ray65, p.52-53]. (The result will be used only for
Euclidean balls Y ).
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Theorem 4.10. Let X be a homology n-manifold and let F : X → Y be a Hurewicz
fibration. If Y is connected and locally contractible then there exists some k ≤ n
such that any fiber of F is a homology (n − k)-manifold and Y is a homology k-
manifold.

5. Strainer maps

5.1. Basic properties. We recall the basic properties of strainer maps in GCBA
spaces, a tool invented in [BGP92] for Alexandrov space, and applied to GCBA and
investigated in this context in [LN18]. We are not going to recall the exact definition
but state instead the properties of strainer maps which will be used below.

Let O be a tiny ball of a GCBA space X. For any natural k ≥ 0, and any δ > 0
there is the family Fk,δ = Fk,δ(O) of the so-called (k, δ)-strainer maps F : U → Rk
defined on open subsets U of O with the following properties, [LN18, Sections 7, 8].

(0) By convention, for k = 0, any δ > 0 and any open U ⊂ O, we let the constant
map F : U → {0} = R0 be a (0, δ)-strainer map.

(1) For any F ∈ Fk,δ(O), the coordinates fi of F are distance functions to some
points p1, ..., pk ∈ O.

(2) For δ1 > δ2, we have the inclusion Fk,δ2(O) ⊂ Fk,δ1(O).

(3) For any F ∈ Fk,δ(O) and l < k, the first l coordinate functions of F : U → Rk

define a map F̃ : U → Rl contained in Fl,δ(O).
(4) The restriction of any (k, δ)-strainer map to any open subset is a (k, δ)-

strainer map.

5.2. Extension properties. All extendability properties of strainer maps and the
”largeness” of the sets Fk,δ(O) depend on the following:

(5) For any x ∈ X and any δ > 0, there exists some r > 0 such that dx : B∗r (x)→
R is contained in F1,δ; [LN18, Proposition 7.3].

This result has the following generalization, [LN18, Proposition 9.4].

(6) Let F : U → Rk be a map in Fk,δ. Let x ∈ U be a point and let Π be the
fiber F−1(F (x)). Then, there is r > 0 and an open set V ⊂ U containing B∗r (x)∩Π,

such that the map F̂ = (F, f) : V → Rk+1 with last coordinate f = dx is contained
in Fk+1,12·δ.

This property (6) is the ”fiber-wise” statement of the following closely related
result, contained in [LN18, Theorem 10.5] in a stronger form:

(7) Let F : U → Rk be in Fk,δ. Consider the set K of points x ∈ U at which F

can not be locally extended to a (k + 1, 12 · δ)-map F̂ = (F, f) : Ux → Rk+1. Then
the closed set K intersects any fiber of F in U in a finite set of points.

5.3. Topological properties. The following property is contained in [LN18, The-
orem 1.10]:

(8) Let F : U → Rk be a map in Fk,δ with δ < 1
20·k . Then the map F is open.

Moreover, for any compact subset K of U , there exists some ε > 0 such that for all
r < ε and all x ∈ K the intersection Br(x) ∩ F−1(F (x)) is contractible.

Now we easily derive:

Theorem 5.1. Let U be an open subset of a GCBA space X. Let F : U → Rk be
a (k, δ)-strainer map, for some k and any δ < 1

20·k .
Then any x ∈ U has arbitrary small open contractible neighborhoods V , such

that the restriction F : V → F (V ) is a Hurewicz fibration with contractible fibers.
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If a fiber F−1(b) is compact then there exists an open neighborhood V of F−1(b)
in U such that F : V → F (V ) is a Hurewicz fibration.

Proof. By the property (8) of strainer maps, the map F is open and it has locally
uniformly contractible fibers.

Let x ∈ U be arbitrary. Using Theorem 4.4 we find a neighborhood W of F (x)

in Rk and a continuous section s : W → U such that F ◦ s is the identity. Making
W smaller, if needed, we may assume that W is an open ball and s(W ) is contained
in a compact subset K ⊂ U .

Take a positive number ε provided by the property (8). Making ε smaller, we
may assume that the distance from K to the boundary of U in X is larger than
ε. Consider the set V ⊂ U (the union of balls-in-the-fiber of radius ε). of all
z ∈ F−1(W ) such that d(z, s(F (z))) < ε.

Then V is open in U and contains x. We have F (V ) = W and every fiber
F−1(t)∩V of F in V is a contractible. Applying Theorem 4.6 we see that F : V →
F (V ) is a Hurewicz fibration. Since W = F (V ) and the fibers of the Hurewicz
fibration F : V →W are contractible, V is contractible as well.

Let now F−1(b) be a compact fiber of F in U . Take a compact neighborhood
V0 of F−1(b) in U . Let C be its boundary ∂V0. Consider a closed ball B around
b which is contained in the neighborhood F (V0) of b but does not intersect the
compact image F (C). Let V1 be the intersection V0 ∩ F−1(B).

Since F−1(B) does not intersect C, the set V1 is compact. The restriction F :
V1 → B has locally uniformly contractible fibers. Applying Theorem 4.5 we deduce
that F : V1 → B is a Hurewicz fibration. If we take W to be any open ball around
b contained in B and let V be the preimage F−1(B) ∩ V1 then F : V → B is a
Hurewicz fibration as well. This finishes the proof. �

Since being a homology k-manifold is a local property, we directly deduce from
Theorem 5.1 and Theorem 4.10:

Corollary 5.2. Let F : U → Rk be a (k, δ)-strainer map with δ < 1
20·k defined

on an open subset of a GCBA space X. If U is a homology n-manifold then any
non-empty fiber Π of F is a homology (n− k)-manifold.

