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BO LIU

Abstract. In this paper, we define the equivariant eta form of Bismut-Cheeger for a

compact Lie group and establish a formula about the functoriality of equivariant eta

forms with respect to the composition of two submersions.
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0. Introduction

In order to find a well-defined index for a first order elliptic differential operator over

a compact manifold with nonempty boundary, Atiyah-Patodi-Singer [2] introduced a

boundary condition which is particularly significant for applications. In this situation,

an invariant of a first order self-adjoint operator called the eta invariant, η, enters into the

index formula. Formally, the eta invariant is equal to the number of positive eigenvalues

of the self-adjoint operator minus the number of negative eigenvalues.

Extending the work of Bismut-Freed [13], which is a rigorous proof of Witten’s holo-

nomy theorem [34], Bismut and Cheeger [9] studied the adiabatic limit for a fibration

of closed Spin manifolds and found that under the invertible assumption of the Dirac

family along the fibers, the adiabatic limit of the eta invariant of a Dirac operator on

the total space is expressible in terms of a canonically constructed differential form, η̃,

on the base space. Later, Dai [20] extended this result to the case when the kernel of

the Dirac family forms a vector bundle over the base manifold.

This eta form of Bismut-Cheeger, η̃, is the higher degree version of the eta invariant η,

i.e., it is exactly the boundary correction term in the family index theorem for manifolds

with boundary [10, 11, 29]. When the base space is a point, the eta form of Bismut-

Cheeger is just the eta invariant of Atiyah-Patodi-Singer. On the other hand, by [4, 9, 20],

when the dimension of the fibers are even, the eta form serves as a canonically constructed

transgression between the Chern character of the family index and Bismut’s explicit local

index representative [6] of it. We can also see it later by taking g = 1 in (0.3).

Recently, in the study of differential K-theory, the Bismut-Cheeger eta form naturally

appears in the geometric model constructed by Bunke and Schick [18] as a key ingredient.

Moreover, the results in [18] are highly relied on the properties of the eta form. In

particular, the well-defined property of the push-forward map is based on a formula

about the functoriality of eta forms proved by Bunke and Ma [16], which is a family

version of [9]. In [17], Bunke and Schick extend their geometric model to the orbifold

case. It can also be regarded as a geometric model for the equivariant differential K-

theory for a finite group. Thus the equivariant eta form appears naturally here and this

motivates us to understand systematically the equivariant eta form.

In this paper, we define first the equivariant eta form when the fibration admits a

fiberwise compact Lie group action and establish a formula about the functoriality of

equivariant eta forms which extends [16, Theorem 5.11] and [9] to our case. Note that

Bunke-Ma in [16] worked for the eta form associated to flat vector bundles, and many

analytic arguments are only sketched. Here we work on the equivariant situation, thus

we need to combine the equivariant local index technique to the different functional

analysis technique in analytic localization developed by Bismut and his collaborators
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[5, 7, 8, 14, 15, 26, 27]. We take this opportunity to give also the details of the analytic

arguments missed in Bunke-Ma [16].

Let π : W → S be a smooth submersion of smooth manifolds with closed oriented

fiber Z, with dimZ = n. Let TZ = TW/S be the relative tangent bundle to the fibers

Z with Riemannian metric gTZ and THW be a horizontal subbundle of TW , such that

TW = THW ⊕ TZ. Let ∇TZ be the Euclidean connection on TZ defined in (1.15). We

assume that TZ has a Spinc structure. Let LZ be the complex line bundle associated

to the Spinc structure of TZ with a Hermitian metric hLZ and a Hermitian connection

∇LZ (see [22, Appendix D]).

Let G be a compact Lie group which acts fiberwisely on W and as identity on S. We

assume that the action of G preserves the Spinc structure of TZ and all metrics and

connections are G-invariant. Let (E, hE) be a G-equivariant Hermitian vector bundle

over W with a G-invariant Hermitian connection ∇E. Let DZ be the fiberwise Dirac

operator defined in (1.21) and Bt be the Bismut superconnection defined in (1.32). For

α ∈ Ωi(S), the differential form on S with degree i, set

ψS(α) =


(

1
2π
√
−1

) i
2 · α, if i is even;

1√
π

(
1

2π
√
−1

) i−1
2 · α, if i is odd.

(0.1)

We define now the equivariant eta form (cf. (1.62) and Definition 1.3).

Definition 0.1. Assume that dim kerDZ is locally constant on S. For any g ∈ G, the

equivariant eta form of Bismut-Cheeger is defined by

(0.2) η̃g(T
HW, gTZ , hLZ , hE,∇LZ ,∇E)

:=


∫ ∞

0

1

2
√
−1
√
π
ψS Trs

[
g
∂Bt

∂t
exp(−B2

t )

]
dt, if n is even;∫ ∞

0

1√
π
ψS Treven

[
g
∂Bt

∂t
exp(−B2

t )

]
dt, if n is odd.

The regularities of the integral in the right hand side of (0.2) are proved in Section

1.4. Let W g be the fixed point set of g on W . Then W g is a submanifold of W and

the restriction of π on W g gives a fibration π : W g → S with fiber Zg. Furthermore, it

verifies the following transgression.

(0.3) dS η̃g(T
HW, gTZ , hLZ , hE,∇LZ ,∇E)

=



∫
Zg

Âg(TZ,∇TZ) ∧ chg(L
1/2
Z ,∇L

1/2
Z ) ∧ chg(E,∇E)

− chg(kerDZ ,∇kerDZ ), if n is even;∫
Zg

Âg(TZ,∇TZ) ∧ chg(L
1/2
Z ,∇L

1/2
Z ) ∧ chg(E,∇E), if n is odd.

For the definition of characteristic forms in (0.3), see (1.44), (1.45) and (1.56).
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By (0.2), the equivariant eta form depends on the geometric data (THW, gTZ , hLZ ,

hE,∇LZ ,∇E). When the geometric data vary, we have the anomaly formula for the

equivariant eta forms.

Theorem 0.2. Assume that there exists a smooth path connecting (THW, gTZ , hLZ , hE,

∇LZ ,∇E) and (T
′HW, g

′TZ , h
′LZ , h

′E,∇′LZ ,∇′E) such that the dimension of the kernel of

the Dirac family is constant (see Assumption 1.6).

i) When n is odd, modulo exact forms on S, we have

(0.4) η̃g(T
′HW, g

′TZ , h
′LZ , h

′E,∇′LZ ,∇′E)− η̃g(THW, gTZ , hLZ , hE,∇LZ ,∇E)

=

∫
Zg

˜̂
Ag(TZ,∇TZ ,∇′TZ) ∧ chg(L

1/2
Z ,∇L

1/2
Z ) ∧ chg(E,∇E)

+

∫
Zg

Âg(TZ,∇
′TZ) ∧ c̃hg(L

1/2
Z ,∇L

1/2
Z ,∇′L

1/2
Z ) ∧ chg(E,∇E)

+

∫
Zg

Âg(TZ,∇
′TZ) ∧ chg(L

1/2
Z ,∇′L

1/2
Z ) ∧ c̃hg(E,∇E,∇′E).

ii) When n is even, modulo exact forms on S, we have

(0.5) η̃g(T
′HW, g

′TZ , h
′LZ , h

′E,∇′LZ ,∇′E)− η̃g(THW, gTZ , hLZ , hE,∇LZ ,∇E)

=

∫
Zg

˜̂
Ag(TZ,∇TZ ,∇′TZ) ∧ chg(L

1/2
Z ,∇L

1/2
Z ) ∧ chg(E,∇E)

+

∫
Zg

Âg(TZ,∇
′TZ) ∧ c̃hg(L

1/2
Z ,∇L

1/2
Z ,∇′L

1/2
Z ) ∧ chg(E,∇E)

+

∫
Zg

Âg(TZ,∇
′TZ) ∧ chg(L

1/2
Z ,∇′L

1/2
Z ) ∧ c̃hg(E,∇E,∇′E)

− c̃hg(kerDZ ,∇kerDZ ,∇′ kerDZ ).

For the definitions of the Chern-Simons forms
˜̂
Ag(TZ,∇TZ ,∇′TZ), c̃hg(L

1/2
Z ,∇L

1/2
Z ,∇′L

1/2
Z )

and c̃hg(kerDZ ,∇kerDZ ,∇′ kerDZ ) used here, see (1.86).

For the reminder of this introduction, we shall consider the composition of two sub-

mersions.

Let W , V , S be smooth manifolds. Let π1 : W → V , π2 : V → S be smooth

submersions with closed oriented fiber X, Y . Then π3 = π2 ◦ π1 : W → S is a smooth

submersion with closed oriented fiber Z. We have the diagram of fibrations:

X Z W

Y V S.

π1 π1

π2

π3

Let TX, TY , TZ be the relative tangent bundles. We assume that TX and TY

have the Spinc structures with complex line bundles LX and LY respectively. Then TZ

have a Spinc structure with a complex line bundle LZ . We take the geometric data

(TH1 W, g
TX , hLX ,∇LX ), (TH2 V, g

TY , hLY ,∇LY ) and (TH3 W , gTZ , hLZ , ∇LZ ) with respect

to submersions π1, π2 and π3 respectively. Let 0∇TZ , 0∇LZ be the connections on TZ,
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LZ defined in (2.4), (2.5). For any g ∈ G, let TH1 (W |V g) = TH1 W |V g ∩ T (W |V g) be the

horizontal subbundle of T (W |V g).
Let G be a compact Lie group which acts on W such that for any g ∈ G, g ·π1 = π1 · g

and π3 · g = π3. We assume that the action of G preserves the Spinc structures of TX,

TY , TZ and all metrics and connections are G-invariant.

The purpose of this paper is to establish the following result, which we state as The-

orem 2.4.

Theorem 0.3. If Assumption 2.1 and 2.3 hold, for any g ∈ G, we have the following

identity in Ω∗(S)/dSΩ∗(S),

(0.6) η̃g(T
H
3 W, g

TZ , hLZ ,∇LZ ) = η̃g(T
H
2 V, g

TY , hLY , hkerDX ,∇LY ,∇kerDX )

+

∫
Y g

Âg(TY,∇TY ) ∧ chg(L
1/2
Y ,∇L

1/2
Y ) ∧ η̃g(TH1 (W |V g), gTX , hLX ,∇LX )

+

∫
Zg

˜̂
Ag(TZ,∇TZ , 0∇TZ) ∧ chg(L

1/2
Z ,∇L

1/2
Z )

+

∫
Zg

Âg(TZ,
0∇TZ) ∧ c̃hg(L

1/2
Z ,∇L

1/2
Z ,∇′L

1/2
Z ).

Note that if kerDZ is not locally constant, we can also construct an equivariant eta

form when ind(DZ) = 0 ∈ K∗G(S) using the spectral section technique [29]. The functo-

riality of equivariant eta forms in this case is almost the same as Theorem 0.3. We will

construct the push-forward map for equivariant differential K-theory [17] in a compara-

tive paper [23] as applications of the result in this paper.

This paper is organized as follows.

In Section 1, we define the equivariant eta form and prove the anomaly formula The-

orem 0.2. In Section 2, we state our main result Theorem 0.3. In Section 3, we use

some intermediate results, whose proofs are delayed to Section 4-8, to prove Theorem

0.3. Section 4-8 are devoted to the proofs of the intermediate results stated in Section 3.

To simplify the notations, we use the Einstein summation convention in this paper.

In the whole paper, we use the superconnection formalism of Quillen [30]. If A is a

Z2-graded algebra, and if a, b ∈ A, then we will note [a, b] as the supercommutator of a,

b. If B is another Z2-graded algebra, we will note A⊗̂B as the Z2-graded tensor product.

If A, B are not Z2-graded, sometimes, we also denote A⊗̂B by considering the whole

algebra as the even part.

For a trace class operator P acting on a space E, if E = E+⊕E− is a Z2-graded space,

we denote by

Trs[P ] = Tr |E+ [P ]− Tr |E− [P ].(0.7)

If Tr[P ] takes value in differential forms, we denote by Trodd/even[P ] the part of Tr[P ]

which takes value in odd or even forms. We denote by

T̃r[P ] =

{
Trs[P ], if E is Z2-graded;

Trodd[P ], if E is not Z2-graded.
(0.8)
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For a vector bundle π : W → S, we will often use the integration of the differential

forms along the fiber Z in this paper. Since the fibers may be odd dimensional, we

must make precise our sign conventions. If α is a differential form on W which in local

coordinates is given by

α = dyp1 ∧ · · · ∧ dypq ∧ β(x)dx1 ∧ · · · ∧ dxn,(0.9)

we set ∫
Z

α = dyp1 ∧ · · · ∧ dypq
∫
Z

β(x)dx1 ∧ · · · ∧ dxn.(0.10)

1. Equivariant eta form

The purpose of this section is to define the equivariant eta form and prove the anomaly

formula. In Section 1.1, we recall elementary results on Clifford algebras of arbitrary

dimension. In Section 1.2, we describe the geometry of fibration and introduce the

Bismut superconnection and Bismut’s Lichnerowicz formula (cf. [4, 6]). In Section

1.3, we explain the equivariant family local index theorem. In Section 1.4, we define

the equivariant eta form when the dimension of the kernel of Dirac operators is locally

constant. In Section 1.5, we prove the anomaly formula. In this section, we follow mainly

from [9].

1.1. Clifford algebras. Let C(V n) denote the complex Clifford algebra of the real

inner product space, V n. Related to an orthonormal basis, {ei}, C(V n) is defined by the

relations

eiej + ejei = −2δij.(1.1)

To avoid ambiguity, we denote by c(ei) the element of C(V n) corresponding to ei. We

consider the group Spincn as a multiplicative subgroup of the group of units of C(V n).

For the definition and the properties of the group Spincn, see [22, Appendix D].

As a vector space,

C(V n) ' Λ(V n).(1.2)

The Clifford multiplication on ΛV n is exterior multiplication minus interior multiplica-

tion. The elements c(eI) = c(ei1) · · · c(eij), I = {i1, · · · , ij} ⊂ {1, · · · , n}, i1 < · · · < ij,

form a basis for C(V n). Put |I| = j. The subspace C0(V n), C1(V n) spanned by those

c(eI) with |I| even (resp. odd) give C(V n) the structure of a Z2-graded algebra.

For n = 2k, even, up to isomorphism, C(V n) has a unique irreducible module, Sn,

which has dimension 2k and is Z2-graded. In fact, C(V 2k) ' End(S2k). If V is oriented,

the element

τ = (
√
−1)kc(e1) · · · c(e2k)(1.3)

is independent of the choice {ei} and satisfies

τ 2 = 1.(1.4)

Set S±,n = {s ∈ Sn : τs = ±s}. We write Trs[ · ] for the supertrace of C(V 2k) on Sn
defined as (0.7).
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If n = 2k−1 is odd, C(V n) has two inequivalent irreducible modules, each of dimension

2k−1. For arbitrary n,

c(ej)→ c(ej)c(en+1)(1.5)

defines an isomorphism, C(V n) ' C0(V n ⊕ R). Thus, for n odd, we can regard S±,n+1

for V n ⊕ R as (inequivalent) modules over C(V n). However, they are equivalent when

restricted to Spincn. For V 2k−1 oriented, the notation Tr[ · ] refers to the representation

S+,2k.

By [10, Lemma 1.22], if n = 2k is even, then

Trs[c(eI)] =

{
(−
√
−1)k2k, if I = {1, · · · , 2k};

0, if I 6= {1, · · · , 2k}.(1.6)

If n = 2k − 1 is odd and |I| ≥ 1,

Tr[c(eI)] =

{
(−
√
−1)k2k−1, if I = {1, · · · , 2k − 1};

0, if I 6= {1, · · · , 2k − 1}.(1.7)

By (1.6) and (1.7), for n odd, the trace Tr behaves on the odd elements of C(V n) in

exactly the same way as the supertrace Trs on the even elements of C(V n) for n even, i.e.

we must saturate all the elements c(e1), · · · , c(en) to get a non-zero trace or supertrace.

It will be of utmost importance in the computations of the local index in Section 6. We

set

c̃V n =

{
Trs[c(e1) · · · c(en)], if n is even;

Tr[c(e1) · · · c(en)], if n is odd.
(1.8)

Let Wm be another real inner product space with orthonormal basis {fp}. Then as

Clifford algebras,

C(V n ⊕Wm) ' C(V n)⊗̂C(Wm).(1.9)

By (1.6), (1.7) and (1.8), we have

c̃V n⊕Wm =

{
2
√
−1 c̃V n · c̃Wm , if n, m are odd;

c̃V n · c̃Wm , if others.
(1.10)

Finally, we note the effect of scaling the inner product 〈·, ·〉 on V . Fix any inner

product, 〈·, ·〉 and let Ct(V ) be the Clifford algebra associated to t−1〈·, ·〉. Then the

map t1/2V → V provides a natural isomorphism Ct(V ) ' C(V ). It also provides a

natural isomorphism between the orthonormal frames {t1/2ei} for t−1〈·, ·〉 and {ei} for

〈·, ·〉. Thus, the spinor S for 〈·, ·〉 is also an irreducible module for Ct(V ) via the above

isomorphism. In the sequel, if Z is a Riemannian Spinc manifold, we will always assume

that the space of spinors has been chosen independent of the scaling parameter of the

metric.
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1.2. Bismut superconnection and Lichnerowicz formula. Let π : W → S be a

smooth submersion of smooth manifolds with closed oriented fiber Z, with dimZ = n.

Let TZ = TW/S be the relative tangent bundle to the fibers Z.

Let THW be a horizontal subbundle of TW such that

TW = THW ⊕ TZ.(1.11)

The splitting (1.11) gives an identification

THW ∼= π∗TS.(1.12)

Let P TZ be the projection

P TZ : TW = THW ⊕ TZ → TZ.(1.13)

Let gTZ , gTS be Riemannian metrics on TZ, TS. We equip TW = THW ⊕ TZ with

the Riemannian metric

gTW = π∗gTS ⊕ gTZ .(1.14)

Let ∇TW , ∇TS be the Levi-Civita connections on (W, gTW ), (S, gTS). Set

∇TZ = P TZ∇TWP TZ .(1.15)

Then ∇TZ is a Euclidean connection on TZ. Let 0∇TW be the connection on TW =

THW ⊕ TZ defined by

0∇TW = π∗∇TS ⊕∇TZ .(1.16)

Then 0∇TW preserves the metric gTW in (1.14). Set

S = ∇TW − 0∇TW .(1.17)

Then S is a 1-form on W with values in antisymmetric elements of End(TW ). By

[6, Theorem 1.9], we know that ∇TZ and the (3, 0) tensor 〈S(·)·, ·〉 only depend on

(THW, gTZ), where 〈·, ·〉 = gTW (·, ·).
Let C(TZ) be the Clifford algebra bundle of (TZ, gTZ), whose fiber at x ∈ W is the

Clifford algebra C(TxZ) of the Euclidean space (TxZ, g
TxZ). We make the assumption

that TZ has a Spinc structure. Then there exists a complex line bundle LZ over W such

that ω2(TZ) = c1(LZ) mod (2). Let S(TZ, LZ) be the fundamental complex spinor

bundle for (TZ, LZ), which has a smooth action of C(TZ) (cf. [22, Appendix D.9]).

Locally, the spinor S(TZ, LZ) may be written as

S(TZ, LZ) = S(TZ)⊗ L1/2
Z ,(1.18)

where S(TZ) is the fundamental spinor bundle for the (possibly non-existent) spin struc-

ture on TZ, and L
1/2
Z is the (possibly non-existent) square root of LZ . Let hLZ be the

Hermitian metric on LZ and ∇LZ be the Hermitian connection on (LZ , h
LZ ). Let hSZ

be the Hermitian metric on S(TZ, LZ) induced by gTZ and hLZ and ∇SZ be the connec-

tion on S(TZ, LZ) induced by ∇TZ and ∇LZ . Then ∇SZ is a Hermitian connection on

(S(TZ, LZ), hSZ ). Moreover, it is a Clifford connection associated to ∇TZ , i.e., for any

U ∈ TW , V ∈ C∞(W,TZ), [
∇SZU , c(V )

]
= c

(
∇TZ
U V

)
.(1.19)
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If n = dimZ is even, the spinor S(TZ, LZ) is Z2-graded and the action of TZ exchanges

the Z2-grading. Let (E, hE) be a Hermitian vector bundle over W , and ∇E a Hermitian

connection on (E, hE). Set

∇SZ⊗E = ∇SZ ⊗ 1 + 1⊗∇E.(1.20)

Then ∇SZ⊗E is a Hermitian connection on (S(TZ, LZ)⊗ E, hSZ ⊗ hE).

Let {ei}, {fp} be local orthonormal frames of TZ, TS and {ei}, {fp} be the dual. Let

DZ be the fiberwise Dirac operator

DZ = c(ei)∇SZ⊗Eei
.(1.21)

For b ∈ S, let EZ,b be the set of smooth sections over Zb of S(TZ, LZ)⊗ E. As in [6],

we will regard EZ as an infinite dimensional fiber bundle over S.

Let dvZ be the Riemannian volume element in the fiber Z. For any b ∈ S, s1, s2 ∈ EZ,b,
we can define the scalar product

〈s1, s2〉0 =

∫
Zb

〈s1(x), s2(x)〉dvZ .(1.22)

This scalar product could be naturally extended on Λ(T ∗S)⊗̂EZ . We still denote it by

〈·, ·〉0.

If U ∈ TS, let UH ∈ THW be its horizontal lift in THW so that π∗U
H = U . For any

U ∈ TS, s ∈ C∞(S,EZ) = C∞(W,S(TZ, LZ)⊗ E), we set

∇EZ
U s = ∇SZ⊗E

UH
s.(1.23)

Then ∇EZ is a connection on EZ , but need not preserve the scalar product 〈·, ·〉0 in (1.22).

By [12, Proposition 1.4], for U ∈ TS, the connection

∇EZ ,u
U := ∇EZ

U −
1

2
〈S(ei)ei, U

H〉(1.24)

preserves the scalar product 〈·, ·〉0.

Let T be the torsion of 0∇TW . If U1, U2 ∈ C∞(S, TS), by [6, (1.30)], we have

T (U1, U2) = −P TZ [UH
1 , U

H
2 ].(1.25)

We denote by

c(T ) =
1

2
c
(
T (fHp , f

H
q )
)
fp ∧ f q ∧ .(1.26)

By [6, (3.18)], the Bismut superconnection

B : C∞(S,Λ(T ∗S)⊗̂EZ)→ C∞(S,Λ(T ∗S)⊗̂EZ)(1.27)

is defined by

B = DZ +∇EZ ,u − 1

4
c(T ).(1.28)

In fact, the Bismut superconnection only depends on the quadruple (THW, gTZ ,∇LZ ,∇E).

In the sequel, if A(U) is any 0-order operator depending linearly on U ∈ TW , we

define the operator (
∇SZ⊗Eei

+ A(ei)
)2

(1.29)
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as follows: if {ei(x)}ni=1 is any (locally defined) smooth orthonormal frame of TZ, then

(1.30)
(
∇SZ⊗Eei

+ A(ei)
)2

:=
n∑
i=1

(
∇SZ⊗Eei(x) + A(ei(x))

)2

−∇SZ⊗E∑n
i=1∇TZei ei

− A

(
n∑
i=1

∇TZ
ei
ei

)
.

Let RTZ , RLZ , RE and RSZ⊗E be the curvatures of ∇TZ , ∇LZ , ∇E and ∇SZ⊗E respec-

tively. By (1.18), we have

RSZ⊗E =
1

4
〈RTZei, ej〉c(ei)c(ej) +

1

2
RLZ +RE.(1.31)

For t > 0, we denote δt the operator on Λi(T ∗S)⊗̂EZ by multiplying differential forms

by t−i/2. Set

Bt :=
√
t δt ◦B ◦ δ−1

t .(1.32)

Then from (1.28) and (1.32), we get

Bt =
√
tDX +∇EZ ,u − 1

4
√
t
c(T ).(1.33)

Let KZ be the scalar curvature of the fibers (TZ, gTZ). We have the Bismut’s Lich-

nerowicz formula (see [4, Theorem 10.17], [6, Theorem 3.5]),

(1.34) B2
t = −

(√
t∇SZ⊗Eei

+
1

2
〈S(ei)ej, f

H
p 〉c(ej)fp ∧+

1

4
√
t
〈S(ei)f

H
p , f

H
q 〉fp ∧ f q∧

)2

+
t

4
KZ +

t

2

(
1

2
RLZ +RE

)
(ei, ej)c(ei)c(ej) +

√
t

(
1

2
RLZ +RE

)
(ei, f

H
p )c(ei)f

p∧

+
1

2

(
1

2
RLZ +RE

)
(fHp , f

H
q )fp ∧ f q ∧ .

