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0. INTRODUCTION

In order to find a well-defined index for a first order elliptic differential operator over
a compact manifold with nonempty boundary, Atiyah-Patodi-Singer [2] introduced a
boundary condition which is particularly significant for applications. In this situation,
an invariant of a first order self-adjoint operator called the eta invariant, n, enters into the
index formula. Formally, the eta invariant is equal to the number of positive eigenvalues
of the self-adjoint operator minus the number of negative eigenvalues.

Extending the work of Bismut-Freed [13], which is a rigorous proof of Witten’s holo-
nomy theorem [34], Bismut and Cheeger [9] studied the adiabatic limit for a fibration
of closed Spin manifolds and found that under the invertible assumption of the Dirac
family along the fibers, the adiabatic limit of the eta invariant of a Dirac operator on
the total space is expressible in terms of a canonically constructed differential form, 7,
on the base space. Later, Dai [20] extended this result to the case when the kernel of
the Dirac family forms a vector bundle over the base manifold.

This eta form of Bismut-Cheeger, 7, is the higher degree version of the eta invariant 7,
i.e., it is exactly the boundary correction term in the family index theorem for manifolds
with boundary [10, 11, 29]. When the base space is a point, the eta form of Bismut-
Cheeger is just the eta invariant of Atiyah-Patodi-Singer. On the other hand, by [4, 9, 20],
when the dimension of the fibers are even, the eta form serves as a canonically constructed
transgression between the Chern character of the family index and Bismut’s explicit local
index representative [6] of it. We can also see it later by taking g = 1 in (0.3).

Recently, in the study of differential K-theory, the Bismut-Cheeger eta form naturally
appears in the geometric model constructed by Bunke and Schick [18] as a key ingredient.
Moreover, the results in [18] are highly relied on the properties of the eta form. In
particular, the well-defined property of the push-forward map is based on a formula
about the functoriality of eta forms proved by Bunke and Ma [16], which is a family
version of [9]. In [17], Bunke and Schick extend their geometric model to the orbifold
case. It can also be regarded as a geometric model for the equivariant differential K-
theory for a finite group. Thus the equivariant eta form appears naturally here and this
motivates us to understand systematically the equivariant eta form.

In this paper, we define first the equivariant eta form when the fibration admits a
fiberwise compact Lie group action and establish a formula about the functoriality of
equivariant eta forms which extends [16, Theorem 5.11] and [9] to our case. Note that
Bunke-Ma in [16] worked for the eta form associated to flat vector bundles, and many
analytic arguments are only sketched. Here we work on the equivariant situation, thus
we need to combine the equivariant local index technique to the different functional
analysis technique in analytic localization developed by Bismut and his collaborators
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[5, 7,8, 14, 15, 26, 27]. We take this opportunity to give also the details of the analytic
arguments missed in Bunke-Ma [16].

Let 7 : W — S be a smooth submersion of smooth manifolds with closed oriented
fiber Z, with dim Z = n. Let TZ = TW/S be the relative tangent bundle to the fibers
Z with Riemannian metric g7 and THW be a horizontal subbundle of TW, such that
TW =THW @& TZ. Let VI be the Euclidean connection on T'Z defined in (1.15). We
assume that T'Z has a Spin® structure. Let Lz be the complex line bundle associated
to the Spin® structure of 77 with a Hermitian metric A*# and a Hermitian connection
VEz (see [22, Appendix D).

Let G be a compact Lie group which acts fiberwisely on W and as identity on S. We
assume that the action of GG preserves the Spin® structure of T'Z and all metrics and
connections are G-invariant. Let (E,h¥) be a G-equivariant Hermitian vector bundle
over W with a G-invariant Hermitian connection V. Let D? be the fiberwise Dirac
operator defined in (1.21) and B; be the Bismut superconnection defined in (1.32). For
a € Q(S), the differential form on S with degree i, set

;y -, if ¢ is even;
(0.1) vs(a) = (%ﬁ =
\/%7 (ﬁ) -, if 7 is odd.

We define now the equivariant eta form (cf. (1.62) and Definition 1.3).

Definition 0.1. Assume that dim ker DZ is locally constant on S. For any ¢ € G, the
equivariant eta form of Bismut-Cheeger is defined by

(0.2) 7(THW, g"%, h# hP V2 VF)

/0 ST m@bg Tr [g—aatt exp(—Bf)] dt, if n is even;
/0 ﬁ@bs Treven {g% eXp(—Bf)} dt, if n is odd.

The regularities of the integral in the right hand side of (0.2) are proved in Section
1.4. Let WY be the fixed point set of g on W. Then WY is a submanifold of W and
the restriction of m on W9 gives a fibration 7 : W9 — S with fiber Z9. Furthermore, it
verifies the following transgression.

(0.3) d®i,(THW, g"% htz hE vhz vF)
A (TZ,V7%) A chy(LY2, V) A chy (B, VE)

79
=< — chy(ker DZ, vker D%y, if n is even;

/ A (TZ,V7%) A chy(LY2, VL") A chy (B, VE), if n is odd.
\ Z9

For the definition of characteristic forms in (0.3), see (1.44), (1.45) and (1.56).
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By (0.2), the equivariant eta form depends on the geometric data (THW, g7%, hlz,
hE VEz VF). When the geometric data vary, we have the anomaly formula for the
equivariant eta forms.