6. Topological regularity

6.1. Disjoint disk property. A metric space M has the disjoint disk property if
for any two continuous maps ϕi : D → M , i = 1, 2, on the unit disk D and for
any ε > 0, there are two continuous maps ϕ̃i : D →M such that d(ϕi, ϕ̃i) ≤ ε and
ϕ̃1(D) ∩ ϕ̃2(D) = ∅.

For a homology n-manifold Y we denote by M(Y ) the set of manifold points in
Y , thus of all points in Y with a neighborhood homeomorphic to Rn. We recall the
following special case of the celebrated manifold recognition theorem of Edward–
Quinn, [Mio00, Theorem 2.7]:

Theorem 6.1. Let the connected metric space Y be an ANR and a homology n-
manifold with n ≥ 5. Then Y is a topological manifold if and only if the set of
manifold points M(Y ) is not empty and Y has the disjoint disk property.

For n ≥ 5 the next result easily follows from Theorem 6.1 and is a very special
case of the main theorem of [CBL79]. For n = 4, the next result is a very special
case of the main theorem of [BDVW01].
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Theorem 6.2. Let Y be an ANR and a homology n-manifold with n ≥ 4. Let
K ⊂ Y be a discrete set of points such that Y \K is a topological n-manifold. If
every point x ∈ K has arbitrary small neighborhoods U in Y such that U \ {x} is
simply connected then Y is a topological n-manifold.

6.2. Structure of GCBA homology manifolds. We are going to formulate and
prove the main technical result.

Theorem 6.3. For natural numbers 0 ≤ k ≤ n, let U ⊂ X be an open subset of a
GCBA space X. Assume that U is a homology n-manifold. Let F : U → Rn−k be
an (n− k, δ)-strainer map and let Π be a fiber of the map F . Let E ⊂ Π be the set
of points at which F does not have a local extension to an (n−k+ 1, 12 · δ)-strainer

map F̂ = (F, f).
Assume finally that δ < 20−n+k−1. Then the set E is finite and the complement

Π \ E is a topological k-manifold. Moreover, if k ≤ 3 then Π is a topological k-
manifold.

Proof. By our assumption, δ < 1
20·(n−k) and 12 · δ < 1

20·(n−k+1) . Thus, Corollary

5.2 and Theorem 5.1 apply to F and the extensions of F provided by Subsection
5.2. Hence, Π is a homology k-manifold by Corollary 5.2. Due to Subsection 5.2,
the set E ⊂ Π is finite.

We fix n and proceed by induction on k. For k ≤ 2, we deduce from Theorem
2.4 that Π is a topological k-manifold.

Assume k = 3. Let x ∈ Π be arbitrary. By Subsection 5.2, we find some r > 0
such that the ball B̄r(x) ⊂ U is compact and has the following property. There

exists an open set V ⊂ X containing B∗r (x) ∩ Π such that the map F̂ = (F, f) :

V → Rn−k+1 is an (n− k+ 1, 12 · δ)-strainer map, where f is the distance function
f = dx.

The fibers of F̂ through points z ∈ B∗r (x)∩Π are compact distance spheres Πt :=

St(x) ∩ Π around x in Π. By Theorem 5.1 the restriction of F̂ to a neighborhood
of any such fiber Πt is a Hurewicz fibration. Hence, the restriction of f to a
neighborhood of Πt in Π is a Hurewicz fibration, for any 0 < t < r. Therefore,
f : B∗r (x) ∩Π→ (0, r) is a Hurewicz fibration.

By the already verified case k = 2, the fibers of F̂ (hence of f) are topological
2-manifolds. Due to Theorem 4.8, the Hurewicz fibration f must be a fiber bundle.
Since the base of the bundle is a contractible interval, the bundle must be trivial.
Thus, B∗r (x) ∩Π is homeomorphic to (0, r)×M for a topological 2-manifold M .

From the uniqueness of one-point compactifications, we see that Br(x) ∩ Π is
homeomorphic to the cone CM over M . Since Π is a homology 3-manifold, M
must have the homology of S2. Therefore, M is homeomorphic to S2 and Br(x)∩Π
is homeomorphic to R3. Since the point x was arbitrary, Π is a topological 3-
manifold.

Assume now k = 4. For any point x ∈ Π\E, there exists a neighborhood Ux of x

in X and an extension of F to an (n− k+ 1, 12 · δ)-strainer map F̂ = (F, f) : Ux →
Rn−k+1. Applying the case k = 3, we know that the fibers of F̂ are topological
3-manifolds. Due to Theorem 5.1, we may restrict to a smaller neighborhood of x
and assume that F̂ : Ux → F̂ (Ux) is a Hurewicz fibration. Then so is the restriction

F̂ : Π∩Ux → F̂ (Π∩Ux), which is nothing else but the last coordinate f . Applying
Theorem 4.9, we see that Π ∩ Ux is a 4-manifold. Since x ∈ Π \ E was arbitrary,
this finishes the proof for k = 4.
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Assume now k ≥ 5 and that the claim is true for k−1. We consider an arbitrary
point x ∈ Π\E, a neighborhood Ux of x and an extension of F to an (n−k+1, 12·δ)-
strainer map F̂ = (F, f) as before. Making Ux smaller, we may assume by Theorem

5.1, that the restriction F̂ : Ux → F̂ (Ux) is a Hurewicz fibration with contractible
fibers.

Consider the intersection W := Π ∩ Ux and the restriction f : W → f(W ) ⊂ R
which is a Hurewicz fibration with contractible fibers. By making Ux smaller (if
needed), we may and will assume that f(W ) is an open interval J ⊂ R. In this
setting we will prove that W is a topological k-manifold.