In particular, B2
t is a 2-order elliptic differential operator along the fiber Z. Let exp(−B2

t )

be the family of heat operators associated to the fiberwise elliptic operator B2
t in (1.34).

From [4, Theorem 9.50], we know that exp(−B2
t ) is a smooth family of smoothing oper-

ators.

1.3. Compact Lie group action and equivariant family local index theorem.

Let G be a compact Lie group which acts on W such that for any g ∈ G, π ◦ g = π.

So it acts trivially on S. We assume that the action of G preserves the splitting (1.11),

the Spinc structure of TZ and gTZ , hLZ , ∇LZ are G-invariant. We assume that E is a

G-equivariant complex vector bundle and hE, ∇E are G-invariant. So the action of G

commutes with the Bismut superconnection B in (1.28).

Take g ∈ G and set

W g = {x ∈ W : gx = x}.(1.35)

Then W g is a submanifold of W and π : W g → S is a fiber bundle with closed fiber Zg.

Let N denote the normal bundle of W g in W , then N = TZ/TZg. Since G preserves the

orientation of TZ, the normal bundle N is even dimensional. We denote the differential

of g by dg which gives a bundle isometry dg : N → N . Since g lies in a compact abelian
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Lie group, we know that there is an orthonormal decomposition of smooth vector bundles

on W g

N = N(π)⊕⊕0<θ<πN(θ),(1.36)

where dg|N(π) = −id and for each θ, 0 < θ < π, N(θ) is a complex vector bundle on which

dg acts by multiplication by e
√
−1θ, and dimN(π) is even. By the following proposition,

Zg and N are all naturally oriented. This proposition is a modification of [4, Theorem

6.14].

Proposition 1.1. Let Z be a closed oriented manifold and G be a compact Lie group. If

TZ has a G-equivariant Spinc structure, then for each g ∈ G, Zg is naturally oriented.

Proof. We fix a connected component of Zg and assume that the dimension of the normal

bundle N of this connected component is 2k. By (1.36), on N , the matrix of g has

diagonal blocks (
cos(θj) − sin(θj)

sin(θj) cos(θj)

)
, j = 1, 2, · · · , k, 0 < θj ≤ π.(1.37)

By the definition of the Spinc group, the action of g on the spinor is given by

g = α ·
k∏
j=1

(cos(θj/2) + sin(θj/2)c(e2j−1)c(e2j)),(1.38)

where α ∈ S1. Let σ : C(N) → Λ(N) be the isomorphism in (1.2). For β ∈ Λ(N), let

[β]2k denote the degree 2k part of β. Since α and θj are locally constant on Zg, the term

α−1[σ(g)]2k =

(
k∏
j=1

sin(θj/2)

)
e1 ∧ · · · ∧ e2k(1.39)

gives a non-zero section of Λ2k(N). Then it gives a canonical orientation of N . The

canonical orientation of Zg can be obtained by the orientations of Z and N .

The proof of Proposition 1.1 is complete. �

Since gTZ is G-invariant, the connection ∇TZ preserves the decomposition of smooth

vector bundles on W g

TZ|W g = TZg ⊕⊕0<θ≤πN(θ).(1.40)

Let ∇TZg , ∇N and ∇N(θ) be the corresponding induced connections on TZg, N and

N(θ), and let RTZg , RN and RN(θ) be the corresponding curvatures. Here we consider

N(θ) as a real vector bundle. We have the decompositions on W g:

∇TZ |W g = ∇TZg ⊕∇N , ∇N = ⊕0<θ≤π∇N(θ),(1.41)

and

RTZ |W g = RTZg ⊕RN , RN = ⊕0<θ≤πR
N(θ).(1.42)

For 0 < θ ≤ π, we write

Âθ

(
N(θ),∇N(θ)

)
=

(
(
√
−1)

1
2

dimRN(θ)det
1
2

(
1− g exp

(√
−1

2π
RN(θ)

)))−1

.(1.43)
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Set

Â
(
TZg,∇TZg

)
= det

1
2

 √
−1

4π
RTZg

sinh
(√
−1

4π
RTZg

)
 ,

Âg(TZ,∇TZ) = Â
(
TZg,∇TZg

)
·
∏

0<θ≤π

Âθ

(
N(θ),∇N(θ)

)
∈ Ω4∗(W g,C).

(1.44)

Note that for any Euclidean connection ∇ on (TZ, gTZ), we can define the characteristic

form Âg(TZ,∇) as in (1.44). Let Âg(TZ) ∈ H4∗(W g,C) denote the cohomology class

of Âg(TZ,∇TZ). If E is Z2-graded, we assume that the G-action and ∇E preserve the

Z2-grading. Set

chg(E,∇E) =


Tr

[
g exp

(√
−1

2π
RE|W g

)]
, if E is not Z2-graded;

Trs

[
g exp

(√
−1

2π
RE|W g

)]
, if E is Z2-graded.

(1.45)

Let chg(E) ∈ H2∗(W g,C) denote the cohomology class of chg(E,∇E). By Chern-Weil

theory [35], the classes Âg(TZ) and chg(E) are independent of ∇TZ and ∇E. Further-

more, if S is compact, the equivariant Chern character in (1.45) descends to a ring

homomorphism

chg : K0
G(W g)→ H2∗(W g,C).(1.46)

Assume that n is even. If S is compact, the index bundle ind(DZ) is an element of

K0
G(S). Under the equivariant Chern character map (1.46), for any g ∈ G, we have

chg(ind(DZ)) ∈ H2∗(S,C).(1.47)

Since the fiber is even-dimensional, the spinor S(TZ, LZ) is Z2-graded, i.e., S(TZ, LZ) =

S+(TZ, LZ)⊕ S−(TZ, LZ). Note that if dim kerDZ is locally constant,

ind(DZ) = kerDZ
+ − kerDZ

− ∈ K0
G(S),(1.48)

where DZ
± is the restriction of DZ on S±(TZ, LZ)⊗ E.

Let EZ,± be the set of smooth sections of S±(TZ, LZ)⊗E over W . Then EZ = EZ,+⊕
EZ,− is a Z2-graded infinite dimensional vector bundle over S and Λ(T ∗S)⊗̂End(EZ) is

also Z2-graded. We extend Tr, Trs to the trace class element A ∈ Λ(T ∗S)⊗̂End(EZ),

which take values in Λ(T ∗S). We use the convention that if ω ∈ Λ(T ∗S),

Tr[ωA] = ωTr[A], Trs[ωA] = ωTrs[A].(1.49)

If n is odd, the fibrewise Dirac operator DZ is a family of equivariant self-adjoint

Fredholm operators. Set

DZ
θ =

{
I cos θ +

√
−1DZ sin θ, if 0 ≤ θ ≤ π;

(cos θ +
√
−1 sin θ)I, if π ≤ θ ≤ 2π.

(1.50)

If S is compact, then ind({DZ
θ }) ∈ K0

G(S1 × S). Since the restriction of DZ
θ to {0} × S

is trivial, so it can be regarded as an element of K1
G(S). From [3] and [31], the definition
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of the index of DZ is

ind(DZ) := ind({DZ
θ }) ∈ K1

G(S).(1.51)

Note that as an analogue of (1.46), for any g ∈ G, there is a homomorphism

chg : K1
G(S)→ Hodd(S,C)(1.52)

defined by the suspension. In our case,

chg(ind(DZ)) =

[
1

2π
√
−1

∫
S1

chg(ind({DZ
θ }))

]
∈ Hodd(S,C).(1.53)

Here we use the sign convention (0.10) in this integration. The constant (2π
√
−1)−1

here is chosen to normalize the constant in Theorem 1.2.

When the fiber is odd dimensional, the spinor S(TZ, LZ) is not Z2-graded. For a trace

class element A ∈ Λ(T ∗S) ⊗ End(EZ), we also use the convention as in (1.49) that if

ω ∈ Λ(T ∗S),

Tr[ωA] = ωTr[A].(1.54)

It is compatible with the sign convention in (0.10).

For α ∈ Ωi(S), set

ψS(α) =


(

1
2π
√
−1

) i
2 · α, if i is even;

1√
π

(
1

2π
√
−1

) i−1
2 · α, if i is odd.

(1.55)

Comparing with (1.45), for the locally defined line bundle L
1/2
Z , we write

chg(L
1/2
Z ,∇L

1/2
Z ) := g · exp

(√
−1

4π
RLZ |W g

)
∈ Ω2∗(W g,C)(1.56)

and chg(L
1/2
Z ) ∈ H2∗(W g,C) as the corresponding cohomology class. Denote by π∗ :

H∗(W g,C) → H∗(S,C) the integration along the fiber Zg with the sign convention

(0.10). Recall that the trace operator T̃r is defined in (0.8). We give the equivariant

family local index theorem as follows.

Theorem 1.2. For any t > 0 and g ∈ G, the differential form ψST̃r[g exp(−B2
t )] ∈

Ω∗(S) is closed and its cohomology class is independent of t. As t→ 0,

lim
t→0

ψST̃r[g exp(−B2
t )] =

∫
Zg

Âg(TZ,∇TZ) ∧ chg(L
1/2
Z ,∇L

1/2
Z ) ∧ chg(E,∇E).(1.57)

If S is compact, the differential form ψST̃r[g exp(−B2
t )] represents chg(ind(DZ)) in (1.47)

or (1.53). In H∗(S,C),

chg(ind(DZ)) = π∗

{
Âg(TZ) chg(L

1/2
Z ) chg(E)

}
.(1.58)

Proof. If n is even, the proof is the same as that of [24, Theorem 1.1]. If n is odd, the

proof follows from [13, Theorem 2.10] and the even case. �
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1.4. Equivariant eta form. In this subsection, we define the equivariant eta form when

dim kerDZ is locally constant. We will proceed as the proof of [4, Theorem 10.32] as

follows.

Let Ŝ = R+ × S and pr : Ŝ → S be the projection. We consider the bundle π̂ :

Ŵ := R+ ×W → Ŝ together with the canonical projection Pr : Ŵ → W . Set THŴ =

T (R+) ⊕ Pr∗(THW ). Then THŴ is a horizontal subbundle of TŴ as in (1.11). We

fix the vertical metric ĝTZ which restricts to t−1gTZ over {t} ×W . Let Ĉ(TZ) be the

Clifford algebra bundle associated to ĝTZ . Then Ŝ(TZ,Pr∗LZ) = Pr∗S(TZ, LZ) is the

spinor of Ĉ(TZ) by the assumption in the end of Section 1.1. Let hL̂Z = Pr∗hLZ and

∇L̂Z = Pr∗∇LZ . Let Ê = Pr∗E, hÊ = Pr∗hE and ∇Ê = Pr∗∇E. We naturally extend

the G-actions to this case such that the G-action is identity on R+ × S. We will mark

the objects associated to (THŴ , ĝTZ , hL̂Z , hÊ,∇L̂Z ,∇Ê) by ̂.

For t ∈ R+, the fiberwise Dirac operator DẐ on {t} × Z is t1/2DZ . By (1.24),

∇ÊZ ,u = ∇EZ ,u − n
4t

∂
∂t

. Since Bt in (1.33) is just the Bismut superconnection associ-

ated to (THW, t−1gTZ ,∇LZ ,∇E), from (1.28) and (1.33), the Bismut superconnection

associated to (THŴ , ĝTZ ,∇L̂Z ,∇Ê) is

B̂|(t,b) = Bt + dt ∧ ∂

∂t
− n

4t
dt,(1.59)

for (t, b) ∈ Ŝ. Note that the extended G-action commutes with the Bismut superconnec-

tion B̂.

If α ∈ Λ(T ∗(R+ × S)), we can expand α in the form

α = dt ∧ α0 + α1, α0, α1 ∈ Λ(T ∗S).(1.60)

Set

[α]dt = α0.(1.61)

For any g ∈ G, set

γ(t) =


− 1

2
√
−1
√
π
ψS Trs

[
g
∂Bt

∂t
exp(−B2

t )

]
, if n is even;

− 1√
π
ψS Treven

[
g
∂Bt

∂t
exp(−B2

t )

]
, if n is odd,

(1.62)

and

r(t) = ψST̃r[g exp(−B2
t )].(1.63)

Then from Duhamel’s principle, (1.55) and (1.59), we have

ψST̃r[g exp(−B̂2)] = dt ∧ γ(t) + r(t).(1.64)

So

γ(t) = ψST̃r[g exp(−B̂2)]dt.(1.65)

For u ∈ (0,+∞), set B̂u =
√
uδuB̂δ

−1
u . Similarly as in (1.64), we decompose

ψST̃r[g exp(−B̂2
u)] = dt ∧ γ(u, t) + r(u, t).(1.66)
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Take t = 1. Then

∂But

∂t

∣∣∣∣
t=1

= u
∂Bu

∂u
.(1.67)

So from (1.62), (1.63) and (1.67), we have

γ(u, 1) = uγ(u), r(u, 1) = r(u).(1.68)

From the asymptotic expansion of the heat kernel, when u → 0, there exist ai(t) ∈
Λ(T ∗(R+ × S)), i ∈ N, such that

ψST̃r[g exp(−B̂2
u)] ∼

+∞∑
i=0

ai(t)u
i/2.(1.69)

By Theorem 1.2, r(0, t) exists and a0(t) = r(0, t). Take t = 1 in (1.69). By Theorem 1.2

and (1.63), we have

r(0) =

∫
Zg

Âg(TZ,∇TZ) ∧ chg(L
1/2
Z ,∇L

1/2
Z ) ∧ chg(E,∇E).(1.70)

From (1.66) and (1.68), we have

dt ∧ uγ(u) + r(u)− r(0) ∼
+∞∑
i=1

ai(1)ui/2,(1.71)

that is, when u→ 0,

γ(u) = O(u−1/2).(1.72)

Assume that dim kerDZ is locally constant, then kerDZ forms a vector bundle over

S. Let P kerDZ : EZ → kerDZ be the orthogonal projection with respect to the scalar

product in (1.22). Let

∇kerDZ = P kerDZ∇E ,uP kerDZ(1.73)

be a connection on the vector bundle kerDZ . For b ∈ S, t ∈ (0,+∞), ker(t1/2DZ
b ) =

kerDZ
b . So kerDẐ forms a vector bundle over R+ × S. As in (1.73), we can define

the connection ∇kerDẐ on the vector bundle kerDẐ . If n is even, kerDZ and kerDẐ

are Z2-graded. Since the curvature of ∇Ê ,u is trivial along R+, the equivariant Chern

character chg(kerDẐ ,∇kerDẐ ) does not involve dt.

From [4, Theorem 9.19], which is also valid in odd dimensional fiber case, we know

that when u→ +∞,

ψST̃r[g exp(−B̂2
u)] =

{
chg(kerDẐ ,∇kerDẐ ) +O(u−1/2), if n is even;

O(u−1/2), if n is odd,
(1.74)

and

r(∞) := lim
u→∞

r(u, 1) =

{
chg(kerDZ ,∇kerDZ ), if n is even;

0, if n is odd.
(1.75)

Take t = 1 in (1.74). From (1.66), (1.68) and (1.75) we have

dt ∧ uγ(u) + r(u)− r(∞) = O(u−1/2).(1.76)
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By (1.63), (1.74) and (1.76), when u→ +∞,

γ(u) = O(u−3/2).(1.77)

Definition 1.3. Assume that dim kerDZ is locally constant on S. For any g ∈ G,

the equivariant eta form of Bismut-Cheeger η̃g(T
HW, gTZ , hLZ , hE,∇LZ ,∇E) ∈ Ω∗(S) is

defined by

η̃g(T
HW, gTZ , hLZ , hE,∇L,∇E) := −

∫ ∞
0

γ(t)dt.(1.78)

Note that by (1.72) and (1.77), the integral on the right hand side of (1.78) is convergent.

When g = 1, TZ is Spin, this equivariant eta form is just the usual eta form of Bismut-

Cheeger defined in [9] and [20]. Note that the equivariant eta form here was also defined

in [33] when TZ is Spin and n is odd.

From [6], we know that T̃r[g exp(−B2)] is a closed differential form. So(
dt ∧ ∂

∂t
+ dS

)
ψST̃r[g exp(−B̂2)] = 0, dSψST̃r[g exp(−B2

t )] = 0.(1.79)

By (1.63), (1.64) and (1.79), we have

dSγ(t) =
∂r(t)

∂t
.(1.80)

Then from (1.63), (1.70), (1.80) and Definition 1.3, we have

(1.81) dS η̃g(T
HW, gTZ , hLZ , hE,∇LZ ,∇E) = −

∫ +∞

0

∂r(t)

∂t
dt = r(0)− r(∞)

=



∫
Zg

Âg(TZ,∇TZ) ∧ chg(L
1/2
Z ,∇L

1/2
Z ) ∧ chg(E,∇E)

− chg(kerDZ ,∇kerDZ ), if n is even;∫
Zg

Âg(TZ,∇TZ) ∧ chg(L
1/2
Z ,∇L

1/2
Z ) ∧ chg(E,∇E), if n is odd.

Remark 1.4. If we fix the vertical metric ĝTZ which restricts to t−2gTZ over {t} ×W
in the beginning of this subsection, as in (1.59), we have

B̂′|(t,b) = Bt2 + dt ∧ ∂

∂t
− n

4t2
dt,(1.82)

and

γ′(t) = ψST̃r[g exp(−B̂′2)]dt

=


− 1

2
√
−1
√
π
ψS Trs

[
g
∂Bt2

∂t
exp(−B2

t2)

]
, n is even;

− 1√
π
ψS Treven

[
g
∂Bt2

∂t
exp(−B2

t2)

]
, n is odd.

(1.83)

After changing the variable, we still have

η̃g(T
HW, gTZ , hL, hE,∇L,∇E) := −

∫ ∞
0

γ′(t)dt.(1.84)



FUNCTORIALITY OF EQUIVARIANT ETA FORMS 17

Remark 1.5. The Spinc condition used here is just to get an explicit local index repre-

sentative in Theorem 1.2. In fact, Definition 1.3 can be extended to equivariant Clifford

module case.

1.5. Anomaly formula. From the construction in Section 1.4, the equivariant eta form

only depends on the sextuple (THW, gTZ , hLZ , hE,∇LZ ,∇E). We now describe how

η̃g(T
HW, gTZ , hLZ , hE,∇LZ ,∇E) depends on its arguments. Let (THW, gTZ , hLZ , hE,∇LZ ,

∇E) and (T
′HW, g

′TZ , h
′LZ , h

′E,∇′LZ ,∇′E) be two sextuples of geometric data. We will

mark the objects associated to the second sextuple by ′.

First, a horizontal subbundle on W is simply a splitting of the exact sequence

0→ TZ → TW → π∗TS → 0.(1.85)

As the space of the splitting map is affine and G is compact, it follows that any pair

of equivariant horizontal subbundles can be connected by a smooth path of horizontal

distributions. Let s ∈ [0, 1] parametrize a smooth path {THs W}s∈[0,1] such that TH0 W =

THW and TH1 W = T
′HW . Similarly, let gTZs , hLZs and hEs be the G-invariant metrics

on TZ, LZ and E, depending smoothly on s ∈ [0, 1], which coincide with gTZ , hLZ

and hE at s = 0 and with g
′TZ , h

′LZ and h
′E at s = 1. Let ∇ and ∇′ be equivariant

Euclidean connections on (TZ, gTZ) and (TZ, g
′TZ). By the same reason, we can choose

G-invariant connections ∇s, ∇LZ
s and ∇E

s on TZ, LZ and E preserving gTZs , hLZs and hEs
such that ∇0 = ∇, ∇1 = ∇′ , ∇LZ

0 = ∇LZ , ∇LZ
1 = ∇′LZ , ∇E

0 = ∇E, ∇E
1 = ∇′E.

Let S̃ = [0, 1] × S and pr′ : S̃ → S be the projection. We consider the bundle

π̃ : W̃ := [0, 1] × W → S̃ together with the canonical projection Pr′ : W̃ → W .

Then THW̃(s,·) = R× THs W defines a horizontal subbundle of TW̃ , and TZ̃ := Pr′∗TZ,

L̃Z := Pr′∗LZ and Ẽ := Pr′∗E are naturally equipped with metrics gT Z̃ , hL̃Z , hẼ and

connections ∇̃, ∇L̃Z , ∇Ẽ. Then the fiberwise G action can be naturally extended to

π̃ : W̃ → S̃ such that G acts as identity on S̃ and gT Z̃ , hL̃Z , hẼ, ∇̃, ∇L̃Z , ∇Ẽ are G-

invariant. Let DZ̃ be the fiberwise Dirac operator associated to (THW̃ , gT Z̃ ,∇L̃Z ,∇Ẽ).

Assumption 1.6. We assume that there exists such a smooth path such that kerDZ̃ is

locally constant.

Under Assumption 1.6, from (1.73), we can define the connection ∇kerDZ̃ on kerDZ̃ .

From [28, Theorem B.5.4], modulo exact forms, the Chern-Simons forms

˜̂
Ag(TZ,∇,∇

′
) := −

∫ 1

0

[Âg(TZ, ∇̃)]dsds,

c̃hg(L
1/2
Z ,∇L

1/2
Z ,∇′L

1/2
Z ) := −

∫ 1

0

[chg(L̃
1/2
Z ,∇L̃

1/2
Z )]dsds,

c̃hg(E,∇E,∇′E) := −
∫ 1

0

[chg(Ẽ,∇Ẽ)]dsds,

c̃hg(kerDZ ,∇kerDZ ,∇′ kerDZ ) := −
∫ 1

0

[chg(kerDZ̃ ,∇kerDZ̃ )]dsds

(1.86)
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do not depend on the choices of the objects with ˜. Moreover,

d
˜̂
Ag(TZ,∇,∇

′
) = Âg(TZ,∇

′
)− Âg(TZ,∇),

dc̃hg(L
1/2
Z ,∇L

1/2
Z ,∇′L

1/2
Z ) = chg(L

1/2
Z ,∇′L

1/2
Z )− chg(L

1/2
Z ,∇L

1/2
Z ),

dc̃hg(E,∇E,∇′E) = chg(E,∇
′E)− chg(E,∇E),

dc̃hg(kerDZ ,∇kerDZ ,∇′ kerDZ ) = chg(kerDZ ,∇′ kerDZ )− chg(kerDZ ,∇kerDZ ).

(1.87)

Now we can obtain the anomaly formula for the equivariant eta forms.

Theorem 1.7. Assume that Assumption 1.6 holds.

i) When n is odd, modulo exact forms on S, we have

(1.88) η̃g(T
′HW, g

′TZ , h
′LZ , h

′E,∇′LZ ,∇′E)− η̃g(THW, gTZ , hLZ , hE,∇LZ ,∇E)

=

∫
Zg

˜̂
Ag(TZ,∇TZ ,∇′TZ) ∧ chg(L

1/2
Z ,∇L

1/2
Z ) ∧ chg(E,∇E)

+

∫
Zg

Âg(TZ,∇
′TZ) ∧ c̃hg(L

1/2
Z ,∇L

1/2
Z ,∇′L

1/2
Z ) ∧ chg(E,∇E)

+

∫
Zg

Âg(TZ,∇
′TZ) ∧ chg(L

1/2
Z ,∇′L

1/2
Z ) ∧ c̃hg(E,∇E,∇′E).

ii) When n is even, modulo exact forms on S, we have

(1.89) η̃g(T
′HW, g

′TZ , h
′LZ , h

′E,∇′LZ ,∇′E)− η̃g(THW, gTZ , hLZ , hE,∇LZ ,∇E)

=

∫
Zg

˜̂
Ag(TZ,∇TZ ,∇′TZ) ∧ chg(L

1/2
Z ,∇L

1/2
Z ) ∧ chg(E,∇E)

+

∫
Zg

Âg(TZ,∇
′TZ) ∧ c̃hg(L

1/2
Z ,∇L

1/2
Z ,∇′L

1/2
Z ) ∧ chg(E,∇E)

+

∫
Zg

Âg(TZ,∇
′TZ) ∧ chg(L

1/2
Z ,∇′L

1/2
Z ) ∧ c̃hg(E,∇E,∇′E)

− c̃hg(kerDZ ,∇kerDZ ,∇′ kerDZ ).