Theorem 0.2. Assume that there exists a smooth path connecting (TTW, g"% htz h¥
VEiz VE) and (TTW, g 7% W'tz h'E Ntz N'F) such that the dimension of the kernel of
the Dirac family is constant (see Assumption 1.6).

i) When n is odd, modulo exact forms on S, we have

0.4) 7,(THW,gT% n'lz W'E VL2 N'EY -5, (THW, g"% hlz hE viz vF)

:/Z A (TZ, V7% N'TZ) A chy(LY2, V¥ ) A chy (B, V)
+ / A TZ, V7Y A chy(LY?, V4 ') A chy (B, V)
VA

+ /Z Ay (TZ,V'TZ) A chy(LY?, V') A chy (B, VE, V'E).
ii) When n is even, modulo exact forms on S, we have
(0.5) 7 (THW, g2, 02 W8 N2 NE) — i (THW, g7%, 17, hF VP2,V F)

= / A (TZ, V7% N'TZ) A chy(LY2, VF ) A chy (B, V)
79

+ / A TZ,V'TZ) A chy(LY?, V54 V') A chy(B, V)
79

+ | AJTZ,V'TZ) A chy(LY2,V'E) A dhy (B, VE, V'F)

79
— &g(ker 0 VA v kerDZ).

For the definitions of the Chern-Simons forms KQ(TZ, VAR VAL &19(1112/2, Vle/g, V'LIZ/Q)
and chy(ker DZ, vk D7 7'ker D7) yised here, see (1.86).

For the reminder of this introduction, we shall consider the composition of two sub-
mersions.

Let W, V, S be smooth manifolds. Let 7y : W — V, m : V. — S be smooth
submersions with closed oriented fiber X, Y. Then n3 = myom : W — S is a smooth
submersion with closed oriented fiber Z. We have the diagram of fibrations:

X A 14
RIS
T 1
Uy’
Y Vv S.

Let TX, TY, TZ be the relative tangent bundles. We assume that T'X and TY
have the Spin® structures with complex line bundles Lx and Ly respectively. Then T2
have a Spin® structure with a complex line bundle Lz. We take the geometric data
(THEW, gTX hEx VEx) (THV, g™V hlv VIv) and (THEW, ¢7%, htz V©L2) with respect
to submersions 7, my and 73 respectively. Let °V7%, V%2 be the connections on 77,
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Ly defined in (2.4), (2.5). For any g € G, let TH(W|ys) = TEW |ye N T(Wlys) be the
horizontal subbundle of T'(W|ys).

Let G be a compact Lie group which acts on W such that for any g € G, g-m =71 g
and 73 - g = m3. We assume that the action of GG preserves the Spin® structures of T'X,
TY, TZ and all metrics and connections are G-invariant.

The purpose of this paper is to establish the following result, which we state as The-
orem 2.4.

Theorem 0.3. If Assumption 2.1 and 2.3 hold, for any g € G, we have the following
identity in Q*(S)/d*Q*(9),

(0.6) 7o (TSIW, gT% B2 NVP2) = fo(THV, g7 BEy  pher DY ghy gker DY)

+/ FAQ(TY, v /\chg(LIY/Q,VLlY/Z) A g (TH (W ye), g™, BEX VEx)
Y9g
+ / A (TZ, V7%, OVTZ) A chy(LY?, Vi)
79

+ [ A,(TZ, OVTZ) A chy(LY2, VT I,
79

Note that if ker DZ is not locally constant, we can also construct an equivariant eta
form when ind(D?) = 0 € K} (S) using the spectral section technique [29]. The functo-
riality of equivariant eta forms in this case is almost the same as Theorem 0.3. We will
construct the push-forward map for equivariant differential K-theory [17] in a compara-
tive paper [23] as applications of the result in this paper.

This paper is organized as follows.

In Section 1, we define the equivariant eta form and prove the anomaly formula The-
orem (0.2. In Section 2, we state our main result Theorem 0.3. In Section 3, we use
some intermediate results, whose proofs are delayed to Section 4-8, to prove Theorem
0.3. Section 4-8 are devoted to the proofs of the intermediate results stated in Section 3.

To simplify the notations, we use the Einstein summation convention in this paper.

In the whole paper, we use the superconnection formalism of Quillen [30]. If A is a
Zo-graded algebra, and if a,b € A, then we will note |[a, b] as the supercommutator of a,
b. If B is another Z,-graded algebra, we will note A®B as the Z,-graded tensor product.
If A, B are not Zs-graded, sometimes, we also denote A®B by considering the whole
algebra as the even part.

For a trace class operator P acting on a space E, if E = E, @& E_ is a Zy-graded space,
we denote by

(0.7) Try[P] = Tr |, [P] — Tr |g_[P].
If Tr[P] takes value in differential forms, we denote by Tr°d/*v"[P] the part of Tr[P]

which takes value in odd or even forms. We denote by

~io | Trg[P], if Eis Zy-graded;
(08) T P] = { TreY[P], if E is not Zy-graded.
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For a vector bundle 7 : W — S| we will often use the integration of the differential
forms along the fiber Z in this paper. Since the fibers may be odd dimensional, we
must make precise our sign conventions. If « is a differential form on W which in local
coordinates is given by

(0.9) a=dy" A--- NdyP? A B(z)dzt A - A da”,

we set

(0.10) /oz:dypl/\---/\dypq/ﬂ(x)dwl/\---/\da:”.
Z z

1. EQUIVARIANT ETA FORM

The purpose of this section is to define the equivariant eta form and prove the anomaly
formula. In Section 1.1, we recall elementary results on Clifford algebras of arbitrary
dimension. In Section 1.2, we describe the geometry of fibration and introduce the
Bismut superconnection and Bismut’s Lichnerowicz formula (cf. [4, 6]). In Section
1.3, we explain the equivariant family local index theorem. In Section 1.4, we define
the equivariant eta form when the dimension of the kernel of Dirac operators is locally
constant. In Section 1.5, we prove the anomaly formula. In this section, we follow mainly
from [9].

