MATHEMATISCHES INSTITUT DER UNIVERSITÄT ZU KÖLN Prof. Dr. R. Seydel

Dipl.-Wirt-math. A. Schröter

Summer 2012 May, 16th

Computational Finance - 6th Assignment

Deadline: May, 23th (written exercises)

June, 4th (programming exercise)

Exercise 20 (Analysis of a Random Number Generator)

(5 points)

Consider the linear congruential generator

$$N_i = (455N_{i-1} + 23) \mod 4096, \quad U_i = \frac{N_i}{4096}.$$

Construct a family of parallel straight lines containing all the points (U_{i-1}, U_i) so that only few of them cut the square $[0,1)^2$. What is the distance between them? Hint: Examine the condition $c \in \mathbb{Z}$ for the linear equation. For this purpose consider the quotient $\frac{M}{a}$.

Exercise 21 (Deficient Random Number Generator)

(5 points)

For some time the generator

$$N_i = aN_{i-1} \mod M$$
 with $a = 2^{16} + 3$, $M = 2^{31}$

was in wide use. Show for the sequence $U_i := N_i/M$:

$$U_{i+2} - 6U_{i+1} + 9U_i$$
 is integer!

What does this imply for the distribution of the triples (U_i, U_{i+1}, U_{i+2}) in the unit cube?

Exercise 22 (Inverting the Normal Distribution)

(3+1+2 points)

Suppose F(x) is the standard normal distribution function. Construct a rough approximation G(u) to $F^{-1}(u)$ for $0.5 \le u < 1$ as follows:

- a) Construct a rational function G(u) with correct asymptotic behavior, point symmetry with respect to (u, x) = (0.5, 0), using only one parameter.
- b) Fix the parameter by interpolating a given point $(x_1, F(x_1))$.
- c) What is a simple criterion for the error of the approximation?

Exercise 23 (Uniform Distribution)

(6 points)

For the uniformly distributed random variable (V_1, V_2) on $V_1^2 + V_2^2 < 1$ consider the transformation

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} V_1^2 + V_2^2 \\ \frac{1}{2\pi} \operatorname{arg}(V_1, V_2) \end{pmatrix}.$$

Show that (X_1, X_2) is distributed uniformly.

For European options we take the valuation formula of Black and Scholes of the type $V = v(S, \tau, K, r, \sigma)$, where τ denotes the time to maturity, $\tau := T - t$. For the definition of the function v see exercise 6. If actual market data of the price V are known, then one of the parameters considered known so far can be viewed as unknown and fixed via the implicit equation

$$V - v(S, \tau, K, r, \sigma) = 0. \tag{*}$$

In this *calibration* approach the unknown parameter is calculated iteratively as solution of equation (*). Consider σ to be in the role of the unknown parameter. The volatility σ determined in this way is called *implied volatility* and is a zero of $f(\sigma) := V - v(S, \tau, K, r, \sigma)$.

Assignment:

a) Design, implement and test an algorithm to calculate the implied volatility of a call. Use Newton's method to construct a sequence $x_k \to \sigma$. The derivative $f'(x_k)$ can be approximated by the difference quotient

$$\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} .$$

For the resulting secant iteration invent a stopping criterion that requires smallness of both $|f(x_k)|$ and $|x_k - x_{k-1}|$.

b) Consider the following market data for call options on the same underlying:

$$T-t=0.32787, S_0=7133.06, r=0.0487,$$

Calculate the implied volatilities for these data. For each calculated value of σ enter the point (K, σ) into a figure and join the points with straight lines. (You will notice a convex shape of the curve. This shape has led to call this phenomenon *volatility smile*.)

(programming exercise)