Proof. Let B̃ be the Bismut superconnection associated to (THW̃ , g̃TZ , hL̃Z ,∇L̃Z ,∇Ẽ).

From (1.59),

̂̃
B = B̃t + dt ∧ ∂

∂t
− n

4t
dt(1.90)

is the Bismut superconnection associated to the fibration (0,+∞) × [0, 1] × W →
(0,+∞)× [0, 1]× S. We decompose

ψST̃r[g exp(− ̂̃B 2)] = dt ∧ γ + ds ∧ r′ + dt ∧ ds ∧ r′′ + r′′′,(1.91)

where γ, r′, r′′, r′′′ do not contain dt neither ds and by (1.63),

r′(t, s) = ψST̃r[g exp(−B̃2
t )]

ds|(t,s).(1.92)
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From (1.65), (1.91) and Definition 1.3, we have

η̃g(T
H
s W, g

TZ
s , hLZs , hEs ,∇L

s ,∇E
s ) := −

∫ ∞
0

γ(t, s)dt.(1.93)

Since (dt ∧ ∂
∂t

+ ds ∧ ∂
∂s

+ dS)ψST̃r[g exp(− ̂̃B 2)] = 0, we have

∂γ

∂s
=
∂r′

∂t
+ dSr′′.(1.94)

From (1.93), we have

η̃g(T
′HW, g

′TZ , h
′LZ , h

′E,∇′LZ ,∇′E)− η̃g(THW, gTZ , hLZ , hE,∇LZ ,∇E)

=

∫ +∞

0

(γ(t, 1)− γ(t, 0))dt =

∫ +∞

0

∫ 1

0

∂

∂s
γ(t, s)dtds

=

∫ +∞

0

∫ 1

0

∂

∂t
r′(t, s)dtds+ dS

∫ +∞

0

∫ 1

0

r′′(t, s)dtds

=−
∫ 1

0

(r′(0, s)− r′(∞, s))ds+ dS
∫ +∞

0

∫ 1

0

r′′(t, s)dtds.

(1.95)

The commutative property among derivative and integrals in the above formula is

granted by (1.72) and (1.77).

Let ∇T Z̃ be the Euclidean connection associated to (THW̃ , gT Z̃) as in (1.15). By

(1.70), (1.75) and (1.92), we have

r′(0, s) =

{∫
Zg
Âg(TZ,∇T Z̃) ∧ chg(L̃

1/2
Z ,∇L̃

1/2
Z ) ∧ chg(Ẽ,∇Ẽ)

}ds∣∣∣∣∣
{s}×S

(1.96)

and

r′(∞, s) =

{
{chg(kerDZ̃ ,∇kerDZ̃ )}ds|{s}×S, if n is even;

0, if n is odd.
(1.97)

Then Theorem 1.7 follows from (1.86), (1.95), (1.96) and (1.97).

The proof of Theorem 1.7 is complete. �

2. Functoriality of equivariant eta forms

In this section, we state our main result.

2.1. Functoriality of equivariant eta forms. Let W , V , S be smooth manifolds. Let

π1 : W → V , π2 : V → S be smooth fibrations with closed oriented fibers X, Y , with

dimX = n −m, dimY = m. Then π3 = π2 ◦ π1 : W → S is a smooth fibration with

closed oriented fiber Z with dimZ = n. Then we have the diagram of smooth fibrations:

X Z W

Y V S.

π1
π2

π3
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Let TX, TY , TZ be the relative tangent bundles. We assume that TX and TY have

the Spinc structures with complex line bundles LX and LY respectively. Let

LZ = π∗1(LY )⊗ LX .(2.1)

Then TZ have a Spinc structure with complex line bundle LZ . Recall the notations in

Section 1, we take quadruples (TH1 W, g
TX , hLX ,∇LX ), (TH2 V, g

TY , hLY ,∇LY ) and (TH3 W ,

gTZ , hLZ , ∇LZ ) with respect to fibrations π1, π2 and π3 respectively. Then we can define

connections ∇TX , ∇TY , ∇TZ , fundamental spinors S(TX,LX), S(TY, LY ), S(TZ, LZ),

metrics hSX , hSY , hSZ and connections ∇SX , ∇SY , ∇SZ as in Section 1.2. If U ∈ TS,

U ′ ∈ TV , let U
′H
1 ∈ TH1 W , UH

2 ∈ TH2 V , UH
3 ∈ TH3 W be the horizontal lifts of U ′, U , U ,

so that π1,∗(U
′H
1 ) = U ′, π2,∗(U

H
2 ) = U , π3,∗(U

H
3 ) = U .

Set THZ := TH1 W ∩ TZ. Then we have the splitting of smooth vector bundles over

W ,

TZ = THZ ⊕ TX,(2.2)

and

THZ ∼= π∗1TY.(2.3)

Let 0∇TZ be the connection on TZ = THZ ⊕ TX defined by

0∇TZ = π∗∇TY ⊕∇TX(2.4)

as in (1.16). Set

0∇LZ = π∗1∇LY ⊗ 1 + 1⊗∇LX .(2.5)

Let DX and DZ be the Dirac operators associated to (TH1 W , gTX , ∇LX ) and (TH3 W ,

gTZ , ∇LZ ). For v ∈ V , let EX,v be the set of smooth sections over Xv of S(TX,LX).

We still regard EX as an infinite dimensional fiber bundle over V . For any v ∈ V ,

s1, s2 ∈ EX,v, as in (1.22), we define the scalar product

〈s1, s2〉EX,v =

∫
Xv

〈s1(x), s2(x)〉X dvX ,(2.6)

where 〈·, ·〉X = hSX (·, ·). Let {ei} be a local orthonormal frame of (TX, gTX). As in

(1.23) and (1.24), for U ∈ TV , we set

∇EX ,u
U := ∇SX

UH1
− 1

2
〈S1(ei)ei, U

H
1 〉.(2.7)

Then ∇EX ,u preserves the scalar product 〈·, ·〉EX .

We assume that kerDX is locally constant. Then kerDX forms a vector bundle over

V . Let P kerDX : EX → kerDX be the orthonomal projection with respect to the scalar

product (2.6). Let hkerDX be the L2 metric induced by hSX and

∇kerDX := P kerDX∇EX ,uP kerDX .(2.8)

Then ∇kerDX preserves the metric hkerDX . Let DY be the Dirac operator associated to

(TH2 V, g
TY ,∇SY ⊗kerDX ).

Assumption 2.1. We assume that the quadruples (TH1 W, g
TX , hLX ,∇LX ) and (TH2 V ,

gTY , hLY , ∇LY ) satisfy the conditions that kerDX is locally constant and kerDY = 0.
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Let G be a compact Lie group which acts on W such that for any g ∈ G, g · π1 =

π1 · g and π3 · g = π3. Then we know that G acts as identity on S. We assume that

the action of G preserves the Spinc structures of TX, TY , TZ and the quadruples

(TH1 W, g
TX , hLX ,∇LX ), (TH2 V, g

TY , hLY ,∇LY ), (TH3 W , gTZ , hLZ , ∇LZ ) are G-invariant.

On the other hand, we take another equivariant horizontal subbundle T
′H
3 W ⊂ TW ,

which is complement of TZ, such that

T
′H
3 W ⊂ TH1 W.(2.9)

Let g
′TZ be another metric on TZ such that

g
′TZ = π∗1g

TY ⊕ gTX .(2.10)

Let ∇′TZ be the connection associated to (T
′H
3 W, g

′TZ) as in (1.15).

Let S ′(TZ, LZ) be the fundamental spinor associated to (g
′TZ , LZ). Then

S ′(TZ, LZ) := π∗1S(TY, LY )⊗ S(TX,LX).(2.11)

Set

h
′LZ := π∗1h

LY ⊗ hLX .(2.12)

Let

g
′TZ
T = π∗1g

TY ⊕ T−2gTX .(2.13)

We denote the Clifford algebra bundle of TZ with respect to g
′TZ
T by CT (TZ). Let {fp}

be a local orthonormal frame of (TY, gTY ). Then {Tei} ∪ {fHp,1} is a local orthonormal

frame of (TZ, g
′TZ
T ). We define a Clifford algebra isomorphism

GT : CT (TZ)→ C(TZ)(2.14)

by

GT (c(fHp,1)) = c(fHp,1), GT (cT (Tei)) = c(ei).(2.15)

Under this isomorphism, we can consider S ′(TZ, LZ) in (2.11) as a spinor associated to

(TZ, g
′TZ
T ). Let DZ

T be the fiberwise Dirac operator associated to (T
′H
3 W, g

′TZ
T , 0∇LZ ).

Comparing with [20, Theorem 1.5], we can get the following lemma.

Lemma 2.2. If Assumption 2.1 holds, there exists T0 ≥ 1, such that when T ≥ T0,

kerDZ
T = 0.

We will give another proof of this lemma in Section 4.3.

Now we state an analogue of Assumption 1.6 as follows.

Assumption 2.3. We assume that there exist an equivariant horizontal subbundle

T
′H
3 W ⊂ TW satisfying (2.9) and a smooth path constructed as the argument before

Assumption 1.6, connecting the quadruples (TH3 W , gTZ , hLZ , ∇LZ ) and (T
′H
3 W , g

′TZ
T0

,

h
′LZ , 0∇LZ ), such that ker(DZ̃) = 0.

For any g ∈ G, let TH1 (W |V g) = TH1 W |V g ∩ T (W |V g) be the equivariant horizontal

subbundle of T (W |V g). We state our main result as follows.
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Theorem 2.4. If Assumption 2.1 and 2.3 hold, for any g ∈ G, we have the following

identity in Ω∗(S)/dSΩ∗(S),

(2.16) η̃g(T
H
3 W, g

TZ , hLZ ,∇LZ ) = η̃g(T
H
2 V, g

TY , hLY , hkerDX ,∇LY ,∇kerDX )

+

∫
Y g

Âg(TY,∇TY ) ∧ chg(L
1/2
Y ,∇L

1/2
Y ) ∧ η̃g(TH1 (W |V g), gTX , hLX ,∇LX )

+

∫
Zg

˜̂
Ag(TZ,∇TZ , 0∇TZ) ∧ chg(L

1/2
Z ,∇L

1/2
Z )

+

∫
Zg

Âg(TZ,
0∇TZ) ∧ c̃hg(L

1/2
Z ,∇L

1/2
Z , 0∇L

1/2
Z ).

2.2. Simplifying assumptions. By anomaly formula Theorem 1.7, we only need to

prove Theorem 2.4 when (TH3 W , gTZ , hLZ , ∇LZ )=(TH
′

3 W, g
′TZ
T0

, h
′LZ ,∇′LZ ). Therefore,

in the following sections, we assume that

TH3 W ⊂ TH1 W, gTZ = gTX ⊕ π∗1gTY , hLZ = π∗1h
LY ⊗ hLX ,

∇LZ = π∗1∇LY ⊗ 1 + 1⊗∇LX .
(2.17)

Let

gTZT = π∗1g
TY ⊕ 1

T 2
gTX(2.18)

and DZ
T be the fiberwise Dirac operator associated to (TH3 W, g

TZ
T ,∇LZ ). We assume that

kerDX is locally constant, kerDY = 0 and for any T ≥ 1, kerDZ
T = 0.

3. Proof of Theorem 2.4

In this section, we use the assumptions and the notations in Section 2.2.

This Section is organized as follows. In Section 3.1, we introduce a 1-form on R+×R+.

In Section 3.2, we state some intermediate results which we need for the proof of Theorem

2.4, whose proofs are delayed to Section 4-8. In Section 3.3, we prove Theorem 2.4.

3.1. A fundamental 1-form. Let ∇TZ
T be the connection associated to (TH3 W, g

TZ
T ) as

in (1.15). Let S1,T be the tensor associated to (TH1 W,T
−2gTX) as in (1.17). Comparing

with [6, (3.10)] and [27, Theorem 5.1], we have

∇TZ
T = 0∇TZ + P TZS1,TP

TZ = 0∇TZ + P TXS1P
THZ +

1

T 2
P THZS1P

TZ .(3.1)

Let ∇SZ ,T be the connection on S(TZ, LZ) induced by ∇TZ
T and ∇LZ . Set

0∇SZ := π∗1∇SY ⊗ 1 + 1⊗∇SX .(3.2)

Then by (3.1),

∇SZ ,T = 0∇SZ +
1

2T
〈S1(·)ei, fHp,1〉c(ei)c(fHp,1) +

1

4T 2
〈S1(·)fHp,1, fHq,1〉c(fHp,1)c(fHq,1).(3.3)

As the construction in Section 1.4, We consider the space Ŝ := R+,T × R+,u × S. Let

prS : Ŝ → S denote the projection and consider the fibration π̂3 : Ŵ := R+,T × R+,u ×
W → Ŝ. Let PrW : Ŵ → W be the canonical projection. Set THŴ = T (R+ × R+) ⊕
Pr∗W (TH1 W ). Then THŴ is a horizontal subbundle of TŴ as in (1.11). We define the
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metric ĝTZ such that it restricts to u−2gTZT over (T, u) ×W . Let hL̂Z = Pr∗Wh
LZ and

∇L̂Z = Pr∗W∇LZ . We naturally extend the G-actions to this case such that the G-action

is identity on Ŝ.

We denote by B3,u2,T the Bismut superconnection associated to (TH3 W,u
−2gTZT , hLZ ,

∇LZ ). We know that the G-action commutes with this Bismut superconnection.

Let B̂ be the Bismut superconnection for the fibration Ŵ → Ŝ, by the arguments

above (1.59), we can get

B̂(T,u,b) = B3,u2,T + dT ∧ ∂

∂T
+ du ∧ ∂

∂u
+

n

4u2
du+

n−m
4T 2

dT.(3.4)

Definition 3.1. We define βg = du∧βug +dT ∧βTg to be the part of ψST̃r[g exp(−B̂2)] of

degree one with respect to the coordinates (T, u), with functions βug , βTg : R+,T ×R+,u →
Ω∗(S).

From (1.62) and (3.4), we have

βug (T, u) =


− 1

2
√
−1
√
π
ψS Trs

[
g
∂B3,u2,T

∂u
exp(−B2

3,u2,T )

]
, if n is even;

− 1√
π
ψS Treven

[
g
∂B3,u2,T

∂u
exp(−B2

3,u2,T )

]
, if n is odd,

βTg (T, u) =


− 1

2
√
−1
√
π
ψS Trs

[
g
∂B3,u2,T

∂T
exp(−B2

3,u2,T )

]
, if n is even;

− 1√
π
ψS Treven

[
g
∂B3,u2,T

∂T
exp(−B2

3,u2,T )

]
, if n is odd.

(3.5)

By Definition 1.3 and Remark 1.4, we know that

η̃g(T
H
1 W, g

TZ
T , hLZ ,∇LZ ) = −

∫ +∞

0

βug (T, u)du.(3.6)

Proposition 3.2. There exists a smooth family αg : R+,T × R+,u → Ω∗(S) such that(
du ∧ ∂

∂u
+ dT ∧ ∂

∂T

)
βg = dT ∧ du dSαg.(3.7)

Proof. We denote by αg the coefficient of du∧dT component of ψST̃r[g exp(−B̂2)]. Then

ψST̃r[g exp(−B̂2)] = ψST̃r[g exp(−B2
3,u2,T )] + βg + du ∧ dT αg.(3.8)

Since ψST̃r[g exp(−B̂2)] and ψST̃r[g exp(−B2
3,u2,T )] are closed forms, we have

(3.9)

(
du ∧ ∂

∂u
+ dT ∧ ∂

∂T

)
ψST̃r[g exp(−B2

3,u2,T )]− dT ∧ du dSαg + dSβg

+

(
du ∧ ∂

∂u
+ dT ∧ ∂

∂T

)
βg = 0.

Then Proposition 3.2 follows from comparing the coefficient of dT ∧ du in (3.9). �
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Take ε, A, T0, 0 < ε ≤ 1 ≤ A < ∞, 1 ≤ T0 < ∞. Let Γ = Γε,A,T0 be the oriented

contour in R+,T × R+,u.

0

U

u

T

ε

A

1 T0

Γ1

Γ4

Γ2

Γ3

Γ

The contour Γ is made of four oriented pieces Γ1, · · · ,Γ4 indicated in the above picture.

For 1 ≤ k ≤ 4, set I0
k =

∫
Γk
βg. Then by Stocks’ formula and Proposition 3.2,

4∑
k=1

I0
k =

∫
∂U
βg =

∫
U

(
du ∧ ∂

∂u
+ dT ∧ ∂

∂T

)
βg = dS

(∫
U
αgdT ∧ du

)
.(3.10)

3.2. Intermediate results. Now we state without proof some intermediate results,

which will play an essential role in the proof of Theorem 2.4. The proofs of these results

are delayed to Section 4-8.

In the sequence, we will assume for simplicity that S is compact. If S is non-compact,

the various constants C > 0 depend explicitly on the compact subset of S on which the

given estimate is valid.

Let PrV : V̂ = R+×V → V be the projection. For the fibration V̂ → Ŝ = R+×S, let

(TH2 V̂ , ĝ
TY , hL̂Y ,∇L̂Y ) be the quadruple such that TH2 V̂ = T (R+)⊕ Pr∗V (TH2 V ), ĝTY(t,v) =

t−2gTYv for t ∈ R+, v ∈ V , L̂Y = Pr∗VLY , hL̂Y = Pr∗V h
LY and ∇L̂Y = Pr∗V∇LY . Let

hkerDX̂ and ∇kerDX̂ be the induced metric and connection on the vector bundle kerDX̂ .

Let hŜY and ∇ŜY be the induced metric and connection on Pr∗V S(TY, LY ). We naturally

extend the G-action to this case such that the G-action is identity on R+ × S.

Let B2, B̂2 and B2,u2 be the Bismut superconnections associated to (TH2 V, g
TY , hLY ,

hkerDX , ∇LY ,∇kerDX ), (TH2 V̂ , ĝ
TY , hL̂Y , hkerDX̂ ,∇L̂Y ,∇kerDX̂ ) and (TH2 V, u

−2gTY , hLY ,

hkerDX ,∇LY ,∇kerDX ) respectively. For any g ∈ G, let us decompose

ψST̃r[g exp(−B̂2
2)] = dt ∧ γ2(t) + r2(t),(3.11)

where γ2(t), r2(t) ∈ Ω∗(S). By Definition 1.3 and Remark 1.4,∫ +∞

0

γ2(t)dt = −η̃g(TH2 V, gTY , hLY , hkerDX ,∇LY ,∇kerDX ).(3.12)

Theorem 3.3. i) For any u > 0, we have

lim
T→∞

βug (T, u) = γ2(u).(3.13)
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ii) For 0 < u1 < u2 fixed, there exists C > 0 such that, for u ∈ [u1, u2], T ≥ 1, we

have

|βug (T, u)| ≤ C.(3.14)

iii) We have the following identity:

lim
T→+∞

∫ ∞
1

βug (T, u)du =

∫ ∞
1

γ2(u)du.(3.15)

Theorem 3.4. We have the following identity:

lim
u→+∞

∫ ∞
1

βTg (T, u)dT = 0.(3.16)

Let PrW |V g : Ŵ |V g = R+ × W |V g → W |V g be the projection. For the fibration

Ŵ |V g → V̂ g = R+ × V g, let (TH1 (Ŵ |V g), ĝTX , hL̂X ,∇L̂X ) be the quadruple such that

TH1 (Ŵ |V g) = T (R+) ⊕ (PrW |V g)∗TH1 (W |V g), ĝTX(t,w) = t−2gTXw for t ∈ R+, w ∈ W |V g ,
L̂X = (PrW |V g)∗LX , hL̂X = (PrW |V g)∗hLX and ∇L̂X = (PrW |V g)∗∇LX . We naturally

extend the G-actions to this case such that g acts trivially on V̂ g.

Let B̂1 be the Bismut superconnection associated to (TH1 (Ŵ |V g), ĝTX ,∇L̂X ). For any

g ∈ G, let us decompose

ψV gT̃r[g exp(−B̂2
1)] = dt ∧ γ1(t) + r1(t),(3.17)

where γ1(t), r1(t) ∈ Ω∗(S). By Definition 1.3 and Remark 1.4,∫ +∞

0

γ1(t)dt = −η̃g(TH1 (W |V g), gTX , hLX ,∇LX ).(3.18)

By (1.44), Âg(TZ,∇TZ) only depends on g ∈ G and RTZ . So we can denote it by

Âg(R
TZ). Let RTZ

T be the curvature of ∇TZ
T . Set

γA(T ) = − ∂

∂b

∣∣∣∣
b=0

Âg

(
RTZ
T + b

∂∇TZ
T

∂T

)
.(3.19)

By a standard argument in Chern-Weil theory, we know that

∂

∂T
˜̂
Ag(TZ,∇TZ ,∇TZ

T ) = −γA(T ).(3.20)

Proposition 3.5. When T → +∞, we have γA(T ) = O(T−2). Moreover, modulo exact

forms on W g, we have ˜̂
Ag(TZ,∇TZ , 0∇TZ) = −

∫ +∞

1

γA(T )dT.(3.21)

Theorem 3.6. i) For any u > 0, there exist C > 0 and δ > 0 such that, for T ≥ 1, we

have

|βTg (T, u)| ≤ C

T 1+δ
.(3.22)

ii) For any T > 0, we have

lim
ε→0

ε−1βTg (Tε−1, ε) =

∫
Y g

Âg(TY,∇TY ) ∧ chg(L
1/2
Y ,∇L

1/2
Y ) ∧ γ1(T ).(3.23)
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iii) There exists C > 0 such that for ε ∈ (0, 1], ε ≤ T ≤ 1,

ε−1

∣∣∣∣βTg (Tε−1, ε)−
∫
Zg
γA(Tε−1) ∧ chg(L

1/2
Z ,∇L

1/2
Z )

∣∣∣∣ ≤ C.(3.24)

iv) There exist δ ∈ (0, 1], C > 0 such that, for ε ∈ (0, 1], T ≥ 1,

ε−1|βTg (Tε−1, ε)| ≤ C

T 1+δ
.(3.25)

3.3. Proof of Theorem 2.4. We now finish the proof of Theorem 2.4 under the sim-

plifying assumptions in Section 2.2. By (3.10), we know that

(3.26)

∫ A

ε

βug (T0, u)du−
∫ T0

1

βTg (T,A)dT −
∫ A

ε

βug (1, u)du+

∫ T0

1

βTg (T, ε)dT

= I1 + I2 + I3 + I4

is an exact form. We take the limits A → ∞, T → ∞ and then ε → 0 in the indicated

order. Let Ikj , j = 1, 2, 3, 4, k = 1, 2, 3 denote the value of the part Ij after the kth limit.