For t ∈ J we let Wt the preimage f−1(t) ⊂ W , which is a contractible fiber of

the strainer map F̂ : Ux → Rn−k+1.
Let K1 be the closed subset of points of Ux at which F̂ does not (locally) extend

to an (n−k+2, (12)2·δ)-strainer map. By the inductive assumption, the intersection

of any fiber of F̂ with Ux \K1 is a topological (k− 1)-manifold. Applying Theorem
4.9 to the Hurewicz fibration f : W → J we deduce that W \K1 is a topological
k-manifold.

Consider the set of manifold pointsM(W ) and its complementK0 := W\M(W ),
the set of non-manifold points in W . We have just shown that K0 is contained in
K1. We assume that K0 is not empty, and we are going to derive a contradiction.

By the inductive assumption, the set K1 intersects every fiber of F̂ only in finitely
many points. Hence, for any t ∈ J the intersection Wt ∩K0 is finite.

The Hurewicz fibration f : W → J has contractible base and fibers, hence W is
contractible, in particular, it is connected. The set W \K0 is not empty, as we have
seen. Due to Theorem 6.1, it suffices to prove that W satisfies the disjoint disk
property, in order to conclude that W is a topological k-manifold and to achieve a
contradiction.

The verification of the disjoint disk property occupies the rest of the proof and
happens in several steps.

Step 1 : For any map γ : S1 →W and ε > 0 there exists a map γ̂ : S1 →W with
d(γ, γ̂) < ε such that f ◦ γ̂ is piecewise monotone.

Indeed, we easily find a homotopy of the map η0 := f ◦ γ : S1 → J through
maps ηt such that each ηt for t > 0 is piecewise linear. Using that f is a Hurewicz
fibration we can lift ηt to a homotopy of γ = γ0. Then we find the required map γ̂
as γt for a small t.

Step 2 : The set M(W ) = W \K0 is connected.
Indeed, for any t ∈ J , the fiber Wt is a connected homology (k − 1)-manifold.

Since Wt ∩ K0 is discrete, the complement Wt \ K0 is not empty and connected,
see [Dav81, Lemma 2.1]. For any connected component W ′ of M(W ) we deduce
W ′ = f−1(f(W ′)) ∩ M(W ). Since J is connected, this implies f(W ′) = J and
W ′ =M(W ).

Step 3 : For any y ∈W , the complement W \ {y} is simply connected.
Indeed, consider an arbitrary curve γ : S1 →W \{y}. In order to fill γ by a disk,

we use the local contractibility of W and Step 1, and may assume that η = f ◦ γ is
piecewise monotone. If the image of η does not contain t0 := f(y) then γ lies in the
contractible set f−1(η(S1)) (which does not contain the point y) and the statement
is clear.

If the image of η contains t0, we can write η as a concatenation of finitely
many curves ηi based in t0, each of them completely contained either in [t0,∞)
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or in (−∞, t0]. The corresponding decomposition of S1 decomposes γ in a finite
concatenation of possibly non-closed curves γi each of them ending and starting on
Wt0 .

The homology (k−1)-manifold Wt0 is connected, hence so is Wt0\{y}. Therefore,
we can connect the endpoints of each γi in Wt0 .

Concatenating these ”connection curves ” with γ we obtain a closed curve γ̂,
homotopy equivalent to γ in W \ {y}. Moreover, γ̂ is a concatenation of finitely
many closed curves γ̃, such that f ◦ γ̃ is contained either in (−∞, t0] or [t0,∞).

For any such curve γ̃ we can now fill f ◦ γ̃ in J by a disk none of whose interior
point is sent to t0. Using the homotopy lifting property, we can lift this disk to a
filling of γ̃ in W \ {y}. Thus, any of the curves γ̃ and hence γ are contractible in
W \ {y}.

Step 4 : For any curve γ : S1 →W \K0, there exists an extension of γ to a disk
φ : D →W intersecting K0 only in finitely many points.

Indeed, arguing as in Step 3, we can assume that f ◦ γ is piecewise monotone.
Subdividing f ◦γ and using connection curves in single fibers of f , as in the previous
step, we reduce the question to the case that f ◦ γ is the concatenation of two
monotone curves. Reparametrizing γ we can assume that γ is parametrized on an
interval [−a, a] such that f ◦ γ(q) = f ◦ γ(−q) for all q ∈ [0, a].

For any q ∈ [0, a] we choose any curve γq in Wf(γ(q)) \K0 connecting γ(−q) and
γ(q). Let Q denote the set of numbers q ∈ [0, a] such that the concatenation of γq
and γ|[−q,q] can be filled by a disk in W intersecting only finitely many points in
K0.

Clearly Q contains 0. We are done if Q contains a. Using a connectedness
argument it suffices to prove that for any q0 there exists some ε > 0 such that for
any q with |q− q0| < ε the concatenation γq,q0 of γq, γq0 and the parts of γ between
±q and ±q0 can be filled in W by a disk intersecting K0 only in a finite number of
points.

We fix q0 ∈ J .
Since the Hurewicz fibration f : W → J has contractible fibers, we can find a

continuous family Ps, s ∈ J of homotopy retractions Ps : W × [0, 1] from W to Ws.
Indeed, the map f satisfies the homotopy extension property for every pair of finite-
dimensional spaces, see [Mic56, Theorem 1.2]. Thus, we can extend a continuous
map P : W × J × [0, 1] → W such that P (w, f(w), t) = P (w, s, 0) = w for all
w ∈W, t ∈ [0, 1] and s ∈ J and such that f ◦P (w, s, t) = (1− t) · f(w) + t · s for all
(w, s, t) ∈W × J × [0, 1].

