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Abstract

The valuation of basket default swaps depends crucially on the joint default probability of the

underlying assets in the basket. It is known that this probability can be modeled by means of a copula

function which links the marginal default probabilities to a joint probability. The valuation bears

risk due to the uncertainty of the copula, the relation of the assets to each other and the marginal

distributions which we call together the model risk. To value basket default swaps and to compute

model risk parameters we present an efficient numerical approach based on importance sampling

and applicable to different classes of copula models. Our numerical findings show that the choice of

the underlying copula model influences strongly the risk profile of the basket and should be tailored

advisedly.
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1 Introduction

Over the past years the popularity of credit derivative securities has grown considerably. The most

prominent derivative in this class is the credit default swap (CDS) whose contingent payment is triggered

by a default event of a single specified reference entity. A large subclass of credit derivatives are securities

which are based on default events of multiple reference entities. Popular securities in this subclass are

collateralized debt obligations (CDOs) and basket default swaps (BDS). In this paper we focus mainly

on BDS, yet ideas and algorithms can easily be adapted to other basket-type securities.

Briefly, a m-th to default swap (mBDS) is a contract between two parties – the protection buyer and the

protection seller whose contingent payoff is triggered by a cumulative default event of an agreed upon

basket of reference entities. The buyer pays at regular intervals a protection fee to the seller until either

m-th entities of the basket have defaulted or the maturity of the contract is reached. Conversely, in case

of m default events before maturity the seller pays the loss rate of the m-th asset to the protection buyer

at time of the m-th default.

To price basket securities adequately the joint probability distribution of default times must be known.

Specific baskets of obligors are less frequently traded, while credit derivatives on a single reference entity

– e.g. a 5-year CDS – are traded rather liquidly. Therefore, the marginal distribution of default time

for a single obligor can be implied by market data reasonably well, [8], whereas the joint distribution

usually cannot be deduced from market data. As remedy Li suggested in his seminal work, [18], to link

the marginal distribution to a joint distribution by means of a copula function.

Of course, the default times of multiple obligors are correlated and these relations amongst the obligors in

the basket must be reflected in the joint distribution. Depending on the chosen copula a certain correlation

structure is induced and the copula should be chosen such that the induced correlation structure matches

the observed respectively assumed correlations of the market.

A common choice is a Gaussian-type copula, [18, 22]. The Gaussian copula became very popular because

it allows analytical and semi-analytical pricing formulas for some basket derivatives, e.g. [1, 15, 13, 16].

However, a Gaussian copula can only induce a linear correlation structure, [10, 18, 9] which might be a

harsh restriction. Moreover, at least n(n−1)
2 parameters have to be specified and calibrated which renders
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a reasonable calibration almost impossible due to an typically illiquid market situation. Therefore, other

classes of copula functions have been discussed recently, [23, 22]. In this paper we will concentrate on

Archimedean-type copula function which we will briefly introduce in Sect. 3.2.

To describe the correlation amongst the obligors in the basket reasonable well we choose Kendall’s τ as

concordance measure, [21, 9]. Kendall’s τ allows for nonlinear correlation and is more suitable to represent

the interrelations within the basket. We will define a concordance structure for the given basket based on

Kendall’s τ measure. It is possible that different copula function imply the same concordance structure

and consequently different prices of the derivative security are possible.

We subsume under the term model risk all uncertainty in the price of a basket derivative which is

due to the choice of copula. Hence, the model risk is mainly driven by the uncertainty of choosing a

suitable copula to a given concordance structure, by the uncertainty of the concordance structure which

represents the interrelations in the basket and by the uncertainty from the marginal distribution which

is independent from the choice of the copula.

In this paper we will present efficient numerical methods to evaluate the model risk. To value the

model risk due to the choice of copula we compute prices induced by different copula models implying

the same concordance structure. This gives a lower bound for the possible price spread. The model

risk due to uncertainty of the concordance structure itself is valued by computing the price sensitivity

with respect to changes in the concordance structure. Analogously, the model risk due to uncertainty

of marginal distributions is valued by parameterizing the marginal distribution and computation of the

corresponding sensitivities of the basket price.

For Gaussian copula based joint probabilities Joshi (cp.[17]) suggested an efficient numerical method

to value sensitivities of mBDS, which was further improved by Chen (cp. [5]). They use Monte-Carlo

simulation together with a clever importance sampling approach to reduce the variance. In this paper

we follow their ideas and use importance sampling for an efficient implementation of Monte-Carlo sim-

ulation for Archimedean copula based joint probabilities. For the computation of the sensitivities we

discuss the likelihood ratio method and the finite difference method, [2, 12], applied to our framework

for Archimedean copulae and importance sampling.

We observe that the copula has strong impact on the price of a basket derivative. Prices implied by two
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different copulae might differ substantially even if the concordance structure is the same. Therefore, the

choice of the copula function determines the risk - profile of the BDS and be considered as part of the

modeling.

The paper is organized as follows. First, we set up the cash flows of a mBDS and introduce the necessary

notation for the rest of the paper in Sect. 2. We define in Sect. 2.4 the concordance structure of a

basket which describes the interdependence of default times in the basket. In Sect. 3 we briefly introduce

Gaussian and Archimedean copulae and give explicit formulae to compute the concordance structure in

a multi-dimensional setting. Sect. 4 introduces variance reduction by importance sampling for Gaussian

and Archimedean based probabilities. Then, we present importance sampling by Joshi-Kainth and Chen-

Glasserman for Gaussian based copula models in Sect. 4.1. Following, we extend their approach to

Archimedean based models in Sect. 4.2 and give numerical examples to demonstrate the performance of

our approach. The variance reduction allows for an efficient numerical valuation on which the subsequent

model risk evaluation is based. We detail on the model risk and its numerical computation in Sect. 5

and present numerical studies. Finally, we summarize our results in Sect. 6.

2 Basket Default Swaps and Model Risk

We consider a basket derivative of n defaultable assets,

S := {S1, ..., Sn} , n ∈ N, (2.1)

which are usually corporate bonds or loans. We denote by Nj the nominal amount of Sj and by Rj the

recovery rate of Sj . Hence, in case of default of asset Sj the basket suffers a loss of (1−Rj)Nj . Further,

we assume that the short-rate r(t) is known and a deterministic function. The total nominal of the basket

is N =
n∑
j=1

Nj .

A m-th to default swap (m ∈ {1, ..., n}) protects its buyer against the m-th default in the basket between

time t = 0 (today) and maturity t = T > 0 of the mBDS.

