EQUIVARIANT ETA FORMS AND EQUIVARIANT DIFFERENTIAL
K-THEORY
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ABSTRACT. In this paper, we prove some properties of the equivariant eta forms and
use them to construct a geometric model of equivariant differential K-theory for finite

group.
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0. INTRODUCTION

By de Rham theory, the de Rham cohomology of a smooth manifold can be represented
by differential forms, thus getting the global information by means of local data. In a
similar way, a generalized differential cohomology theory gives a way to combine the
cohomological information with differential geometric objects. An important case is the
differential K-theory.

The differential K-theory is partly motivated by Type II superstring theory in the-
oretical physics, in which a Ramond-Ramond field carries the global information of a
K-theory class together with the locality of a field [8]. Various definitions of differential
K-theory have been proposed (see Bunke-Schick [3], Freed-Lott [10], Hopkins-Singer [11]
and Simons-Sullivan [20]). Axioms for differntial extensions of generalized cohomology

theories are given in [4].
1
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For a finite group G, the equivariant differential K-theory was defined in Szabo-
Valentino [21] and Ortiz [18]. In [5], Bunke and Schick constructed a cycle model for
differential K-theory for orbifold. In fact, it gives a new model for the equivariant dif-
ferential K-theory for finite group. Inspired by the model of Bunke and Schick, as a
parallel version, in this paper, we construct a geometric model of equivariant differential
K-theory for finite group. The construction relies on the properties of the equivariant eta
forms. Comparing the models of Szabo-Valentino [21], Ortiz [18] and Bunke-Schick [5],
the construction of our model of equivariant differential K-theory is purely geometrical.

This paper is organized as follows.

In Section 1, we study the properties of equivariant eta form of Melrose-Piazza. In
Section 2, we construct a geometric model for equivariant differential K-theory for finite
group and define the push-forward map.

To simplify the notations, we use the Einstein summation convention in this paper.

In the whole paper, we use the superconnection formalism of Quillen [19]. If A is a
Zs-graded algebra, and if a,b € A, then we will note [a, b] as the supercommutator of a,
b. If B is another Z,-graded algebra, we will note AR B as the Z,-graded tensor product.
If A, B are not Z-graded, sometimes, we also denote A®B by considering the whole
algebra as the even part.

For a trace class operator P acting on a space E, if E = E, @ E_ is a Zy-graded space,
we denote by

(0.1) Te,[P] = Tr g, [P] — Tr|p_[P).

If Tr[P] takes value in differential forms, we denote by Tr°d/*v"[P] the part of Tr[P]
which takes value in odd or even forms. We denote by

~io | Trg[P], if Eis Zy-graded;
(02) TP = { TreY[P], if E is not Zy-graded.

For a vector bundle 7 : W — S, we will often use the integration of the differential
forms along the fiber Z in this paper. Since the fibers may be odd dimensional, we
must make precise our sign conventions. If « is a differential form on W which in local
coordinates is given by

(0.3) a=dy" A--- NdyP? A B(x)dzt A A da”,

we set

(0.4) /a:dypl /\---/\dypq/ﬁ(az)dazl/\---/\dx".
z z

1. EQUIVARIANT ETA FORM

1.1. Equivariant geometric family. Let 7 : W — B be a smooth submersion of

smooth closed manifolds with closed fiber Z. Let TZ = TW/B be the relative tangent

bundle to the fibers Z. We assume that 77 is orientable with an orientation o(7'Z).
Let THW be a horizontal subbundle of TW such that

(1.1) TW=T‘WaTZ
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The splitting (1.1) gives an identification
(1.2) THAW = m*TB.
Let PTZ be the projection
(1.3) P2 TW =THEW @ TZ - TZ.

Let g74, g7P be Riemannian metrics on TZ, TB. We equip TW = THW ¢ TZ with
the Riemannian metric

(1.4) GV = 2*gTB @ gTZ.
Let VIW_ VT8 be the Levi-Civita connections on (W, g"™"), (B, g"?). Set
(15) vTZ — PTZVTWPTZ.

Then V7?7 is a Euclidean connection on TZ. By [2, Theorem 1.9], we know that V7?4
only depends on (THW, ¢g7%). Let °VTW be the connection on TW = THW & TZ
defined by

(1.6) 0yTW _ 1o TE g yTZ.
Then VW preserves the metric g7 in (1.4). Set
(1.7) S =viW . ogTW,

Then S is a 1-form on W with values in antisymmetric elements of End(TW).

Let C(TZ) be the Clifford algebra bundle of (77, g7%), whose fiber at x € W is the
Clifford algebra C(T,Z) of the Euclidean space (T, Z, g'=#). Recall that by a Clifford
module of C(T'Z), we shall mean a vector bundle over W with a smooth action of C'(T'Z)
on it and in case T'Z is even-dimensional, we demand that the module is Zs-graded and
the action of T'Z exchanges the Z,-grading. If the Clifford module is equipped with a
Hermitian metric, we say that the Clifford module is self-adjoint if for any V' € T'Z, the
action ¢(V') is skew-adjoint.

Let £ be a self-adjoint Clifford module of C(7T'Z) with Hermitian metric h¢. Let V¢
be a Hermitian Clifford connection on (&, h®) associated to VIZ, that is, V¢ preserves
h¢ and for any U € TW, V € € (W, TZ),

(18) (Vi e(V)] = e (VEV).