By [21, §22, Theorem 17], dΩ(S) is closed under uniformly convergence on compact sets

of S. Thus,

4∑
j=1

I3
j ≡ 0 mod dΩ∗(S).(3.27)

From (3.6), we obtain that

I3
3 = η̃g(T

H
3 W, , g

TZ , hLZ ,∇LZ ).(3.28)

Furthermore, by Theorem 3.4, we get

I2
2 = I3

2 = 0.(3.29)

From (3.12) and Theorem 3.3, we conclude that

I3
1 = −η̃g(TH2 V, gTY , hLY , hkerDX ,∇LY ,∇kerDX ).(3.30)

Finally, using Theorem 3.6, we get

(3.31) I3
4 = −

∫
Y g

Âg(TY,∇TY ) ∧ chg(L
1/2
Y ,∇L

1/2
Y ) ∧ η̃g(TH1 (W |V g), gTX , hLX ,∇LX )

−
∫
Zg

˜̂
Ag(TZ,∇TZ , 0∇TZ) ∧ chg(L

1/2
Z ,∇L

1/2
Z )

as follows: We write ∫ +∞

1

βTg (T, ε)dT =

∫ +∞

ε

ε−1βTg (Tε−1, ε)dT.(3.32)

Convergence of the integrals above is granted by (3.22). Using (3.23), (3.25) and Propo-

sition 3.5, we get

lim
ε→0

∫ +∞

1

ε−1βTg (Tε−1, ε)dT =

∫
Y g

Âg(TY,∇TY ) ∧ chg(L
1/2
Y ,∇L

1/2
Y ) ∧

∫ +∞

1

γ1(T )dT

(3.33)
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and

(3.34) lim
ε→0

∫ 1

ε

ε−1

[
βTg (Tε−1, ε)dT −

∫
Zg
γA(Tε−1) ∧ chg(L

1/2
Z ,∇L

1/2
Z )

]
dT

=

∫
Y g

Âg(TY,∇TY ) ∧ chg(L
1/2
Y ,∇L

1/2
Y ) ∧

∫ 1

0

γ1(T )dT.

The remaining part of the integral yields by (3.24)

(3.35)∫ 1

ε

ε−1

∫
Zg
γA(Tε−1) ∧ chg(L

1/2
Z ,∇L

1/2
Z )dT =

∫
Zg

∫ +∞

1

γA(T ) ∧ chg(L
1/2
Z ,∇L

1/2
Z )dT

= −
∫
Zg

˜̂
Ag(TZ,∇TZ , 0∇TZ) ∧ chg(L

1/2
Z ,∇L

1/2
Z ).

These four equations for I3
k , k = 1, 2, 3, 4, imply Theorem 2.4.

4. Proof of Theorem 3.3

In this section, we use the assumptions and the notations of Section 2.2 except DZ
T is

invertible for any T ≥ 1.

This Section is organized as follows. In Section 4.1, we make some estimates of the

fibrewise Dirac operator DZ
T . In Section 4.2, we write the operator BT in a matrix form.

In Section 4.3, we state two intermediate results, from which Theorem 3.3 follows easily.

We prove one of them in Section 4.3 and leave the proof of the other one to Section 4.4.

In Section 4.5, we prove Proposition 3.5.

4.1. Estimates of DZ,2
T .

Definition 4.1. For v ∈ V , b ∈ S, let Ev, E0,b (resp. E1,b) be the vector spaces of

the smooth sections of π∗3Λ(T ∗S)⊗̂S(TZ, LZ) on Xv, Zb (resp. π∗2Λ(T ∗S)⊗̂S(TY, LY )⊗
kerDX on Yb). For µ ∈ R, let Eµv , Eµ0,b, E

µ
1,b be the Sobolev spaces of the order µ of sections

of π∗3Λ(T ∗S)⊗̂S(TZ, LZ), π∗3Λ(T ∗S)⊗̂S(TZ, LZ), π∗2Λ(T ∗S)⊗̂S(TY, LY )⊗kerDX on Xv,

Zb, Yb with Sobolev norms ‖ · ‖X,µ, ‖ · ‖µ, ‖ · ‖Y,µ.

For v ∈ V , in this section, we simply denote by Pb the projection from E0
0,b to E0

1,b and

let P⊥ = 1− P . Let E0,⊥
1 be the orthogonal bundle to E0

1 in E0
0. Let Eµ,⊥1 = E0,⊥

1 ∩ Eµ0 .

Let {ei}, {fp}, {gα} be the local orthonormal frames of TX, TY , TS respectively and

{ei}, {fp}, {gα} be their dual. Recall that ∇EX ,u is the connection in (2.7). Set

∇SY ⊗EX ,u = ∇SY ⊗ 1 + 1⊗∇EX ,u.(4.1)

Let

DH = c(fHp,1)∇SY ⊗EX ,u

fHp,1
.(4.2)

By (2.8), we have

PDHP = DY .(4.3)
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Let S2 and S3 be the tensor associated to (TH2 V, g
TY ) and (TH3 W, g

TZ) as in (1.17).

Let T1 T2, T3, be the torsion tensors defined before (1.25) associated to (TH1 W, g
TX),

(TH2 V, g
TY ), (TH3 W, g

TZ). By (1.25), we have

〈T3(gHα,3, g
H
β,3), fHp,1〉 = 〈T2(gHα,2, g

H
β,2), fp〉.(4.4)

From (1.28) and [4, Theorem 10.19], the Dirac operatorDZ associated to (TH3 W, g
TZ ,∇TZ)

can be written by

DZ = DX +DH − 1

8
〈T1(fHp,1, f

H
q,1), ei〉c(ei)c(fHp,1)c(fHq,1).(4.5)

If we replace the metric gTZ by gTZT , by (1.25), we have

DZ
T = TDX +DH +

1

8T
〈[fHp,1, fHq,1], ei〉c(ei)c(fHp,1)c(fHq,1).(4.6)

Definition 4.2. For s, s′ ∈ E0, we set

|s|2T,0 := ‖s‖2
0,(4.7)

|s|2T,1 := ‖Ps‖2
0 + T 2‖P⊥s‖2

0 +
∑
p

‖ 0∇SZ
fHp,1
s‖2

0 + T 2
∑
i

‖ 0∇SZei P
⊥s‖2

0.(4.8)

Set

|s|T,−1 = sup
06=s′∈E1

0

|〈s, s′〉0|
|s′|T,1

.(4.9)

Lemma 4.3. There exist C1, C2, C3 > 0, T0 ≥ 1, such that for any T ≥ T0, s, s′ ∈ E0,

〈DZ,2
T s, s〉0 ≥ C1|s|2T,1 − C2|s|2T,0,

|〈DZ,2
T s, s′〉0| ≤ C3|s|T,1|s′|T,1.

(4.10)

Proof. The proof of Lemma 4.3 is almost the same as that of [5, theorem 5.19]. For the

completeness of this paper, we state the proof here.

Easy to check that DZ
T is a fiberwisely self-adjoint operator associated to 〈·, ·〉0 in

(1.22). Set

DH
T = DH +

1

8T
〈[fHp,1, fHq,1], ei〉c(ei)c(fHp,1)c(fHq,1).(4.11)

Then by (4.6),

DZ,2
T = T 2DX,2 +DH,2

T + T [DX , DH
T ].(4.12)

The family of operators (DX , DH
T ) is uniformly elliptic. So there exists C ′1, C

′
2 > 0, such

that for T ∈ [1,+∞], s ∈ E0,

‖DXs‖2
0 + ‖DH

T s‖2
0 ≥ C ′1‖s‖2

1 − C ′2‖s‖2
0.(4.13)

Since kerDX is a vector bundle, there exists C ′3 > 0,

‖DXP⊥s‖2
0 ≥ C ′3‖P⊥s‖2

0.(4.14)
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Using (4.13) and (4.14), we get for T ∈ [1,+∞),

T 2‖DXP⊥s‖2
0 + ‖DH

T P
⊥s‖2

0 ≥ C ′1‖P⊥s‖2
1 +

T 2 − 1

2
‖DXP⊥s‖2

0

+

(
C ′3(T 2 − 1)

2
− C ′2

)
‖P⊥s‖2

0.

(4.15)

By elliptic estimate associated to the norm ‖ · ‖X,µ and (4.14), there exists C ′4 > 0, such

that

‖DXP⊥s‖2
0 ≥ C ′4

∑
i

‖ 0∇SZei P
⊥s‖2

0.(4.16)

Let 0R be the curvature of 0∇SZ − 1
2
〈S1(ei)ei, ·〉. Then from a easy computation given

by [6, Theorem 2.5], we have

[DX , DH ] = c(ei)c(f
H
p,1)
(

0R(ei, f
H
p,1)− 0∇SZ

T1(ei,fHp,1)

)
.(4.17)

Since T1(ei, f
H
p,1) ∈ TX, [DX , DH ] is a fiberwise first order elliptic operator along the

fibers X. By (4.14), (4.16) and (4.17), there exists C ′5, C
′
6 > 0, such that for T ≥ 1,

s ∈ E0,

|〈T [DX , DH
T ]s, s〉0| ≤ T |〈[DX , DH ]P⊥s, P⊥s〉0|+ C ′5‖P⊥s‖2

0 ≤ C ′6T‖DXP⊥s‖2
0.(4.18)

From (4.8), (4.12), (4.16) and (4.18), there exist C ′′1 , C
′′
2 > 0, T0 ≥ 1 such that for any

T ≥ T0, s ∈ E0

〈DZ,2
T P⊥s, P⊥s〉0 ≥ C ′′1 |P⊥s|2T,1 + C ′1‖P⊥s‖2

1 − C ′′2‖s‖2
0.(4.19)

From (4.12) and (4.13), we have

〈DZ,2
T Ps, Ps〉0 ≥ C ′1‖Ps‖2

1 − C ′2‖s‖2
0.(4.20)

Since

〈DH,2
T P⊥s, Ps〉0 = 〈P⊥s,DH,2

T Ps〉0
=2〈P⊥s, [DH

T , P ]DH
T s〉0 + 〈P⊥s, [DH

T , [D
H
T , P ]]s〉0

(4.21)

and [DH
T , P ], [DH

T , [D
H
T , P ]] are operators with smooth kernels along the fiber X, there

exists C ′′3 > 0, such that

|〈DH,2
T P⊥s, Ps〉0| ≤ C ′′3 |s|T,1‖P⊥s‖0.(4.22)

As in (4.18), there exists C ′′4 > 0, such that

|〈T [DX , DH
T ]P⊥s, Ps〉0| ≤ C ′′4 |P⊥s|T,1‖Ps‖0.(4.23)

So by (4.12),

|〈DZ,2
T P⊥s, Ps〉0| ≤ (C ′′3 + C ′′4 )|s|T,1|s|T,0.(4.24)

Since [0∇SZ , P ] and [0∇SZ , P⊥] are bounded operators, there exists C > 0, such that

‖P⊥s‖1 + ‖Ps‖1 ≥
∑
p

‖ 0∇SZ
fHp,1
s‖2

0 +
∑
i

‖0∇SZei P
⊥s‖2

0 − C‖s‖2
0.(4.25)

So from (4.19), (4.20), (4.24) and (4.25), we get the first inequality of (4.10). The second

inequality follows directly from (4.12) and (4.18).
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The proof of Lemma 4.3 is complete. �

0

y

x

1

−1

−1

∆

Let ∆ be the oriented contour in the above picture.

If A ∈ L (E0
0) (resp. L (E−1

0 ,E1
0)), we note ‖A‖ (resp. |A|−1,1

T ) the norm of A with

respect to the norm ‖ · ‖0 (resp. the norms | · |T,−1 and | · |T,1). Comparing with [14,

Theorem 11.27], we have the following lemma.

Lemma 4.4. There exist T0 ≥ 1, C > 0, such that for T ≥ T0, λ ∈ ∆, the resolvent (λ−
DZ,2
T )−1 exists, extends to a continuous linear operator from E−1

0 into E1
0, and moreover

‖(λ−DZ,2
T )−1‖ ≤ C,

|(λ−DZ,2
T )−1|−1.1

T ≤ C(1 + |λ|)2.
(4.26)

Proof. Since DZ
T is fiberwisely self-adjoint, for λ ∈ C\R+, (λ−DZ,2

T )−1 exists.

For λ = a± i ∈ C, s ∈ E2
0,

|〈(DZ,2
T − λ)s, s〉0| ≥ ‖s‖2

0.(4.27)

So there exists C > 0, such that for any λ ∈ ∆,

‖(λ−DZ,2
T )−1s‖0 ≤ C‖s‖0.(4.28)

So we get the first inequality of (4.26).

For λ0 ∈ R, λ0 ≤ −2C2, by (4.10), we have

|〈(λ0 −DZ,2
T )s, s〉0| ≥ C1|s|2T,1.(4.29)

Then by (4.9) and (4.29),

|(λ0 −DZ,2
T )s|T,−1 = sup

0 6=s′∈E1
0

|〈(λ0 −DZ,2
T )s, s′〉0|

|s′|T,1
≥ C1|s|T,1.(4.30)

For λ ∈ ∆,

(λ−DZ,2
T )−1 = (λ0 −DZ,2

T )−1 + (λ− λ0)(λ−DZ,2
T )−1(λ0 −DZ,2

T )−1.(4.31)

From (4.28), (4.30) and (4.31), we deduce that (λ − DZ,2
T )−1 extends to a linear map

from E−1
0 into E0

0 and

|(λ−DZ,2
T )−1s|T,0 ≤ |(λ0 −DZ,2

T )−1s|T,0 + |λ0 − λ||(λ−DZ,2
T )−1(λ0 −DZ,2

T )−1s|T,0
≤ C−1

1 |s|T,−1 + C|λ0 − λ||(λ0 −DZ,2
T )−1s|T,0

≤ (C−1
1 + CC−1

1 |λ0 − λ|)|s|T,−1.

(4.32)
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On the other hand,

(λ−DZ,2
T )−1 = (λ0 −DZ,2

T )−1 + (λ− λ0)(λ0 −DZ,2
T )−1(λ−DZ,2

T )−1.(4.33)

So from (4.30), (4.32) and (4.33), we deduce that (λ−DZ,2
T )−1 extends to a linear map

from E−1
0 into E1

0 and

|(λ−DZ,2
T )−1s|T,1 ≤ |(λ0 −DZ,2

T )−1s|T,1 + |λ0 − λ||(λ0 −DZ,2
T )−1(λ−DZ,2

T )−1s|T,1
≤ C−1

1 |s|T,−1 + C−1
1 |λ0 − λ||(λ−DZ,2

T )−1s|T,0
≤ (C−1

1 + C−1
1 |λ0 − λ|(C−1

1 + CC−1
1 |λ0 − λ|))|s|T,−1.

(4.34)

Then we get the second inequality of (4.26). �

4.2. The matrix structure. In the sequence, if αT (T ∈ [1,+∞]) is a family of tensors

(resp. differential operators), we write that as T → +∞,

αT = α∞ +O

(
1

T k

)
,(4.35)

if for any p ∈ N, there exists C > 0, such that for T ≥ 1, the sup of the norms of the

coefficients of αT − α∞ and their derivatives of order ≤ p is dominated by C/T k.

Recall that EZ is the infinite dimensional fiber bundle over S, whose fibers are the set

of smooth sections over Z of S(TZ, LZ). Comparing with (1.24), for U ∈ TS, we define

the connections on EZ

0∇EZ ,u
U = 0∇SZ

UH3
− 1

2
〈S3(ei)ei, U

H
3 〉 −

1

2
〈S3(fHp,1, f

H
p,1), UH

3 〉,

∇EZ ,T,u
U = ∇SZ ,T

UH3
− 1

2
〈S3(ei)ei, U

H
3 〉 −

1

2
〈S3(fHp,1, f

H
p,1), UH

3 〉.
(4.36)

By (3.3) and (4.36), we have

∇EZ ,T,u
U = 0∇EZ ,u

U +
1

2T
〈S1(UH

3 )ei, f
H
p,1〉c(ei)c(fHp,1).(4.37)

Recall that B3,u2,T is the Bismut superconnection associated to (TH3 W , u−2gTZT , hLZ ,

∇LZ ). Denote by B3,T = B3,1,T . From (1.28), (1.33), (2.14), (4.6), (4.4), (4.36) and

(4.37), we can calculate B3,T and B3,u2,T exactly.

Proposition 4.5. For T > 0 and u > 0,

(4.38) B3,T = TDX + 0∇EZ ,u +DH − c(T2)

4
− 1

8T
〈T1(fHp,1, f

H
q,1), ei〉c(ei)c(fHp,1)c(fHq,1)

+
1

2T
〈S1(gHα )ei, f

H
p,1〉c(ei)c(fHp,1)gα ∧ − 1

8T
〈T3(gHα,3, g

H
β,3), ei〉c(ei)gα ∧ gβ∧,
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and

(4.39) B3,u2,T = uTDX + uDH − u

8T
〈T1(fHp,1, f

H
q,1), ei〉c(ei)c(fHp,1)c(fHq,1)

+ 0∇EZ ,u +
1

2T
〈S1(gHα )ei, f

H
p,1〉c(ei)c(fHp,1)gα∧

− c(T2)

4u
− 1

8uT
〈T3(gHα,3, g

H
β,3), ei〉c(ei)gα ∧ gβ ∧ .

Let EY be the infinite dimensional fiber bundle over S, whose fibers are the set of

smooth sections over Y of S(TY, LY ) ⊗ kerDX . By (1.24), for U ∈ TS, we define the

connections on EY

∇EY ,u
U = ∇SY ⊗kerDX

UH2
− 1

2
〈S2(fp)fp, U

H
2 〉.(4.40)

From [27, Theorem 5.2], we have

〈S3(fHp,1, f
H
q,1), UH

3 〉 = 〈S2(fp)fp, U
H
2 〉.(4.41)

So by (2.7), (2.8), (4.36), (4.40) and (4.41), we have

∇EY ,u = P 0∇EZ ,uP.(4.42)

Recall that B2 is the Bismut superconnection associated to (TH2 V , gTY ,hLY , hkerDX ,∇LY ,

∇kerDX ) and B2,u2 = u2δu2B2δ
−1
u2 . Then by (1.28),

B2 = DY +∇EY ,u − c(T2)/4.(4.43)

Lemma 4.6. For any T ∈ [1,+∞], the operator PB3,TP is a superconnection on E1.

When T → +∞,

PB3,TP = B2 +O

(
1

T

)
.(4.44)

Proof. Set

C = 0∇EZ ,u +DH − c(T2)

4
.(4.45)

By (4.39), we have

PB3,TP = PCP +O

(
1

T

)
.(4.46)

From (4.3), (4.42) and (4.43), we get

PCP = B2.(4.47)

So Lemma 4.6 follows from (4.46) and (4.47). �

Set

BT = B2
3,T + u−2du ∧ δ−1

u2
∂B3,u2,T

∂u
δu2 .(4.48)

Then BT is a differential operator along the fiber Z with values in Λ(T ∗(R+ × S)). Set

Bu,T = u2δu2BT δ−1
u2 = B2

3,u2,T + du ∧
∂B3,u2,T

∂u
.(4.49)
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Then by (3.5), we have

βug = ψST̃r[g exp(−Bu,T )]du = ψSδu2T̃r[g exp(−u2BT )]du.(4.50)

From Proposition 4.5,

δ−1
u2
∂B3,u2,T

∂u
δu2 = TDX +DH +

c(T2)

4
+O

(
1

T

)
.(4.51)

Set

B2 = B2
2 + u−2du ∧ δ−1

u2
∂B2,u2

∂u
δu2 .(4.52)

By (3.11), we have

γ2(u) = ψSδu2T̃r[g exp(−u2B2)]du.(4.53)

From (1.33), (4.43), (4.51) and Lemma 4.6, we have

PBTP = B2 +O

(
1

T

)
.(4.54)

Put

ET = PBTP, FT = PBTP⊥,
GT = P⊥BTP, HT = P⊥BTP⊥.

(4.55)

Then we write BT in matrix form with respect to the splitting E0 = E0
1 ⊕ E0,⊥

1 ,

BT =

(
ET FT
GT HT

)
.(4.56)

Similarly as in [27, Theorem 5.5], we have

Proposition 4.7. There exist operators E,F,G,H such that, as T → +∞,

ET = E +O(1/T ), FT = TF +O(1),

GT = TG+O(1), HT = T 2H +O(T ).
(4.57)

Let

Q = [DX , C].(4.58)

Then Q(E0
1) ⊂ E0,⊥

1 , and Q is a smooth family of first order elliptic operators acting

along the fibers X. Moreover,

E = P (C2 + u−2du ∧ (DY − c(T2)/4))P, F = PQP⊥,

G = P⊥QP, H = P⊥DX,2P⊥,
(4.59)

and

B2 = E − FH−1G.(4.60)
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Proof. By (4.38) and (4.45), we have

B3,T = TDX + C +O

(
1

T

)
.(4.61)

From (4.48) and (4.55), we get (4.59).

Let 0RZ be the curvature of 0∇SZ − 1
2
〈S3(ei)ei, ·〉 − 1

2
〈S3(fHp,1)fHp,1, ·〉. As in (4.17), we

have

[DX , 0∇EZ ,u] = c(ei)g
α,H
3 ∧

(
0RZ(ei, g

H
α,3)− 0∇SZ

T3(ei,gHα,3)

)
,

( 0∇EZ ,u)2 = gα,H3 ∧ gβ,H3 ∧
(

0RZ(gHα,3, g
H
α,3)− 0∇SZ

T3(gHα,3,g
H
α,3)

)(4.62)

and T3(ei, g
H
α,3) ∈ TX, T3(gHα,3, g

H
α,3) ∈ TZ. By (4.17), (4.45) and (4.62), we know that

Q = [DX , C] is a smooth family of first order elliptic operators acting along the fibers X

and Q(E0
1) ⊂ E0,⊥

1 .

By (4.43), (4.52) and (4.59), we know that

(4.63) E − FH−1G = P (C2 + u−2du ∧ (DY − c(T2)/4))P

− PCDXP⊥(DX,2)−2P⊥DXCP = (PCP )2 + u−2du ∧ (DY − c(T2)/4) = B2

The proof of Proposition 4.7 is complete. �

4.3. Proof of Theorem 3.3. If C is an operator, let Sp(C) be the spectrum of C. The

following lemma is an analogue of [8, Proposition 9.2].

Lemma 4.8. For any u > 0, T ≥ 1,

Sp(B2) = Sp(DY,2),

Sp(Bu,T ) = Sp(u2DZ,2
T ) = Sp(u2BT ).

(4.64)

Proof. We only prove the first formula. The proof of the second one is the same.

By (4.43), set

(4.65) R := B2 −DY,2 =

(
∇EY ,u − 1

4
c(T2)

)2

+

[
DY ,∇EY ,u − 1

4
c(T2)

]
+

1

u2
du ∧

(
DY − c(T2)

4

)
.

Take λ /∈ Sp(DY,2). Then

(λ− B2)−1 − (λ−DY,2)−1 = (λ−DY,2)−1R(λ− B2)−1.(4.66)

Inductively,

(λ− B2)−1 = (λ−DY,2)−1 + (λ−DY,2)−1R(λ−DY,2)−1

+ (λ−DY,2)−1R(λ−DY,2)−1R(λ−DY,2)−1 + · · · .
(4.67)

Since R has positive degree in Λ(T ∗S), the expansion above has finite terms.

By elliptic estimate, there exist c1, c2 > 0, such that for any s ∈ E1,

‖(λ−DY,2)s‖Y,0 ≥ c1‖s‖Y,2 − c2‖s‖Y,0.(4.68)
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Then there exists c > 0 such that

‖(λ−DY,2)−1s‖Y,2 ≤
1

c1

‖s‖Y,0 +
c2

c1

‖(λ−DY,2)−1s‖Y,0 ≤ c‖s‖Y,0.(4.69)

From (4.62) and (4.65), there exists c > 0 such that

‖Rs‖Y,0 ≤ c‖s‖Y,1.(4.70)

By (4.67), (4.69) and (4.70), there exists c > 0, such that

‖(λ− B2)−1s‖Y,0 ≤ c‖s‖Y,0.(4.71)

So λ /∈ Sp(B2).

Exchange B2 and DY,2, we get the first formula of (4.64). �

By Lemma 4.8, we have

exp(−u2BT ) =
1

2π
√
−1

∫
∆

exp(−u2λ)

λ− BT
dλ,

exp(−u2B2) =
1

2π
√
−1

∫
∆

exp(−u2λ)

λ− B2

dλ.