We denote by τj the random default time of asset Sj and set τj = ∞ if Sj never defaults. The random
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variables τ1, . . . , τn are positive and have a joint probability distribution f(t1, . . . , tn). For a tuple t =

(t1, . . . , tn) let ιj(t) ∈ {1, . . . , n} be such that tι1(t) ≤ . . . ≤ tιn(t). If the tuple is clear from the context

we omit the reference to it and just write ιj for the index of the j-th smallest component of t. Hence,

the m-th default in the basket is τιm with τ = (τ1, . . . , τn) and the basket suffers a loss of (1−Rιm)Nιm

at time τιm of the m-th default.

2.1 Contingent payments

We distinguish two streams of payments of a mBDS, the premium leg which is paid by the buyer at

regular intervals to the protection seller, and the protection leg which is paid by the seller in case of the

m-th default.

Premium leg: We assume an annual premium payment of s ·N , where s is a spread upon which buyer

and seller agreed in advanced. The premium is paid regularly only if less than m defaults have occurred,

in case of the m-th default accured interest are paid till the time of default and then the payments

stop. Assuming continuous compounding the present value of the mBDS premium leg for a given tupel

t = (t1, . . . , tn) of default times1 is

Z(m)
pre (t1, . . . , tn) :=





btιmc∑
t=1

sN exp−r(t)t + (tιm − btιmc) sN exp−r(tιm )tιm tιm ≤ T
∑T
t=1 sN exp−r(t)t otherwise

. (2.2)

Protection leg: The protection leg is paid only in case of the m-th default and compensates the buyer

for the loss suffered due to the m-th default. Assuming continuous compounding the present value of the

mBDS protection leg for a given tupel t = (t1, . . . , tn) of default times is

Z(m)
pro (t1, . . . , tn) :=





(1−Rιm)Nm exp−r(tιm )tιm tιm ≤ T

0 otherwise
. (2.3)

Adaptions in Eqs. (2.2) and (2.3) for semi- or quarter-annual payments and simply compounding can

easily be made.
1we distinguish explicitly in notation between random vector τ and a realization t of τ
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Definition 2.1. The value of a mBDS as seen from the seller is the expected difference between premium

and protection leg over all possible outcomes of random default times (τ1, . . . , τn),

V (m) := E
(
Z(m)
pre (τ1, . . . , τn)−Z(m)

pro (τ1, . . . , τn)
)
. (2.4)

The mBDS is signed at time t = 0 by both parties only if the spread s is chosen such that V (m) = 0.

Definition 2.2. The mBDS fair spread sm:n is defined by

sm:n :=
E(Z(m)

pro )

E(Z̃(m)
pre )

(2.5)

with

Z̃(m)
pre (t1, . . . , tn) :=





btιmc∑
t=1

N exp−r(t)t + (tιm − btιmc)N exp−r(tιm )tιm tιm ≤ T
∑T
t=1N exp−r(t)t otherwise

> 0. (2.6)

The expectations in Eqs. (2.4) and (2.5) can be expressed explicitly by means of the joint distribution

density f of default times, we get

V (m) =

∫

Rn

(
Z(m)
pre (t1, . . . , tn)−Z(m)

pro (t1, . . . , tn)
)
f(t1, . . . , tn)dt

sm:n =

∫
Rn
Z(m)
pro (t1, . . . , tn)f(t1, . . . , tn)dt

∫
Rn
Z̃(m)
pre (t1, . . . , tn)f(t1, . . . , tn)dt

.

2.2 Marginal default distributions

While the joint density distribution f of default times (τ1, . . . , τn) cannot be estimated robustly by market

data, the marginal density fi(ti) of the random variable τi is typically extracted from data of the more

liquid CDS and bond market. The market prices are used to build and calibrate a hazard rate function

hi(ti) and one assumes the following functional relation for marginal distribution Fi(ti) and density fi(ti),
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[8]

Fi(ti) := P(τi ≤ ti) = 1− exp


−

ti∫

0

hi(u)du


 (2.7)

fi(ti) = hi(ti) exp


−

ti∫

0

hi(u)du


 . (2.8)

2.3 Joint default distribution

The marginal distributions Fi(ti) are linked to a joint distribution function F (t1, . . . , tn) by a copula func-

tion C(u1, . . . , un) such that the joint distribution is consistent with the observed marginal distributions.

We define,

F (t1, . . . , tn) = P(τ1 ≤ t1, . . . , τn ≤ tn) := C(F1(t1), . . . , Fn(tn)) (2.9)

with copula C which still has to be specified yet. This approach is justified by the famous Sklar’s theorem,

[25], which states under mild assumptions on regularity that each joint distribution F with marginals Fi

is uniquely determined by a copula as in Eq. (2.9) and, vica versa that the function defined in Eq. (2.9)

is a distribution with marginals Fi for any copula C.

In this sense, choosing a copula is a crucial part of modeling the basket and induces enormous risk on

the valuing process. The question of choosing the right copula is a widely discussed topic.

Finally, the density of the joint distribution is

f(t1, . . . , tn) =
∂nF

∂t1 · · · ∂tn
=

∂nC

∂F1 · · · ∂Fn
· ∂F1

∂t1
· · · ∂Fn

∂tn
. (2.10)

2.4 Concordance and correlation

Let τ = (τ1, . . . , τn) be a vector of random default times which are distributed according to F in Eq.

(2.9). The chosen copula in (2.9) is reflected in the correlation structure of the random vector τ . A
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typical way to measure the correlation between components is to use the linear correlation coefficients

ρ(τi, τj) :=
Cov(τi, τj)√

Var(τi)
√

Var(τj)
=

E ((τi − E(τi)) · (τj − E(τj))√
Var(τi)

√
Var(τj)

. (2.11)

However, only linear relations between τi and τj can be grasped properly by ρ(τi, τj). A more suitable

approach is so called Kendall’s τK which measures the concordant and discordant pairs of two random

variables. For a pair (X,Y ) of random variables it is defined by

τK(X,Y ) := P((X − X̃)(Y − Ỹ ) > 0)− P((X − X̃)(Y − Ỹ ) < 0), (2.12)

where (X̃, Ỹ ) is an independent copy of (X,Y ), [21]. The concordance measure τK is defined for every

pair of continuous random variable, it is symmetric τK(X,Y ) = τK(Y,X) and satisfies |τK(X,Y )| ≤ 1,

τK(X,X) = 1, τK(X,−X) = −1, and τK(X,Y ) = 0, if X,Y are independent, [21].