By continuity we find some ε > 0 such that for all q ∈ [0, a] with |q − q0| < ε
the homotopy retraction Pf(γ(q)) from W onto the fiber Wf(γ(q)) has the following
property: The trace under this homotopy retraction of γq0 and both parts of γ
between ±q0 and ±q do not intersect K0.

Therefore, the homotopy retraction Pf(γ(q)) defines a homotopy (not intersecting
K0) of the curve γq,q0 to a closed curve c completely contained in the fiber Wf(γ(q)).
Filling the curve c inside the contractible fiber Wf(γ(q)) by any disk, we obtain the
required filling of the curve γq,q0 . This finishes the proof of Step 4.

Step 5: For all z ∈ W and all ε > 0 there exists an open contractible neigh-
borhood V z of z in W with diameter smaller than ε such that the restriction
f : V z → f(V z) is a Hurewicz fibration with contractible fibers.
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Indeed, this follows from Theorem 5.1 in the same way as in the construction of
W .

Step 6 : The conclusions of Step 3 and Step 4 are valid for all neighborhoods V z

constructed in Step 5.
Indeed, the proofs of the respective steps apply literally.
Step 7 : For every disk φ : D →W and every ε > 0, there exists a disk φε : D →

W with pointwise distance to φ at most ε and such that the image of φε meets K0

only in a finite set.
Indeed, we consider a covering of the φ(D) by the sets V z described above each of

them of diameter at most ε
3 . Using the Lemma of Lebesgue we find a triangulation

of the disk D by a finite graph Γ, such that for any 2-simplex ∆ of the triangulation,
the image φ(∆) is contained in one of the sets V z.

We slightly move the images of the vertices of Γ and use Step 2 and Step 6 in
order to find a map φε : Γ → U which does not meet K0 and such that for any
2-simplex ∆ of the triangulation Γ the images φε(∂∆) and φ2(∆) are contained in
one set V z. Applying Step 4 and Step 6, we can extend φε from the boundary ∂∆
of any 2-simplex ∆ such that this extension lies inside the same open set V z and
intersects K0 only in a finite set of points. Taking all these extensions together, we
obtain the required disk φε.

Step 8 : The disjoint disk property holds in W .
Thus, let φ1, φ2 : D → W and ε > 0 be given. Apply the previous Step 4 and

obtain a map φ̃1 : D → W with distance at most ε
2 to φ1, whose image intersects

K0 only in a finite set of points Q = {x1, ...., xl}.
We find a covering of the compact image φ2(D) by finitely many open neighbor-

hoods V z as above of diameter smaller than ε
2 , such that any subset V z contains

at most one of the points xi.
We find a triangulation of the disk D by a finite graph Γ, such that for any

2-simplex ∆ of the triangulation, the image φ2(∆) is contained in one of these sets

V z. Arguing as in the previous Step 7 (applying Step 2), we find a map φ̃2 : Γ→W
which does not meet K0 and such that for any 2-simplex ∆ of the triangulation the
image φ2(∂∆) is contained in one of the sets V z.

By Step 3 and Step 6, for any of our sets V z, the complement V z \Q is simply

connected. Therefore, we can extend φ̃2 : Γ → W to a map φ̃2 : D → W \Q such

that φ̃2(∆) and φ2(∆) are in the same set V z of our covering.

By construction, the intersection φ̃2(D)∩φ̃1(D) is contained in the set of manifold
points U \K0. Since in the n-manifold U \K the disjoint disk property holds true,

we can slightly perturb φ̃2 and φ̃1 (outside of K), so that the arising disks do not
intersect.

This finishes the proof of Step 8 and therefore of the Theorem. �

6.3. Main theorems. We now finish the proof of the main theorems.

Proof of Theorem 1.2. Let X be a metric space with an upper curvature bound,
which is a homology n-manifold. Then X is a GCBA space, by Lemma 3.1. We
cover X by tiny balls O, and apply Theorem 6.3 in the case k = n and the constant
map F : O → R0 = {0}. We deduce that X is a topological manifold outside a
discrete set of points. �
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Proof of Theorem 1.1. We have seen in Lemma 3.5 and Lemma 3.7 that (1) implies
(3) and that (2) implies (3).

Assume now that (3) holds, thus all spaces of directions are homotopy equivalent
to a non-contractible space. We have seen in Lemma 3.6 that X must be a homology
n-manifold and all spaces of directions are homotopy equivalent to Sn−1.

By Theorem 6.3, X is a topological manifold if dim(X) ≤ 3.
Let the dimension of X be at least 4. Then all Σx are simply connected, hence

so are all small punctured balls B∗r (x). The result that X is a topological manifold
follows now directly as a combination of Theorem 1.2 and Theorem 6.2.

Thus (3) implies (1).
It remains to prove that (1) implies (2). Assuming that X is a topological n-

manifold let x ∈ X be arbitrary. We deduce from Corollary 3.4 that any space of
directions Σx is a homology (n− 1)-manifold and any tangent space Tx = C(Σx) is
a homology n-manifold. Moreover, any space of direction is homotopy equivalent
to Sn−1 by Lemma 3.5.

If n ≤ 3 then Σx is a topological manifold, Theorem 6.3, homeomorphic to Sn−1
by Lemma 3.5. Thus, Tx is homeomorphic to Rn.