(4.72)

Lemma 4.9. There exist T0 ≥ 1, C > 0, k ∈ N, such that for T ≥ T0, λ ∈ ∆, the

resolvent (λ − BT )−1 exists, extends to a continuous linear operator from E−1
0 into E1

0,

and moreover

‖(λ− BT )−1‖ ≤ C(1 + |λ|)k,
|(λ− BT )−1|−1.1

T ≤ C(1 + |λ|)k.
(4.73)

Proof. Set

RT := BT −DZ,2
T .(4.74)

By (4.17), (4.38), (4.48) and (4.62), we know that RT is a first order fiberwise differential

operator along the fiber Z. Moreover, from (4.8), for i = −1, 0, there exists Ci > 0, such

that for any s ∈ Ei0,

|RT s|T,i ≤ Ci|s|T,i+1.(4.75)

Take λ ∈ ∆. Then

(λ− BT )−1 = (λ−DZ,2
T )−1 + (λ−DZ,2

T )−1RT (λ−DZ,2
T )−1

+ (λ−DZ,2
T )−1RT (λ−DZ,2

T )−1RT (λ−DZ,2
T )−1 + · · · .

(4.76)

Since RT has positive degree in Λ(T ∗(R× S)), the expansion above has finite terms.

From (4.75), and (4.76) and Lemma 4.4, there exist T0 ≥ 1, C > 0, k ∈ N, such that for

T ≥ T0, λ ∈ ∆, the resolvent (λ− BT )−1 exists, extends to a continuous linear operator

from E−1
0 into E1

0, and moreover

‖(λ− BT )−1‖ ≤ C(1 + |λ|)k,

|(λ− BT )−1|−1,1
T ≤ C(1 + |λ|)k.

(4.77)

The proof of Lemma 4.9 is complete. �
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Similarly, there exist C > 0, k ∈ N, such that for λ ∈ ∆, the resolvent (λ − B2)−1

exists, and for any s ∈ E0
1, s′ ∈ E−1

1 , we have

‖(λ− B2)−1s‖Y,0 ≤ C(1 + |λ|)k‖s‖Y,0,
‖(λ− B2)−1s′‖Y,1 ≤ C(1 + |λ|)k‖s′‖Y,−1.

(4.78)

Replacing BT by HT and DZ,2
T by P⊥DZ,2

T P⊥ in the proof of Lemma 4.9, we can get

the following lemma.

Lemma 4.10. There exist T0 ≥ 1, C > 0, k ∈ N, such that for T ≥ T0, λ ∈ ∆, the

resolvent (λ−HT )−1 exists, and for any s ∈ E2,⊥
0 , we have

‖(λ−HT )−1s‖0 ≤ C(1 + |λ|)k‖s‖0,

|(λ−HT )−1s|T,1 ≤ C(1 + |λ|)k|s|T,−1.
(4.79)

Choose s, s′ ∈ E0 such that s = (λ− BT )−1s′, λ ∈ ∆. Then by (4.55), we have

Ps′ = (λ− ET )Ps− FTP⊥s,
P⊥s′ = −GTPs+ (λ−HT )P⊥s.

(4.80)

Let

ET (λ) = λ− ET − FT (λ−HT )−1GT .(4.81)

Then

P (λ− BT )−1P = ET (λ)−1.(4.82)

By (4.82) and Lemma 4.9, there exist T0 ≥ 1, C > 0, k ∈ N, such that for T ≥ T0, λ ∈ ∆,

s ∈ E0,

‖ET (λ)−1s‖0 ≤ C(1 + |λ|)k‖s‖0,

|ET (λ)−1s|T,1 ≤ C(1 + |λ|)k|s|T,−1.
(4.83)

Lemma 4.11. There exist C > 0, T0 ≥ 1, k ∈ N, such that for T ≥ T0, λ ∈ ∆, s ∈ E0,

‖(ET (λ)−1 − P (λ− B2)−1P )s‖0 ≤
C(1 + |λ|)k

T
‖s‖0.(4.84)

Proof. We know that

ET (λ)−1 − P (λ− B2)−1P = PET (λ)−1(λ− B2 − ET (λ))(λ− B2)−1P.(4.85)

By (4.60) and (4.81),

(4.86) λ− B2 − ET (λ) = ET + FT (λ−HT )−1GT − E + FH−1G

= ET − E + (FT − TF )(λ−HT )−1GTPs+ TF ((λ−HT )−1 + T−2H−1)GTPs

+ T−1FH−1(GT − TG)Ps.

From Proposition 4.7, there exists C > 0 such that for s, s′ ∈ E0,

‖(ET − E)Ps‖0 ≤
C

T
‖Ps‖1,(4.87)
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and

|〈GTPs, s
′〉0| ≤ C‖Ps‖1|s′|T,1.(4.88)

By (4.88),

|GTPs|T,−1 ≤ C‖Ps‖1.(4.89)

Similarly, we have

|(GT − TG)Ps|T,−1 ≤
C

T
‖Ps‖1.(4.90)

Since [P, 0∇SZ
fHp,1

] is a bounded operator, by Proposition 4.7, there exists C > 0, such

that for s ∈ E0, we have

(4.91) ‖FT s‖0 ≤ CT
∑
i

‖ 0∇SZei P
⊥s‖0 + C

∑
p

‖P 0∇SZ
fHp,1
P⊥s‖0

≤ CT
∑
i

‖ 0∇SZei P
⊥s‖0 + C

∑
p

‖[P, 0∇SZ
fHp,1

]P⊥s‖0 ≤ C|s|T,1.

From (4.91), we have

‖(FT − TF )s‖0 ≤
C

T
‖s‖T,1.(4.92)

So from (4.8), (4.89), (4.92), Proposition 4.7 and Lemma 4.10, we have

‖(FT − TF )(λ−HT )−1GTPs‖0 ≤
C

T
|(λ−HT )−1GTPs|T,1

≤C(1 + |λ|)k

T
|GTPs|T,−1 ≤

C(1 + |λ|)k

T
‖Ps‖1.

(4.93)

By (4.75), there exists C > 0, such that for any s ∈ E2,⊥
0 ,

|(HT − T 2H)s|T,−1 ≤ Ci|s|T,0.(4.94)

From (4.8), (4.14), (4.89), (4.94), Proposition 4.7 and Lemma 4.10, we have

‖TF ((λ−HT )−1 + T−2H−1)GTPs‖0

≤C|(λ−HT )−1(λ− (HT − T 2H))T−2H−1GTPs|T,1
≤C|λ||(λ−HT )−1(T 2H)−1GTPs|T,1

+ C|(λ−HT )−1(HT − T 2H)(T 2H)−1GTPs|T,1
≤C(1 + |λ|)k+1|(T 2H)−1GTPs|T,−1

+ C(1 + |λ|)k|(HT − T 2H)(T 2H)−1GTPs|T,−1

≤C(1 + |λ|)k+1

T 2
|GTPs|T,−1 +

C(1 + |λ|)k

T 2
‖GTPs‖0

≤C(1 + |λ|)k+1

T
‖Ps‖1.

(4.95)

From (4.14), (4.16) and (4.59), there exists C > 0, such that for any s ∈ E2,⊥
0 , we have

〈T 2Hs, s〉 ≥ C|s|T,1.(4.96)
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By (4.96),

|(T 2H)−1s|T,1 ≤ C|s|T,−1.(4.97)

From (4.90), (4.97) and Proposition 4.7, we have

‖T−1FH−1G(T )Ps‖0 ≤ C|(T 2H)−1(GT − TG)Ps|T,1

≤ C|(GT − TG)Ps|T,−1 ≤
C

T
‖Ps‖1.

(4.98)

Therefore, from (4.86), (4.87), (4.93), (4.95) and (4.98), there exists C > 0, such that

‖(λ− B2 − ET (λ))Ps‖0 ≤
C(1 + |λ|)k+1

T
‖Ps‖1.(4.99)

Then Lemma 4.11 follows from (4.78), (4.83), (4.85) and (4.99). �

Lemma 4.12. There exist C > 0, T0 ≥ 1, k ∈ N, such that for T ≥ T0, λ ∈ ∆,

‖P (λ− BT )−1P − P (λ− B2)−1P‖ ≤ C(1 + |λ|)k

T
,

‖P (λ− BT )−1P⊥‖ ≤ C(1 + |λ|)k

T
,

‖P⊥(λ− BT )−1P‖ ≤ C(1 + |λ|)k

T
,

‖P⊥(λ− BT )−1P⊥‖ ≤ C(1 + |λ|)k

T 2
.

(4.100)

Proof. The first inequality follows from (4.82) and Lemma 4.11.

By (4.80), we find that

P (λ− BT )−1P⊥ = ET (λ)−1FT (λ−HT )−1,

P⊥(λ− BT )−1P = (λ−HT )−1GTET (λ)−1,

P⊥(λ− BT )−1P⊥ = (λ−HT )−1(1 +GTP (λ− BT )−1P⊥).

(4.101)

From (4.83), (4.91) and Lemma 4.10, there exists C > 0, such that for s ∈ E0,

‖ET (λ)−1FT (λ−HT )−1P⊥s‖0 ≤ C‖FT (λ−HT )−1P⊥s‖0

≤C|(λ−HT )−1P⊥s|T,1 ≤ C(1 + |λ|)k|P⊥s|T,−1 ≤
C(1 + |λ|)k

T
‖s‖0.

(4.102)

From (4.8), (4.83), (4.89) and Lemma 4.10, there exists C > 0, such that for s ∈ E0,

‖(λ−HT )−1GTET (λ)−1Ps‖0 ≤
1

T
|(λ−HT )−1GTET (λ)−1Ps|T,1

≤C(1 + |λ|)k

T
|GTET (λ)−1Ps|T,−1 ≤

C(1 + |λ|)k

T
‖ET (λ)−1Ps‖1

≤C(1 + |λ|)k

T
|ET (λ)−1Ps|T,1 ≤

C(1 + |λ|)2k

T
‖s‖0.

(4.103)



FUNCTORIALITY OF EQUIVARIANT ETA FORMS 39

From (4.102) and (4.103), there exists C > 0, such that for s ∈ E0,

‖(λ−HT )−1GTET (λ)−1FT (λ−HT )−1P⊥s‖0

≤C(1 + |λ|)2k

T
‖FT (λ−HT )−1P⊥s‖0 ≤

C(1 + |λ|)3k

T 2
‖s‖0.

(4.104)

From (4.8) and Lemma 4.10, we have

(4.105) ‖(λ−HT )−1s‖0 ≤
1

T
|(λ−HT )−1s|T,1 ≤

C(1 + |λ|)k

T
|P⊥s|T,−1

≤ C(1 + |λ|)k

T 2
‖s‖0.

By (4.104) and (4.105), we get the last estimate in (4.100)

Then the proof of Lemma 4.12 is complete. �

We assume that kerDY = 0. There exists c1 > 0, such that Sp(B2) = Sp(DY,2) ⊂
[2c1,+∞). By Lemma 4.8 and Proposition 4.12, we know that when T is sufficiently

large,

Sp(DZ,2
T ) = Sp(BT ) ⊂ [c1,+∞).(4.106)

Note that in this section, we need not assume that kerDZ
T = 0. Therefore, we get another

proof of Lemma 2.2.

c1

∆′

y

x
O

Let ∆′ be the oriented contour in the above picture. Then all the estimates in this

Section hold for any λ ∈ ∆′. From (4.106), there exists T0 ≥ 1, for u > 0, T ≥ T0,

exp(−u2BT ) =
1

2π
√
−1

∫
∆′

e−u
2λ

λ− BT
dλ.(4.107)

From (4.72) and Lemma 4.12, we get the following theorem.

Theorem 4.13. For u0 > 0 fixed, there exist C,C ′ > 0 and T0 ≥ 1 such that for T ≥ T0,

u ≥ u0,

‖ exp(−u2BT )− P exp(−u2B2)P‖ ≤ C

T
exp(−C ′u2).(4.108)

Let exp(−u2BT )(z, z′), P exp(−u2B2)P (z, z′) (z, z′ ∈ Zb, b ∈ S) be the smooth kernels

of the operators exp(−u2BT ), P exp(−u2B2)P calculated with respect to dvZ(z′).

By using the proof of [25, Theorems 5.22] and the fact that kerDY = 0, we have
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Proposition 4.14. (i) For u0 > 0 fixed, for m ∈ N, b ∈ S, there exist C,C ′ > 0, T0 ≥ 1,

such that for z, z′ ∈ Zb, u ≥ u0, T ≥ T0,

sup
|α|,|α′|≤m

∣∣∣∣ ∂|α|+|α′|∂zα∂z′α′
exp(−u2BT )(z, z′)

∣∣∣∣ ≤ C exp(−C ′u2).(4.109)

(ii) For u0 > 0 fixed, for m ∈ N, b ∈ S, there exist C,C ′ > 0, T0 ≥ 1, such that for

z, z′ ∈ Zb, u ≥ u0, T ≥ T0,

sup
|α|,|α′|≤m

∣∣∣∣ ∂|α|+|α′|∂zα∂z′α′
P exp(−u2B2)P (z, z′)

∣∣∣∣ ≤ C exp(−C ′u2).(4.110)

The complete proof of Proposition 4.14 is left to the next subsection.

From Proposition 4.14 i), we get Theorem 3.3 ii).

Let injZ be the injectivity radius of (Zb, g
TZb). For z ∈ Zb, we will identify BTzZb(0, ε)

with BZb(z, ε) by the canonical exponential map when ε < injZ .

Let φ : Rn → [0, 1] be a smooth function with compact support in B(0, injZ/2), equal

1 near 0 such that
∫
Rn φ(W )dv(W ) = 1. Take v ∈ (0, 1]. By Taylor expansion and

Proposition 4.14, there exists c > 0, such that

|(exp(−u2BT )− P exp(−u2B2)P )(vW, vW ′)

−(exp(−u2BT )−P exp(−u2B2)P )(0, 0)| ≤ cv exp(−C ′u2)
(4.111)

for |W |, |W ′| are sufficiently small. Then for U,U ′ ∈ E0,

|〈(exp(−u2BT )− P exp(−u2B2)P )(0, 0)U,U ′〉0

−
∫
Rn×Rn

〈(exp(−u2BT )− P exp(−u2B2)P )(vW, vW ′)U,U ′〉0

× φ(W )φ(W ′)dv(W )dv(W ′)| ≤ cv|U ||U ′| exp(−C ′u2).

(4.112)

On the other hand, By Theorem 4.13,∣∣∣∣∫
Rn×Rn

〈(exp(−u2BT )− P exp(−u2B2)P )(vW, vW ′)U,U ′〉0

× φ(W )φ(W ′)dv(W )dv(W ′)|

≤ c

Tvn
|U ||U ′| exp(−C ′u2).

(4.113)

Take v = T−
1

n+1 . From (4.112) and (4.113), we get

|(exp(−u2BT )− P exp(−u2B2)P )(0, 0)| ≤ c T−
1

n+1 exp(−C ′u2).(4.114)

Therefore, we can get the following theorem.

Theorem 4.15. For u0 > 0 fixed, there exist C,C ′ > 0, T0 ≥ 1, δ > 0, such that for

u ≥ u0, T ≥ T0,∣∣∣ψSδu2T̃r[g exp(−u2BT )]− ψSδu2T̃r[g exp(−u2B2)]
∣∣∣ ≤ C

T δ
exp(−C ′u2).(4.115)

By (4.50) and (4.53), we can get Theorem 3.3 by taking the coefficients of du in (5.5).

The proof of Theorem 3.3 is complete.
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4.4. Proof of Theorem 4.14. Recall that we assume that S is compact for simplicity

in Section 3.2. There exist a family of C∞ sections of TY (resp. TX), U1, · · · , Ur
(resp. U ′1, · · · , U ′r′), such that for any y ∈ V (resp. x ∈ W ), U1(y), · · · , Ur(y) (resp.

U ′1(x), · · · , Ur′(x)) span TyY (resp. TxX).

Definition 4.16. Let D be a family of operators on E0,

D =
{
P 0∇SZ

UHp,1
P + P⊥ 0∇SZ

UHp,1
P⊥, P⊥ 0∇SZU ′i P

⊥
}
.(4.116)

Note that in [25, (5.60)], the corresponding set of operators is stated as {pT 0∇Λ(T ∗(0,1)Z)⊗ξ
UHl,1

pT ,

p⊥T
0∇Λ(T ∗(0,1)Z)⊗ξ

UHl,1
p⊥T , p

⊥
T

0∇Λ(T ∗(0,1)Z)⊗ξ
U ′i

p⊥T }. We need to read [25, (5.60)] as DT =

{pT 0∇Λ(T ∗(0,1)Z)⊗ξ
UHl,1

pT + p⊥T
0∇Λ(T ∗(0,1)Z)⊗ξ

UHl,1
p⊥T , p

⊥
T

0∇Λ(T ∗(0,1)Z)⊗ξ
U ′i

p⊥T }. In this way, the cor-

responding commutator [Q1, [Q2, · · · [Qk, A
2
T ], · · · ]] has the same structure as A2

T (see the

following proof of Lemma 4.17).

Lemma 4.17. For any k ∈ N fixed, there exists Ck > 0, T0 ≥ 1 such that for T ≥ T0,

Q1, · · · , Qk ∈ D and s, s′ ∈ E2
0, we have

|〈[Q1, [Q2, · · · [Qk,BT ], · · · ]]s, s′〉0| ≤ Ck|s|T,1|s′|T,1.(4.117)

Proof. Set S be the set of uniformly bounded operators along the fiber X with smooth

kernel. Set

Θ1 =
{
aij

0∇SZU ′i
0∇SZU ′j + b : aij ∈ C∞(W,C(TZ)), b ∈ S

}
,

Θ2 =
{
ai

0∇SZU ′i + b : ai ∈ C∞(W,C(TZ)), b ∈ S
}
,

Θ3 =
{
bpq

0∇SZUp
0∇SZUq + bp

0∇SZUp + ai
0∇SZU ′i + b : ai ∈ C∞(W,C(TZ)),

bpq, bp, b ∈ S }.

(4.118)

By (4.17), (4.38), (4.48), (4.51) and (4.62), we can split the operator BT such that

BT = T 2P⊥A1P
⊥ + T (P⊥A2P

⊥ + PA′2P
⊥ + P⊥A′2P ) + A3,(4.119)

where A1 ∈ Θ1, A2, A
′
2 ∈ Θ2, A3 ∈ Θ3.

First, we consider the case when k = 1.

a) The case where Q = P 0∇SZ
UHp,1

P + P⊥ 0∇SZ
UHp,1

P⊥.

We observe that if b ∈ S , so are
[

0∇SZ
UHp,1

, b
]
, 0∇SZU ′i b and b 0∇SZU ′i .

Then we have

[Q,P⊥A1P
⊥] = P⊥

([
0∇SZ

UHp,1
, A1

]
+
[

0∇SZ
UHp,1

, P
]
A1 + A1

[
0∇SZ

UHp,1
, P
])
P⊥,

[Q,P⊥A2P
⊥] = P⊥

([
0∇SZ

UHp,1
, A2

]
+
[

0∇SZ
UHp,1

, P
]
A2 + A2

[
0∇SZ

UHp,1
, P
])
P⊥,

[Q,PA′2P
⊥] = P

([
0∇SZ

UHp,1
, A′2

]
+
[

0∇SZ
UHp,1

, P
]
A′2 − A′2

[
0∇SZ

UHp,1
, P
])
P⊥,

[Q,P⊥A′2P ] = P⊥
([

0∇SZ
UHp,1

, A′2

]
−
[

0∇SZ
UHp,1

, P
]
A′2 + A′2

[
0∇SZ

UHp,1
, P
])
P,

(4.120)
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and
[

0∇SZ
UHp,1

, Ai

]
∈ Θi, Ai

[
0∇SZ

UHp,1
, P
]
∈ Θi,

[
0∇SZ

UHp,1
, A′2

]
∈ Θ2, A

′
2

[
0∇SZ

UHp,1
, P
]
∈ Θ2. For

the element in Θ3, since the principal symbol of Q is identity, we have [Q,A3] ∈ Θ3.

So [Q,BT ] has the same structure as BT in (4.119).

b) The case where Q = P⊥ 0∇SZU ′i P
⊥.

As in (4.120), we have

[Q,P⊥A1P
⊥] = P⊥

([
0∇SZU ′i , A1

]
+ 0∇SZU ′i PA1 + A1P

0∇SZU ′i
)
P⊥,

[Q,P⊥A2P
⊥] = P⊥

([
0∇SZU ′i , A2

]
+ 0∇SZU ′i PA2 + A2P

0∇SZU ′i
)
P⊥,

[Q,PA′2P
⊥] = P

(
−
[

0∇SZU ′i , A
′
2

]
+ A′2P

0∇SZU ′i
)
P⊥,

[Q,P⊥A′2P ] = P⊥
([

0∇SZU ′i , A
′
2

]
− 0∇SZU ′i PA

′
2

)
P.

(4.121)

Since [Q,A3] ∈ Θ3, we know that [Q,BT ] has the same structure as BT in (4.119).

c) Higher order commutators

The estimate of higher order commutators are obtained inductively from a) and b).

The proof of Lemma 4.17 is complete. �

For k ∈ N, let Dk be the family of operators Q which can be written in the form

Q = Q1 · · ·Qk, Qi ∈ D.(4.122)

If k ∈ N, we define the Hilbert norm ‖ · ‖′k by

‖s‖′2k =
k∑
`=0

∑
Q∈D`

‖Qs‖2
0.(4.123)

Since [ 0∇SZ
fHp,1
, P ], P 0∇SZei and 0∇SZei P are operators along the fiber X with smooth

kernels, for any T ≥ 1, the sobolev norm ‖ · ‖′k is equivalent to the canonical sobolev

norm ‖ · ‖k.
Thus, we also denote the Sobolev space with respect to ‖ · ‖′k by Ek0.

Lemma 4.18. For any m ∈ N, there exist pm ∈ N, Cm > 0 and T0 ≥ 1 such that for

T ≥ T0, λ ∈ ∆′, s ∈ Em0 ,

‖(λ− BT )−1s‖′m+1 ≤ Cm(1 + |λ|)pm‖s‖′m.(4.124)

Proof. Clearly for T ≥ 1,

‖s‖′1 ≤ C|s|T,1.(4.125)

When m = 0, we obtain the lemma from (4.125) and Lemma 4.9.

For the general case, let RT be the family of operators

RT = {[Qi1 , [Qi2 , · · · [Qip ,BT ], · · · ]]}(4.126)

where Qi1 , · · ·Qip ∈ D. We can express

Q1 · · ·Qk+1(λ− BT )−1(4.127)
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as a linear combination of operators of the type

(λ− BT )−1R1(λ− BT )−1R2 · · ·Rk′(λ− BT )−1Qk′+1 · · ·Qk+1, k′ ≤ k,(4.128)

with R1, · · · ,Rk′ ∈ RT . By Lemma 4.17, we have

|Ris|T,−1 ≤ |s|T,1.(4.129)

From (4.125), (4.129) and Lemma 4.9, we have

‖(λ− BT )−1s‖′k+1 ≤ C
∑
‖Q2 · · ·Qk+1(λ− BT )−1s‖′1

≤C
∑
‖(λ− BT )−1R2(λ− BT )−1R3 · · ·Rk′(λ− BT )−1Qk′+1 · · ·Qk+1s‖′1

≤Ck(1 + |λ|)pk
∑
‖Qk′+1 · · ·Qk+1s‖0

≤Ck(1 + |λ|)pk‖s‖′k.

(4.130)

The proof of Lemma 4.18 is complete. �

Now we can complete the proof of Theorem 4.14.

From (4.107), for any k ∈ N∗,

exp(−u2BT ) =
1

2πi

∫
∆′

e−u
2λ

(λ− BT )
dλ =

(−1)k−1(k − 1)!