Let G be a compact Lie group (maybe non-connected). We assume that 7 : W — B is
a G-equivariant fiber bundle and the action of G preserves the orientation o(7'Z) and the
metric ¢g?Z and THW . Then the connection VIZ is G-invariant and there is a naturally
induced G-action on C(TZ), which preserves the product. We assume that (£, h¢) is a
G-equivariant self-adjoint Clifford module of C(T'Z), that is, £ is a G-equivariant vector
bundle over W, h¢ is G-invariant and the Clifford module structure preserved by the
group action. We assume that V¢ is G-invariant and if TZ is even-dimensional, the
G-action preserves the Z,-grading of &£.
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Definition 1.1. An equivariant geometric family F over B is a family of G-equivariant
geometric data

(1.9) F=(W,&0(TZ), THW, g"% h¢ V)
described as above.

Let {e;} be alocal orthonormal frame of TZ. Let D(F) be the fiberwise Dirac operator
(1.10) D(F) = c(e;) Ve,

associated to the equivariant geometric family /. Then the G-action commutes with
D(F). Thus the classical construction of Atiyah-Singer assigns to this family its equi-
variant (analytic) index ind(D(F)) € KE(B), where * is equal to the parity of the
dimension of T'Z.

For b € B, let &, be the set of smooth sections over Z, of &. As in [2], we will regard
& as an infinite dimensional fiber bundle over B.

If VeTB,let VE € THW be its horizontal lift in THW so that m,V# = V. For any
VeETB,s€€F(B,&) =F°(W,E), set

1
(1.11) Vs = Vs — §<S<€i)ei; VHY s,

Let {f,} be a local orthonormal frame of TB and {f?} be its dual. We denote by
VU = fP A Vf:p’u. Let T be the torsion of V™", Then T(f}, fI') € TZ. We denote
by

1
(1.12) c(T):§c(T( IO PALIN.
By [2, (3.18)], the (rescaled) Bismut superconnection
(1.13) B, : €°(B,AN(T*B)R&) — € (B, N(T*B)®&)

is defined by
1
—=c(T).
Obviously, the Bismut superconnection B, commutes with the G-action. Moreover, B2

is a 2-order elliptic differential operator along the fiber Z. Let exp(—B?2) be the family of
heat operators associated to the fiberwise elliptic operator B2. From [1, Theorem 9.50],

(1.14) B, — v/iD(F) + V¥

we know that exp(—B?2) is a smooth family of smoothing operators.
For a € Q(B), set

L >; -, if 7 is even;
(115) Q/JB(OC) = <2ﬂ\/?1 121
\/LE <2ﬂ—\1m> -, if 7 is odd.

Let BY be the fixed point set of ¢ on B. The BY is a submanifold of B. For any
A € K{(B) and g € G, we define the equivariant Chern character map

(1.16) chy : K&(B) — Q_o(B?,C)/Imd
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by
(1.17) chy () := chy (A |ps).

Here Q%_,(BY,C) denotes the set of closed forms.

Let B|gs be the Bismut superconnection of 7 : 771(B9) — BY, where Fps is the
restriction of the equivariant geometric family F to BY. We state the equivariant family
local index theorem as follows (see [13, Theorem 1.2]).

Theorem 1.2. For anyu > 0 and g € G, restricted to the fized point set BY, the differen-
tial form ¥ paTr|pe|g exp(—(By|ps)?)] € Q*(BY,C) is closed and its cohomology class rep-
resents [ch, (ind(D(F)))] € H*(B?,C). Asu — 0, the limit of ¥pa Tr| ga[g exp(— (Bu|ps)?)]
erists.

Set
(118) 0 (F) = lim 5 Tt s [g exp(— (B )] € (B, C).
Then modulo exact forms, we have
(1.19) chy(ind(D(F))) = Qq(F).

Let W9 be the fixed point set of g on W. Then 7 : W9 — BY is a fibration with fiber
Z9. Note that if Z9 is oriented, we can write Q,(F) as an integral of a characteristic
form on W9 along the fiber Z9 (see [13, (1.57)]).

From the equivariant family local index theorem, ,(F) only depends on V¢. We
will also denote it by Q,(V¢). In fact, if V77 is only a G-invariant connection on T'Z
and V¢ is a G-invariant Clifford connection associated to V7?4, the local index form
Q,(VE) € Q*(BY,C) is still well-defined. Let V7%, V'7Z be two G-invariant connections
on TZ and V¢, V'¢ be G-invariant Clifford connections associated to V7%, V'74. From
15, Theorem B.5.4], we can construct the Chern-Simons form Q,(V¢, V'¢) € Q*(BY, C)
such that

(1.20) dQ,(VE,V'E) = Q (V') — Q,(VE).

1.2. Equivariant spectral section. In [16, 17], Melrose and Piazza defined a spectral
section for a geometric family when the index vanishes. In this section, we explain that
the spectral section can be naturally extended to G-equivariant case.

Definition 1.3. (compare with [16, Definition 1] and [17, Definition 1]) For an equi-
variant geometric family F, an equivariant spectral section is a family of self-adjoint
pseudodifferential projections P, which commutes with the G-action, such that for some
smooth function R : B — R (depending on P) and every b € B,

- D(F \ Pu=wu, if \> R(b);
(1.21) b FJu =X Pu=0, if A< —R(b),
and if dim7T'Z is even, we have
(1.22) oP+ Po = o,

where o is the chirality operator on &, i.e., 0 = £1 on &..
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As in [16, 17], we show that an equivariant geometric family which has an equivariant
spectral section has a finite rank equivariant homotopy to an invertible family.

Proposition 1.4. (compare with [16, Lemma 8] and [17, Lemma 1]) If the equivariant
geometric family F has an equivariant spectral section P, then there is a family of self-
adjoint equivariant smoothing operators Ap with range in a finite sum of eigenspaces of

D(F) such that
(1.23) D(F,P):=D(F)+ Ap

1s invertible and P is the Atiyah-Patodi-Singer projection onto the positive part of the
spectrum of D(F, P). If dimTZ is even, Ap is Zo-graded.