Assume n ≥ 4. By Theorem 1.2, the set of non-manifold points of Tx is discrete.
Due to the conical structure, this directly implies that Tx \ {0} is a topological
manifold. But Σx and, therefore, all punctured balls around 0 in Tx are simply
connected. From Theorem 6.2 we deduce that Tx is a topological n-manifold.

Thus, Tx is a contractible n-manifold, simply connected at infinity, since Σx is
simply connected. Therefore, Tx is homeomorphic to Rn. �

6.4. Some improvements. Theorem 1.1 can be slightly strengthened in dimen-
sions ≤ 4. The first of these results is contained in [Thu96].

Theorem 6.4. Let X be a locally compact space with an upper curvature bound.
If X is a homology manifold with n ≤ 3 then X is a topological manifold. If X
is a topological n-manifold with n ≤ 4 then any space of directions Σx in X is
homeomorphic to Sn−1.

Proof. The first statement is local and is therefore contained (as the case k = n = 3)
in Theorem 6.3.

To prove the second statement, we use Lemma 3.4 and Lemma 3.5 to deduce
that Σx is a homology (n− 1)-manifold, homotopy equivalent to Sn−1. By the first
statement and the resolution of the Poincaré conjecture, Σx is homeomorphic to
Sn−1. �

Theorem 6.3 and therefore, Theorem 1.1 can be strengthened as follows. Since
the result is not used in the sequel, the proof will be somewhat sketchy. For def-
initions and fundamental results about ends of manifolds we refer to [Sie65] and
[HR96].

Theorem 6.5. Under the assumptions of Theorem 6.3, for any x ∈ Π there exists
a neighborhood of x in Π homeomorphic to the open cone C(M) over a topological

(k − 1)-manifold M , with the homology of Sk−1.

Proof. We proceed by induction on k.
In the cases k ≤ 3 the statement is clear, since Π is a topological manifold. In

the case k = 4 one argues in the same way as in the case k = 3 in the proof of
Theorem 6.3. Using that the fibers of the Hurewicz fibration f : B∗r (x)→ (0, r) are
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topological 3-manifolds, one concludes that B∗r (x) is homeomorphic to (0, r) ×M
for a topological 3-manifold M . Thus Br(x) is homeomorphic to the cone C(M).
Since X is a homology 4-manifold, M must be a homology 3-sphere.

Let now k ≥ 5. Find a small number r > 0, such that F extends to an (n− k +

1, 12 · δ)-strainer map F̂ = (F, f) on a neighborhood V of N := B∗r (x) ∩ Π in X.
Here f denotes as before, the distance function f = dx. By Theorem 6.3, N is a
topological k-manifold and, as we have seen in the proof of Theorem 6.3, the map
f : N → (0, r) is a Hurewicz fibration.

We claim that the end of the manifold N corresponding to the point x is collared.
Thus, N contains a subset homeomorphic to M×[0,∞), whose closure in Π contains
a neighborhood of x, for some manifold M . Since Π is a homology manifold, this
would imply that M must have the homology of Sk−1 and finish the proof of the
theorem.

For k ≥ 6 the statement is a direct consequence of Siebenmann’s theorem on
collared ends, [Sie65], [HR96, Theorem 10.2], and the observation that N homo-
topically retracts onto any compact fiber of f .

The following elegant argument due to Steven Ferry covers the case k = 5 as
well as the case k ≥ 6.

Fix a fiber Πt = f−1(t) for some t. By induction, Πt is a homology (k − 1)-
manifold with a finite set K of singularities (each of whom has a neighborhood in
Πt homeomorphic to a cone). By the main result of [Qui87], there exists a resolution
g : M → Πt which is a homeomorphism outside the preimages g−1(K).

Consider the space N+ obtained by gluing the cylinder M×(−1, 1] to f−1(0, t) ⊂
N by identifying M×{1} with Πt along the map g. The space N+ is by construction
a topological manifold outside the finitely many singularities in K ⊂ Πt. Comput-
ing the local homology at points in K, we see that N+ is a homology k-manifold.
Finally, arguing as in the proof of Theorem 6.3, we see that all points in K have
arbitrary small simply connected punctured neighborhoods in N+. Applying The-
orem 6.2, we conclude that N+ is a topological k-manifold.

Now we apply, the main theorem from [Sie69], and see that the topological
k-manifold with boundary N+ \M × (−1, 0) (the boundary is M × {0}) is homeo-
morphic to M × [0,∞). Thus the end of the manifold N is collared. �

7. Limits of manifolds

7.1. Topological stability. We start with a part of Theorem 1.3:

Theorem 7.1. Let a sequence of complete CAT(κ) Riemannian manifolds Mi of
dimension n converge in the pointed Gromov–Hausdorff topology to a space X.
Then X is a topological n-manifold.

Proof. X is a GCBA space, [LN18, Example 4.3]. Due to Theorem 1.1, it suffices
to prove that for all x ∈ X the space of directions Σx is homotopy equivalent to
Sn−1. Due to Proposition 2.3, it suffices to prove that for all r small enough, the
distance sphere Sr(x) is homotopy equivalent to Sn−1.

Fix a sequence xi ∈ Xi converging to x. For all r small enough, the injectivity
radius of the Riemannian manifold Xi is larger than r, hence the distance sphere
Sr(xi) is homeomorphic to Sn−1. According to Proposition 2.3, the spheres Sr(xi)
are homotopy equivalent to Sr(x), for all i large enough. This proves the claim. �
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The α-approximation theorem (Theorem 4.7) and Petersen’s stability theorem
(Theorems 4.2) give us:

Corollary 7.2. Under the assumptions of Theorem 7.1, assume in addition that
X is compact. Then Mi is homeomorphic to X, for all i large enough.