2πiuk−1

∫
∆′

e−u
2λ

(λ− BT )k
dλ.(4.131)

By Lemma 4.18, there exist C > 0, r ∈ N∗, such that for any m′-order (resp. m′′)

fiberwise differential operator R (resp. R′) along Z, m′,m′′ ≥ n/2, choosing k ≥ m′+m′′,

‖R(λ− BT )−kR′s‖0 ≤ C‖(λ− BT )−kR′s‖′m′ ≤ C(1 + |λ|)r‖s‖0.(4.132)

From (4.131) and (4.132), there exist C,C ′ > 0, such that

‖R exp(−u2BT )R′s‖0 ≤ C exp(−C ′u2)‖s‖0.(4.133)

Now applying Sobolev embedding theorem, for R′′ a fiberwise differential operator of

order m′ − n/2 along Z, there exists C > 0, such that for any s ∈ E0,

|R′′ exp(−u2BT )R′s|C 0 ≤ C exp(−C ′u2)‖s‖0,(4.134)

and

(R′′ exp(−u2BT )R′s)(z) =

∫
Z

(R′z′R
′′
z exp(−u2BT )(z, z′))s(z′)dvZ(z′),(4.135)

here R′z′ acts on S(TZ, LZ)∗ by identifying S(TZ, LZ)∗ to S(TZ, LZ) by hSZ . Thus, we

have

‖R′·R′′z exp(−u2BT )(z, ·)‖0 ≤ C exp(−C ′u2).(4.136)

Applying the Sobolev embedding theorem to the z′-variable, from (4.136), we can get

(4.109).

From (4.78), for any m ∈ N, there exist pm ∈ N, Cm > 0 and T0 ≥ 1 such that for

T ≥ T0, λ ∈ ∆′, s ∈ Em0 ,

‖P (λ− B2)−1Ps‖′m+1 ≤ Cm(1 + |λ|)pm‖Ps‖′m.(4.137)

Following the same process, we get (4.110).
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4.5. Proof of Proposition 3.5. Let NX be the number operator acting on TZ such

that for s ∈ TZ,

NXP
TXs = P TXs, NXP

THZs = 0.(4.138)

Let

′∇TZ
T = T−NX∇TZ

T TNX .(4.139)

Let ′RTZ
T be the curvature of ′∇TZ

T . By (3.1), we have

′∇TZ
T = 0∇TZ +

1

T
(P TXS1P

THZ + P THZS1P
TX) +

1

T 2
P THZS1P

THZ .(4.140)

Then by 3.19, we have

γA(T ) =
∂

∂b

∣∣∣∣
b=0

Âg

(
′RTZ

T + b
∂′∇TZ

T

∂T

)
.(4.141)

From (4.140), we have

∂′∇TZ
T

∂T
= O

(
1

T 2

)
and ′RTZ

T = O(1).(4.142)

Then Proposition 3.5 follows from ′∇TZ
∞ = 0∇TZ .

5. Proof of Theorem 3.4 and Theorem 3.6 i)

In this Section, we use the notations in Section 4.

Set

B′T = B2
3,T + dT ∧ ∂B3,T

∂T
.(5.1)

By (4.38), we have

(5.2)
∂B3,T

∂T
= DX − 1

8T 2

(
〈[fHp,1, fHq,1], ei〉c(ei)c(fHp,1)c(fHq,1)

+ 〈[gHα,3, gHβ,3], ei〉c(ei)gα ∧ gβ ∧+4〈S1(gHα,3)ei, f
H
p,1〉c(ei)c(fHp,1)gα∧

)
.

By Definition 3.1, we have

βTg (T, u) = ψSδu2T̃r[g exp(−u2B′T )]dT .(5.3)

Recall that B2 is the Bismut superconnection in (4.43). Comparing with (4.54), by

Lemma 4.6, we have

PB′TP = B2 +O

(
1

T

)
.(5.4)

By (5.4), if we replace BT to B′T and B2 to B2, then everything in Section 4 works

well. As an analogue of Theorem 4.15, we can get the following theorem.

Theorem 5.1. For u0 > 0 fixed, there exist C,C ′ > 0, T0 ≥ 1, δ > 0, such that for

u ≥ u0, T ≥ T0,∣∣∣ψSδu2T̃r[g exp(−u2B′T )]− ψSδu2T̃r[g exp(−u2B2)]
∣∣∣ ≤ C

T δ
exp(−C ′u2).(5.5)
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Take s > 0. By replacing T to sT in Theorem 5.1 and taking the coefficient of ds,

forsT ≥ T0, we have∣∣∣ψSδu2T̃r[g exp(−u2B′sT )]ds
∣∣∣ ≤ C

(sT )δ
exp(−C ′u2).(5.6)

By (5.3), for T ≥ T0, we have

(5.7) βTg (T, u) = ψSδu2T̃r[g exp(−u2B′sT )]d(sT )
∣∣∣
s=1

= T−1 · ψSδu2T̃r[g exp(−u2B′sT )]ds
∣∣∣
s=1

.

From (5.6) and (5.7), for u0 > 0 fixed, there exist C,C ′ > 0, T0 ≥ 1, δ > 0, such that for

u ≥ u0, T ≥ T0, we have ∣∣βTg (T, u)
∣∣ ≤ C

T 1+δ
exp(−C ′u2).(5.8)

Then we get Theorem 3.4 and Theorem 3.6 i).

6. Proof of Theorem 3.6 ii)

In this section, we use the notations in Section 2.2, 4, 5 and assumptions in Section

2.2.

In the first three subsections, we prove Theorem 3.6 ii) when dimY and dimZ are all

even. In Section 6.4, we discuss the other cases. In Section 6.5, we prove the technical

result Theorem 6.5.

6.1. The proof is local on π−1
1 (V g). Recall that B′T is the operator defined in (5.1).

As in (4.49), we set

B′ε,T/ε = ε2δε2B′T/εδ−1
ε2 = B2

3,ε2,T/ε + ε−1dT ∧
∂B3,ε2,T ′

∂T ′

∣∣∣∣
T ′=Tε−1

.(6.1)

By Definition 3.1, we have

ε−1βTg (T/ε, ε) = ψST̃r[g exp(−B′ε,T/ε)]dT .(6.2)

Precisely, by (4.39), we have

(6.3) B3,ε2,T/ε = TDX + εDH +
ε2

8T
〈[fHp,1, fHq,1], ei〉c(ei)c(fHp,1)c(fHq,1)

+ 0∇EZ ,u − c(T2)

4ε
+

ε

2T
〈S1(gHα,3)ei, f

H
p,1〉c(ei)c(fHp,1)gα3∧

+
1

8T
〈[gHα,3, gHβ,3], ei〉c(ei)gα ∧ gβ∧,

and

(6.4) ε−1 ∂B3,ε2,T ′

∂T ′

∣∣∣∣
T ′=Tε−1

= DX − 1

8T 2
(〈ε2[fHp,1, f

H
q,1], ei〉c(ei)c(fHp,1)c(fHq,1)

+ 4ε〈S1(gHα,3)ei, f
H
p,1〉c(ei)c(fHp,1)gα3 ∧+〈[gHα,3, gHβ,3], ei〉c(ei)gα ∧ gβ∧).
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Set B1|V g be the Bismut superconnection associated to (TH1 (W |V g), gTX , hLX ,∇LX ).

For t > 0, we denote δVt the operator on Λi(T ∗V g) by multiplying by t−i/2. As in (1.32),

set

B1,T 2|V g = TδVT 2 ◦B1|V g ◦ (δVT 2)−1.(6.5)

As in (4.49), we set

B′′T 2 |V g = (B1,T 2|V g)2 + dT ∧
∂B1,T 2

∂T

∣∣∣∣
V g
.(6.6)

Then by (3.17), we have

γ1(T ) = ψV gT̃r[g exp(−B′′T 2|V g)]dT .(6.7)

In the first three subsections we assume that dimY = m and dimZ = n are all even.

Let dV , dW be the distance functions on V , W associated to gTV , gTW . Let InjV ,

InjW be the injective radius of V , W . In the sequel, we assume that given 0 < α <

α0 < inf{InjV , InjW} are chosen small enough so that if y ∈ V , dV (g−1y, y) ≤ α, then

dV (y, V g) ≤ 1
4
α0, and if z ∈ W , dW (g−1z, z) ≤ α, then dW (z,W g) ≤ 1

4
α0.

Let f be a smooth even function defined on R with values in [0, 1], such that

f(t) =

{
1, |t| ≤ α/2;

0, |t| ≥ α.
(6.8)

For t ∈ (0, 1], a ∈ C, set
Ft(a) =

∫ +∞

−∞
cos(
√

2va)e−
v2

2 f(
√
tv)

dv√
2π
,

Gt(a) =

∫ +∞

−∞
cos(
√

2va)e−
v2

2 (1− f(
√
tv))

dv√
2π
.

(6.9)

Clearly,

Ft(a) + Gt(a) = exp(−a2).(6.10)

The functions Ft(a) and Gt(a) are even holomorphic functions and the restrictions of

Ft(a), Gt(a) to R lie in the Schwartz space. So there exist holomorphic functions F̃t(a)

and G̃t(a) on C such that

Ft(a) = F̃t(a
2), Gt(a) = G̃t(a

2).(6.11)

From (6.10), we deduce that

exp(−B′ε,T/ε) = F̃ε2(B′ε,T/ε) + G̃ε2(B′ε,T/ε).(6.12)

Fix b ∈ S. For z, z′ ∈ Zb, let F̃ε2(B′ε,T/ε)(z, z′) and G̃ε2(B′ε,T/ε)(z, z′) be the smooth

kernels associated to F̃ε2(B′ε,T/ε) and G̃ε2(B′ε,T/ε) with respect to the volume form dvZ(z′).

Lemma 6.1. For δ > 0 fixed , there exist C1, C2 > 0, such that for any z, z′ ∈ Zb,

0 < ε ≤ δ, T ≥ 1, ∣∣∣G̃ ε2

T2
(B′ε

T
,T )(z, z′)

∣∣∣ ≤ C1 exp

(
−C2T

2

ε2

)
.(6.13)
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In particular, ∣∣∣ψS Trs

[
gG̃ ε2

T2
(B′ε

T
,T )
]∣∣∣ ≤ C1 exp

(
−C2T

2

ε2

)
.(6.14)

Proof. By (4.38), (5.1) and the elliptic estimate, there exists C > 0 such that for any

T ≥ 1,

‖s‖2 ≤ C‖B′T s‖0 + CT 2‖s‖0.(6.15)

Then for a m-order fiberwise differential operator Q along Z with scalar principal symbol,

by (6.15), we have

‖Qs‖2 ≤ C‖B′TQs‖0 + CT 2‖Qs‖0 ≤ C‖QB′T s‖0 + CT 2‖Qs‖0 + C‖[B′T , Q]s‖0.(6.16)

By (4.38) and (5.1), we have

‖[B′T , Q]s‖0 ≤ CT 2‖s‖m+1.(6.17)

Thus we get the estimate

‖s‖m+2 ≤ C‖B′T s‖m + CT 2‖s‖m+1 ≤ CT 2(‖B′T s‖m+1 + ‖s‖m+1).(6.18)

By induction, there exist ck > 0 for 0 ≤ k ≤ m, such that

‖s‖m ≤ T 2m

m∑
k=0

ck‖(B′T )ks‖0.(6.19)

Let B′∗T be the adjoint of B′T . Similarly, we have

‖s‖m ≤ T 2m

m∑
k=0

ck‖(B′∗T )ks‖0.(6.20)

For m-order fiberwise differential operator Q, for m′ ∈ N, by (6.19) and (6.20), we have∣∣∣∣〈(B′T )m
′
G̃ ε2

T2

(
ε2

T 2
B′T
)
Qs, s′

〉∣∣∣∣
=

∣∣∣∣〈s,Q∗G̃ ε2

T2

(
ε2

T 2
B′∗T
)

(B′∗T )m
′
s′
〉∣∣∣∣ ≤ ∥∥∥∥G̃ ε2

T2

(
ε2

T 2
B′∗T
)

(B′∗T )m
′
s′
∥∥∥∥
m

‖s‖0

≤

(
Tm

m∑
k=0

ck

∥∥∥∥(B′∗T )kG̃ ε2

T2

(
ε2

T 2
B′∗T
)

(B′∗T )m
′
s′
∥∥∥∥

0

)
‖s‖0

(6.21)

By [8, (11.18)], for m ∈ N, there exist c′m > 0 and c > 0, such that for any 0 < ε ≤ δ,

T ≥ 1,

sup
λ∈∆
|λ|m

∣∣∣∣G̃ ε2

T2

(
ε2

T 2
λ

)∣∣∣∣ ≤ c′m exp

(
−cT

2

ε2

)
.(6.22)

From (6.21) and (6.22), there exists cm,m′ > 0, such that∥∥∥∥(B′T )m
′
G̃ ε2

T2

(
ε2

T 2
B′T
)
Q

∥∥∥∥
0

≤ cm,m′ exp

(
−cT

2

2ε2

)
.(6.23)
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Let P be a fiberwise differential operators along Z of order m′. Then by (6.19) and

(6.23), there exists c′m,m′ > 0, such that for any 0 < ε ≤ δ, T ≥ 1,∥∥∥∥P G̃ ε2

T2

(
ε2

T 2
B′T
)
Q

∥∥∥∥
0

≤
∥∥∥∥G̃ ε2

T2

(
ε2

T 2
B′T
)
Q

∥∥∥∥
m′
≤ c′m,m′ exp

(
−cT

2

2ε2

)
.(6.24)

Following the same process in (4.134)-(4.136), there exist C1, C2 > 0, such that for

any z, z′ ∈ Zb, 0 < ε ≤ δ, T ≥ 1,∣∣∣∣G̃ ε2

T2

(
ε2

T 2
B′T
)

(z, z′)

∣∣∣∣ ≤ C1 exp

(
−C2T

2

ε2

)
.(6.25)

Since B′ε
T
,T = ε2

T 2 δ ε2
T2
B′T δ−1

ε2

T2

, we get the proof of Lemma 6.1. �

Using Lemma 6.1 with ε = T and T replace by T/ε, for T ≥ 1 fixed, we find∣∣∣G̃ε2(B′ε,T/ε)(z, z′)
∣∣∣ ≤ C1 exp

(
−C2

ε2

)
,∣∣∣ψS Trs

[
gG̃ε2(B′ε,T/ε)

]∣∣∣ ≤ C1 exp

(
−C2

ε2

)
.

(6.26)

From (6.12) and (6.26), by the finite propagation speed for the solution of the hy-

perbolic equations for cos
(
s
√
B′ε,T/ε

)
(cf. [19, §7.8] and [32, §4.4]), it is clear that for

0 < ε ≤ 1, T ≥ 1, z, z′ ∈ Zb, if dV (π1z, π1z
′) ≥ α, then

F̃ε2(B′ε,T/ε)(z, z′) = 0,(6.27)

and moreover, given z ∈ Zb, F̃ε2(B′ε,T/ε)(z, ·) only depends on the restriction of B′ε,T/ε to

π−1
1 (BY (π1z, α)).

Let Uα0(Y
g
b ) be the set of y ∈ Yb such that dY (y, Y g

b ) < α0/4. We identify Uα0(Y
g
b ) to

{(y, U) : y ∈ Y g
b , U ∈ NY g/Y , |U | < α0/4} by using geodesic coordinates normal to Y g

in Y , where NY g/Y is the real normal bundle associated to g ∈ G in Y . Let dvY g and

dvNY be the corresponding volume forms on TY g and NY induced by gTY . Then there

exists the function kY on Uα0(Y
g
b ), such that

dvZ(z) = kY (y, U)dvY g(y)dvNY (U)dvX(x).(6.28)

Thus, from (6.27),

Trs

[
gF̃ε2(B′ε,T/ε)

]
=

∫
Z

Trs

[
gF̃ε2(B′ε,T/ε)(g−1z, z)

]
dvZ(z)

=

∫
Y g

∫
U∈N,|U |<α0/4

∫
X

Trs

[
gF̃ε2(B′ε,T/ε)(g−1(y, U, x), (y, U, x))

]
· kY (y, U)dvY g(y)dvNY (U)dvX(x).

(6.29)

Therefore, from (6.2), (6.29) and Lemma 6.1, we see that the proof of Theorem 3.6 ii) is

local near π−1
1 (V g).
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6.2. Rescaling of the variable U and of the Clifford variables. By (1.34), (3.3),

(4.41) and (6.1), we have

B′ε,T/ε = −
(
T 0∇SZei +

ε

2
〈S1(ei)ej, f

H
p,1〉c(ej)c(fHp,1)

+
ε2

4T
〈S1(ei)f

H
p,1, f

H
q,1〉c(fHp,1)c(fHq,1) +

1

2
〈S3(ei)ej, g

H
α,3〉c(ej)gα∧

+
ε

2T
〈S3(ei)f

H
p,1, g

H
α,3〉c(fHp,1)gα ∧ +

1

4T
〈S3(ei)g

H
α,3, g

H
β,3〉gα ∧ gβ∧

)2

+ dT ∧
(
c(ei)

0∇Eei −
1

8T 2

(
ε2〈[fHp,1, fHq,1], ei〉c(ei)c(fHp,1)c(fHq,1)

+4ε〈S1(gHα,3)ei, f
H
p,1〉c(ei)c(fHp,1)gα3 ∧+〈[gHα,3, gHβ,3], ei〉c(ei)gα ∧ gβ∧

))
− ε2

(
0∇SZ

fHp,1
+

ε

2T
〈S1(fHp,1)ei, f

H
q,1〉c(ei)c(fHq,1) +

1

2T
〈S3(fHp,1)ei, g

H
α,3〉c(ei)gα∧

+
1

2ε
〈S2(fp)fq, g

H
α,2〉c(fHq,1)gα ∧+

1

4ε2
〈S2(fp)g

H
α,2, g

H
β,2〉gα ∧ gβ∧

)2

+
ε2

4
KZ
T/ε +

T 2

4
RLZ (ei, ej)c(ei)c(ej) +

Tε

2
RLZ (ei, f

H
p,1)c(ei)c(f

H
p,1)

+
ε2

4
RLZ (fHp,1, f

H
q,1)c(fHp,1)c(fHq,1) +

1

4
RLZ (gHα,3, g

H
β,3)gα ∧ gβ∧

+
ε

2
RLZ (fHp,1, g

H
α,3)c(fHp,1)gα ∧+

T

2
RLZ (ei, g

H
α,3)c(ei)g

α,H
3 ∧ .

(6.30)

Set

∇′fHp,1 = 0∇SZ
fHp,1
− 1

2
〈S1(ei)ei, f

H
p,1〉+

1

2ε
〈S2(fp)fq, g

H
α,2〉c(fHq,1)gα∧

+
1

4ε2
〈S2(fp)g

H
α,2, g

H
β,2〉gα ∧ gβ ∧ .

(6.31)

Recall that EX,y0 = C∞(Xy0 ,S(TX,LX)), which is naturally equipped with a Hermitian

product attached to gTX and hSX as in (1.22). By (1.24), the connection ∇′ preserves

the scalar product on EX .

Take y0 ∈ V g and π2(y0) = b. We identify BYb(y0, α0) with B(0, α0) ⊂ Ty0Y = Rm

by using normal coordinates. Take a vector U ∈ Rm. We identify TY |U to TY |{0} by

parallel transport along the curve t 7→ tU with respect to the connection ∇TY . We lift

horizontally the paths t ∈ R∗+ 7→ tU into paths t ∈ R∗+ 7→ xt ∈ Zb with xt ∈ XtU ,

dxt/dt ∈ THZb. If x0 ∈ Xy0 , we identify TxtX, S(TZ, LZ)xt to Tx0X, S(TZ, LZ)x0 by

parallel transport along the curve t 7→ xt with respect to the connection ∇TX , ∇′. Then

we can define the operator B′ε,T/ε to a neighborhood of {0} ×Xy0 in Ty0Y ×Xy0 .

Let ρ : Ty0Y → [0, 1] be a smooth function such that

ρ(U) =

{
1, |U | ≤ α0/4;

0, |U | ≥ α0/2.
(6.32)

Let ∆TY be the ordinary Laplacian operator on Ty0Y .
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Recall that kerDX |BY (y0,α0/2) is a smooth vector subbundle of EX,y0 on BY (y0, α0/2).

If α0 > 0 is small enough, there is a vector bundle K ⊂ EX,y0 over Ty0Y , which coin-

cides with kerDX on B(0, α0/2), with kerDX
y0

on Ty0Y \B(0, α0), such that if K⊥ is the

orthogonal bundle to K in EX,y0 , then

K⊥ ∩ kerDX
y0

= {0}.(6.33)

For U ∈ Ty0Y , in the following sections, let PK
U be the orthogonal projection operator

from EX,y0 to KU . Set PK,⊥
U = 1− PK

U .

Set

L1
ε,T = (1− ρ2(U))(−ε2∆TY + T 2PK,⊥

U DX,2
y0
PK,⊥
U ) + ρ2(U)(B′ε,T/ε).(6.34)

Comparing with (6.26), for any m ∈ N and T ≥ 1 fixed, there exist C1, C2 > 0, such

that for |U |, |U ′| < α0/4, 0 < ε ≤ 1,

|G̃ε2(L
1
ε,T )((U, x), (U ′, x′))| ≤ C1 exp

(
−C2

ε2

)
.(6.35)

For (U, x) ∈ NY g/Y,y0 ×Xy0 , |U | < α0/4, ε > 0, set

(Sεs)(U, x) = s (U/ε, x) .(6.36)

Put

L2
ε,T := S−1

ε L1
ε,TSε = (1− ρ2(εU))(−S−1

ε ε2∆TY Sε + T 2PK,⊥
εU DX,2

y0
PK,⊥
εU )

+ ρ2(εU)S−1
ε B′ε,T/εSε.

(6.37)

Let dimTy0Y
g = l′ and dimNY g/Y,y0 = 2l′′. Then l′ + 2l′′ = m. Let {f1, · · · , fl′}

be an orthonormal basis of Ty0Y
g and let {fl′+1, · · · , fl′+2l′′} be an orthonormal basis of

NY g/Y,y0 . For α ∈ C(fp ∧ ifp)1≤p≤l′ , let [α]max ∈ C be the coefficient of f 1 ∧ · · · ∧ f l′ in

the expansion of α. Let Rε be a rescaling such that

Rε(c(ei)) = c(ei),

Rε(c(f
H
p,1)) =

fp,H1 ∧
ε
− ε ifHp,1 , for 1 ≤ p ≤ l′,

Rε(c(f
H
p,1)) = c(fHp,1), for l′ + 1 ≤ p ≤ l′ + 2l′′.

(6.38)

Then Rε is a Clifford algebra homomorphism. Set

L3
ε,T = Rε(L

2
ε,T ).(6.39)

Let exp(−Liε,T )((U, x), (U ′, x′)), F̃ε2(L
i
ε,T )((U, x), (U ′, x′)) ((U, x), (U ′, x′) ∈ Ty0Y×Xy0 ,

i = 1, 2, 3) be the smooth kernels of exp(−Liε,T ), F̃ε2(L
i
ε,T ) with respect to the volume

form dvTy0Y (U ′)dvXy0 (x′). Using finite propagation speed as in (6.27), we see that if

(U, x) ∈ NY g/Y,y0 ×Xy0 , |U | < α0/4, then

F̃ε2(B′ε,T/ε)(g−1(y0, U, x), (y0, U, x))kY (y0, U) = F̃ε2(L
1
ε,T )(g−1(U, x), (U, x)).(6.40)
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By (6.12), (6.26), (6.35) and (6.40), there exist C1, C2 > 0, such that for |U | < α0/4,

x ∈ Xy0 ,

| exp(−B′ε,T/ε)(g−1(y0, U, x), (y0, U, x))kY (y0, U)

− exp(−L1
ε,T )(g−1(U, x), (U, x))| ≤ C1 exp

(
−C2

ε2

)
.

(6.41)

Since Ty0Yb is an Euclidean space, on Ty0Yb,

S(TY, LY )y0 = S(TY g)⊗̂S(NY g/Y )⊗ L1/2
Y ,(6.42)

where S(·) is the spinor space. From (6.38), we know that L3
ε,T ((U, x), (U ′, x′)) lies in

π∗2Λ(T ∗b S)⊗̂(End(Λ(T ∗Y g))⊗̂C(NY g/Y )⊗ End(L
1/2
Y ))y0⊗̂End(S(TX,LX))(6.43)

and acts on

π∗2Λ(T ∗b S)⊗̂(Λ(T ∗Y g)⊗̂S(NY g/Y )⊗ L1/2
Y )y0⊗̂S(TX,LX).(6.44)

Recall that c̃TY g is the trace element defined in (1.8).