Proof. Observe that all the operators in the proofs of [16, Lemma 8] and [17, Lemma 1]
commute with the G-action. O

We list in the following the basic properties of equivariant spectral sections, which are
the natural extension of the results in [16, 17].

Proposition 1.5. Let F be an equivariant geometric famaily.

(A) (compare with [16, Proposition 1] and [17, Proposition 2]) There exists an equi-
variant spectral section for F if and only if ind D(F) = 0 € K5 (B).

(B) (compare with [16, Proposition 2]) Given equivariant spectral sections P, ), there
exists an equivariant spectral section R such that PR = R and QR = R. Such an
equivariant spectral section will be called a majorizing equivariant spectral section.

(C) (compare with [16, Lemma 7| and [17, Proposition 4]) If dimTZ is odd and R
magjorizes P: PR = R, then ker{P,R, : Im(R}) — Im(B,)}pep forms an equivariant
vector bundle over B, denoted by [R— P|. Hence for any two equivariant spectral sections
P, Q, the difference element [P — Q] can be defined as an element in K&(B), as follows:

(1.24) P—Q):=[R—Q) - [R—P| € K}(B).

for any majorizing equivariant spectral section R and the class in (1.24) is independent
of the choice of the majorizing equivariant spectral section.
If dimT'Z is even, after a suspension argument, we can define the difference element

(1.25) P - Q) e KL(B)
using the result of odd case.
(D) If P, , P, , P3 are equivariant spectral sections for F, then
(126) [Pg—Pl]:[P3—P2]+[P2—P1]
(E) (compare with [17, Proposition 12]) The equivariant K -group K (B) is generated
by all these difference elements.

1.3. Equivariant eta form. In this subsection, we assume that ind(D(F)) vanishes.
From Proposition 1.5 (A), there exists an equivariant spectral section P for F.
Let x € €°(R) be a cutoff function such that

Lo 0, ifu<l,
(1.27) X =91 us o



EQUIVARIANT ETA FORMS AND EQUIVARIANT DIFFERENTIAL K-THEORY 7

From Proposition 1.4, there exists a family of self-adjoint equivariant smoothing op-
erators Ap, such that D(F) + Ap is invertible. For any ¢g € G, set

(1.28) B, |ps = Bu|ps + Vux(vu)Ap|ps.

Since x(u) = 0 when u — 0, by (1.18),
(1.29) 1im v T o [g exp(— (B | 50)?)] € Q° (B, R) = Qy(F).
Since x(u) = 1 when u — 400, from [1, Theorem 9.19], we have

(1.30) lim 4peTr| s [gexp (—(B,|5s)?)] = 0.

Uu——+00

Definition 1.6. Assume that ind(D(F)) =0 € K} (B). For any g € G, the equivariant
eta form with spectral section of Melrose-Piazza is defined by

(1.31)
[ Jremm| oG] el due )
B if dim Z is even;
Ug(]:v P):= 0 1 even IB;, ' 2 *( g
/0 mwm Tr N [g o |, exp(—(B,|ps) )} du € Q*(BY,C),
if dim Z is odd.

\

The regularities of the integral in the right hand side of (1.35) are proved in [13,
Section 1.4]. As in [13, (1.81)], we have

(1.32) dng(F, P) = Q,(F).

If « € A(T*(Ry x B)), we can expand « in the form

(1.33) a=duNay+ay, ag,a € AN(T*B).
Set
(1.34) [a]™ = ay.

Then by [13, Remark 1.4], we have

9 9 du
gexp <— <B;2|Bg+dU/\_) )]} du.
ou

1.4. Anomaly formula. Let P, ) be two equivariant spectral sections for F. As a

13w =- [,

natural extension of [16, Proposition 17|, we can get
(1.36) Ng(F, P) = 1jg(F, Q) = 2¢chy ([P — Q]) € €2_o(B?,C)/Im d.

Let F and F’ be two equivariant geometric families over B. An isomorphism F — F’
consists of the following data:
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where

1. f is a diffeomorphism over B commuting with the G-action,

2. F'is an equvariant bundle isomorphism over f,

3. f preserves the G-invariant orientation of the relative tangent bundle,

4. f preserves the horizontal subbundle and the vertical metric,

5. F preserves the metric, connection, Clifford multiplication and the grading of the
Clifford module.

If only the first three conditions hold, we say that F and F’ have the same topological
structure.

Now we study the anomaly formula for two equivariant geometric families F and F’
with the same topological structure. First, a horizontal subbundle on W is simply a
splitting of the exact sequence

(1.37) 0—-TZ—TW —n*TB — 0.

As the space of the splitting map is affine, it follows that any pair of horizontal subbundles
can be connected by a smooth path of horizontal distributions. Let s € [0, 1] parametrize
a smooth path {TZ W},cp) such that TAW = THW and T/,W = T,”IW. Similarly,
let g7% and h¢ be the G-invariant metrics on T2 and £, depending smoothly on s € [0, 1],
which coincide with ¢g7% and hf at s = 0 and with ¢7% and h'¢ at s = 1. By the same
reason, we can choose G-invariant Clifford connection V¢ on € preserving hé. such that
Ve =VE Vi =V¢.

Let B = [0,1] x B and pr : B — B be the projection. We consider the bundle
F: W :=[0,1] x W — B together with the canonical projection Pr : W — W.
Then T;'W(s,.) =R x TESW defines a horizontal subbundle of TW, and TZ = Pr*TZ,
£ = Pr*€ are naturally equipped with metrics gTZ , hE and connection V€. Then the
fiberwise G-action can be naturally extended to 7 : W — B such that G acts as identity
on [0,1] and g4, h¢, V¢ are G-invariant. Thus, we get equivariant geometric families
Fo=(W,&,0(TZ), TEW, g7% h,VE) and F = (W,E,0(TZ), TEW, ¢"%, k¥, V).

