MATHEMATISCHES INSTITUT DER UNIVERSITÄT ZU KÖLN Prof. Dr. R. Sevdel

Prof. Dr. R. Seydel Dipl.-Wirt-math. A. Schröter

Summer 2012 May, 23th

Computational Finance - 7th Assignment

Deadline: June, 6th

Exercise 25 (Integration by Parts for Itô Integrals)

(2+3 points)

a) Show

$$\int_{t_0}^{t} s \, dW_s = tW_t - t_0 W_{t_0} - \int_{t_0}^{t} W_s \, ds.$$

Hint: Start with the Wiener process $X_t = W_t$ and apply the Itô Lemma with the transformation y = g(x, t) := tx.

b) Denote $\Delta Y := \int_{t_0}^t \int_{t_0}^s dW_z ds$, $\Delta W := W_t - W_{t_0}$ and $\Delta t := t - t_0$. Show by using a) that

$$\int_{t_0}^t \int_{t_0}^s dz \ dW_s = \Delta W \Delta t - \Delta Y.$$

Exercise 26 (Integral Representation)

(8 points)

For a European put with time to maturity $\tau := T - t$ prove that

$$[V(S_t, t) =]e^{-r\tau} \int_0^\infty (K - S_T)^+ \frac{1}{S_T \sigma \sqrt{2\pi\tau}} \exp\left\{-\frac{\left[\ln(S_T/S_t) - (r - \frac{\sigma^2}{2})\tau\right]^2}{2\sigma^2 \tau}\right\} dS_T$$
$$= e^{-r\tau} KF(-d_2) - S_t F(-d_1),$$

where F, d_1 and d_2 were defined in exercise 6.

Hint: Use $(K - S_T)^+ = 0$ for $S_T > K$, and get two integrals.

(please turn over)

a) Use the Itô isometry

$$E\left(\left[\int_{a}^{b} f(t,\omega) dW_{t}\right]^{2}\right) = \int_{a}^{b} E\left(f^{2}(t,\omega)\right) dt$$

to show its generalization

$$E(I(f)I(g)) = \int_a^b E(fg) dt$$
, where $I(f) = \int_a^b f(t,\omega) dW_t$.

Hint: $4fg = (f+g)^2 - (f-g)^2$

b) Show for ΔY , ΔW and Δt defined in exercise 25 by using a) and $\mathbb{E}\left(\int_a^b f(t,\omega) \, dW_t\right) = 0$ the following assertions for the moments:

$$E(\Delta Y) = 0$$
, $E(\Delta Y^2) = \frac{\Delta t^3}{3}$, $E(\Delta Y \Delta W) = \frac{\Delta t^2}{2}$, $E(\Delta Y \Delta W^2) = 0$.

c) By transformation of two independent standard normally distributed random variables $Z_i \sim \mathcal{N}(0,1), i=1,2$, two new random variables are obtained by

$$\Delta \widehat{W} := Z_1 \sqrt{\Delta t}, \quad \Delta \widehat{Y} := \frac{1}{2} (\Delta t)^{3/2} (Z_1 + \frac{1}{\sqrt{3}} Z_2).$$

Show that $\Delta \widehat{W}$, $\Delta \widehat{Y}$ and their corresponding products have the same moments like ΔW and ΔY in b).