Lemma 6.2. For t > 0, (U, x) ∈ NY g/Y,y0 ×Xy0 and g ∈ G, we have

(6.45)

∫
Y g

∫
U∈NY g/Y ,
|U|≤α0/4

∫
X

Trs[g exp(−L1
ε,T )(g−1(U, x), (U, x))]dvY g(y)dvNY (U)dvX(x)

=

∫
Y g

∫
U∈NY g/Y ,
|U|≤α0/4ε

∫
X

c̃TY g Trs
[
g exp(−L3

ε,T )
(
g−1 (U, x) , (U, x)

)]max
· dvY g(y)dvNY (U)dvX(x).

Proof. From (6.37) and the uniqueness of the heat kernel, we have

exp(−L2
ε,T ) = S−1

ε exp(−L1
ε,T )Sε.(6.46)

For U ∈ Ty0Y , x ∈ Xy0 , suppφ ⊂ B(0, α0/2)×Xy0 , we have∫
Ty0Y

∫
X

exp(−L2
ε,T )((U, x), (U ′, x′))φ(U ′, x′)dvTY (U ′)dvX(x′)

=(exp(−L2
ε,T )φ)(U, x) = (S−1

ε exp(−L1
ε,T )Sεφ)(U, x) = (exp(−L1

ε,T )Sεφ)(εU, x)

=

∫
Ty0Y

∫
X

exp(−L1
ε,T )((εU, x), (U ′, x′))(Sεφ)(U ′, x′)dvTY (U ′)dvX(x′)

=εdimY ·
∫
Ty0Y

∫
X

exp(−L1
ε,T )((εU, x), (εU ′, x′))φ(U ′, x′)dvTY (U ′)dvX(x′).

(6.47)

Thus,

exp(−L1
ε,T )(g−1(U, x), (U, x)) = ε− dimY exp(−L2

ε,T )
(
g−1(U/ε, x), (U/ε, x)

)
.(6.48)
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By (1.8), (1.10), (6.43), (6.48) and the definition of L3
ε,T , we have

Trs
[
g exp(−L3

ε,T )
(
g−1(U/ε, x), (U/ε, x)

)]max
=
∑
j

c̃−1
TY g ε

− dimY g Trs
[
g exp(−L2

ε,T )
(
g−1(U/ε, x), (U/ε, x)

)]
=c̃−1

TY gε
dimRN Trs

[
g exp(−L1

ε,T )(g−1(U, x), (U, x))
]
.

(6.49)

The proof of Lemma 6.2 is complete. �

6.3. Proof of Theorem 3.6 ii). LetKX be the scalar curvature of the fibers (TX, gTX).

Comparing with [6, (3.15)-(3.17)], for T ≥ 1, we can compute that

lim
ε→0

ε2KZ
T/ε = T 2KX .(6.50)

Let Γ′ be the connection form of∇′, which is defined in (6.31). By using [1, Proposition

3.7], we see that for U ∈ TY = Rm,

Γ
′

U =
1

2
(∇′)2(U, ·) +O

(
|U |2

)
.(6.51)

Lemma 6.3. For U, V ∈ TY , the following identity holds.

(6.52) (∇′)2(UH
1 , V

H
1 ) =

1

4
〈RTX(UH

1 , V
H

1 )ei, ej〉c(ei)c(ej) +
1

2
RLZ (UH

1 , V
H

1 )

+
1

4
〈RTY (fp, fq)U, V 〉c(fHp,1)c(fHq,1) +

1

4ε2
〈RTY (gHα,2, g

H
β,2)U, V 〉gα ∧ gβ∧

− 1

2
d(〈S1(ei)ei, ·〉)(UH

1 , V
H

1 ) +
1

2ε
〈RTY (fp, g

H
α,2)U, V 〉c(fHp,1)gα ∧ .

Proof. By the fundamental identity of [6, Theorem 4.14] (see also [27, (7.15)]), for Z,W ∈
TV ,

(6.53) 〈RTY (U, V )P TYZ, P TYW 〉+ 〈(S2P
TY S2)(U, V )Z,W 〉

+ 〈(∇TY S2)(U, V )Z,W 〉 = 〈RTY (Z,W )U, V 〉.

Since S2 maps TY to TH2 V , we have

(S2P
TY S2)(U, V )fp = 0, 〈(∇TY S2)(U, V )fp, fq〉 = 0.(6.54)

Then Lemma 6.3 follows from (6.31), (6.53) and (6.54). �

Lemma 6.4. When ε→ 0, the limit L3
0,T = limε→0 L

3
ε,T exists and

L3
0,T |V g = −

(
∂p +

1

4
〈RTY |V gU, fHp,1〉

)2

+
1

2
RLY |V g + B1,T 2 |V g .(6.55)

Proof. By (6.51) and Lemma 6.3, we have
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(6.56) lim
ε→0

Rε2 [εS
−1
ε2 ∇

′
fp |USε2 ] = ∂p + lim

ε→0
Rε2 [ε

2(S−1
ε (∇′)2Sε)(U, fp)]

= ∂p +
1

4

∑
1≤q,r≤l′

〈RTY (fq, fr)U, fp〉f q ∧ f r ∧+
1

4
〈RTY (gHα,2, g

H
β,2)U, fp〉gα ∧ gβ∧

+
1

2

∑
1≤q≤l′

〈RTY (fq, g
H
α,2)U, fp〉f q ∧ gα ∧ .

Then by (6.30), (6.50) and the definition of L3
ε,T , we have

lim
ε→0

L3
ε,T = −

(
T 0∇SZei +

1

2

∑
1≤p≤l′

〈S1(ei)ej, f
H
p,1〉c(ej)fp∧

+
1

4T

∑
1≤p,q≤l′

〈S1(ei)f
H
p,1, f

H
q,1〉fp ∧ f q ∧+

1

2
〈S3(ei)ej, g

H
α,3〉c(ej)gα∧

+
1

2T

∑
1≤p≤l′

〈S3(ei)f
H
p,1, g

H
α,3〉fp ∧ gα ∧ +

1

4T
〈S3(ei)g

H
α,3, g

H
β,3〉gα ∧ gβ∧

)2

+ dT ∧

(
DX − 1

8T 2

( ∑
1≤p,q≤l′

〈[fHp,1, fHq,1], ei〉c(ei)fp ∧ f q∧

+4
∑

1≤p≤l′
〈S1(gHα,3)ei, f

H
p,1〉c(ei)fp ∧ gα ∧+〈[gHα,3, gHβ,3], ei〉c(ei)gα ∧ gβ∧

))

−

(
∂p +

1

4

∑
1≤q,r≤l′

〈RTY (U, fp)fq, fr〉f q ∧ f r∧

+
1

4
〈RTY (U, fp)g

H
α,2, g

H
β,2〉gα ∧ gβ ∧+

1

2

∑
1≤q≤l′

〈RTY (U, fp)fq, g
H
α,2〉f q ∧ gα∧

)2

+
T 2

4
KX +

T 2

4
RLZ (ei, ej)c(ei)c(ej) +

T

2

∑
1≤p≤l′

RLZ (ei, f
H
p,1)c(ei)f

p∧

+
1

4

∑
1≤p,q≤l′

RLZ (fHp,1, f
H
q,1)fp ∧ f q ∧+

1

4
RLZ (gHα,3, g

H
β,3)gα ∧ gβ∧

+
1

2

∑
1≤p≤l′

RLZ (fHp,1, g
H
α,3)fp ∧ gα ∧+

T

2
RLZ (ei, g

H
α,3)c(ei)g

α,H
3 ∧ .

(6.57)
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By (1.34) and (6.5), we have

(6.58) (B′′T 2|V g)2 = −

(
T 0∇SZei +

1

2

∑
1≤p≤l′

〈S1(ei)ej, f
H
p,1〉c(ej)fp∧

+
1

4T

∑
1≤p,q≤l′

〈S1(ei)f
H
p,1, f

H
q,1〉fp ∧ f q ∧+

1

2
〈S3(ei)ej, g

H
α,3〉c(ej)gα∧

+
1

2T

∑
1≤p≤l′

〈S3(ei)f
H
p,1, g

H
α,3〉fp ∧ gα ∧ +

1

4T
〈S3(ei)g

H
α,3, g

H
β,3〉gα ∧ gβ∧

)2

+
T 2

4
KX +

T 2

4
RLX (ei, ej)c(ei)c(ej) +

T

2

∑
1≤p≤l′

RLX (ei, f
H
p,1)c(ei)f

p∧

+
1

4

∑
1≤p,q≤l′

RLX (fHp,1, f
H
q,1)fp ∧ f q ∧+

1

4
RLX (gHα,3, g

H
β,3)gα ∧ gβ∧

+
1

2

∑
1≤p≤l′

RLX (fHp,1, g
H
α,3)fp ∧ gα ∧+

T

2
RLX (ei, g

H
α,3)c(ei)g

α,H
3 ∧ .

So

lim
ε→0

L3
ε,T = −

(
∂p +

1

4
〈RTY |V gU, fHp,1〉

)2

+
1

2
RLY |V g + B′′T 2|V g .(6.59)

The proof of Lemma 6.4 is complete. �

Theorem 6.5. i) For T ≥ 1 fixed and k ∈ N, there exist c > 0, C > 0, r ∈ N such that

for any (U, x), (U ′, x′) ∈ Ty0Y ×Xy0, ε ∈ (0, 1],

(6.60) sup
|α|,|α′|≤k

∣∣∣∣ ∂|α|+|α′|∂Uα∂U ′α′
exp(−L3

ε,T )((U, x), (U ′, x′))

∣∣∣∣
≤ c(1 + |U |+ |U ′|)r exp(−C|U − U ′|2).

ii) For T ≥ 1 fixed, there exist c > 0, C > 0, r ∈ N, γ > 0, such that for any

(U, x), (U ′, x′) ∈ Ty0Y ×Xy0, ε ∈ (0, 1],

(6.61) |(exp(−L3
ε,T )− exp(−L3

0,T ))((U, x), (U ′, x′))|
≤ cεγ(1 + |U |+ |U ′|)r exp(−C|U − U ′|2).

The proof of Theorem 6.5 is left to the next subsection.

On the vector space NY g/Y,y0 , there exists c > 0, such that for any U ∈ NY g/Y,y0 ,

|g−1U − U | ≥ c|U |.(6.62)

Then by (6.41), Lemma 6.2, 6.4, Theorem 6.5 and the dominated convergence theorem,

we have

lim
ε→0

ψS Trs[g exp(−B′ε,T/ε)]

=

∫
Y g

∫
NY g/Y

∫
X

c̃TY g ψS Trs
[
g exp(−L3

0,T )(g−1(U, x), (U, x))
]
dvN(U)dvX(x).

(6.63)
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By Mehler’s formula (cf. [24, (1.33)]) and (1.47),∫
X

Trs
[
g exp(−L3

0,T )(g−1(U, x), (U, x))
]
dvX(x)

=(4π)−
1
2

dimY det
1
2

(
RTY /2

sinh(RTY /2)

)
exp

{
−1

4

〈
RTY /2

tanh(RTY /2)
U,U

〉
−1

4

〈
RTY /2

tanh(RTY /2)
g−1U, g−1U

〉
+

1

2

〈
RTY /2

sinh(RTY /2)
exp(RTY /2)U, g−1U

〉}
· Trs[g|S(N)] ∧ Tr

[
g exp

(
−1

2
RLY |V g

)]
∧ Trs[g exp(B1,T 2 |V g)].

(6.64)

Following the same computations in [24, (1.33)-(1.38)], by (1.43), (1.44), (1.56) and

(6.63), we have

(6.65) lim
ε→0

ψS Trs[g exp(−B′ε,T/ε)]

= ψS

∫
Y g
c̃TY g(4π)−

dimY g

2 ψ−1
V g

(
Âg(TY,∇TY ) ∧ chg(L

1/2
Y ,∇L

1/2
Y ) ∧ ψV g Trs[g exp(B′′T 2)|V g ]

)
.

Using (1.55), (6.2) and (6.7), we get Theorem 3.6 ii) when dimZ and dimY are all

even.

6.4. General case. When dimY is odd and dimZ is even, by (1.10), following the same

process in this section, we can get an analogue of (6.65):

(6.66) lim
ε→0

ψS Trodd[g exp(−B′ε,T/ε)]

= ψS

∫
Y g
c̃TY g(4π)−

dimY g

2 ψ−1
V g

(
Âg(TY,∇TY ) ∧ chg(L

1/2
Y ,∇L

1/2
Y ) ∧ ψV g Trs[g exp(B′′T 2)|V g ]

)
.

Then Theorem 3.6 ii) in this case follows from (1.55), (6.2), (6.7) and (6.66).

When dimY is even and dimZ is odd, it is the same as the case above.

When dimY and dimZ are all odd, by (1.10), as in (6.66), we have

(6.67) lim
ε→0

ψS Trs[g exp(−B′ε,T/ε)] = 2
√
−1ψS

∫
Y g
c̃TY g(4π)−

dimY g

2

· ψ−1
V g

(
Âg(TY,∇TY ) ∧ chg(L

1/2
Y ,∇L

1/2
Y ) ∧ ψV g Tr[g exp(B′′T 2|V g)]

)
.

Since the left hand side of (6.67) takes value in even forms and dimY g is odd, by (1.7)

and (1.55), we have

(6.68) lim
ε→0

ψS Trs[g exp(−B′ε,T/ε)]

=

∫
Y g

Âg(TY,∇TY ) ∧ chg(L
1/2
Y ,∇L

1/2
Y ) ∧ ψV g Trodd[g exp(B′′T 2 |V g)].

The proof of Theorem 3.6 ii) is complete.
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6.5. Proof of Theorem 6.5. We prove Theorem 6.5 by following the process of [14,

Section 11] and [7, Section 11].

Let I0 be the vector space of square integrable sections of π∗2Λ(T ∗S)⊗̂Λ(TY g)⊗̂S(NY g/Y )⊗
L

1/2
Y ⊗̂S(TX,LX) over Ty0Yb × Xy0 . For 0 ≤ q ≤ dimY g, let I0

q be the vector space of

square integrable sections of π∗2Λ(T ∗S)⊗̂Λq(TY g)⊗̂S(NY g/Y )⊗ L1/2
Y ⊗̂S(TX,LX). Then

I0 = ⊕l′q=0I
0
q . Similarly, if p ∈ R, Ip and Ipq denote the corresponding p-th Sobolev

spaces.

For U ∈ Ty0Y g, set

gε(U) = 1 + (1 + |U |2)
1
2ρ

(
εU

2

)
.(6.69)

If s ∈ I0
q , set

|s|2ε,0 =

∫
Ty0Yb×Xy0

|s(U, x)|2gε(U)2(l′−q)dvTY (U)dvX(x).(6.70)

Let 〈·, ·〉ε,0 be the Hermitian product attached to | · |ε,0.

So, for 1 ≤ p ≤ l′, s ∈ Ip, we can get

∣∣1ε|U |≤α0/2|U | (fp ∧ −ε2ifp)s
∣∣2
ε,0

=
∣∣1ε|U |≤α0/2|U |fp ∧ s

∣∣2
ε,0

+
∣∣1ε|U |≤α0/2|U |ε2ifps

∣∣2
ε,0

=

∫
|U |≤α0

2ε

|s|2|U |2(1 + (1 + |U |2)
1
2 )2(l−p−1)dvTY (U)

+

∫
|U |≤α0

2ε

ε4|s|2|U |2(1 + (1 + |U |2)
1
2 )2(l−p+1)dvTY (U).

(6.71)

Since there exists C > 0, such that

|U |
1 + (1 + |U |2)

1
2

≤ 1, ε4|U |2(1 + (1 + |U |2)
1
2 )2 ≤ C,(6.72)

we have the following lemma.

Lemma 6.6. The operators 1ε|U |≤α0/2(fp ∧ −ε2ifp) and 1ε|U |≤α0/2|U |(fp ∧ −ε2ifp) are

uniformly bounded with respect to the norm | · |ε,0.

Lemma 6.7. (cf. [14, Theorem 11.26]) For T ≥ 1 fixed, there exist c1, c2, c3, c4 > 0,

such that for any ε ∈ (0, 1], s ∈ I1,

Re〈L3
ε,T s, s〉ε,0 ≥ c1|s|2ε,1 − c2|s|2ε,0,

|Im〈L3
ε,T s, s〉ε,0| ≤ c3|s|ε,1|s|ε,0,

|〈L3
ε,T s, s

′〉ε,0| ≤ c4|s|ε,1|s′|ε,1.
(6.73)

Proof. let ∇ denote the gradient in the variable U . Since ρ has compact support, there

exists C > 0, such that

|∇ (gε(U))| ≤ C.(6.74)

From Lemma 6.6 and the definition of L3
ε,T , we can get Lemma 6.7. �
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As in (4.9), set

|s|ε,−1 := sup
06=s′∈I1

〈s, s′〉ε,0
|s′|ε,1

.(6.75)

Lemma 6.8. There exist c, C > 0 such that if

λ ∈ U =

{
λ ∈ C : Re(λ) ≤ Im(λ)2

4c2
− c2

}
,(6.76)

the resolvent (λ− L3
ε,T )−1 exists, and moreover for any ε ∈ (0, 1], s ∈ I1,

|(λ− L3
ε,T )−1s|ε,0 ≤ C|s|ε,0,

|(λ− L3
ε,T )−1s|ε,1 ≤ C(1 + |λ|)2|s|ε,−1.

(6.77)

Proof. Take c2 in Lemma 6.7. If λ ∈ R, λ ≤ −2c2, for s ∈ I1, we have

Re〈(L3
ε,T − λ)s, s〉ε,0 ≥ c1|s|2ε,0.(6.78)

So

|s|ε,0 ≤ c−1
1 |(L3

ε,T − λ)s|ε,0.(6.79)

Since |s|ε,0 ≤ c(ε)|s|0 for c(ε) > 0,

|s|0 ≤ |s|ε,0 ≤ c−1
1 |(L3

ε,T − λ)s|ε,0 ≤ c(ε)c−1
1 |(L3

ε,T − λ)s|0.(6.80)

So (L3
ε,T − λ)−1 exists for λ ∈ R, λ ≤ −2c2.

Set λ = a+ ib ∈ C. Then by Lemma 6.7,

|〈(L3
ε,T − λ)s, s〉ε,0| ≥ max{Re〈L3

ε,T s, s〉ε,0 − a|s|2ε,0, |Im〈L3
ε,T s, s〉ε,0 − b|s|2ε,0|}

≥ max{c1|s|2ε,1 − (c2 + a)|s|2ε,0,−c3|s|ε,1|s|ε,0 + |b||s|2ε,0}.
(6.81)

Set

C(λ) = inf
t∈R,t≥1

max{c1t
2 − (c2 + a),−c3t+ |b|}.(6.82)

If c > 0 is small enough, we can get

c0 = inf
λ∈U

C(λ) > 0.(6.83)

Since |s|ε,0 ≤ |s|ε,1, if the resolvent (λ− L3
ε,T )−1 exists, then

|(λ− L3
ε,T )−1s|ε,0 ≤ c−1

0 |s|ε,0.(6.84)

From (6.84), if λ′ ∈ U , |λ′−λ| ≤ c0/2, then the resolvent (λ′−L3
ε,T )−1 exists. By (6.80),

we get the first inequality of (6.77).

For λ0 ∈ R, λ0 ≤ −2c2 and s ∈ I1, by Lemma 6.7, we have

|〈(λ0 − L3
ε,T )s, s〉ε,0| ≥ c1|s|2ε,1.(6.85)

Following the same process in (4.30)-(4.34), we get the second estimate of (6.77).

The proof of Lemma 6.8 is complete. �
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Set DH = {∂p,∇SXei }. Set

|s|2ε,k =
k∑
l=0

∑
Qi∈DH

|Q1 · · ·Qls|2ε,0.(6.86)

As in Lemma 4.17, since [Q,L3
ε,T ] has the same structure as L3

ε,T for Q ∈ DH , for any

k ∈ N fixed, there exists Ck > 0 such that for ε ∈ (0, 1], Q1, · · · , Qk ∈ DH and s, s′ ∈ I2,

we have

|〈[Q1, [Q2, · · · [Qk, L
3
ε,T ], · · · ]]s, s′〉ε,0| ≤ Ck|s|ε,1|s′|ε,1.(6.87)

Then using the proof of Lemma 4.18, we can get the Lemma as follows.

Lemma 6.9. For any ε ∈ (0, 1], λ satisfies (6.76) and m ∈ N, there exist Cm > 0 and

pm ∈ N, such that

|(λ− L3
ε,T )−1s|ε,m+1 ≤ Cm(1 + |λ|)pm|s|ε,m.(6.88)

Set

Γ = ∂U =

{
λ ∈ C : Re(λ) =

Im(λ)2

4c2
− c2

}
,(6.89)

and

Γ′ = {λ ∈ C : |Imλ| ≤ c}.(6.90)

Then the map λ 7→ λ2 sends Γ′ to Γ. Let ∆ = −∆TY + DX,2
y0

. For λ ∈ Γ, k,m ∈ N and

k ≤ m, from Lemma 6.9, there exist Ck > 0 and p′m > 0 such that

|∆k(λ− L3
ε,T )−ms|ε,0 ≤ |(λ− L3

ε,T )−ms|ε,k
≤Ck(1 + |λ|)p′m |(λ− L3

ε,T )−m+ks|ε,0 ≤ Ck(1 + |λ|)p′m|s|ε,0.
(6.91)

Denote by L3,∗
ε,T the formal adjoint of L3

ε,T with respect to the usual Hermitian product

in I0. Then L3,∗
ε,T has the same structure as L3

ε,T except that we replace the operators

fp∧, ifp by ifp and fp∧. For s ∈ I0
q , set

|s|′2ε,0 =

∫
Ty0Yb×Xy0

|s(U, x)|2gε(U)2(q−l′)dvTY (U)dvX(x).(6.92)

From the above analysis associated to | · |′ε,0, we obtain (6.91) for L3,∗
ε,T and | · |′ε,0. Taking

adjoint with respect to the usual Hermitian product in I0, we have

|(λ− L3
ε,T )−m∆ks|ε,0 ≤ Ck(1 + |λ|)p′m|s|ε,0.(6.93)

So for k, k′,m ∈ N and m ≥ k + k′, there exists Ck,k′ > 0, such that

|∆k exp(−L3
ε,T )∆k′s|ε,0 =

∣∣∣∣(−1)m−1(m− 1)!

2πi

∫
Γ

e−λ∆k(λ− L3
ε,T )−m∆k′s

∣∣∣∣
ε,0

≤Ck,k′
(∫

Γ

e−λ(1 + |λ|)p′mdλ
)
|s|ε,0

=Ck,k′

(∫
Γ′
e−λ

2

(1 + |λ2|)p′mdλ
)
|s|ε,0 ≤ C|s|ε,0.

(6.94)
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Take p ∈ N. Let J0
p,y0

be the set of square integrable sections of Λ(TV g)⊗̂S(NY g/Y )⊗
L

1/2
Y ⊗̂S(TX,LX) over{

(U, x) ∈ Ty0Y ×Xy0 ;x ∈ Xy0 , |U | ≤ p+
1

2

}
.(6.95)

We equip J0
p,y0

with the Hermitian product for s ∈ J0
p,y0

,

|s|2(p),0 =

∫
|U |≤p+ 1

2

∫
Xy0

|s(U, x)|2dvTy0Y dvX .(6.96)

Obviously, there exists C > 0 such that for any p ∈ N, s ∈ J0
p,y0

,

|s|(p),0 ≤ |s|ε,0 ≤ C(1 + p)l
′|s|(p),0.(6.97)

By (6.94) and (6.97), we find for any k ≤ m, k′ ≤ m′, there exists C ′ > 0 such that

for ε ∈ (0, 1], p ∈ N, s ∈ J0
p,y0

,

|∆k exp(−L3
ε,T )∆k′s|(p),0 ≤

∣∣∣∆k exp(−L3
ε,T )∆k′s

∣∣∣
ε,0
≤ C ′(1 + p)l

′ |s|(p),0.(6.98)

Thus, following the same process in (4.134) - (4.136), for k, k′ ∈ N there exists C > 0,

r > 0 such that for ε ∈ (0, 1], p ∈ N,

sup
|U |,|U ′|≤p+1/4

|∆k
(U,x)∆

k′

(U ′,x′) exp(−L3
ε,T )((U, x), (U ′, x′))| ≤ C(1 + p)r.(6.99)

So we get the bounds in (6.60) with C = 0.