1.1. Clifford algebras. Let C (V") denote the complex Clifford algebra of the real
inner product space, V™. Related to an orthonormal basis, {e;}, C(V™) is defined by the
relations

(11) €i€; + €€ = —2(5@'.

To avoid ambiguity, we denote by c(e;) the element of C' (V") corresponding to e;. We
consider the group Spin{ as a multiplicative subgroup of the group of units of C'(V").
For the definition and the properties of the group Sping, see [22, Appendix D].

As a vector space,

(1.2) C(V™) ~ A(V").
The Clifford multiplication on AV™ is exterior multiplication minus interior multiplica-
tion. The elements c(e;) = c(e;,)---c(e;,), I = {ir,--- ,i;} C {1,--- ,n}, iy <--- <y,
form a basis for C'(V"™). Put |I| = j. The subspace Co(V™), C1(V™) spanned by those
c(er) with |I| even (resp. odd) give C (V") the structure of a Zs-graded algebra.

For n = 2k, even, up to isomorphism, C'(V™) has a unique irreducible module, S,,,

which has dimension 2% and is Zy-graded. In fact, C(V?) ~ End(Sy;). If V is oriented,
the element

(1.3) 7= (V=1Fc(er) - cleaw)
is independent of the choice {e;} and satisfies
(1.4) =1

Set Sy, = {s € S, : 7s = +s}. We write Try[-] for the supertrace of C(V?*) on S,
defined as (0.7).
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If n = 2k—11is odd, C(V™) has two inequivalent irreducible modules, each of dimension
2F=1_ For arbitrary n,

(1.5) c(ej) = clej)e(enta)

defines an isomorphism, C'(V") ~ Co(V"™ @ R). Thus, for n odd, we can regard Sy 1
for V* @ R as (inequivalent) modules over C(V"). However, they are equivalent when
restricted to Spin’. For V%1 oriented, the notation Tr[-] refers to the representation

S 2k
By [10, Lemma 1.22], if n = 2k is even, then

(V)RR AT = {1, 2K
(1.6) Tr,[c(er)] —{ 0, if T {1, 2k},

If n =2k —11is odd and |I| > 1,

[ (=V/EDRRM T = {1, 2k — 1)
(1.7) Tr[c(er)] = { 0. T (L 21

By (1.6) and (1.7), for n odd, the trace Tr behaves on the odd elements of C(V™) in
exactly the same way as the supertrace Tr, on the even elements of C'(V") for n even, i.e.

we must saturate all the elements c(e;), -+, c¢(e,) to get a non-zero trace or supertrace.
It will be of utmost importance in the computations of the local index in Section 6. We
set
- Trgle(er) - - - clen)], if nis even;
(18) Cyn = . .
Trle(ey) -+ - c(en)], if nis odd.

Let W™ be another real inner product space with orthonormal basis {f,}. Then as
Clifford algebras,

(1.9) C(Vr"@W™) ~ C(VHRC(W™).
By (1.6), (1.7) and (1.8), we have

(1.10) e — { %\/—_1’5\/71 - cym, if n, m are odd;
Cyn + Cyym, if others.

Finally, we note the effect of scaling the inner product (-,-) on V. Fix any inner
product, (-,-) and let Cy(V) be the Clifford algebra associated to ¢t~'(-,-). Then the
map 2V — V provides a natural isomorphism C;(V) ~ C(V). It also provides a
natural isomorphism between the orthonormal frames {t'/2¢;} for t=1(-,-) and {e;} for
(-,-). Thus, the spinor S for (-,-) is also an irreducible module for Cy(V') via the above
isomorphism. In the sequel, if Z is a Riemannian Spin® manifold, we will always assume
that the space of spinors has been chosen independent of the scaling parameter of the
metric.
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1.2. Bismut superconnection and Lichnerowicz formula. Let 7 : W — S be a
smooth submersion of smooth manifolds with closed oriented fiber Z, with dim Z = n.
Let TZ = TW/S be the relative tangent bundle to the fibers Z.

Let THW be a horizontal subbundle of TW such that

(1.11) T™W =T*WaTZ.

The splitting (1.11) gives an identification

(1.12) THW = 7*T8.

Let PTZ be the projection

(1.13) P2 . TW =THW ©TZ - TZ.

Let ¢"%, g™ be Riemannian metrics on TZ, T'S. We equip TW = THW @ TZ with
the Riemannian metric

(114) gTW — 7_‘_>o<gTS @gTZ‘
Let VIW V15 be the Levi-Civita connections on (W, g™"), (S, g7®). Set
(1.15) viZ = ptagtWptz,

Then V74 is a Euclidean connection on TZ. Let °VTW be the connection on TW =
THW @& TZ defined by

(1.16) WV = mvTs @ V712,
Then °VTW preserves the metric g7 in (1.14). Set
(1.17) S =vW_ogtw,

Then S is a 1-form on W with values in antisymmetric elements of End(TW). By
[6, Theorem 1.9], we know that VZZ4 and the (3,0) tensor (S(-)-,-) only depend on
(THI/Va gTZ)> where (-, -) = gTW(" ).