Since the equivariant index of F vanishes, the homotopy invariance of the equivariant
index bundle implies that the equivariant indices of each F, and F vanish. Let P, P
be equivariant spectral sections of F , F’ respectively. If we consider the total farnlly }"
then there exists a total spectral section P. Let P, be the restriction of P over {s} x B.

As in [6, Definition 1.5], we denote by
(1.38) st{(F,P),(F,P)}:=[P— PR — [P — P € K.(B).
From (1.26), we know that st{(F, P), (', P')} does not depend on the choice of (F, P).
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Proposition 1.7. Let F, F' be two equivariant geometric families with vanishing equi-
variant indices which have the same topological structure. Let P, P’ be two equivariant
spectral sections for F, F' respectively. For any g € G, modulo exact forms, we have

(1.39)
iig(F', P') = iiy(F, P) = Q,(F, F') + 2 ch, (st{(F, P), (F, P")}) € Q*(B? R)/Imd.

Proof. Following the proof of [13, Theorem 1.7], we can get

(1‘40) ﬁg(flapl)_ﬁg(vao) :Qg(fv'r,)'
Then Proposition 1.7 follows from (1.36), (1.38) and (1.40). O

1.5. Functoriality of equivariant eta forms. Let W, V| B be smooth closed mani-
folds. Let m; : W — V', w5 : V' — B be smooth fibrations with closed oriented fibers X,
Y. Then m3 = mpom : W — S is a smooth fibration with closed oriented fiber Z. Then
we have the diagram of smooth fibrations:

X Z W
RN
T
P
Y Vv B.

Let TX, TY, TZ be the relative tangent bundles. Then we can choose the geometric
data (TAW, g"%), (THV, ¢™™), (TEW, g"7) associated with 7y, 7o, 73 respectively.

We make the assumption that 7Y has a Spin® structure. Then there exists a complex
line bundle Ly over V such that wo(TY) = ¢;(Ly) mod (2). Let S(TY, Ly) be the
fundamental complex spinor bundle for (7Y, Ly ), which has a smooth action of C(TY)
(cf. [12, Appendix D.9]). Let h¥ be the Hermitian metric on Ly and V¥ be the
Hermitian connection on (Ly,h"). Let h" be the Hermitian metric on S(TY, Ly)
induced by ¢g7¥ and A% and V° be the connection on S(T'Y, Ly ) induced by VI¥ and
VY. Then V¥ is a Hermitian Clifford connection on (S(TY, L), h5Y).

Let G be a compact Lie group which acts on W such that the fibrations 7, mo, 73 are
all G-equivariant. We assume that the action of G preserves the Spin® structure 7Y and
g™, g™, ¢"%, bty Vv are G-invariant.

Let Ex be a G-equivariant Clifford module of C(TX) over W with G-equivariant
Hermitian metric hfX and G-equivariant Hermitian Clifford connection V¢X. Then

(1.41) Fx = (W, Ex,o(TX), THW, gT% hfx V&)

) et

is an equivariant geometric family over V. Let o(TY") be the orientation of 7Y induced
by the Spin® structure of TY. Set Tg Z = Tﬁ W NTZ. Then we have the splitting of
smooth vector bundles over W,

(1.42) TZ =TIZ®TX,
and

(1.43) THZ = 1iTY.
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Then we can get a G-invariant orientation o(7'Z) of TZ induced by o(T'X) and o(TY).
Since S(TY, L) is an equivariant Clifford module of C(TY), 7tS(TY, L)®Ex is an equi-
variant Clifford module of C(T'Z). Let VTZ be the Euclidean connection defined in (1.5).
Let VSY®EX be an equivariant Hermitian Clifford connection on (7;S(TY, L)&Ex, hSY @
h¢x) associated to V2. Then

(144) Fz = (W’ WTS(TY, L)@EX,O(TZ),T%W gTZ’ hSY ® th, vSy@Ex)

is an equivariant geometric family over B.
Let VIY'TX be the connection on TZ = TH"Z @ T X defined by

(1.45) VIVIX — ooy TY g yTX
as in (1.6). Let
(1.46) VYA = VY @ 14 1® VX,

Then V5% is an equivariant Hermitian Clifford connection on (7:S(TY, L)®Ex, hS* ®
hfx) associated to VIV TX,

Lemma 1.8. If ind(D(Fx)) =0 € K(V), then ind(D(Fy)) = 0 € KA(B).

The proof of Lemma 1.8 is left to the next subsection.
Let R” be the curvature of VL. For any g € G, we write
v—1

(147)  Td,(TY, V™) .= A (TY, V™) A [g : exp( o

RL|W9>] e QO (WY).

For the definition of Xg(TY, VIV, see [14].
From [13, Proposition 1.1], since the G-action preserves the Spin® structure of 7Y, Y9
is naturally oriented.

Theorem 1.9. Assume that ind(D(Fx)) =0 € K5(V). Let Pz and Px be two equivari-
ant spectral sections for Fz and Fx. Then there exists & (Pyz, Px) € K (B) depending
on Pz, Px, such that modulo exact forms,

(1.48) ﬁg(]-"Z,PZ):/

Y9

Td,(TY, VIR A ng(Fx, Px) + (NZg <V5Y®5X7 VSY,5x>
+ chy(J# (Pz, Px)) € *(B?,C) /Imd.