Definition 2.3. Let Fi(t), i = 1, . . . , n be given marginal distributions and let C be a copula. Further,

let X = (X1, . . . , Xn) be a random vector with joint distribution F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

as given in Eq. (2.9). Kendall’s rank coefficients matrix T (C) is defined by

T (C;F1, . . . , Fn) :=
(
τK(Xi, Xj)

)
∈ Rn×n (2.13)

and is just written as T (C) if the Fi are clear from the context. For any matrix M ∈ Rn×n let T −1(M)

denote the set of copulas which are mapped by (2.13) onM . The matrixM must be symmetric, positive,

semi-definite and has sup-norm ‖M‖∞ ≤ 1 by the properties of Kendall’s τK .

2.5 Model risk

We render the term model risk more precisely. We distinguish between three sources of model risk:

(i) Modeling the basket involves specifying the matrix M = (τK(τi, τj)) and marginals Fi. For valuing

the security a copula C ∈ T −1(M) has to be chosen to specify the joint distribution. The uncertainty

in this choice and consequently in the value of the security is part of the model risk.
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(ii) The matrix M itself bears an enormous model risk as it determines the joint distribution as well.

(iii) Moreover, the mapping T (·;F1, . . . , Fn) depends on the marginals Fi and hence does the copula-set

T −1(M). In our intensity-based default model approach the marginal Fi is determined by the

hazard rate functions hi(t). Therefore, the hazard rates have also to be accounted for the model

risk.

3 Copula models

To understand the model risk in full detail it is necessary to compute the value of the basket derivative

for all possible C ∈ T −1(M) which is not feasible. However, it is possible to compute values for copulae

C ∈ C(M) ⊆ T −1(M) in a finite subset C(M). The subset C(M) should be carefully chosen to approximate

T −1(M) well enough to mirror the risk behaviour of T −1(M). Moreover, computational aspects have to

be considered and efficient pricing algorithms must be provided.

Suitable, well-understood and widely used copulae in finance and risk management are in the class of

Gaussian and Archimedean copulae, e.g. [6, 3]. We briefly repeat the most important facts of Gaussian

and Archimedean copulae.

3.1 Gauss copula

The Gauss copula is based upon the Gaussian distribution and is defined by

CGauR (u1, ..., un) := Φn0,R(Φ−1
0,1(u1), ...,Φ−1

0,1(un)) (3.1)

where Φn0,R is the multivariate Gaussian distribution with mean 0 and correlation matrix R ∈ Rn×n.

Further, Φ−1
0,1 is the inverse of the uni-dimensional Gaussian distribution with mean 0 and standard

deviation 1. From the correlation matrix R = (Rij) one can compute easily Kendall’s rank coefficients,

[4],

T (CR) =

(
2

π
arcsin(Rij)

)

i,j=1,...,n

. (3.2)
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3.2 Archimedean copula

Let φ be a continuous, strictly decreasing function from [0, 1] to [0,∞] such that φ(0) =∞, φ(1) = 0 and

the inverse φ−1 is completely monotone on [0,∞). Then, one can prove that C : [0, 1]n → [0, 1] defined

by

Cφ(u1, . . . , un) := φ−1(φ(u1) + . . .+ φ(un)) (3.3)

is a copula, [21]. The function φ is called the generator of C. Often one finds a family φθ of generator

functions which define a family Cφθ of copula functions.

The associated Kendall’s rank matrix T (Cφ) of an Archimedean copula with generator φ is homogeneous,

i.e. it has ones on the diagonal and all other entries are given by, [21],

T (Cφ)ij = 1 + 4

1∫

0

φ(t)

φ′(t)
dt, i 6= j. (3.4)

Example 3.1. A well–known Archimedean copula is Clayton copula, [23, 19], which is generated by

∀t ∈ [0, 1] : φClayθ (t) := t−θ − 1, θ ∈ (0,∞). (3.5)

Thus, the Clayton class of copulae is defined by

∀(u1, ..., un) ∈ [0, 1]n : CClayθ (u1, ..., un) := φClay
−1

θ (φClayθ (u1) + ...+ φClayθ (un)). (3.6)

In the following we will use Clayton copula mostly in our numerical studies. Sampling algorithms for

Clayton copula and other Archimedean copulae can be found e.g. in [20, 14].

4 Efficient valuation by importance sampling

Due to the complexity of basket securities analytical closed-form solutions for the pricing problem are

only possible in special situations. For general model assumptions the expectations in Eq. (2.4) and Eq.

(2.5) have to be computed by Monte-Carlo simulations.
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For this one draws k different realizations
(
t
[i]
1 , ..., t

[i]
n

)
, i ∈ {1, ..., k} of default times jointly distributed

to the model implied distribution F and takes the expectation of the discounted payoff,

E(Z) =
1

k

k∑

i=1

Z
(
t
[i]
1 , ..., t

[i]
n

)
. (4.1)

Unfortunately, Monte-Carlo simulation is not very efficient in many market-typical situations. The vari-

ance of the computed expectation might be large and decays too slowly for increasing k to give reliable

results. To make Monte-Carlo more efficient it is necessary to reduce the variance significantly.

Before we discuss algorithms to reduce the variance we give an example which outlines the importance

to study the set T −1(M) and the implied prices.

Example 4.1. Consider the following basket, see Exhibit 6 in [18]. The basket consists of 5 assets each

with nominal 1 and flat hazard rates hi(ti) ≡ 0.1. The recovery rates are 0, thus in case of a default a

total loss is suffered in the particular position. The maturity of the contract is 2 years and we assume

that the risk-free short-rate is constant 0.1 during this period.

We assume a homogeneous concordance coefficient matrix

M(τK) =




1 τK τK τK τK

τK 1 τK τK τK

τK τK 1 τK τK

τK τK τK 1 τK

τK τK τK τK 1




(4.2)

with parameter τK and compare different copulae C ∈ T −1(M(τK)) for different values of τK . As

copulae we chose a Clayton, a Gaussian and a Gumbel copula2. For τK → 0 and τK → 1 the value

E(Zpro) of the protection leg can be computed analytically, for other τK we have plotted E(Zpro) in Fig.

1. We considered a first, a second and a third to default swap on the mentioned basket.

Observe that E(Zpro) can vary substantially for fixed τK although all copula imply the same concordance

structure in the basket. Moreover, the quantitative behaviour of each considered copula model changes

for differing m. Depending on the copula defaults in the basket are more likely which is reflected in
2generator: φθ(t) = (− log t)θ, θ ≥ 1
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Figure 1: The model risk is the uncertainty of the value due to the choice of copula to given concordance structure
of the basket. Depending on the copula defaults in the basket a more likely which is reflected in the expected
protection payment.

the expected protection payment. The price uncertainty due to the chosen copula vanishes only for the

extreme cases τK = 0 or τK = 1. The choice of the copula determines the risk profile of the derivative

and should be chosen advisedly and with respect to regulatory requirements.