Let C(TZ) be the Clifford algebra bundle of (T'Z, g7%), whose fiber at z € W is the
Clifford algebra C(T,Z) of the Euclidean space (1,7, g'*#). We make the assumption
that T'Z has a Spin® structure. Then there exists a complex line bundle Ly over W such
that wy(TZ) = ¢1(Lz) mod (2). Let S(T'Z,Lz) be the fundamental complex spinor
bundle for (T'Z, Lz), which has a smooth action of C(TZ) (cf. [22, Appendix D.9]).
Locally, the spinor S(T'Z, L;) may be written as

(1.18) S(TZ,Ly) =S8(TZ)® L>

where S(T'Z) is the fundamental spinor bundle for the (possibly non-existent) spin struc-
ture on T'Z, and le/2 is the (possibly non-existent) square root of L. Let h%% be the
Hermitian metric on Lz and V2 be the Hermitian connection on (Ly, h%?). Let h®?
be the Hermitian metric on S(TZ, L) induced by g74 and h# and V7 be the connec-
tion on S(TZ, L) induced by V% and VL2, Then V7 is a Hermitian connection on
(S(TZ, Lyz), h%?). Moreover, it is a Clifford connection associated to V7%, i.e., for any
UeTW,V e€*W,TZ),

(1.19) (V7. e(V)] = e (VEPV).



FUNCTORIALITY OF EQUIVARIANT ETA FORMS 9

If n = dim Z is even, the spinor S(T'Z, Lz) is Zy-graded and the action of T'Z exchanges
the Zy-grading. Let (E, h”) be a Hermitian vector bundle over W, and V¥ a Hermitian
connection on (E, h¥). Set

(1.20) VoOE = 97 @141 VE.

Then V92%E is a Hermitian connection on (S(TZ, Lz) ® E, h°? @ h¥).

Let {e;}, {f,} be local orthonormal frames of TZ, T'S and {e'}, { f*} be the dual. Let
D? be the fiberwise Dirac operator
(1.21) D7 = c(e;) V7P,

For b € S, let &%, be the set of smooth sections over Z, of S(T'Z, Lz) ® E. As in [6],
we will regard &7 as an infinite dimensional fiber bundle over S.

Let dvy be the Riemannian volume element in the fiber Z. For any b € S, s1, 52 € &z,
we can define the scalar product

(1.22) <81,32>0:/Z(sl(x),SQ(x)>de.

This scalar product could be naturally extended on A(T*S)®&,. We still denote it by
<" .>0.

If U €TS8, let UH € THW be its horizontal lift in THW so that 7, U¥ = U. For any
UeTS,se€™(S,&)=¢W,S(TZ,Ly) ® E), we set
(1.23) Vi7s=Viills.
Then V4% is a connection on &, but need not preserve the scalar product (-, -)o in (1.22).
By [12, Proposition 1.4], for U € T'S, the connection

1
(1.24) Vit = Vi — 5 (S(enes Uty

preserves the scalar product (-, -)o.

Let T be the torsion of °VIW_ If U}, U, € €>(S,TS), by [6, (1.30)], we have
(1.25) T(U,Uy) = —PH2[Uf Ul
We denote by

(1.26) o(T) = %C(T( P AN

By [6, (3.18)], the Bismut superconnection

(1.27) B:€®(S,A(T*S)2&,) — €<(S, A(T*S)®Ey)
is defined by

(1.28) B = D% 4 Vi 1c(T).

4

In fact, the Bismut superconnection only depends on the quadruple (THW, g7 Viz VF).
In the sequel, if A(U) is any 0-order operator depending linearly on U € TW, we
define the operator

(1.29) (VE22F 4 A(e;))”
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as follows: if {e;(z)}, is any (locally defined) smooth orthonormal frame of T'Z, then

(1.30) (V7P + A(e;))
2 n
=3 (5 ) - e, (S5
=1
Let R4, R'2 RF and RSZ@E be the curvatures of V74, V#2 V¥ and V2®F respec-

tively. By (1.18), we have

1
(1.31) RSZ9F = 7

For t > 0, we denote &; the operator on A/(T*S)®&, by multiplying differential forms
by t~%2. Set

(1.32) B, :=+/ts;0o Bod; .
Then from (1.28) and (1.32), we get

1
RTZ@i, €j>c(ei)c(€j) + §RLZ + RE.

(1.33) B, = VtDX + V72 — _—_(T).

Let KZ be the scalar curvature of the fibers (T'Z,g74). We have the Bismut’s Lich-
nerowicz formula (see [4, Theorem 10.17], [6, Theorem 3.5]),

1
(1.34) B? = — (\/EV‘;ZM +3

H ) fP L e.)fH fHY g q i
(S(eie, S Nele)? A+ (S S A )

+ AELKZ —i—% <%RLZ + RE) (i, ej)c(e;)c(e;) + Vi <%RLZ + RE) (Q,ff)c(ei)fp/\

+5 @RL”RE) (Bl S A fTA

In particular, B? is a 2-order elliptic differential operator along the fiber Z. Let exp(—B?)
be the family of heat operators associated to the fiberwise elliptic operator B? in (1.34).
From [4, Theorem 9.50], we know that exp(—B?) is a smooth family of smoothing oper-
ators.