1.6. Proof of Theorem 1.9. From Proposition 1.7, We can simply assume that

(1.49) THW c THW, ¢"% =nig™ @ g™~
Let
. 1
(1.50) 91" =79 O =9""

We denote the Clifford algebra bundle of T'Z with respect to g5Z by Cr(TZ). IfU € TV,
let U{" € THW be the horizontal lift of U, so that m . (U{") = U. Let {e;}, {f,} be local
orthonormal frames of (T'X, g"*), (TY, g™). Then {Te;} U{f[}} is a local orthonormal
frame of (T'Z, g~#). We define a Clifford algebra isomorphism
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by
(1.52) Grc(fih) = c(fl),  Gr(cr(Te;)) = c(e).

Under this isomorphism, we can consider (7*S(TY, Ly)®Ex, mihS @ hfX) as a self-
adjoint Hermitian equivariant Clifford module of Cp(TZ). Let VIZ be the connection
associated to (TW, g77) as in (1.5). Let V?YQ@EX be a Hermitian Clifford connection
on (miS(TY, Ly)@c‘fx, TrhSY @ hfX) associated to VIZ.

Then

(153) FZ,T = (V[/, WTS(T}/, LY)@ng (TZ) THW gT ’,/TthY ® th VSy(X)gX)

is an equivariant geometric family over B and Fz = F ;.

If ind(D(Fx)) = 0 € K5(V), then from Proposition 1.4, there exists an equivariant
spectral section Py and a family of self-adjoint equivariant smoothing operators Ap
such that ker(D(Fx) + Ap) = 0. As in [13, Lemma 2.2], when T large, we can get
ker(D(Fzr) + TAp) = 0. So by the homotopy invariance of the equivariant index, for
any 7' > 1, we have ind(D(Fzr)) =0

We get the proof of Lemma 1.8.

After using (1.36), the proof of Theorem 1.9 is almost the same as the proof of [13,
Theorem 2.4] and Assumption 2.1 and 2.3 in [13] naturally hold in our case.

Let B, r be the Bismut superconnection associated to equivariant geometric family
F. Z,T- Let

~ 0 0
1.54 B g = B2 7|Bs Tx(wT)Ap|gs +dIT' N — + d —
(1.54) \(Tu),B rlps +uTx(uT)Ap|ps + /\aT+ u/\au
We define 3; = du A By +dT AB] to be the part of s Tr]g exp(—(B|ps)2)] of degree one
with respect to the coordinates (7', u), with functions 3, B;F Ry xRy, — QF(BY).
Comparing with [13, Proposition 3.2], there exists a smooth family o, : Ry 7 xR, —
Q*(BY) such that

(1.55) (du A aﬁ +dT N ) B, = dT N du d°a.

Take €, A, 7T, 0 < e <1 <A <o00,1<T) <oo. Let I' =T, 45 be the oriented
contour in Ry 7 x Ry ,,.

Iy r
AF---- <
I‘3 \ 4 Uu A I_‘1
Er---- »
l Ty l > T
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The contour I' is made of four oriented pieces I'y, - - - , 'y indicated in the above picture.
For 1 <k <4, set I) = fl“k By. Then by Stocks’ formula and (1.55),

4
0 9
0_ _ “ il =d°
(1.56) Zlk—/auﬁg—/u<du/\8u+dT/\aT>ﬁg d (/uangAdu).
k=1

The following theorems are the analogues of Theorem 3.3-3.6 in [13]. Since ker(D(Fx )+
Ap) = 0, the proofs in our case are much easier. From the the proof of Lemma 1.8, we
can simply assume that ker(D(Fz) + Ap) = 0. We only need to replace DX and DZ
in [13] by D(Fx) + Ap and D(Fzr) + T Ap and notice that Ap is a bounded operator
along the fiber X with smooth kernel.

Theorem 1.10. i) For any u > 0, we have
(1.57) lim 3;(T,u) = 0.

T—o0

ii) For 0 < uy < ug fized, there exists C' > 0 such that, for u € [uy,us], T > 1, we
have

(1.58) 184(T,w) < C.
ii1) We have the following identity:
(1.59) Tgrfoo/l By (T, u)du = 0.
Theorem 1.11. We have the following identity:
(1.60) lim By (T, u)dT = 0.
u—+oo Jq

In fact, Qg(VS”@gX) only depends on g € G and RSY®Ex .= (VSv®Ex)2 So we can
denote it by Qg(RSY@’SX). Let ROY®EX (= (VY ¥6x)2  Get
o av;y@@gx )

(1.61) 10(T) = -5 9T

Qg R?f@ﬁx +b
b=0

By a standard argument in Chern-Weil theory, we know that

a ~ —~ ~
(162) a_TQg(VSY®gX’ V«;Y(X)gx) — _'VQ(T)

Proposition 1.12. When T — +oo, we have vo(T) = O(T~2). Moreover, modulo exact
forms on W9, we have

~ ~ +OO
(1.63) Q (VY EEx ovEx) = / Yo (T)dT.
1

Let Bx; be the Bismut superconnection associated to the equivariant geometric family

.Fx. Set
P 9 dt
gexp <— <BX,t2|V9 + X(t)Ap|Vg + dt N\ E) )] } .

(1.64)  m(t) = {@M@va
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Then
(165) ﬁg(fx, Px) = —/ ’yl(t)dt
0

Theorem 1.13. i) For any u > 0, there exist C > 0 and § > 0 such that, for T'> 1, we
have

(1.66) EARDIES v

ii) For any T > 0, we have
(1.67) lim e ' BI(Te ™ e) = / Td,(TY, V) Ay (T).