4.1 Variance reduction for Gaussian densities by Joshi-Kainth and Chen-

Glasserman

In this subsection we will introduce a technique for Gaussian implied default densities which reduces the

variance of Monte-Carlo simulation by valuing artificially generated defaults.
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The main source of increased variance for the calculation of V (m) or sm:n is the simulation of the protection

leg E
(
Z(m)
pro

)
. To see this, let t[i] =

(
t
[i]
1 , ..., t

[i]
n

)
be the realization of default times simulated in the

ith run of the Monte-Carlo loop. Obviously, only for tιm < T we have Z(m)
pro (t[i]) > 0 and otherwise

Z(m)
pro (t[i]) = 0. Typically, the number of runs with less than m defaults, i.e Z(m)

pro (t[i]) = 0 is much larger

than the number of runs which triggered a protection payment, i. e. Z(m)
pro (t[i]) > 0. Consequently, the

values of Z(m)
pro (t[i]), i ∈ {1, . . . , k} are very volatile and E

(
Z(m)
pro

)
has large variance.

Due to this fact it is essential to improve the calculation of E
(
Z(m)
pro

)
by applying variance reduction. A

good working method for Gaussian copula implied joint default probabilities was developed by [17] and

improved by [5]. The idea of this technique is a modification of the default probabilities, which shifts the

defaults in areas of importance so that at least m defaults are forced in every Monte-Carlo run. Hence,

the value Z(m)
pro (t[i]) of the protection leg will be strictly greater than zero for every i ∈ {1, . . . , k}.

For the reader’s convenience we briefly sum up variance reduction for Gaussian copula models. Let

CGauR be the model copula with correlation matrix R. We will generate realizations of default times

t[i] =
(
t
[i]
1 , . . . , t

[i]
n

)
with t[i]ιm ≤ T and correction factors CF [i] so that

E(Z(m)
pro ) = lim

k→∞
1

k

k∑

i=1

Z(m)
pro

(
t
[i]
1 , . . . , t

[i]
n

)
· CF [i]. (4.3)

Following Joshi and Kainth let AAtr = R be the Cholesky decomposition of the correlation matrix R

and let the tuple

(l1, . . . , ln) := (F1 (T ) , . . . , Fn (T )) (4.4)

denote the standardized border of the mBDS.

For the i-th Monte-Carlo run we proceed as follows:

First, we draw a uniformly distributed tuple (v1, . . . , vn) and set CF [i] := 1.

We will compute numbers zj , xj and u
[i]
j for j = 1, . . . , n. Recursively, assume that we have already

considered j−1 of n assets (j−1 ∈ {1, . . . , n− 1}) and have observed k defaults within these j−1 assets.

Further, we assume that we have computed the numbers zl, xl, u
[i]
l for l = 1, . . . , j − 1.

If k ≥ m we have t[i]ιm ≤ T and we have already forced a contingent payment for this Monte-Carlo run.
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In this case we set by the standard Gaussian copula algorithm, [18],

zj := Φ−1
0,1 (vj) , xj := (aj,1, . . . , aj,j) · (z1, . . . , zj−1, zj)

tr
, and u

[i]
j := Φ0,1 (xj) . (4.5)

Otherwise, k < m and we do the following: First, we calculate the conditional probability p of default of

the j-th asset,

p = P
(
u

[i]
j ≤ lj |u

[i]
j , . . . , u

[i]
j−1

)
= Φ0,1

(
Φ−1

0,1 (lj)−
∑j−1
l=1 zlaj,l

aj,j

)
, (4.6)

given u[i]
l , l ∈ {1, . . . , j − 1}. Secondly, we create a synthetic probability q of default. Joshi and Kainth

suggested the use of

q :=
m− k
n− j (4.7)

whereas Glasserman and Chen modified this choice to

q := max

{
m− k

n− (j − 1)
, p

}
. (4.8)

The probability q forces at least m default within n assets and guarantees the validity of t[i]ιm ≤ T . Thus,

in the next step we have to test whether vj lies in the synthetic area of default or not. If so, we have

to shift vj to the real default area, which implies that the corresponding u[i]
j will not be greater then lj .

Hence, if vj ≤ q we modify vj

vj ← p · vj
q

(4.9)

and multiply the correction factor CF [i] by p/q. Otherwise, vj > q and we modify vj by

vj ← p · (1− p) (vj − q)
1− q (4.10)

and multiply the correction factor CF [i] by 1− p/1− q. Finally, we compute zj , xj , u
[i]
j as in Eq. (4.5).

Summarizing, for each Monte-Carlo run i we get a correction factors CF [i], a copula output
(
u

[i]
1 , . . . , u

[i]
n

)

and corresponding default times
(
t
[i]
1 , . . . , t

[i]
n

)
:=
(
F−1

1

(
u

[i]
1

)
, . . . , F−1

n

(
u

[i]
n

))
which satisfy assumption

t
[i]
ιm ≤ T as well as Eq. (4.3).

Remark. Although the effect of variance reduction to the simulation of E
(
Z(m)
pro

)
dominates within the

calculation of V (m) or sm:n it is also possible to apply variance reduction to E
(
Z(m)
pre

)
or E

(
Z̃(m)
pre

)
.
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Equivalent to the simulation of E
(
Z(m)
pro

)
we have to handle the problem, that most of the runs within

the Monte-Carlo simulation deliver the same value, which is no longer zero but
T∑
t=1

sN exp−r(t)t in this

new context. Hence we have to invert the premium leg to

Z(m),∗
pre :=

T∑

t=1

sN exp−r(t)t−Z(m)
pre , (4.11)

with the property

Z(m),∗
pre (t1, . . . , tn)





= 0 tιm > T

> 0 tιm ≤ T.
(4.12)

Now, we can apply above importance sampling to Z(m),∗
pre and will receive a value strictly greater than

zero as well as a correction factor in every run. Finally, we get

E
(
Z(m)
pre

)
=

T∑

t=1

sN exp−r(t)t−E
(
Z(m,∗)
pre

)
. (4.13)

Of course this technique is also suitable to the simulation of E
(
Z̃(m)
pre

)
.

4.2 Variance reduction for Archimedean densities

We will generalize and employ the above variance reduction technique to Archimedean densities.

