MATHEMATISCHES INSTITUT DER UNIVERSITÄT ZU KÖLN Prof. Dr. R. Seydel

Prof. Dr. R. Seydel Dipl.-Wirt-math. A. Schröter

Summer 2012 June, 20th

Computational Finance - 10th Assignment

Deadline: June, 27th (written exercises)
July, 4th (programming exercise)

Exercise 36 (Perpetual Put Option)

(4+2+4 points)

For $T \to \infty$ it is sufficient to analyze the ODE

$$\frac{\sigma^2}{2}S^2\frac{\mathrm{d}^2V}{\mathrm{d}S^2} + (r-\delta)S\frac{\mathrm{d}V}{\mathrm{d}S} - rV = 0.$$

Consider an American put with high contact to the payoff $V = (K - S)^+$ at $S = S_f$. Show:

a) Upon substituting the boundary condition for $S \to \infty$ one obtains

$$V(S) = c \left(\frac{S}{K}\right)^{\lambda_2},$$

where $\lambda_2 = \frac{1}{2} \left(1 - q_{\delta} - \sqrt{(q_{\delta} - 1)^2 + 4q} \right)$, $q = \frac{2r}{\sigma^2}$, $q_{\delta} = \frac{2(r - \delta)}{\sigma^2}$ and c is a positive constant.

Hint: Apply the transformation $S = Ke^x$. (The other root λ_1 drops out.)

b) V is convex.

For $S < S_f$ the option is exercised; then its intrinsic value is K - S. For $S > S_f$ the option is not exercised and has a value V(S) > K - S. The holder of the option decides when to exercise. This means, the holder makes a decision on the high contact S_f such that the value of the option becomes maximal.

c) Show: $V'(S_f) = -1$, if S_f maximizes the value of the option. Hint: Determine the constant c such that V(S) is continuous in the contact point.

Exercise 37 (Discrete Dividend Payment)

(3 points)

Assume that a stock pays a dividend D at ex-dividend date t_D , with $0 < t_D < T$. Define for an American put with strike K

$$\tilde{t} := t_D - \frac{1}{r} \log \left(\frac{D}{K} + 1 \right).$$

Assume S = 0, r > 0, D > 0 and a time instant t in $\tilde{t} < t < t_D$. Argue that instead of exercising early it is reasonable to wait for the dividend. Note: For $\tilde{t} > 0$, depending on S, early exercise may reasonable for $0 \le t < \tilde{t}$.

Assume a system of linear equations Ax = b with irreducible diagonally dominant tridiagonal matrix A. Formulate the UL decomposition as an algorithm.

Exercise 39 (Brennan-Schwartz Algorithm)

(3+2 points)

Let A be a irreducible diagonally dominant tridiagonal matrix and b and g vectors. The system of equations Aw = b is to be solved such that the side condition $w \ge g$ is obeyed componentwise. Assume for a put $w_i = g_i$ for $1 \le i \le i_f$ and $w_i > g_i$ for $i_f < i \le n$, with unknown i_f .

- a) Formulate an algorithm that solves Aw = b in the backward/forward approach. In the final forward loop, for each i the calculated candidate w_i is tested for $w_i \geq g_i$: In case $w_i < g_i$ the calculated value w_i is corrected to $w_i = g_i$.
- b) Apply the algorithm to the case of a put with relevant A, b, g.

Exercise 40 (Computation of American Options)

(20P points)

Implement an algorithm for the calculation of American-style options, following the prototype algorithm below. Use exercises 38 and 39. For this assignment, it is sufficient to implement the case of a put.

Test your program with the following example: K = 10, r = 0.25, $\sigma = 0.6$, T = 1, $\delta = 0.2$. Calculate approximations to $V_{\rm P}(10,0)$.

Algorithm (prototype algorithm)

```
Set up the function g(x,\tau) listed in the summary below.
Choose \theta (\theta = 1/2 for Crank-Nicolson).
Fix the discretization by choosing x_{\min}, x_{\max}, m, \nu_{\max}
(for example: x_{\min} = -5, x_{\max} = 5, \nu_{\max} = m = 100).
Calculate \Delta x := (x_{\text{max}} - x_{\text{min}})/m,
              \Delta \tau := \frac{1}{2} \sigma^2 T / \nu_{\text{max}},
              x_i := \bar{x_{\min}} + i\Delta x \text{ for } i = 0, \dots, m,
              \lambda := \Delta \tau / \Delta x^2 and \alpha := \lambda \theta.
Initialize the iteration vector w with
  g^{(0)} = (g(x_1, 0), \dots, g(x_{m-1}, 0))^{tr}.
Arrange for the matrix A.
\tau-loop: for \nu = 0, 1, ..., \nu_{\text{max}} - 1:
  \tau_{\nu} := \nu \Delta \tau
  initialize the vector b with
  b_i := w_i + \lambda (1 - \theta)(w_{i+1} - 2w_i + w_{i-1}) for 2 \le i \le m - 2,
  b_1 := w_1 + \lambda (1 - \theta)(w_2 - 2w_1 + g_{0\nu}) + \alpha g_{0,\nu+1},
  b_{m-1} := w_{m-1} + \lambda (1 - \theta)(g_{m\nu} - 2w_{m-1} + w_{m-2}) + \alpha g_{m,\nu+1}
  subroutine for the LCP solution w, directly as in exercises 38 and 39
  w^{(\nu+1)} = w
```

Summary of American options, for a put (r > 0) or a call $(\delta > 0)$, after transformation into (x, τ, y) -variables:

$$\begin{aligned} q &:= \frac{2r}{\sigma^2}; \quad q_\delta := \frac{2(r-\delta)}{\sigma^2} \\ \text{put:} \ g(x,\tau) &:= \exp\{\frac{1}{4}((q_\delta-1)^2+4q)\tau\} \max\{e^{\frac{1}{2}(q_\delta-1)x}-e^{\frac{1}{2}(q_\delta+1)x},0\} \\ \text{call:} \ g(x,\tau) &:= \exp\{\frac{1}{4}((q_\delta-1)^2+4q)\tau\} \max\{e^{\frac{1}{2}(q_\delta+1)x}-e^{\frac{1}{2}(q_\delta-1)x},0\} \\ \left(\frac{\partial y}{\partial \tau} - \frac{\partial^2 y}{\partial x^2}\right)(y-g) &= 0 \\ \frac{\partial y}{\partial \tau} - \frac{\partial^2 y}{\partial x^2} &\geq 0, \quad y-g \geq 0 \\ y(x,0) &= g(x,0), \quad 0 \leq \tau \leq \frac{1}{2}\sigma^2 T \\ \lim_{x \to \pm \infty} y(x,\tau) &= \lim_{x \to \pm \infty} g(x,\tau) \end{aligned}$$

(programming exercise)