1.3. Compact Lie group action and equivariant family local index theorem.
Let G be a compact Lie group which acts on W such that for any g € G, mog = 7.
So it acts trivially on S. We assume that the action of G preserves the splitting (1.11),
the Spin® structure of TZ and ¢7%, h*7z V7 are G-invariant. We assume that F is a
G-equivariant complex vector bundle and h¥, V¥ are G-invariant. So the action of G
commutes with the Bismut superconnection B in (1.28).

Take g € G and set

(1.35) WI9={xeW:gr=uz}

Then W9 is a submanifold of W and 7 : W9 — S is a fiber bundle with closed fiber Z9.
Let N denote the normal bundle of W9 in W, then N = TZ/TZ9. Since G preserves the
orientation of T'Z, the normal bundle N is even dimensional. We denote the differential
of g by dg which gives a bundle isometry dg : N — N. Since g lies in a compact abelian



FUNCTORIALITY OF EQUIVARIANT ETA FORMS 11

Lie group, we know that there is an orthonormal decomposition of smooth vector bundles

on W9
(1.36) N = N(7) ® Boco<~N(0),

where dg|n (- = —id and for each #, 0 < § < 7, N(6) is a complex vector bundle on which
dg acts by multiplication by eV~ and dim N () is even. By the following proposition,
Z9 and N are all naturally oriented. This proposition is a modification of [4, Theorem
6.14).

Proposition 1.1. Let Z be a closed oriented manifold and G be a compact Lie group. If
TZ has a G-equivariant Spin© structure, then for each g € G, Z9 is naturally oriented.

Proof. We fix a connected component of Z9 and assume that the dimension of the normal
bundle N of this connected component is 2k. By (1.36), on N, the matrix of g has
diagonal blocks
cos(6;) —sin(6;) .
1. J J =1,2,---,k 0; <.
(1.37) ( sin(6;)  cos(6;) J 2k U<
By the definition of the Spin® group, the action of g on the spinor is given by
k
(1.38) = o [ J(cos(6;/2) + sin(6;/2)c(es;—1)c(ex;))
7=1
where a € S'. Let o : C(N) — A(N) be the isomorphism in (1.2). For 8 € A(N), let
[5]2r denote the degree 2k part of 3. Since v and 6; are locally constant on Z9, the term

(1.39) a lo(g)lax = (H sin(ej/2)> el ANk

gives a non-zero section of A?*(N). Then it gives a canonical orientation of N. The
canonical orientation of Z9 can be obtained by the orientations of Z and V.
The proof of Proposition 1.1 is complete. U

Since ¢?# is G-invariant, the connection V7# preserves the decomposition of smooth
vector bundles on WY

(140) TZ‘WQ - TZQ D @0<9§7TN(0).

Let V7%, VN and VN be the corresponding induced connections on 729, N and
N(#), and let R7#’) RN and RN be the corresponding curvatures. Here we consider
N(0) as a real vector bundle. We have the decompositions on W¥:

(1.41) VT e =V o VN, VN = 049, VN,
and
(1.42) RTZ|W9 = RTZg D RN, RN = @0<9§7rRN(0)

For 0 < 0 < 7, we write

(1.43) Ay (N(B), VVN®) = ((\/—_1)5dimRN<9>det% (1 — gexp <§RN(9)>))1.
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Set
N ) V=1 pTZ9
A(TZ9, V") = det> 4ﬂﬁ
(144) smh <?RTZQ>

ATz, V™) = A (122, V"%") - ] Ao (N (), V) € Q™ (W7, C).

0<O<m

Note that for any Euclidean connection V on (T'Z, g*%), we can define the characteristic
form Kg(TZ, V) as in (1.44). Let Kg(TZ) € H*(W?9,C) denote the cohomology class
of ;‘:g(TZ ,VIZ) 1f E is Zy-graded, we assume that the G-action and V¥ preserve the
Zo-grading. Set

v—1

Tr {g exp (2—RE|Wg)} , if E is not Za-graded;
T

(1.45) chy(E,VF) =

v—1
Tr, [g exp (Q—RE\Wgﬂ , if Eis Zo-graded.
m

Let ch,(E) € H*(W?9,C) denote the cohomology class of ch,(E, VF). By Chern-Weil
theory [35], the classes Kg(TZ ) and ch,(E) are independent of V?Z and V¥. Further-
more, if S is compact, the equivariant Chern character in (1.45) descends to a ring
homomorphism

(1.46) ch, : K&(W?) — H*>*(W?,C).

Assume that n is even. If S is compact, the index bundle ind(D?) is an element of
K2(S). Under the equivariant Chern character map (1.46), for any g € G, we have

(1.47) ch,(ind(D?)) € H*(S,C).

Since the fiber is even-dimensional, the spinor S(T'Z, L) is Zo-graded, i.e., S(TZ, L) =
S.(TZ,Ly)®S_(TZ,Lz). Note that if dimker DZ is locally constant,

(1.48) ind(D?) = ker D7 — ker DZ € K2(9),

where D7 is the restriction of DZ on S.(TZ,Lz) ® E.