For given marginals F1, . . . , Fn let fArc(t1, . . . , tn) be the joint density of default times τ = (τ1, . . . , τn)

implied by an Archimedean copula and fGau(t1, . . . , tn) the density implied by a Gaussian copula with

correlation matrix R which has to be specified yet. The idea is to use default times τ ∗ = (τ∗1 , . . . , τ
∗
n)

with Gaussian copula implied density to compute the expectation E(Z(τ1, . . . , τn)).
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We have,

E(Z(τ1, . . . , τn)) =

∫

Rn

Z (t1, . . . , tn) · fArc (t1, . . . , tn) dt

=

∫

Rn

Z (t1, . . . , tn) · fArc (t1, . . . , tn)

fGau (t1, . . . , tn)
fGau (t1, . . . , tn)dt

=:

∫

Rn

Z∗ (t1, . . . , tn) · fGau (t1, . . . , tn) dt = E(Z∗(τ∗1 , . . . , τ∗n)). (4.14)

The expectation in Eq. (4.14) can be computed efficiently by variance reduction as in the previous

section. A complete algorithm is given in Algo. 1. However, the performance depends strongly on the

approximating density fGau. Because we have not specified the correlation matrix R yet we can use R

to optimize the performance of the variance reduction technique.

4.2.1 Density functions

First, we compute fGau and fArc explicitly. By Eq. (3.1) we get for the density of a Gaussian copula,

cGauR (u1, ..., un) :=
∂n
[
CGauR (u1, ..., un)

]

∂u1 · · · ∂un
=

1√
|detR|

exp

(
−1

2
ηtr
(
R−1 − In

)
η

)
(4.15)

with ηT =
(
Φ−1

0,1 (u1) , ...,Φ−1
0,1 (un)

)
and In the n dimensional identity matrix. Thus, Eq. (2.9) and the

chain rule yield

fGau (t1, . . . , tn) =
∂n
[
CGauR (F1(t1), . . . , Fn(tn))

]

∂t1 · · · ∂tn
= cGauR (F1(t1), . . . , Fn(tn)) ·

n∏

i=1

dFi(ti)
dti

(4.16)

Analogously, we get from Eq. (3.3) the density of an Archimedean copula generated by φ,

cArcφ (u1, . . . , un) =
∂n [Cφ (u1, . . . , un)]

∂u1 · · · ∂un
=
dn[φ−1

θ ]

dtn
(φθ(u1) + . . .+ φθ(un)) ·

n∏

i=1

d [φ(ui)]

dui
, (4.17)

and further

fArc(t1, . . . , tn) = cArcφ (F1(t1), . . . , Fn(un)) ·
n∏

i=1

dFi (ti)

dti
. (4.18)
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Algorithm 1 Calculation EArc (Z) via variance reduction

Initialize Λ← 0 and the Cholesky composition AAT = R.
Calculate (l1, . . . , ln)← (F1 (T ) , . . . , Fn (T ))

for y = 1 to N do
Initialize k ← 0 and CF ← 1.
Sample (v1, . . . , vn) ∼ U [0, 1].
for i = 1 to n do
if k < m then
p← Φ0,1

(
Φ−1

0,1(li)−
∑i−1
j=1 zjai,j

ai,i

)

q ← max
{

m−k
n−(i−1) , p

}

if vi ≤ q then
vi ← p · vi/q
CF ← CF · p/q
k ← k + 1

else
vi ← p · (1−p)(vi−q)

1−q
CF ← CF · (1− p) / (1− q)

end if
end if
zi ← Φ−1

0,1 (vi)

xi ←
∑j=i
j=1 ai,j · zi

ui ← Φ0,1 (xi)

ti ← F−1
i (ui)

end for
Λ← Λ + Z (t1, . . . , tn) · CF · fArc(t1,...,tn)

fGau(t1,...,tn)

end for
return Λ/N
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The density fGau depends implicitly on the matrix R. To avoid an extreme and volatile quotient fArc
fGau

in

Eq. (4.14) we determine R and thus fGau by the condition

min
R∈R

∫

Rn

∣∣∣∣
fArc(t1, . . . , tn)

fGau(t1, . . . , tn)
− 1

∣∣∣∣ · fGau(t1, . . . , tn)dt = min
R∈R
‖fArc − fGau‖L1 (4.19)

with R = {R ∈ Rn×n|‖R‖∞ ≤ 1, R sym., pos.-semi definite}. This guarantees that the functional be-

haviour of fArc is reasonable well captured by fGau.

By means of Eqs. (4.16) and (4.18) we find

‖fArc − fGau‖L1 =

∫

Rn

|cArcφ (F1(t1), . . . , Fn(un))− cGauR (F1(t1), . . . , Fn(tn)) | ·
n∏

i=1

dFi (ti)

dti
dt

=

∫

[0,1]n

|cArcφ (u1, . . . , un)− cGauR (u1, . . . , un) |du,

where we use the co-ordinate transformation ui := Fi(ti) to compute the integral. Hence, the norm

‖fArc − fGau‖L1 is independent from the marginal distributions. Unfortunately, the integrand might be

very involved and the integral cannot be computed analytically in most practical relevant situations so

that one has to use numerical quadrature. The integral can be approximated by sparse grid quadrature

with sufficient accuracy even in higher dimensions, [11].

Example 4.2. The generator of Clayton copula is φθ(t) = t−θ − 1 with free parameter θ ∈ (0,∞). Hence,

we have φ−1
θ = (t + 1)−1/θ, φ′θ = −θt−θ−1 and dn[φ−1

θ ]

dtn = (−1)n
n∏
i=1

(
1
θ + (i− 1)

)
· (t + 1)−1/θ−n. Then,

Eq. (4.17) yields

cClayφ (u1, ..., un) = θn ·
n∏

i=1

((
1

θ
+ (i− 1)

)
u−θ−1
i

)
·
(

n∑

i=1

u−θi − n+ 1

)− 1
θ−n

. (4.20)

For the optimization we restrict R to be an homogeneous matrix, i.e. ones on the diagonal and a constant

entry ρ on all other entries so that Eq. (4.19) becomes a one-dimensional optimization problem. For

fixed parameter θ we compute Kendall’s τK by Eq. (3.4) of the Clayton copula and find the optimal R

by numerical optimization. The results are plotted in Fig. 2 for several dimensions. We see that the

18



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kendall’s τK Clayton copula

K
en

d
a
ll
’s

τ
K

G
au

ss
co

p
u
la

 

 

Figure 2

concordance of the Archimedean and Gaussian copula should match, which suggests by Eq. (3.2)

ρ = sin

(
πτK

2

)

as sufficiently good approximation for the optimal value.