By (6.9) and (6.11), we write

(6.100) G̃u(L
3
ε,T )((U, x), (U ′, x′))

=

∫ +∞

−∞
cos
(√

2v
√
L3
ε,T

)
((U, x), (U ′, x′))e−

v2

2 (1− f(
√
uv))

dv√
2π
.

Lemma 6.10. There exist C1, C2 > 0, r > 0, such that for ε ∈ (0, 1], m,m′ ∈ N,

sup
|β|≤m,|β′|≤m′

|∂βU∂
β′

U ′G̃u(L
3
ε,T )((U ′, x′), (U, x))| ≤ C1(1 + |U |+ |U ′|)r exp

(
−C2

u

)
.(6.101)

Proof. After replacing exp(−L3
ε,T ) to G̃u(L

3
ε,T ) in (6.94)-(6.99) and using (6.22), we get

Lemma 6.10. �

If |
√
uv| ≤ α/2, then f(

√
uv) = 0. Using finite propagation speed of the hyperbolic

equation for the solution of hyperbolic equations for cos(s
√
L3
ε,T ) (cf. [19, §7.8], [32,

§4.4]), there exists a constant C ′0 > 0, such that

G̃u(L
3
ε,T )((U, x), (U ′, x′)) = exp(L3

ε,T )((U, x), (U ′, x′)),(6.102)

if |U − U ′| ≥ C ′0/
√
u.
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Then by (6.102) and Lemma 6.10, For m,m′ ∈ N, there exists C1, C2 > 0, r > 0, such

that for ε ∈ (0, 1],

sup
|β|≤m,|β′|≤m′

∣∣∣∂βU∂β′U ′ exp(−L3
ε,T )((U, x), (U ′, x′))

∣∣∣
≤ C1(1 + |U |+ |U ′|)r exp

(
−C2|U − U ′|2

C ′20

)
.

(6.103)

So we get the bounds in (6.60).

For U ∈ Ty0Y , set U = Upfp. Let | · |0,k be the limit norm of | · |ε,k as ε → 0 for

k ∈ {−1, 0, 1}. Note that all the estimates in this subsection work for ε = 0. For

k ∈ {−1, 0, 1} and k′ ∈ N, set

Ik,k
′

0 =
{
s ∈ Ik : Uαs ∈ Ik for |α| ≤ k′

}
.

For s ∈ Ik,k
′

0 , set ∣∣s∣∣2
0,(k,k′)

=
∑
|α|6k′

∣∣Uαs
∣∣2
0,k
.(6.104)

Lemma 6.11. There exist C > 0, k, k′ ∈ N such that for s ∈ I,∣∣∣[(λ− L3
ε,T

)−1 −
(
λ− L3

0,T

)−1]
s
∣∣∣
ε,0
6 Cε

(
1 + |λ|

)k∣∣s∣∣
0,(0,k′)

.(6.105)

Proof. Clearly,(
λ− L3

ε,T

)−1 −
(
λ− L3

0,T

)−1
=
(
λ− L3

ε,T )−1
(
L3
ε,T − L3

0,T

)(
λ− L3

0,T

)−1
.(6.106)

Since | · |ε,0 6 | · |0,0, then by (6.51),∣∣∣〈(L3
ε,T − L3

0,T )s, s′
〉
ε,0

∣∣∣ 6 Cε
∣∣s∣∣

0,(1,4)

∣∣s′∣∣
ε,1
,(6.107)

which implies that ∣∣(L3
ε,T − L3

0,T )s
∣∣
ε,−1
6 Cε

∣∣s∣∣
0,(1,4)

.(6.108)

On the other hand, we have∣∣∣〈[Ui1 , [· · · [Uip , L3
0,T ] · · · ]s, s′〉

]∣∣∣
0,0
6 Cp|s|0,1|s′|0,1.(6.109)

From (6.109) and the argument as in the proof of Theorem 4.18, we obtain∣∣(λ− L3
0,T )−1s

∣∣
0,(1,k)

6 C
(
1 + |λ|

)k∣∣s∣∣
0,(0,k)

.(6.110)

This completes the proof of Lemma 6.11. �

By (6.97) and Lemma 6.11, there exists r ∈ N for s ∈ J0
p,y0

,

|((λ− L3
ε,T )−1 − (λ− L3

0,T )−1)s|(p),0 ≤ cε(1 + |λ|)2(1 + p)r|s|(p),0.(6.111)

So there exists C > 0, r ∈ N, such that for ε ∈ (0, 1], p ∈ N,

|(exp(−L3
ε,T )− exp(−L3

0,T ))s|(p),0 ≤ Cε(1 + p)r|s|(p),0.(6.112)
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By the same process in (4.111)-(4.114), there exist c > 0, C > 0, r ∈ N, such that for

any (U, x), (U ′, x′) ∈ Ty0Y ×Xy0 , ε ∈ (0, 1],

(6.113) |(exp(−L3
ε,T )− exp(−L3

0,T ))((U, x), (U ′, x′))|

≤ cε(dimY+1)−1

(1 + |U |+ |U ′|)r exp(−C|U − U ′|2).

Then the proof of Theorem 6.5 is complete.

7. Proof of Theorem 3.6 iii)

In this Section, we use the notations and assumptions in Section 2.2 and 6.

7.1. Localization of the problem near π−1
1 (V g). We replace T by u and T/ε by T ′.

By Lemma 6.1, there exist C1, C2 > 0, such that for any z, z′ ∈ Zb and u ∈ (0, 1],

T ′ ≥ 1, ∣∣∣∣G̃u2/T ′2

(
u2

T ′2
B′T ′
)

(z, z′)

∣∣∣∣ ≤ C1 exp

(
−C2T

′2

u2

)
,(7.1)

and ∣∣∣ψST̃r
[
gG̃u2/T ′2

(
B′u/T ′,T ′

)]∣∣∣ ≤ C1 exp

(
−C2T

′2

u2

)
.(7.2)

We trivialize the bundle π∗3Λ(T ∗S)⊗̂S(TZ, LZ) as in Section 6.2. By (6.34), we can

get

L1
u/T ′,u = u2δu2L

1
1/T ′,1δ

−1
u2 .(7.3)

Comparing with (6.41), there exists C > 0, such that for |U | < α0/4,∣∣exp
(
−u2B′21/T ′

)
(g−1(U, x), (U, x))kY (y0, U)

− exp(−u2L1
1/T ′,1)(g−1(U, x), (U, x))

∣∣ ≤ C exp

(
−C2T

′2

u2

)
.

(7.4)

Then we can replace the fiber Z by Ty0Y ×Xy0 for y0 ∈ V g.

7.2. Proof of Theorem 3.6 iii). We will use the notation of Section 6.2 with ε replaced

by 1/T ′, and T by 1. By Lemma 6.4, we see that as T ′ → +∞

L3
1/T ′,1 → L3

0,1.(7.5)

Let exp(−u2Liε,T )((U, x), (U ′, x′)) ((U, x), (U ′x′) ∈ Ty0Y × Xy0) (i = 1, 2, 3) be the

smooth kernel associated to the operator exp(−u2Liε,T ) with respect to dvTy0Y (U ′)dvXy0 (x′).

Then by (6.45),

(7.6)

ψS

∫
Y g

∫
U∈N,
|U|≤α0/4

∫
X

δu2T̃r
[
g exp

(
−u2L1

1/T ′,1

) (
g−1(U, x), (U, x)

)]
dvY gdvN(U)dvX(x)

= ψS

∫
Y g

∫
U∈N,

|U|≤T ′α0/4

∫
X

c̃TY gδu2T̃r
[
g exp(−u2L3

1/T ′,1)
(
g−1(U, x), (U, x)

)]max
· dvY gdvN(U)dvX(x).
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By (7.6) and the argument of Section 6.2, to calculate the asymptotic of the left hand

side of (7.6) as u→ 0 uniformly in T ≥ 1, we have to find the asymptotic as u→ 0 of

ψS

∫
U∈N

∫
X

c̃TY gδu2T̃r
[
g exp(−u2L3

1/T,1)
(
g−1(U, x), (U, x)

)]max
dvN(U)dvX(x).(7.7)

The following lemma is a modification of Lemma 6.5.

Lemma 7.1. There exist C1, C2 > 0, p, r ∈ N such that for any (U, x), (U ′, x′) ∈ Ty0Y ×
Xy0, ε ∈ [0, 1], u ∈ (0, 1],

|up exp(−u2L3
ε,1)((U, x), (U ′, x′))|

≤ C1(1 + |U |+ |U ′|)r · exp

(
−C2
|U − U ′|2 + dX(x, x′)2

u2

)
.

(7.8)

Proof. By (6.94),

|∆k exp(−u2L3
ε,1)∆k′s|ε,0 ≤ C

(∫
Γ

e−u
2λ(1 + |λ|)pmdλ

)
|s|ε,0

≤Cu−2pm−2

(∫
u2Γ

e−λ(1 + |λ|)p′mdλ
)
|s|ε,0 ≤ Cu−2pm−2|s|ε,0.

(7.9)

So, there exists p ∈ N, such that

|up∆k exp(−u2L3
ε,1)∆k′s|ε,0 ≤ C|s|ε,0.(7.10)

Following the process in (6.95)-(6.99), we have

|up exp(−u2L3
ε,1)((U, x), (U ′, x′))| ≤ C(1 + |U |+ |U ′|)r.(7.11)

Following the process in (6.100)-(6.103), We get Lemma 7.1. �

Let NXg/X be the normal bundle to Xg in X. We identify NXg/X to the orthogonal

bundle to TXg in TX. Let gNX be the metric on NXg/X induced by gTX . Let dvNX be

the Riemannian volume form on (NXg/X , g
NX ).

For U ∈ Ty0Y , x ∈ Xg, V ∈ NXg/X , |U |, |V | ≤ α0/4, let kX(U, x, V ) be defined by

dvX(U, x, V ) = kX(U, x, V )dvNXg/X (V )dvXg(x).(7.12)

Set n′ = dimZg. By standard results on heat kernel (cf. [4, Theorem 6.11]), there exist

smooth functions a′T,−n′(x), · · · ,a′T,0(x) (x ∈ W g) such that as u→ 0, for x ∈ Xg
y0

,∫
V ∈NX ,U∈NY ,
|U |,|V |≤α0/4

δu2T̃r
[
g exp(−u2L3

1/T ′,1)
(
g−1(U, x, V ), (U, x, V )

)]max
· kX(U, x, V )dvNXdvNY =

0∑
j=−n′

a′T ′,j(x)uj +O(u),

(7.13)

where the a′T ′,j(x) only depend on the operator L3
1/T ′,1 and its higher derivatives on x.

By (7.5), a′T ′,j(x) is continuous on T ′ ∈ [1,+∞].
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By (6.29), (7.5)-(7.8) and (7.13), there exist aT ′,j depending continuously on T ′ ∈
[1,+∞] such that for any u ∈ (0, 1], T ′ ∈ [1,+∞],∣∣∣∣∣ψST̃r

[
g exp

(
−B′u/T ′,T ′

)]
−

0∑
j=−n′

aT ′,ju
j

∣∣∣∣∣ ≤ Cu.(7.14)

Since ε = u/T ′, (7.14) is reformulated by∣∣∣∣∣ψST̃r
[
g exp

(
−B′ε,T ′

)]
−

0∑
j=−n′

aT ′,j(εT
′)j

∣∣∣∣∣ ≤ CεT ′.(7.15)

Following the process in (5.6)-(5.8), we have∣∣∣∣∣ψST̃r
[
g exp

(
−B′ε,T ′

)]dT ′ − 0∑
j=−n′

[aT ′,j]
dT ′(εT ′)j

∣∣∣∣∣ ≤ Cε.(7.16)

For T ′ ≥ 1 fixed, by Theorem 1.2 and (3.20), we have

lim
ε→0

ψST̃r
[
g exp

(
−B′ε,T ′

)]dT ′
=

∫
Zg
γA(T ′) ∧ chg(L

1/2
Z ,∇L

1/2
Z ).(7.17)

From (7.15) and (7.17),

[aT ′,j]
dT ′ = 0 if j < −1, [aT ′,0]dT

′
=

∫
Zg
γA(T ′) ∧ chg(L

1/2
Z ,∇L

1/2
Z ).(7.18)

Since T ′ = εT ,

[aT ′,j]
dT = ε−1[aT ′,j]

dT ′ .(7.19)

From (7.18) and (7.19), comparing the coefficients of dT in (7.15), we have∣∣∣∣ψST̃r
[
g exp

(
−B′ε,T/ε

)]dT − ε−1

∫
Zg
γA(T/ε) ∧ chg(L

1/2
Z ,∇L

1/2
Z )

∣∣∣∣ ≤ C.(7.20)

By (6.2) and (7.20), we get Theorem 3.6 iii).

8. Proof of Theorem 3.6 iv)

In this section, we prove Theorem 3.6 iv) by following the process of [5, Section IX]

and [26, Section 9]. In Section 8.1, as in Section 6.1, we reduce the problem to a local

problem near π−1
1 (V g). In Section 8.2, we study the matrix structure of L3

ε,T as in Section

4.2. In Section 8.3, we prove Theorem 3.6 iv).

We use the same notation as in Section 4, 6 and the assumptions in Section 2.2.

8.1. Finite propagation speed and localization.

Proposition 8.1. There exist C > 0, C ′ > 0, δ > 0, T0 ≥ 1, such that for 0 < ε ≤ 1,

T ≥ T0, ∣∣∣∣ψST̃r
[
gG̃ε2(B′ε,T/ε)

]dT ∣∣∣∣ ≤ C

T 1+δ
.(8.1)



64 BO LIU

Proof. As we noted in Section 5, if we replace BT by B′T/ε and B2 to B2, everything in

Section 4 works well. So there exist C > 0, δ > 0, T0 ≥ 1, such that for 0 < ε ≤ 1,

T ≥ T0, ∣∣∣ψST̃r
[
gG̃ε2(ε

2B′T/ε)
]
− ψST̃r

[
gG̃ε2(ε

2B2)
]∣∣∣ ≤ C

T δ
.(8.2)

Since the second term above does not involve dT part, by (6.1) and following the argu-

ment in (5.5)-(5.8), we get Proposition 8.1. �

By Proposition 8.1, to establish Theorem 3.6 iv), we only need to prove the following

result.

Theorem 8.2. There exist C > 0, C ′ > 0, δ > 0, and T0 ≥ 1 such that for 0 < ε ≤ 1,

T ≥ T0 ∣∣∣∣ψST̃r
[
gF̃ε2(B′ε,T/ε)

]dT ∣∣∣∣ ≤ C

T 1+δ
.(8.3)

By the finite propagation speed as in (6.27), if x ∈ W , F̃ε2(B′ε,T/ε)(x, ·) only depends

on the restriction of B′ε,T/ε to π−1(BY (π1x, α)).

Now we can use the same argument as discussed in (6.27)-(6.29) to know the proof of

Theorem 8.2 is local near π−1
1 (V g).

8.2. The matrix structure of the operator L3
ε,T as T → +∞. We use the same

trivialization and notations as in Section 6.1.

By (6.45), ∫
Y g

∫
U∈NY ,
|U|≤α0/4

T̃r[gF̃ε2(L
1
ε,T )(g−1(U, x), (U, x))]dvNY dvY g

=

∫
Y g

∫
U∈NY ,
|U|≤α0/4ε

c̃TY gT̃r
[
gF̃ε2(L

3
ε,T )

(
g−1 (U, x) , (U, x)

)]
dvNY .

(8.4)

Recall that the vector bundle K was defined in the argument before (6.33) and the

operator Sε was defined in (6.36). Let F0
ε be the vector space of square integrable sections

of Λ(T ∗V g)⊗̂S(NY g/Y )⊗̂S−1∗
ε K ⊗ L1/2

Y over Ty0Y . Then F0
ε is a Hilbert subspace of I0.

Let F0,⊥
ε be its orthogonal complement in I0. Let pε be the orthogonal projection operator

from I0 on F0
ε. Set p⊥ε = 1− pε. Then if s ∈ I0,

pεs(U) = PK
εUs(U, ·) U ∈ Ty0Y.(8.5)

Put

Eε,T = pεL
3
ε,Tpε, Fε,T = pεL

3
ε,Tp

⊥
ε ,

Gε,T = p⊥ε L
3
ε,Tpε, Hε,T = p⊥ε L

3
ε,Tp

⊥
ε .

(8.6)

Then we write L3
ε,T in matrix form with respect to the splitting I0 = F0

ε ⊕ F0,⊥
ε ,

L3
ε,T =

(
Eε,T Fε,T
Gε,T Hε,T

)
.(8.7)

The following lemma is an analogue of Proposition 4.7.
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Lemma 8.3. There exist operators Eε, Fε, Gε, Hε such that as T →∞,

Eε,T = Eε +O(1/T ), Fε,T = TFε +O(1),

Gε,T = TGε +O(1), Hε,T = T 2Hε +O(T ).
(8.8)

Set

Qε := ρ2(εU)RεS
−1
ε

[
DX , εDH + 0∇EZ ,u

]
Sε.(8.9)

Then Qε maps F0
ε into F0,⊥

ε . Moreover,

Fε = pεQεp
⊥
ε ,

Gε = p⊥ε Qεpε,

Hε = p⊥ε (ρ2(ε|U |)DX,2
εU + (1− ρ2(εU))DX,2

y0
)p⊥ε .

(8.10)

Proof. From (6.1), (6.3), (6.37) and (6.39), we find the coefficient of T 2 in the expansion

of L3
ε,T is given by

Hε = (1− ρ2(ε|U |))PK,⊥
εU DX,2

y0
PK,⊥
εU + ρ2(ε|U |)DX,2

εU .(8.11)

When ρ(ε|U |) 6= 0, KεU = kerDX,2
εU . So

Hε = PK,⊥
εU

(
(1− ρ2(ε|U |))DX,2

y0
+ ρ2(ε|U |)DX,2

εU

)
PK,⊥
εU .(8.12)

Using (8.5), we see that (8.12) fits with the last formula in (8.10).

By (6.1), (6.3), (6.37) and (6.39), we find that the coefficient of T in the expansion of

L3
ε,T is the operator Qε.

Using (8.9), it is clear that Qε maps F0
ε into F0,⊥

ε . Also (8.8) and the remaining

equations in (8.10) follow.

The proof of Theorem 8.3 is complete. �

Clearly, for U ∈ Ty0Y , HεU , the operator Hε at U , is an elliptic operator acting along

Xy0 .

Proposition 8.4. For any ε > 0,

kerHεU = Λ(T ∗V g)⊗̂S(NY g/Y )⊗̂KεU ⊗ L1/2
Y .(8.13)

Proof. By (8.10), if s ∈ Λ(T ∗V g)⊗̂S(NY g/Y )⊗̂KεU ⊗ L1/2
Y , then

Hεs = 0.(8.14)

The operator HεU is self-adjoint and nonnegative. Therefore if Hεs = 0, then

PK,⊥
εU ρ2(ε|U |)DX,2

εU P
K,⊥
εU s = 0,

PK,⊥
εU (1− ρ2(εU))DX,2

y0
)PK,⊥

εU s = 0.
(8.15)

If ρ2(ε|U |) 6= 0, we deduce from the first identity in (8.15) that PK,⊥
εU s = 0, i.e.

s ∈ Λ(T ∗V g)⊗̂S(NY g/Y )⊗̂KεU ⊗ L1/2
Y . If ρ2(ε|U |) = 0, by the second identity in (8.15),

PK,⊥
εU s ∈ kerDX

y0
. Using (6.33), we deduce that PK,⊥

εU s = 0, i.e., s ∈ Λ(T ∗V g)⊗̂S(NY g/Y )⊗̂KεU⊗
L

1/2
Y .

The proof of proposition 8.4 is complete. �
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8.3. Proof of Theorem 8.2. For s ∈ I, put

|s|2ε,T,1 := |PK
εUs|2ε,0 + T 2|PK,⊥

εU s|2ε,0 +
∑
p

|∇fps|2ε,0 + T 2
∑
i

|0∇SZei P
K,⊥
εU s|2ε,0.(8.16)

Lemma 8.5. There exist c1, c2, c3, c4 > 0, T0 ≥ 1, such that for any s, s′ ∈ I with

compact support, ε ∈ (0, 1], T ≥ T0, we have

Re〈L3
ε,T s, s〉ε,0 ≥ c1|s|2ε,T,1 − c2|s|2ε,0,

|Im〈L3
ε,T s, s〉ε,0| ≤ c3|s|ε,T,1|s|ε,0,

|〈L3
ε,T s, s

′〉ε,0| ≤ c4|s|ε,T,1|s′|ε,T,1.
(8.17)

Proof. By (6.1), (6.3), (6.37) and (6.39), the 2-order term of the differential operator

L3
ε,T is a fiberwise elliptic operator

T 2Hε + ∆TY .(8.18)

From (8.9), since K is a vector bundle over Ty0Y × S, for s ∈ I with compact support,

there exists C1 > 0, such that

〈HεP
K,⊥
εU s, PK,⊥

εU s〉ε,0 ≥ C1|PK,⊥
εU s|2ε,0.(8.19)

Since Hε is a fiberwise selfadjoint elliptic operator along the fibers X, from the elliptic

estimates, there exist C2, C3 > 0, such that

〈HεP
K,⊥
εU s, PK,⊥

εU s〉ε,0 ≥ C2

∑
i

| 0∇SZei P
K,⊥
εU s|2ε,0 − C3|PK,⊥

εU s|2ε,0.(8.20)

From (8.19) and (8.20), there exists C4 > 0, such that

〈HεP
K,⊥
εU s, PK,⊥

εU s〉ε,0 ≥ C4

(∑
i

| 0∇SZei P
K,⊥
εU s|2ε,0 + |PK,⊥

εU s|2ε,0

)
.(8.21)

By (6.74), there exist C5, C6 > 0, such that

〈∆TY s, s〉ε,0 ≥ C5

∑
p

|∇fps|2ε,0 − C6|s|2ε,0.(8.22)

Then there exist C ′1, C
′
2 > 0, such that

〈(T 2Hε + ∆TY )s, s〉ε,0 ≥ C ′1|s|2ε,T,1 − C ′2|s|2ε,0.(8.23)

By Lemma 6.6 and (8.9), there exist C > 0, such that

|〈TQεs, s〉ε,0| ≤ C|s|ε,T,1|s|ε,0.(8.24)

Then Lemma 8.5 follows from (6.74), (8.23) and (8.24). �

Set Dε = {PK
εU∂pP

K
εU + PK,⊥

εU ∂pP
K,⊥
εU , PK,⊥

εU ∇SXei P
K,⊥
εU }.

Let Ξε be the operator from Fε to itself,

Ξε = Eε − FεH−1
ε Gε.(8.25)

Following the same argument in (4.72)-(4.137), we can get an analogue of Theorem

4.15.
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Theorem 8.6. There exist C > 0, δ > 0, and T0 ≥ 1 such that for 0 < ε ≤ 1, T ≥ T0,∣∣∣ψST̃r
[
gF̃ε2(L

3
ε,T )
]
− ψST̃r

[
gF̃ε2(Ξε)

]∣∣∣ ≤ C

T δ
.(8.26)

Since there is no dT part in the second term above, as in (5.5)-(5.8), we get Theorem

8.2.
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