Let &7+ be the set of smooth sections of S.(T'Z, L) ® E over W. Then &, = &7+ &
&y is a Zy-graded infinite dimensional vector bundle over S and A(T*S)® End(&%) is
also Zy-graded. We extend Tr, Tr, to the trace class element A € A(T*S)® End(&%),
which take values in A(7*S). We use the convention that if w € A(T™*S5),

(1.49) TrjwA] = wTr[A], TriwA] = wTrg[A].

If n is odd, the fibrewise Dirac operator D? is a family of equivariant self-adjoint
Fredholm operators. Set

7 Icosf ++/—1D%sinf, if 0 <6<,
(1.50) Dy = . .
(cos@ +/—1sinf)I, ifr <6 <2m.

If S is compact, then ind({DF}) € K2(S* x S). Since the restriction of DZ to {0} x S
is trivial, so it can be regarded as an element of K}(S). From [3] and [31], the definition
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of the index of D?Z is
(1.51) ind(D?) := ind({D§}) € KL(9).
Note that as an analogue of (1.46), for any g € G, there is a homomorphism
(1.52) ch, : KA(S) — H*Y(S,C)

defined by the suspension. In our case,

chy(ind({DF}))| € H*(S,C).

(1.53) ch,(ind(D?)) = {27“/_

Here we use the sign convention (0.10) in this integration. The constant (27y/—1)71
here is chosen to normalize the constant in Theorem 1.2.

When the fiber is odd dimensional, the spinor S(T'Z, L) is not Zs-graded. For a trace
class element A € A(T*S) ® End(&), we also use the convention as in (1.49) that if
w e AN(T*S),

(1.54) TrlwA] = w Tr[A].

It is compatible with the sign convention in (0.10).
For a € Q(S), set

;f -, if ¢ is even;
(1.55) @Ds(a) = <27r\/jl 1‘51
& (i) T e s odd,

Comparing with (1.45), for the locally defined line bundle le/ ? we write

1/2

v—1
(1.56) chy (L) L2 v ) :=g-exp (4—RLZ|Wg> € Q*(W9,C)
T

and ch,(L 1/2) € H**(WY,C) as the corresponding cohomology class. Denote by 7, :
H*(W9,C) — H*(S,C) the integration along the fiber Z9 with the sign convention
(0.10). Recall that the trace operator Tr is defined in (0.8). We give the equivariant
family local index theorem as follows.

Theorem 1.2. For any t > 0 and g € G, the differential form 1sTr[gexp(—B2)] €
Q*(S) is closed and its cohomology class is independent of t. Ast — 0,

(L57)  lim s Tr[gexp(=B7)] = /Z A (TZ,V77) A chy(LY?, VL) A ey (B, VE).

If S is compact, the differential form vsTr|g exp(—B2)] represents ch,(ind(D?)) in (1.47)
or (1.53). In H*(S,C),

(1.58) chy (ind(D?)) = . {KQ(TZ) ch, (LY?) chg(E)} .

Proof. 1f n is even, the proof is the same as that of [24, Theorem 1.1]. If n is odd, the
proof follows from [13, Theorem 2.10] and the even case. O
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1.4. Equivariant eta form. In this subsection, we define the equivariant eta form when
dim ker DZ is locally constant. We will proceed as the proof of [4, Theorem 10.32] as
follows.

Let S = R, x S and pr : S — S be the projection. We con31der the bundle 7 :
W= Ry xW — S together with the canonical projection Pr : W — W. Set THW =
T(R,) @ Pr*(THW). Then THW is a horizontal subbundle of TW as in (1.11). We
fix the vertical metric g7Z which restricts to ¢~ 1gTZ over {t} x W. Let a(TZ) be the
Clifford algebra bundle associated to 974, Then S(TZ Prily) = Pr'S(TZ, Ly) is the
spinor of C(T Z) by the assumption in the end of Section 1.1. Let hlz = Pr*htz and
Vlz = Pr*vEiz, Let B = Pr*E, h¥ = Pr*af and VE = Pr*'vE. We naturally extend
the G-actions to this case such that the G-action is identity on R, x S. We will mark
the objects associated to (TH/W,/g\TZ, hlz hE iz VE) by ~

For t € R,, the fiberwise Dirac operator DZ on {t} x Z is tY/2DZ. By (1.24),
Vézu = yézu — 29 Gince By in (1.33) is just the Bismut superconnection associ-
ated to (THW,t 1g1% vtz VE) from (1.28) and (1.33), the Bismut superconnection
associated to (THW §TZ viz VE) is

~ 0
1.59 By =B +dt N — — dt

for (t,b) € 5. Note that the extended G-action commutes with the Bismut superconnec-
tion B.
If o € A(T*(Ry x S)), we can expand « in the form

(1.60) a=dt Noy+ o, oy, a1 € A(T™S).
Set
(1.61) [a]® = ay.

For any g € G, set

v Tr, [ %ex —B? 1 , if n is even;

(1.62) y(t) = 2\/1__1\/#/}5 agBat "
_ﬁws Tyeven [QE exp(— Bf)} , if n is odd,

and
(1.63) r(t) = vsTrlg exp(—B})).
Then from Duhamel’s principle, (1.55) and (1.59), we have
(1.64) WsTrlgexp(—B%)] = dt A(t) + r(t).
S0
(1.65) 7(t) = ¥sTrlgexp(—B?))™.