4.3 Numerical results

The performance of the variance reduction depends mainly on a good choice of the approximating Gaus-

sian copula and we have seen that this is independent from the marginal distributions. For a good

performance it is necessary that the default event triggering the contingent protection payment is a rare

event and occurs only for very few Monte-Carlo simulations. In this case the introduction of synthetic

probabilities in Eq. (4.8) leads to larger number of Monte-Carlo paths triggering a payment and the

variance is reduced. On the contrary, if the basket is very risky and a triggering default event is highly

probable the use of synthetic probabilities is redundant and might worsen the variance.

There are several model factors which influence the riskiness of the basket. These are
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• the hazard rates – larger values hi(t) correspond to a more probable default of asset Si,

• the maturity – for longer maturities it is more probable that a triggering default event occurs,

• the concordance structure – simultaneous default events are more probable in a highly concordant

basket leading to a more probable triggering event,

• the number of assets – in a larger basket it is more probable that reference assets default implying

a larger probability of a triggering event.

We study the performance of the algorithm with respect to these four factors in the following numerical

example.

Example 4.3. We consider again the basic setup of Ex. 4.1, a homogeneous concordant basket of n = 5

obligors with homogeneous flat hazard rates h :≡ hi(t). We assume that the concordance structure of the

basket is determined by a Clayton copula with τK = 0.2. For all numerical experiments we have chosen

a second to default swap, hence m = 2, and compute the variance of the discounted expected protection

payment without and with our variance reduction.

For the numerical experiments we fix three of the above model factors (h, T , τK or n) and vary the

remaining factors. The numerical results are collected in Tab. 1. The first column shows the number of

Monte-Carlo simulations, then we compare the variance without and with variance reduction. The exact

value of the expected protection payment of the corresponding StD is printed in the top line.

Summarizing, the variance is significantly reduced for typical market situations by our approach. However,

there are settings for which variance reduction is not applicable or performs unsatisfactorily. This is the

case if the basket is very risky and a triggering default event is highly probable.

5 Quantifying model risk

We have seen that the model risk has its origin from three different sources of model uncertainty leading

to uncertainty in the computed derivative price. We provided efficient numerical methods to compute

prices for different copula models in Sect. 4 which can be used to quantify efficiently the uncertainty due

to the choice of copula model. We discussed this in Example 4.1.
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h = 0.02 h = 0.06
ex. value: 0.042448 ex. value: 0.132742

N plain with VR plain with VR
103 5.25E-05 3.20E-06 5.94E-05 8.63E-06
104 3.05E-06 1.14E-07 4.33E-06 3.62E-07
105 3.70E-07 3.53E-08 2.65E-07 1.31E-07
106 4.59E-08 4.62E-09 3.18E-08 1.33E-08

(a) Variable hazard rate

T = 0.8 T = 1.6
ex. value: 0.092658 ex. value: 0.181625

N plain with VR plain with VR
103 8.11E-05 6.54E-06 1.97E-04 1.02E-05
104 6.38E-06 2.73E-07 6.84E-06 4.86E-07
105 4.82E-07 8.64E-08 1.64E-06 1.70E-07
106 1.40E-08 9.33E-09 2.05E-07 1.69E-08

(b) Variable maturity

τK = 0.1 τK = 0.5
ex. value: 0.219189 ex. value: 0.203938

N plain with VR plain with VR
103 9.75E-05 3.56E-06 6.11E-05 6.24E-05
104 2.46E-05 3.28E-07 4.76E-06 2.44E-05
105 1.26E-06 5.33E-08 2.06E-06 4.02E-07
106 9.43E-08 7.70E-09 1.68E-07 2.37E-07

(c) Variable concordance

n = 4 n = 8
ex. value: 0.17904 ex. value: 0.320403

N plain with VR plain with VR
103 1.42E-04 3.22E-06 1.13E-04 7.22E-05
104 1.12E-05 4.14E-07 3.52E-05 9.99E-06
105 1.67E-06 1.63E-08 1.05E-06 1.03E-06
106 1.25E-07 3.28E-09 1.12E-07 2.15E-07

(d) Variable asset number

Table 1: Performance of the variance reduction for different model factor situations and a StD. In (a) we
keep T = 2, τK = 0.2, n = 5 while changing h. In (b) we keep h = 0.1, τK = 0.2, n = 5 while changing T .
In (c) we have h = 0.1, T = 2, n = 5 and change τK and finally, in (d) we keep h = 0.1, T = 2, τK = 0.2
and change n.

In the following we will discuss the application of variance reduction to obtain efficient algorithms for

determining the sensitivity of the basket derivative with respect to the underlying concordance structure

and the hazard rates of the marginal distributions.

5.1 Changes in concordance structure M

Let M = (mij)i,j=1,...,n be the concordance structure of the basket and let V (M) := E(Z;M) the

expected value of a discounted payoff as in Eq. (2.3) or Eq. (2.5), for example, where we have denoted

the dependence of the expectation on M explicitly.

The uncertainty due to the entry mij can be quantified as the derivative of V (M) with respect to entry

mij . Denote by Eij ∈ Rn×n the matrix which has only zeros except for a one at entry (i, j). Then,

∂V

∂mij
= lim
h→0

E(Z;M + h · Eij)− E(Z;M − h · Eij)
2h

. (5.1)

To exploit this formula for numerical approximation we have to make sure that the variance in the
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m = 1 m = 2 m = 3 m = 4
ex. value: − 0.661250 ex. value: − 0.006590 ex. value: 0.260219 ex. value: 0.266428

N plain with VR plain with VR plain with VR plain with VR
104 2.30E-04 2.10E-04 2.24E-04 6.45E-05 9.41E-05 4.83E-05 9.92E-05 2.47E-05
105 8.40E-05 2.42E-05 5.46E-05 1.33E-05 2.66E-05 7.89E-06 1.57E-05 4.04E-06
106 1.65E-05 2.89E-06 1.34E-05 1.79E-06 9.87E-06 1.01E-06 3.36E-06 4.19E-07

Table 2: Analysis of the variance of ∂E(Z(m)
pro )

∂τK
for different m. Variance reduction performs significantly

better than plain Monte-Carlo simulation for large m.

computation of E(Z;M + h · Eij) respectively E(Z;M − h · Eij) does not spoil the finite difference

approximation which happens if the variance is substantially larger than the chosen h, which is discussed

generally for Monte-Carlo simulations in [12]. Neglecting leading coefficients it is shown that the variance

is of order O
(
N−1

)
whereas the optimal step size hN is of order O

(
N−1/5

)
with N denoting the number

of simulations used in the calculation of E (Z;M ± h · Eij). Applying common random numbers in

simulating E (Z;M + h · Eij) and E (Z;M − h · Eij) the finite difference are appropriate here and we can

approximate ∂V
∂mij

by Eq. (5.1) numerically setting h = N−1/5.