7.2. Iterated spaces of directions. In order to prove the remaining statement
in Theorem 1.3, we need to understand spaces of directions of spaces of directions.
For a GCBA space X, we call any space of directions ΣxX of X a first order space
of directions of X. Inductively we define a k-th iterated space of directions of X to
be a space of directions ΣzY of a (k − 1)-th iterated space of directions Y of X.

Using Theorem 1.1 we can easily derive the following lemma, clarifying the second
statement in Theorem 1.3.

Lemma 7.3. Let X be a locally compact space with an upper curvature bound.
Then the following are equivalent:

(1) X is a topological manifold and, for any 1 ≤ k < n, all k-th iterated spaces
of directions of X are homeomorphic to Sn−k.

(2) For any 1 ≤ k < n, all k-th iterated spaces of directions of X are homotopy

equivalent to Sn−k.

Proof. Clearly (1) implies (2).
Assuming (2), we deduce from Theorem 1.1 that X is a topological manifold.

Thus, X is a GCBA space and all of its iterated spaces of directions are compact
CAT(1) spaces. Let Σ be a k-th iterated space of directions of X. By assumption,

all of its spaces of directions are homotopy equivalent to Sn−k−1. By Theorem 1.1,
the space Σ is a topological manifold. Due to the resolution of the (generalized)

Poincaré conjecture, Σ is homeomorphic to Sn−k. �

Iterated spaces of directions can be seen in factors of blow-ups of the original
space. More generally, we have:

Lemma 7.4. Let Xi be complete GCBA spaces which are CAT(κ) for a fixed κ. As-
sume that (Xi, xi) converge in the pointed Gromov–Hausdorff topology to a GCBA
space (X,x).

Then, for any non-empty k-th iterated space of directions Σk of X, there exists
a sequence zi ∈ Xi and a sequence ti ≥ 1, such that, possibly after choosing a
subsequence, we have the following convergence in the pointed Gromov–Hausdorff
topology:

(Rk−1×CΣk, 0) = lim
i→∞

(ti ·Xi, zi) .

Proof. Consider the set L of (isometry classes of) all pointed locally compact spaces
(Y, y) which can be obtained as a pointed Gromov–Hausdorff limit of a subsequence
of a sequence (ti ·Xi, yi), for some yi ∈ Xi and some sequence ti ≥ 1.

The set L consists of complete GCBA spaces, it contains the space (X,x). With
any space (Y, y), the family L contains the space (Y, y′), for any y′ ∈ Y . Thus, we
may ignore the base points. Moreover, L is closed under rescaling with numbers
t ≥ 1 and under pointed Gromov–Hausdorff convergence. Thus, with every space
Z the family L contains any of the tangent spaces TzZ.

For any k ≥ 1 and any non-empty k-th iterated space of directions Σk of X, we
need to prove that Z = Rk−1×CΣk is contained in L.
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We proceed by induction on k. The case k = 1, thus CΣ1 being a tangent cone
of X at some point is already verified.

Assume that we have already verified the claim for k. Let Σk be any k-th iterated
space of directions of X and let v ∈ Σk be arbitrary, such that Σ := ΣvΣ

k is not
empty.

By the inductive assumption, the space Z = Rk−1×CΣk is contained in L.
Then, also TvZ = Rk ×CΣ is contained in L. This verifies the claim for k + 1 and
finishes the proof of the lemma. �

7.3. Limits of Riemannian manifolds. Now we are in position to formulate
and to prove the following generalization of the remaining part of Theorem 1.3. Its
proof relies on some stability properties of strainer maps.

Theorem 7.5. Under the assumptions of Theorem 1.3, for any k ≤ n, any k-th
iterated space of directions of X is homeomorphic Sn−k.

Proof. It suffices to prove that, for all k < n, any k-th iterated space of directions
Σk of X is homotopy equivalent to Sn−k, Lemma 7.3.

Let us fix such Σ = Σk. Due to Corollary 7.4 we get (by rescaling the manifolds
Mi) a sequence of pointed Riemannian manifolds (Ni, pi) with the following proper-
ties. The manifold Ni is CAT(κi), with κi converging to 0, and the sequence (Ni, pi)

converges in the pointed Gromov–Hausdorff topology to Y = (Rk−1×CΣ, 0).

We fix the standard coordinate vectors e1, ...., ek−1 ∈ Rk−1×{0} ⊂ Y and con-

sider the map F : Y → Rk−1 whose coordinates f1, ..., fk−1 are the distance func-
tions to the points ej . The geodesics from ej to 0 do not branch at 0. By definition
of strainer maps, [LN18, Sections 7, 8], for every δ > 0 there exists some ε > 0 such
that F is a (k − 1, δ)-strainer map in the ball B of radius ε around 0 in Y . We fix
δ < 1

20·k2 and ε as above.
We take (k − 1)-tuples of points in Ni converging to (e1, ..., ek−1) and consider

the correspondingly defined maps Fi : Ni → Rk−1 which converge to F . By the
openness property of strainers the following holds true, [LN18, Lemma 7.8]: For all
i large enough, the map Fi is a (k − 1, δ)-strainer in the ball Bi of radius ε around
pi.

Denote by Π the fiber of F in B through 0 and by Πi the fiber of Fi in Bi

through pi. The fibers Πi are locally uniformly contractible. More precisely, by
[LN18, Lemma 7.11, Theorem 9.1], there exists some ε1 > 0 with the following
property. For all i large enough, any q ∈ Πi and any r < ε1 such that B̄r(q) ∩ Πi

is compact, this compact set is contractible.
Denote by g : Π→ R and by gi : Πi → R the distance functions to the points 0

and pi respectively.
By the extension property of strainers, we may assume, after making ε smaller,

that the map F̂ = (F, g) : V → Rk is a (k, 12 · δ)-strainer map on an open neigh-

borhood V of B∗ε (0) ∩ Π in Y . The fibers of the map F̂ through points on Π are
(compact) distance spheres in Π around 0.