For u € (0, +00), set B, = \/ud,Bd;". Similarly as in (1.64), we decompose
(1.66) Vs Tr[gexp(—B2)] = dt Ay(u,t) + r(u,t).
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Take t = 1. Then

OByt 0B,
1. = .
(1.67) ot |, " ou
So from (1.62), (1.63) and (1.67), we have
(1.68) Y(u,1) =uy(u), r(u,1)=r(u).

From the asymptotic expansion of the heat kernel, when u — 0, there exist a;(t) €
A(T*(Ry x S)), i € N, such that
+o0
(1.69) usTrlg exp(~B2)] ~ 3 ai(i)u
i=0
By Theorem 1.2, r(0,t) exists and ag(t) = r(0,¢). Take t = 1 in (1.69). By Theorem 1.2
and (1.63), we have

(1.70) r(0) :/ A (TZ,V7%) A chy(LY?, VEY A ehy (B, VE).
79
From (1.66) and (1.68), we have
+oo
(1.71) dt A uy(u) +r(u) —r(0) ~ Z a; (1)u'/?,
i=1
that is, when u — 0,
(1.72) y(u) = O(u='?),

Assume that dimker DZ is locally constant, then ker D? forms a vector bundle over
S. Let PkrD? . &, s ker DZ be the orthogonal projection with respect to the scalar
product in (1.22). Let

(173) vker DZ — Pker Dzvzg],upker D%

be a connection on the vector bundle ker D?. For b € S, t € (0,400), ker(t'/2D¥) =
ker DZ. So ker D% forms a vector bundle over Ry x 5. As in (1.73), we can define
the connection V¥*P” on the vector bundle ker DZ. If n is even, ker D? and ker D?
are Zo-graded. Since the curvature of VEu s trivial along R, the equivariant Chern
character ch,(ker D% ker D ”) does not involve dt.

From [4, Theorem 9.19], which is also valid in odd dimensional fiber case, we know
that when u — +o0,

—~ R h. (ki DZjvkerDz +O _1/2’ if . :
(1.74) WsTrlgexp(—B?)] = { chy (ker ) (u™7%), if n is even

O(u=1?), if n is odd,
and
ch,(ker DZ, yker D? , if n is even;
(1.75) r(oo) := lim r(u, 1) = ol ) ¥
u—00 0, if n is odd.

Take t =1 in (1.74). From (1.66), (1.68) and (1.75) we have
(1.76) dt A uy(u) + 7(u) — 7(00) = O(u~'?).
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By (1.63), (1.74) and (1.76), when u — 400,
(1.77) v(u) = O(u=3/?).
Definition 1.3. Assume that dimker DZ is locally constant on S. For any g € G,

the equivariant eta form of Bismut-Cheeger 7,(THW, g7% hlz hF Viz VF) e Q*(9) is
defined by

(1.78) i (THW, "% ht2 hP VE VF) = — / y(t)dt.
0
Note that by (1.72) and (1.77), the integral on the right hand side of (1.78) is convergent.

When g = 1, T'Z is Spin, this equivariant eta form is just the usual eta form of Bismut-
Cheeger defined in [9] and [20]. Note that the equivariant eta form here was also defined
in [33] when 7'Z is Spin and n is odd.

From [6], we know that Tr[g exp(—B2)] is a closed differential form. So

P N N _
(1.79) (dt A T + ds) YsTr[gexp(—B?)] =0, d°ysTr[gexp(—B?)] = 0.
By (1.63), (1.64) and (1.79), we have
or(t)
1.80 d*y(t) = —=.
(1.50) (0 = 2
Then from (1.63), (1.70), (1.80) and Definition 1.3, we have
S~ (mH TZ 1Ly 1.E wly —FE e or(t)

A (TZ,V7%) A chy(LY2, V) A chy(E, VE)

Z9

Z N .
= — chy(ker DZ, VET P, if n is even;

/ A (TZ,V7%) A chy(LY2, VL") A chy (B, VE), if n is odd.
\ 79

Remark 1.4. If we fix the vertical metric g7Z which restricts to t=2¢g7% over {t} x W
in the beginning of this subsection, as in (1.59), we have

(1.82) Bl = B +dt A % - %dt,
and
Y (£) = s Trlg exp(—B”))*
(1.83) ) — ﬁ@/}s Tr, {g% exp(—Bfg)] , nis even;
) - %IDS Trever {gagf exp(—sz)} , n is odd.

After changing the variable, we still have

(1.84) BTG RV ) = = [
0
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Remark 1.5. The Spin® condition used here is just to get an explicit local index repre-
sentative in Theorem 1.2. In fact, Definition 1.3 can be extended to equivariant Clifford
module case.

1.5. Anomaly formula. From the construction in Section 1.4, the equivariant eta form
only depends on the sextuple (THW, g% hlz hE VEz VF). We now describe how
Ng(THW, g7% hlz hE WLz V) depends on its arguments. Let (THW, g7% hlz hF viz,
VEY and (T'HW, gT%, h'Fz W'F V'l7 V'F) be two sextuples of geometric data. We will
mark the objects associated to the second sextuple by ’.

First, a horizontal subbundle on W is simply a splitting of the exact sequence

(1.85) 0->TZ—=TW —7*TS — 0.