To study the model sensitivity we return to Example 4.1.

Example 5.1. Hence, we assume a homogeneous concordance structure M with constant parameter τK ,

see Eq. (4.2), and compute the expected protection payment V (M) = V (τK) = E(Z(m)
pro ; τK) for different

m-th to default swaps assuming a Clayton copula implied concordance structure. Now, we use variance

reduction together with the finite difference approximation (5.1) to approximate the sensitivity ∂V
∂τK

=

lim
h→0

E(Z(m)
pro ;τK+h)−E(Z(m)

pro ;τK−h)

2h as measure for the model risk due to uncertainty in the given concordance

structure. Fig. 3 shows the sensitivity ∂V
∂τK

for a first, a second, a third and a fourth to default swap.

To test the performance of variance reduction we carried out the following numerical experiment. The

basic setup was the above portfolio of 5 assets with given homogeneous concordance structure τK = 0.2,

maturity T = 2 and flat hazard rates hi = 0.1. In Tab. 2 we summarize the performance results for a first,

second, third and fourth to default swap written on this basket. The first column contains the number of

Monte-Carlo simulations and the other columns compare the variance of the expected protection payment

for each basket. For increasing m, i. e. a xess probable protection payment, variance reduction performs

significantly better than plain simulation as expected by the general theory outlined in Sect. 4.1.
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(c) Third to default swap
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(d) Fourth to default swap

Figure 3: The sensitivity ∂Z(m)
pro

∂τK
of the expected protection leg with respect to the concordance structure

for a first, second, third and fourth to default swap in Ex. 5.1.

5.2 Changes in the hazard rate

Last, we discuss model risk due to uncertainty in the hazard rates hi(t). For that we use a suitable

parameterization of hi(t) to avoid cumbersome mathematical technicalities. Thus, assume that each

hi(t) can be written as

hi(t) =

J∑

j=1

h
(j)
i ψj(t) (5.2)
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with basis functions ψj(t) : [0, T ] → R, j = 1, . . . , J and defining parameters h(j)
i ∈ R for each hazard

rate hi(t), i = 1, . . . , n. The integral in Eq. (2.7) is then parameterized by

t∫

0

hi(u)du =

J∑

j=1

h
(j)
i

t∫

0

ψj(u)du =:

J∑

j=1

h
(j)
i Ψj(t). (5.3)

Let V (h1, . . . , hn) := E(Z;h1, . . . , hn) be the expected value of a discounted payoff, where we have denoted

the dependence of the expectation on hi explicitly. More precisely, due to the parameterization we can

write V (h
(j)
i |i = 1, . . . , n, j = 1, . . . , J) = V (h) to denote the dependence on the defining parameters h(j)

i .

To compute the sensitivities ∂V

∂h
(j)
i

we apply the likelihood ratio method, see [12], and interchange dif-

feration and integration. Let f(t1, . . . , tn;h) be the joint default probability density, then we have for

i = 1, . . . , n, j = 1, . . . , J

∂V

∂h
(j)
i

=
∂

∂h
(j)
i

E(Z) =
∂

∂h
(j)
i

∫

Rn

Z(t1, . . . , tn)f(t1, . . . , tn;h)dt

=

∫

Rn

Z(t1, . . . , tn)
∂

∂h
(j)
i

f(t1, . . . , tn;h)
f(t1, . . . , tn;h)

f(t1, . . . , tn;h)
dt

=

∫

Rn

Z(t1, . . . , tn)
∂(log f)

∂h
(j)
i

f(t1, . . . , tn;h)dt (5.4)

From Eqs. (4.16) and (4.18) we know that the density has the functional form

f = c(F1(t1), . . . , Fn(un)) ·
n∏

i=1

dFi (ti)

dti
,

where c(u1, . . . , un) := ∂nC(u1,...,un)
∂u1···∂un is the density of the chosen copula. This yields,

log f = log c(F1(t1), . . . , Fn(un)) +

n∑

i=1

log
dFi (ti)

dti
, (5.5)

and further,
∂(log f)

∂h
(j)
i

=
1

c
· ∂c
∂Fi

∂Fi

∂h
(j)
i

+
∂2Fi

∂ti∂h
(j)
i

/
∂Fi
∂ti

. (5.6)

Assuming the functional form Fi(ti) = 1− exp

(
−

ti∫
0

hi(u)du

)
of the marginals and the parameterization
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(5.2) we can explicitly express,

∂Fi

∂h
(j)
i

= Ψj(t) exp


−

J∑

j=1

h
(j)
i Ψj(t)


 ,

∂Fi
∂ti

=




J∑

j=1

h
(j)
i ψj(t)


 · exp


−

J∑

j=1

h
(j)
i Ψj(t)


 ,

∂2Fi

∂ti∂h
(j)
i

=
(
ψj(t)− h(j)

i Ψj(t)
)
· exp


−

J∑

j=1

h
(j)
i Ψj(t)




(5.7)

in terms of the basis functions, their integrals and the defining parameters. Further, Eq. (5.4) allows for

an application of variance reduction method so that the sensitivities ∂V

∂h
(j)
i

can be evaluated efficiently.

Next, we discuss sets of basis functions which are most suitable for typical practical relevant situations

including flat, piecewise-constant and linear piecewise continuous hazard rates. Let

T = {0 = T0 < T1 < . . . < TJ = T}

be a partition of the time interval [0, T ].

Flat hazard rates. In this situation one assumes that the hazard rates hi(t) = h
(1)
i are constant till

maturity. We have J = 1 and the single basis function ψ1(t) ≡ 1 with Ψ1(t) = t.

