
MATHEMATISCHES INSTITUT
DER UNIVERSITÄT ZU KÖLN

Prof. Dr. R. Seydel
Dipl.-Wirt-math. A. Schröter

Summer 2012
June, 20th

Computational Finance - 10th Assignment

Deadline: June, 27th (written exercises)
July, 4th (programming exercise)

Exercise 36 (Perpetual Put Option) (4+2+4 points)

For T →∞ it is sufficient to analyze the ODE

σ2

2
S2d2V

dS2
+ (r − δ)SdV

dS
− rV = 0.

Consider an American put with high contact to the payoff V = (K − S)+ at S = Sf .
Show:

a) Upon substituting the boundary condition for S →∞ one obtains

V (S) = c

(
S

K

)λ2
,

where λ2 = 1
2

(
1− qδ −

√
(qδ − 1)2 + 4q

)
, q = 2r

σ2 , qδ = 2(r−δ)
σ2

and c is a positive constant.
Hint: Apply the transformation S = Kex. (The other root λ1 drops out.)

b) V is convex.

For S < Sf the option is exercised; then its intrinsic value is K − S. For S > Sf the option
is not exercised and has a value V (S) > K − S. The holder of the option decides when to
exercise. This means, the holder makes a decision on the high contact Sf such that the value
of the option becomes maximal.

c) Show: V ′(Sf) = −1, if Sf maximizes the value of the option.
Hint: Determine the constant c such that V (S) is continuous in the contact point.

Exercise 37 (Discrete Dividend Payment) (3 points)

Assume that a stock pays a dividend D at ex–dividend date tD, with 0 < tD < T . Define for
an American put with strike K

t̃ := tD −
1

r
log

(
D

K
+ 1

)
.

Assume S = 0, r > 0, D > 0 and a time instant t in t̃ < t < tD. Argue that instead of
exercising early it is reasonable to wait for the dividend. Note: For t̃ > 0, depending on S,
early exercise may reasonable for 0 ≤ t < t̃.



Exercise 38 (UL decomposition) (3 points)

Assume a system of linear equations Ax = b with irreducible diagonally dominant tridiagonal
matrix A. Formulate the UL decomposition as an algorithm.

Exercise 39 (Brennan-Schwartz Algorithm) (3+2 points)

Let A be a irreducible diagonally dominant tridiagonal matrix and b and g vectors. The
system of equations Aw = b is to be solved such that the side condition w ≥ g is obeyed
componentwise. Assume for a put wi = gi for 1 ≤ i ≤ if and wi > gi for if < i ≤ n, with
unknown if .

a) Formulate an algorithm that solves Aw = b in the backward/forward approach. In the
final forward loop, for each i the calculated candidate wi is tested for wi ≥ gi: In case
wi < gi the calculated value wi is corrected to wi = gi.

b) Apply the algorithm to the case of a put with relevant A, b, g.

Exercise 40 (Computation of American Options) (20P points)

Implement an algorithm for the calculation of American-style options, following the
prototype algorithm below. Use exercises 38 and 39. For this assignment, it is sufficient to
implement the case of a put.

Test your program with the following example: K = 10, r = 0.25, σ = 0.6, T = 1, δ = 0.2.
Calculate approximations to VP(10, 0).

Algorithm (prototype algorithm)

Set up the function g(x, τ) listed in the summary below.
Choose θ (θ = 1/2 for Crank-Nicolson).
Fix the discretization by choosing xmin, xmax, m, νmax

(for example: xmin = −5, xmax = 5, νmax = m = 100).
Calculate ∆x := (xmax − xmin)/m,

∆τ := 1
2
σ2T/νmax,

xi := xmin + i∆x for i = 0, . . . ,m,
λ := ∆τ/∆x2 and α := λθ.

Initialize the iteration vector w with
g(0) = (g(x1, 0), . . . , g(xm−1, 0))tr.

Arrange for the matrix A.

τ -loop: for ν = 0, 1, ..., νmax − 1:
τν := ν∆τ
initialize the vector b with
bi := wi + λ(1− θ)(wi+1 − 2wi + wi−1) for 2 ≤ i ≤ m− 2,
b1 := w1 + λ(1− θ)(w2 − 2w1 + g0ν) + αg0,ν+1,
bm−1 := wm−1 + λ(1− θ)(gmν − 2wm−1 + wm−2) + αgm,ν+1

subroutine for the LCP solution w, directly as in exercises 38 and 39
w(ν+1) = w

(please turn over)



Summary of American options, for a put (r > 0) or a call (δ > 0), after transformation
into (x, τ, y)-variables:

q :=
2r

σ2
; qδ :=

2(r − δ)
σ2

put: g(x, τ) := exp{1
4
((qδ− 1)2 + 4q)τ}max{e 1

2
(qδ−1)x− e 1

2
(qδ+1)x, 0}

call: g(x, τ) := exp{1
4
((qδ− 1)2 + 4q)τ}max{e 1

2
(qδ+1)x− e 1

2
(qδ−1)x, 0}(

∂y

∂τ
− ∂2y

∂x2

)
(y − g) = 0

∂y

∂τ
− ∂2y

∂x2
≥ 0, y − g ≥ 0

y(x, 0) = g(x, 0), 0 ≤ τ ≤ 1
2
σ2T

lim
x→±∞

y(x, τ) = lim
x→±∞

g(x, τ)

(programming exercise)