From the homotopy stability of fibers of strainer maps [LN18, Theorem 13.1],
for any 0 < r < ε there exists some i0 such that for all i > i0 the following holds
true. The distance sphere Sr(pi) ∩ Πi is compact and homotopy equivalent to the
distance sphere Sr(0) ∩Π.

We subdivide the rest of the proof in 6 steps.
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Step 1 : The manifold Ni has injectivity radius larger than 2, for all large i. The
strainer map Fi : Bi → Rk−1 is smooth. The distance function gi : Bi → R is
smooth outside pi.

Indeed, the first statement is a consequence of our assumption that Ni is CAT(κi)
with κi converging to 0. The remaining statements follow from the first one.

Step 2 : The strainer map Fi : Bi → Rk−1 is a submersion. Thus Πi is a smooth
submanifold of Ni.

Indeed, the strainer map Fi is a 2
√
k-open map, see [LN18, Lemma 8.2]. In

particular, the differential of Fi at any point of Bi is surjective. This implies the
first and, therefore, the second claim.

Step 3 : There exists 0 < ε0 <
ε1
2 such that, for all i large enough, the map

gi : Πi ∩ B∗ε0(pi) → R has at all points a gradient of norm between 1
2 and 1, with

respect to the intrinsic metric of Πi.
Indeed, for any x ∈ B∗ε (pi) the gradient ∇xgi of the map gi : Bi → R is the unit

velocity vector of the geodesic connecting pi with x. Thus, for every x ∈ Πi \ {pi}
the gradient of gi at x with respect to the induced metric of Πi is the projection of
∇xgi to the tangent space TxΠi.

There exists some ε0 > 0 such that for all i large enough and all x ∈ Πi∩B∗ε0(pi)
the inequality

|DFi(∇xgi)| ≤ k · 2 · δ <
1

10 · k
,

due to [LN18, Lemmas 7.6, 7.10, 7.11].

Since the differential of Fi at x is 2
√
k-open this implies that the projection of

∇xgi to the tangent space TxΠi has norm at least 1
2 .

Step 4 : In the notations above, for all i large enough and all 0 < r < ε0,
the distance sphere Sr(pi) = g−1i (r) ⊂ Πi is diffeomorphic to Sn−k. Moreover,
Sr(pi) is locally uniformly contractible with respect to the contractibility function
ρ : [0, r)→ R given by ρ(s) = 2s.

Indeed, for all sufficiently small r (depending on i), the fact that Sr(pi) is diffeo-
morphic to a sphere is true for every smooth submanifold of a smooth Riemannian
manifold, as easily seen in local coordinates.

The fact that for all r < ε0 the level sets of gi are diffeomorphic among each
other is a consequence of the (easy part) of Morse theory, since gi has no critical
points in Πi.

Finally, the gradient flow of the function gi on Πi retracts Πi \ {pi} onto Sr(pi).
Moreover, along this retraction, any point moves with velocity less than 1 and the
distance to Sr(pi) decreases with velocity at least 1

2 . Thus, for any point q ∈ Sr(pi)
and any s < r the retraction sends the ball B̄s(q)∩Πi into the ball B̄2s(q)∩Sr(pi).

Since the ball B̄s(q) ∩Πi is contractible, we deduce that the ball B̄s(q) ∩ Sr(pi)
is contractible inside the ball B̄2s(q) ∩ Sr(pi). Finishing the proof of Step 4.

Step 5 : For every r < ε0 the distance sphere Sr(0) ∩ Π is homotopy equivalent

to Sn−k. Moreover, Sr(0) ∩ Π is uniformly locally contractible with respect to the
contractibility function ρ : [0, r)→ R given by ρ(s) = 2s.

Indeed, the sets Sr(pi) converge to Sr(p) in the Gromov–Hausdorff topology.
Hence the result follows from [Pet90, Section 5].

Step 6 : The space Y is a cone, hence invariant under rescalings. However, the
rescaled sequence (m ·Π, 0) ⊂ Y converges to the factor (CΣ, 0), for m→∞.
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Under this convergence the rescaled spheres m · (S 1
m

(0) ∩ Π) converge to Σ.

All these spheres are homotopy equivalent to Sn−k and are uniformly locally con-
tractible. Applying Theorem 4.2 once more, we deduce that Σ is homotopy equiv-
alent to Sn−k. �

8. A sphere theorem

8.1. Pure-dimensional spaces. In order to deduce Theorem 1.4 from Theorem
1.5, we need to show that a GCBA space all of whose spaces of directions are spheres
(of a priori different dimensions) must be a manifold. We address this question in
a slightly more general setting.

We define a GCBA space X to be purely n-dimensional if all of its non-empty
open subsets have dimension n. We say that X is pure-dimensional if X is purely
n-dimensional for some n.

Due to [LN18, Corollary 11.6], a GCBA space X is purely n-dimensional if and
only if all of its tangent spaces TxX have dimension n. This happens if and only if
all spaces of directions ΣxX have dimension n−1. Using the stability of dimension
under convergence proved in [LN18], we can now show:

Proposition 8.1. A connected GCBA space X is pure-dimensional if and only if
all tangent spaces of X are pure-dimensional.