E— Y9

iii) There exists C > 0 such that for e € (0,1], e <T <1,
(1.68) g! |BgT(T5_1,5) —1(Te )| < C.

iv) There exist § € (0,1], C' > 0 such that, fore € (0,1], T > 1,

_ _ C

(1.69) e BJ (T e)| < T

By (1.56), we know that

TO TO

A
B;F(T,A)dT—/ G+ [Tt

=hL+L+I+1

(1.70) /ﬁ;‘(To,u)du—

is an exact form. We take the limits A — oo, T' — oo and then £ — 0 in the indicated
order. Let Ij’?, J=1,2,3,4, k = 1,2,3 denote the value of the part I; after the kth limit.
By [7, §22, Theorem 17|, dQ2(BY) is closed under uniformly convergence on BY. Thus,

4
(1.71) > 17 =0 mod dQ*(BY).

Jj=1

Since ker(D(Fz)+ Ap) = 0, the Atiyah-Patodi-Singer projection P, onto the positive
part of the spectrum of D(Fz) + Ap is an equivariant spectral section for F, and Ap is
the corresponding self-adjoint smoothing operators of P, From (1.35), we obtain that

(1.72) I} = i,(Fz, P2).
Furthermore, by Theorem 1.11, we get

(1.73) =1I=0.
From Theorem 1.10, we have

(1.74) I} =0.

Finally, using Theorem 1.13, we get

(1.75) =- / Tdy(TY, VIV) A djy(Fx, Px) = (0555, wvx)
Y9
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as follows: We write

+oo +oo
(1.76) ﬁ;{(T,g)de/ e ' Bl (Te™" e)dT.

1

Convergence of the integrals above is granted by (1.66). Using (1.67), (1.69) and Propo-
sition 1.12, we get

—+00

(1.77) lim e 1By (Te™" e)dT = /

e—0 1 va

—+00
Tdy(TY, V) A / 1 (T)dT
1

and

(1.78) lim 15_1 [BI(Te™  e)dT — yqo(Te™)] dT

e—0 c

1
— / Td,(TY, V) A / v (T)dT.
Y9 0

The remaining part of the integral yields by (1.68)

1 +o00 _ R
(1.79) / e o (Te™)dT = / vo(T)dT = —Q, (VSY®5X, VSYfX) .
£ 1

These four equations for I}, k =1,2,3,4, and (1.36) imply Theorem 1.9.

2. EQUIVARIANT DIFFERNTIAL K-THEORY
In this section, we assume that G is a finite group.

2.1. Axioms of equivariant differntial K-theory. Let G be a finite group. For
A € K{(B), we define the equivariant Chern character map

G
(2.1) che () == @D chy (A |50) € <@@Q*+2k(B9,(C)/Imd) .

geG g€G keZ

G
Denote by (B, C)¢ := (@QGG Dy V(B C)) , % =0,1. Let H*(B,R)g be the

cohomology of the differential complex (2*(B,R)q, dg), where

(2.2) (dew)y = dwy.

From [18, Theorem 2.1], the equivariant Chern character map extends to an isomorphism
(2.3) chg : K5 (B)® C — H*(B,C)g¢.

The complex algebra K (B) ® C has a canonical real structure given by conjugation
on C, and this induces a real structure on H*(B,C)s. We denote the real subspace of

H*(B,C)g by H*(B,R)g. in fact,
(2.4) H*(B,R)g ={ce H*(B,C)¢ : Vg € G,c|ps = c| g1}

Let *(B,R)g C Q*(B,C)¢ be the ring of forms w, such that w|ps = w|g,~1. Then
H*(B,R)¢ is the cohomology of the differential complex (Q*(B,R)¢, dg).
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Definition 2.1. An equivariant differential K-theory K¢ is a functor B — l?g(B)
from the category of closed smooth manifolds to Z-graded groups together with natural
transformations

(1) R: IA(E“;(B) — Q5_o(B,R)g (curvature)

(2) I : K(B) — K&(B) (underlying K¢ group)

(3) a: Q(B,R)¢/Imdg — Ka(X) (action of forms).

Here Q4—0(B,R)g C Q(B,R)g denote the subring of closed forms.

The transformations I, a, R are required to satisfy the following axioms:

(1) The following diagram commutes

Ki(B) —L— K4(B)

| Jo

de Rham
O o(B,R)g 2% 17+(B, R).

(2.5) Roa=d.

(3) a is of degree 1.
(4) The following sequence is exact:

(2.6) K5 Y (B) 29 0:-)(B,R)¢/Imdg — K5(B) - K5 (B) — 0.
Note that 2.6 is just [18, (15)].

2.2. Geometric model of equivariant differential K-theory. In the following sub-
sections, we explain the geometric model of equivariant differential K-theory of Bunke-
Schick. All definitions and properties are parallel with [5] by replacing the taming in
3, 5] the spectral section of Melrose-Piazza and using the analytical results in Section 1
to prove the properties.

Definition 2.2. Let B be a closed G-manifold. A cycle for an equivariant differential
K-theory class over B is a pair (F,p), where F = (W,&,0(TZ), THW, g7% hf V¢) is
an equivariant geometric family and p € Q(B,R)g/Imdg. The cycle (F,p) is called
even (resp. odd) if dim7Z is even (resp. odd) and p € Q°4(B,R)g/Imdg (resp.
p e Qeven(B,R)G/Im dc;)

If ind(D(F)) vanishes, for an equivariant spectral section P, the equivariant eta form

ne(F, P) is defined by

(2.7) i(F,P) = @ 0,(F, P) € B, R)g.

geqG

Definition 2.3. The opposite F°P of an equivariant geometric family F is obtained by
reversing the signs of the Clifford multiplication and the grading (in the even sense) of
the underlying family of Clifford modules, and of the orientation of the relative tangent
bundle.
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By definition, we have
(2.8) ind(D(F°P)) = —ind(D(F)).
Definition 2.4. Two cycles (F,p) and (F',p’) are called isomorphic if F and F’ are

isomorphic and p = p/. Let @*(B) denote the set of isomorphism classes of cycles over
B of parity * € {even, odd}.