Piecewise-constant hazard rates. In this situation the hazard rates hi(t) are constant on the intervals

[Tj−1, Tj) with value hi(t) = h
(j)
i for t ∈ [Tj , Tj+1) and possible jumps at t = Tj . As basis functions we

take the indicator functions of the subintervals [Tj−1, Tj),

ψj(t) =





1 : Tj−1 ≤ t < Tj

0 : otherwise
, Ψj(t) =





0 : t < Tj−1

t− Tj−1 : Tj−1 ≤ t < Tj

Tj − Tj−1 : Tj ≤ t

. (5.8)

Linear, piecewise-continuous hazard rates. In this situations we parameterize the hazard rates hi(t)

by

hi(t) =

J∑

j=0

h
(j)
i ψj(t)
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which are continuous on [0, T ] and linear on the intervals [Tj−1, Tj) with values hi(Tj) = h
(j)
i . As basis

functions we take the so-called hat-functions, [24]. These are for j = 1, . . . , J − 1

ψj(t) =





t−Tj−1

Tj−Tj−1
: Tj−1 ≤ t < Tj

Tj+1−t
Tj+1−Tj : Tj ≤ t < Tj+1

0 : otherwise

, Ψj(t) =





0 : t < Tj−1

(t−Tj−1)2

2(Tj−Tj−1) : Tj−1 ≤ t < Tj

Tj−Tj−1

2 +
(t−Tj)(2Tj+1−(Tj−t))

2(Tj+1−Tj) : Tj ≤ t < Tj+1

Tj+1−Tj−1

2 : Tj+1 ≤ t
(5.9)

and at the left boundary

ψ0(t) =





T1−t
T1

: 0 ≤ t < T1

0 : elsewhere
, Ψ0(t) =





2T1t−t2
2T1

: 0 ≤ t < T1

T1

2 : T1 ≤ t
(5.10)

respectively at the right boundary,

ψJ(t) =





t−TJ
TJ−TJ−1

: TJ−1 ≤ t ≤ TJ
0 : elsewhere

, ΨJ(t) =





t2−2TJ t
2(TJ−TJ−1) : TJ−1 ≤ t ≤ TJ

0 : elsewhere
. (5.11)

In Fig. 4 we summarized the basis functions and show possible hazard rates. Our parameterization can

be generalized to even more smooth basis functions by B-splines, [7] and consequently smoother hazard

rates. However, formulas get much more involved and the gain of smoothness is small compared to the

induced model error.

We demonstrate the efficiency of our approach and compute the hazard rate sensitivities for Example

4.1.

Example 5.2. We assume a Clayton copula, a homogeneous concordance structure τK = 0.2 and flat

hazard rates hi(t) = h
(1)
i = 0.1. From Eqs. (4.18) and (4.20) we first compute

log fClay = n · log θ +

n∑

k=1

{
log

(
1

θ
+ (k − 1)

)
− (θ + 1) · logFk(tk;h

(1)
k )

}

−
(

1

θ
+ n

)
· log

(
n∑

k=1

Fk(tk;h
(1)
k )−θ − n+ 1

)
+

n∑

k=1

log
∂Fk(tk;h

(1)
k )

∂tk
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T 0 T 1
... T j−1 T j T j1 T J

...

1
 j t 

(a) Piecewise constant basis functions

T 0 T 1
... T j−1 T j T j1 T J

...

h it hi
1 

h i
2 h i

 j 

h i
 J 

h i
 j1

(b) Piecewise constant hazard rates

T 0 T 1
... T j−1 T j T j1 T J

...

1
 j t 

(c) Piecewise linear continuous basis functions

T 0 T 1
... T j−1 T j T j1 T J

...

h it 

(d) Piecewise linear continuous hazard rates

Figure 4: Basis functions and parameterized hazard curves, (a), (b) for piecewise constant hazard rates
and (c), (d) for piecewise linear continuous hazard rates.

Differentiation yields,

∂(log fClay)

∂h
(1)
i

= − θ + 1

Fi(ti;h
(1)
i )

∂Fi

∂h
(1)
i

+

(
1

θ
+ n

)
θ · Fi(ti;h(1)

i )−θ−1

∑n
k=1 Fk(tk;h

(1)
k )−θ − n+ 1

· ∂Fi
∂h

(1)
i

+
∂2Fi(ti;h

(1)
i )

∂ti∂h
(1)
i

/
∂Fi(ti;h

(1)
i )

∂ti
(5.12)

and from Eq. (5.7) we get explicitly,

Fi(t) = 1− exp
(
−h(1)

i t
)
,

∂Fi

∂h
(1)
i

= t exp
(
−h(1)

i t
)
,

∂Fi(ti;h
(1)
i )

∂ti
= h

(1)
i exp

(
−h(1)

i t
)
,

∂2Fi(ti;h
(1)
i )

∂ti∂h
(1)
i

= (1− h(1)
i t) exp

(
−h(1)

i t
)
.

Similar to Ex. 5.1 we compare the performance of variance reduction to plain Monte-Carlo simulation

for different swaps written on the above basket. We apply variance reduction to Eq. (5.4) together with

Eq. (5.12). As expected, variance reduction performs significantly better than the plain simulation for

large m, see Tab. 3.

27



m = 1 m = 2 m = 3 m = 4
ex. value: 0.622242 ex. value: 0.443100 ex. value: 0.262252 ex. value: 0.126674

N plain with VR plain with VR plain with VR plain with VR
103 1.79E-02 7.01E-03 1.05E-02 3.08E-03 3.12E-03 6.75E-04 8.30E-04 1.65E-04
104 8.01E-04 2.53E-04 8.69E-04 8.98E-05 4.43E-04 1.46E-05 1.33E-04 3.31E-06
105 1.07E-04 1.65E-04 1.30E-04 8.58E-05 2.33E-05 2.79E-05 1.80E-05 1.93E-06
106 1.84E-05 2.46E-06 2.56E-06 9.89E-07 3.97E-06 3.85E-07 1.82E-06 4.46E-08

Table 3: Analysis of the variance of ∂E(Z(m)
pro )

∂h
(1)
i

using fixed parameters τK = 0.2, hi = 0.1, T = 2 and n = 5.

6 Conclusion

In this paper we presented numerical techniques to quantify the model risk involved in valuing credit

derivatives written on a portfolio of multiple obligors. Following works of Joshi and Kainth, Chen and

Glasserman our approach applies variance reduction principles to compute the expected payoff of a

contingent claim triggered by a default event. Here, we also allow for joint probabilities of default times

linked by an Archimedean copula model. This improvement is of interest for the valuation of basket

default swaps because Archimedean copula models are promising alternatives to the standard approach

with a Gaussian copula model. Hence, a vast range of new pricing alternatives is opened up by the

application of variance reduction to this class of copula models.

Further, we suggest to use the concordance structure of the underlying portfolio in contrast to the corre-

lation coefficients to describe the interrelations among the obligors. This guarantees the comparability of

different copula models and allows to quantify the model risk induced by the choice of the model copula.

It became clear that the choice of the copula has a significant influence on the evaluation of a basket

default swap even if the copula implied concordance structures are the same. The copula is a model

parameter in this sense.

Beside the choice of the copula model we also analyzed the sensitivities with respect to hazard rates

and concordance structure as part of the model risk. We introduced techniques to calculate these sensi-

tivities efficiently and analyzed them with regard to the application of variance reduction in context of

Archimedean copula models. Especially for these calculations variance reduction is absolutely necessary

to obtain accurate, robust and reliable results as our numerical experiments showed.
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