Proof. Let X be purely n-dimensional and x ∈ X arbitrary. Applying [LN18,
Lemma 11.5] to the convergence of the rescaled balls in X around x to TxX we
deduce, that for any v ∈ TxX the dimension of Tv(TxX) is n. Thus, TxX is purely
n-dimensional.

Assume that all spaces of directions of X are pure-dimensional. By the connect-
edness of X it suffices to prove that every point x ∈ X has a pure-dimensional open
neighborhood. Therefore, we may replace X by a small ball around some of its
points and assume that X is a geodesic space and has finite dimension n. Consider
the set Xn of all points in X for which TxX has dimension n. By [LN18, Corollary
11.6] the set Xn is closed in X.

Assume that Xn is not X. Then we find a point y ∈ X \ Xn such that there
exists a point x ∈ Xn closest to y among all points of Xn. Consider the geodesic γ
from x to y and set xi = γ( 1

i ). Then the ball B 1
i
(xi) does not intersect Xn, hence

has dimension less than n. Under the convergence of (i ·X,x) to TxX, the closed
balls i · B̄ 1

i
(xi) in X converge to the closed ball of radius 1 around the starting

direction v = γ′(0) ∈ Σx ⊂ Tx.
Applying [LN18, Lemma 11.5] again, we see that the open ball B1(v) in Tx has

dimension less than n. Since TxX is n-dimensional, this contradicts the assumption
that TxX is pure-dimensional. This contradiction shows X = Xn and finishes the
proof. �

8.2. The conclusions. The proof of Theorem 1.5 relies also on the following ob-
servation, well-known to experts. We could not find a reference and include a short
proof.

Lemma 8.2. If a closed topological n-manifold M is covered by two contractible
open subsets U, V then M is homeomorphic to Sn.
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Proof. The assumption implies that for any commutative ring R, the cup product
of any two elements in the reduced cohomology H∗(M,R) is 0, [Hat02, Section 3.2,
Exercise 2].

By the Poincaré duality we deduce that M has the same cohomology with R-
coefficients as Sn if M is R-orientable. Applying this for R = Z2 we deduce that
Hn−1(M,Z2) = 0. Therefore, M is orientable, [Hat02, Chapter 3, Corollary 3.28]
with respect to integer coefficients and has the same integer homology and coho-
mology as Sn.

By the theorem of Mayer–Vietoris, 0 = H1(M) = H0(U ∩ V ). Thus, the inter-
section U ∩V is connected. Applying van Kampen’s theorem, we deduce that M is
simply connected. By the theorem of Whitehead, M is homotopy equivalent to Sn.
By the resolution of the (generalized) Poincaré conjecture, M is homeomorphic to
Sn. �

Now we can finish:

Proof of Theorem 1.5. We proceed by induction on the (always finite) dimension
of the compact GCBA space Σ.

By assumption, Σ is CAT(1) and the cone CΣ is a geodesically complete CAT(0)
space.

If the dimension of Σ is 0, then Σ is discrete and not a singleton. All points in Σ
have distance at least π from each other. The assumption on the triples of points
implies that Σ has exactly two points. Hence Σ is homeomorphic to S0.

Assume now that the statement is proven for all spaces of dimension less than
n and let Σ be n-dimensional. Let x ∈ Σ be a point. Then the space of directions
Σx is a GCBA space of dimension less than n. If there exists a triple of points
v1, v2, v3 in Σx with pairwise distances at least π then we consider geodesics γi in
Σ starting in x in the directions of vi (which exist by the geodesical completeness,
see [LN18, Section 5.5]). Then the points xi = γi(

π
2 ) have in Σ pairwise distances

π, in contradiction to our assumption.
Thus, by the inductive assumption, each space of directions Σx is homeomorphic

to some sphere. Therefore, all spaces of directions Σx in Σ and hence all tangent
spaces Tx are pure-dimensional. Due to Proposition 8.1, the space Σ must be
purely n-dimensional. Then, all spaces of directions Σx are (n − 1)-dimensional,
hence homeomorphic to Sn−1 by the inductive hypothesis.

By Theorem 1.1, the space Σ is a topological n-manifold.
Consider a pair of points x, y ∈ Σ at distance π. By the assumption on triple of

points, there are no points z ∈ Σ with distance at least π to x and y. Therefore, all
of Σ is contained in the union of the two balls Bπ(x) and Bπ(y). By the CAT(1)
assumption, both balls are contractible. Thus, Σ is homeomorphic to Sn, by Lemma
8.2. �

Proof of Theorem 1.4. Let X be a connected GCBA space that does not contain
an isometrically embedded tree different from an interval.

Let x ∈ X be a point. If there is a triple of points v1, v2, v3 in Σx with pairwise
distances at least π then we obtain an isometrically embedded tree by taking the
union of 3 short geodesics γi starting in the direction of vi, in contradiction to our
assumption. By Theorem 1.5, Σx must be homeomorphic to some sphere.

As in the first part of the proof of Theorem 1.5, we now deduce from Proposition
8.1 and Theorem 1.1 that X is a topological manifold. �
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Finally, from Theorem 1.5 and the optimal lower bound on the volume of balls,
[Nag02b, Proposition 6.1], we deduce:

Theorem 8.3. Let Σ be a purely n-dimensional, compact, locally geodesically com-
plete CAT(1) space. If Hn(Σ) < 3

2 · H
n(Sn), then Σ is homeomorphic to Sn, where

Hn is the n-dimensional Hausdorff measure.

Proof. Otherwise, X contains a triple of points at pairwise distances at least π.
The open balls of radius π

2 around these points are disjoint. Each of these balls has

the Hn-measure not less than 1
2 · H

n(Sn). This contradicts the prescribed upper
volume bound of X. �
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