Given two equivariant geometric families F and F' we can form their sum F Ug F’
over B. The underlying fibration with closed fibers of the sum is 7 U7’ : WU W’ — B,
where LI is the disjoint union. The remaining structures of F Ug F’ are induced in the
obvious way.

Definition 2.5. The sum of two cycles (F, p) and (F’, p’) is defined by
(2.9) (Fop) + (Fop) = (FUp F'p+p).
The sum of of cycles induces on @*(B) the structure of a graded abelian semigroup.

The identity element of G*(B) is the cycle 0 := (),0), where () is the empty geometric
family.

Definition 2.6. We call two cycles (F, p) and (F', p) paired if ind(D(F)) = ind(D(F"))
and there exists an equivariant spectral section P such that
(2.10) p—p =7g(FUp F°P, P).
Let ~ denote the equivalence relation generated by the relation ”paired”.
If ind D(F) = 0, for an equivariant spectral section P, we can get that
(2.11) (F,ii6(F, P)) ~ (,0).
As in [3, Lemma 2.11-2.13], we can get that a*(B)/ ~ is an abelian semigroup.

Definition 2.7. We define the equivariant differential K-theory IA(g(B) (resp. [?51(3))
of B to be the group completion of the abelian semigroup G***(B)/ ~ (resp. G°Y(B)/ ~).

If (F, p) is a cycle, we denote by [F, p] € [A(E(B) the corresponding class in equivariant
differential K-theory. We collect some simple facts as a natural extension of [3, Lemma
2.15-2.17].

Proposition 2.8. (A) We have [F, p] + [F°P, —p] = 0.

(B) Every element of IAQ;(B) can be represented in the form [F, p).

(C) If [Fo, po] = [F1, p1], then there exists a cycle (F', p') such that (Fo, po) + (F', p')
is paired with (Fi, p1) + (F', p).

In the following, we will prove that K, &(B) satisfies all the conditions in Definition 2.1.
We first define the natural transformation

(2.12) I: K5(B) — K5(B)
by
(2.13) I([F, p]) := ind(D(F)).
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From Definition 2.6, the transformation I is well defined.
We construct a parity-reversing natural transformation

(2.14) a:Q(B,R)¢/Imde — K5(B)
by
(2.15) a(p) =10, —pl.
Let
(2.16) Q6 (F) = P U(F) € Qu=o(B,R)c.
geG

We define a transformation

(2.17) R: KL(B) = Qu_o(B,R)g
by
(2.18) R([F, pl) = Qc(F) — dp.

The transformation R is well-defined. In fact, if (F',p’) is a cycle paired with (F, p),
we have ind(D(F Up F °P)) = 0. So there exists an equivariant spectral section P, such
that p — p' = fjq(F Lg F °P, P). From (1.32), we have
(2.19) R([F, pl) = R(F", p']) = Qa(F) = Qa(F') = d(p — p)
= dijc(F Up F P, P) — dije(F Up F P, P) = 0.
From (2.15) and (2.18), we have
(2.20) Roa=d.
By (1.19), the diagram in Definition 2.1 (1) commutes.
Proposition 2.9. The following sequence is exact:
(2.21) K5 Y (B) 29 027} (B, R)¢/Imdg — K5(B) - K5(B) — 0.

Proof. The surjectivity of I is a natural extension of [3, Lemma 2.18].

Next, we show the exactness at I?E(B) It is obvious that oa = 0. For a cycle (F, p),
if I([F,p]) = 0, we have ind(D(F)) = 0. So there exists an equivariant spectral section
P for F. By (2.11), we have

(2.22) [F, p] = a(fa(F, P) — p).

Finally, We prove the exactness at 2_} (B, R)g/Imdg. By Proposition 1.5 (E), for any
A € K{(B), it can be generated by the differences of the equivariant spectral sections
for some equivariant geometric family F with ind(D(F)) = 0. We simply assume that
there exist two equivariant spectral sections Pj, P, such that [P, — Py] = J#". By (1.36)
and (2.11), we have

(2.23) 2a 0 chg () = [0, =2 chg ()] = [F,iia(F, Py)] — [F,iic(F, P))] = 0.
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So aochg(#) = 0. From Proposition 2.8 (C), if a(p) = 0, for any equivariant geometric
family F with vanishing index and equivariant spectral section P, by (2.11) we have

(2.24) @,0) ~ (Fyija(F, P)) ~ (Fiia(F, P) = p).

So there exists another equivariant spectral section P’, such that 7 (F, P') = fg(F, P)—
p. By (1.36), we have

(2.25) p = che(2[P' — P)).

2.3. Push-forward map. In this subsection, we use the notations in Section 1.5.

Let V, B be two closed smooth G-manifolds and 7 : V' — B be an equivariant fiber
bundle with closed fiber Y. We assume that 7Y has a G-equivariant Spin® structure,
with an associated complex line bundle Ly-.

We consider the set O of equivariant geometric data o = (THV, g™, Vv o(Y)), where
the first three entries have the same meaning in Section 1.5 and o(Y) € Q°(V,R)¢/Im dg.

Let

(2.26) Tdg(V™H) = @D Tdy (V™) € Queo(B, R)c.

geG

Let o' = (T'HV, g™ V'l ¢/(Y)) € O be another equivariant tuple. As in (1.20), from
[15, Theorem B.5.4], we can construct the Chern-Simons form Tdg(V7¥ly, V' TVIv)
such that

(2.27) dTdg(VTY VTV = Tdg (V) — Tdg(VTVHY).

We introduce a relation o ~ o’ as follows. Two equivariant tuples o = (T*V, gT¥, Vv o(Y)),
o = (THV, g™ ,V'ly o/(Y)) are related if and only if

(2.28) od(Y)-o(Y)= _rfaG(vTY,Ly7 V' TYLyy,
where we mark the objects associated to the second tuple by ’.

Definition 2.10. The set of equivariant differential K-orientations is the set of equiva-
lence classes O/ ~.

We now start with the construction of the push-forward map 7! : [A(g(V) — I?E(B)
for a given equivariant differential K-orientation. For a cycle (Fx, p) over V| let F, be
the equivariant geometric family defined in (1.44). We denote by

(229) Wg!(fx) = .Fz.
We define

(230) %G'(FX,p) = [fz,/ ng(VTY’LY) A p+ ﬁG <VSY®€X,VSY’€X>
(]

geGYg

+ /u Y O'(Y) A (Qc(fx) — dp)] S EE(B)
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Theorem 2.11. The map 7! : @*(V) — I?E(B) in (2.30) can be deduced to a map
el KE(V) — KE(B).

Proof. Let (Fx,p), (Fk, p') be two cycles over V. By (2.30), we have
(2.31) Fl(Fx.p) — 7l (Fr, p) = el (Fx UFL, p— 1),

If (Fx,p) is paired with (F%, p’), there exists an equivariant spectral section Py, such
that

(2.32) p— 0 =Tia(Fx UFE, Py).

So we only need to prove 7g!(Fx,na(Fx, Px)) =0 € I?E(B) when ind(D(Fx)) =0 €
K&(V).
From (2.30), if ind(D(Fx)) =0 € K5(V), we have

(233) %G!(fx,’ffv]g(./—'.x,Px))) = [fz,/u ng<vTY’LY)/\ﬁg(fx,Px))

gEGYg

+ QG (vSY@)SX’ VSy,5x> + / 0(Y) A (QG(,FX) — dﬁg(./—"x, PX)))

gEGYg

Let Py be an equivariant spectral section of F;. By (1.32), (2.11) and Theorem 1.9, we
have

(2.34)
T (Fx,na(Fx, Px))) = [Fz,16(Fz, Pz) — cha(H (Pz, Px))| = [0, — cha(H (Pz, Px))].

By (2.23), we have
(2.35) [0, — cha(H (P, Px))| = 0 € K4(B).
The proof of Theorem 2.11 is complete. O

Our construction of 7! involve an explicit choice of a representative o = (T7V, g™ Vv o(Y))
of the equivariant differential K-orientation.

Lemma 2.12. The homomorphism 7g! : IAQ}(V) — IA(E(B) only depend on the equivari-
ant differential K-orientation represented by o.

Proof. Let o = (THV, ™Y , V™ 0(Y)), o = (T.HV, g™, V' o'(Y)) be two represen-
tative of an equivariant differential K-orientation. We will mark the objects associated
to the second representative by ’.
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Then from (2.27) and (2.28), we have
(2.36) 7l (Fx,p) — 7l (Fx,p) = [Fy UFS,

/ Tdg (V7747 = Tdg(V77)) A p — G (VS 58, v/SrBex)
|JgEGYg

+Qc (VSYfX, V'SYfX) + /

UgeaYd

(0'(Y) = o(Y)) A (Qa(Fx) — d/))]

= []—"’Z UFP, dTdg(VTVH VTV A

Ugegyg

- / Tda(VTYLy VTV A dp + / dTde(VTVEY VYY) A Qa(Fy)
|_|g€GY9

UgeqY9d
_ QG <VSY®£X’ V'&/@&() + QG <VSY78X’ v’Sy,Sx)]
= [F, U T Q6 (Fz, Fp)).

From Definition 1.3, for equivariant geometric family F U F,°, ker(D(Fz U F,")) =
0. So we can take the equivariant spectral section P to be the Atiyah-patodi-Singer
projection. In this case, Ap = 0. From Definition 1.6 and 2.3, we have

(2.37) na(FzUFP, P)=0.
By (2.37) and Proposition 1.7, there exist equivariant spectral section P’ for F, LI F,"
and K(P') € K;(S), such that
(238) Qg (Fz. Fy) = Qo (FzUFP, Fy U FY) = —iia(Fy UF, P') + cha(K(P)).
Then Lemma 2.12 follows from (2.11), (2.23), (2.36) and (2.38). O

2.4. Functoriality of the push-forward maps. We now discuss the functoriality of
the push-forward maps with respect to the composition of fiber bundles. Let 7 : V — B
with fiber Y be as in the above subsection together with a representative of an equivariant
differential K-orientation oy = (THV,¢™¥ Vv o(Y)). Let r : B — S be another
proper submersion with closed fiber U together with a representative of an equivariant
differential K-orientation oy = (T B, g™V, VLv o(U)).

Let ¢ .= rom : V — B be the composition of two fibrations with fiber A. Let
T'V be a horizontal subbundle associated to g. We assume that T,"V C TF'V. Set
gTA — ’I“*gTU D gTY’ vLA — ’I“*VLU ® VLY.

Definition 2.13. We define the composite o(A) = o(U) o o(Y") of the representatives of
equivariant differential K-orientations of 7 and r by

(2.39) o(A) = (TIV, g™, V" o(4),
where
(2.40) o(A) :=o(Y) A" Tdg(VIVEV) 4 Tdg (VYY) A 7o (U)
+ Tdg(VSVESY VSUS) — do(Y) Ao (U).
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Theorem 2.14. We have the equality of homomorphisms I?Z;(V) — IA(E(S)

(2.41) qc! =rglomgl.
Proof. The theorem follows from a direct calculation using (2.30) and (2.40). O
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