As the space of the splitting map is affine and G is compact, it follows that any pair
of equivariant horizontal subbundles can be connected by a smooth path of horizontal
distributions. Let s € [0, 1] parametrize a smooth path {77 W }c(o 1] such that T{'W =
THW and THW = T'HW. Similarly, let ¢7%, ht# and hP be the G-invariant metrics
on TZ, Lz and E, depending smoothly on s € [0, 1], which coincide with ¢g7%, hlz
and h¥ at s = 0 and with ¢4, h''z and h'F at s = 1. Let V and V' be equivariant
Euclidean connections on (T'Z, g7%) and (T'Z, g"%). By the same reason, we can choose
G-invariant connections VS, VEiz and VE on TZ, Lz and E preserving gTZ htz and h¥
such that Vo =V, V, = V', VOLZ VLZ, ViZ=vV'lz Vb =vVF VF=V E

Let S = [0,1] x S and pr’ : S — S be the projection. We consider the bundle
oW o= [O 1] x W — S together with the canonical projection Pr' : W — W.
Then TH W =R x THW defines a horizontal subbundle of TW and TZ = Pr"TZ ,
TZ hLZ hE

LZ = Pr’ LZ and E := Pr*E are naturally equipped with metrics ¢ and

connections 6 VLZ VE. Then the fiberwise G action can be naturally extended to
7 : W — S such that G acts as identity on S and gTZ hLZ hE V VLZ VE are G-
invariant. Let DZ be the fiberwise Dirac operator associated to (T HYy gTZ iz WE ).

Assumption 1.6. We assume that there exists such a smooth path such that ker D7 is
locally constant.

Under Assumption 1.6, from (1.73), we can define the connection Ver? 7 on ker DZ.
From [28, Theorem B.5.4], modulo exact forms, the Chern-Simons forms

1
AJTZ,V V') = —/ (A, (TZ,V)|%ds,
0

1 s o1 1 ~ *1
chg(le/Z,sz”,sz”) — _/ [Chg(LIZ/Q,VLZ/2)]deS7
(1.86) 0

~ ’ 1 ~ ~
chy(E,V#, V'E) ;:—/ [chy (E, VE)]%ds,
0

1 - _
Chg(ker DZ, VkerDZ’ V’ kerDZ) — _/O\ [Chg(ker DZ, vkerDZ)]dst



18 BO LIU

do not depend on the choices of the objects with ~. Moreover,

dA(TZ,V, V') =A,(TZ, V') = A, (TZ,V),
dehy (LY?, V4 V') = ehy (L2, V'E) — ehy (LY, WEE,
dehy(E, VP V'P) = chy(E,V'F) — chy(E,VF),

dchy (ker D, V¥ P? 'kerD?y — oy (ker DZ, V' P”) — ch, (ker DZ, V¥ D7),

1/2
z

(1.87)

Now we can obtain the anomaly formula for the equivariant eta forms.

Theorem 1.7. Assume that Assumption 1.6 holds.
i) When n is odd, modulo exact forms on S, we have

(1.88) 7 (T HW,gT% n'tz n'E N'tz N'EY — g (THW, "%, Wtz hP viz V)

:/Z A (TZ, V7% N'TZ) A chy(LY2, V5 ) A chy (B, V)
+ / A TZ, V7Y A chy (LY, V4 V') A chy (B, V)
79

+ | A TZ,V'TZ) A chy(LY2 V'E) A chy (B, VE, V'E).
79

ii) When n is even, modulo exact forms on S, we have
(1.89) 7 (THW, g% n'tz W'E NV'tz By - (THW, g%, hbz hP vhz vF)

_ /Z A,(TZ, V77,V T7) A chy (Y2, V) A chy (B, V7)
+ / A TZ,V'TZ) A chy(LY?, V54 V'V A chy (B, V)
VA

+ / A (TZ,V'T2) A chy (LY, V'H") A chy (B, VE, V')
79
. chg(ker DZ, vker DZ, v’ ker DZ)‘

Proof. Let B be the Bismut superconnection associated to (THW,ETZ, hL?, VE}, VE).
From (1.59),

~

~ 0 n
1. B=B,+dt N — — —dt
(1.90) , + /\at m

is the Bismut superconnection associated to the fibration (0,4+o00) x [0,1] x W —
(0, +00) x [0,1] x S. We decompose

~

(1.91) Vs Trlgexp(—B2)] = dt Ay +ds AT +dt Ads A" + 1",

where ~y, ', r” " do not contain dt neither ds and by (1.63),

(1.92) r'(t, s) = s Trlg exp(— BY)]"| 1.0
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From (1.65), (1.91) and Definition 1.3, we have

Y s 7 S 7

(1.93) g (TEW, gt %, hlz hE VL VE) = / v(t, s)dt.
0

~

Since (dt A & +ds A2 + ds)wsﬁ[g exp(—B2)] = 0, we have

87 or'

dS //
ds Ot

(1.94)

From (1.93), we have
ﬁg<TIHW,g/TZ,hILZ h’E v/LZ ) (THW gTZ hLZ hE VLZ VE')

:/+w(7(t 1) - / / V(1 5)dtds
(1.95) /+00/ —r'(t,s)dtds + d /
- / (1'(0, 5) — /{00, $))ds + & / / (1, )dtds.

The commutative property among derivative and integrals in the above formula is
granted by (1.72) and (1.77).

Let V77 be the Euclidean connection associated to (TH W, g7 ) as in (1.15). By
(1.70), (1.75) and (1.92), we have

t s)dtds

~ _ ~ _ ~ ds
(1.96)  +'(0,s) = {/Z A,(TZ,V77) A chy(LY?, V) A ey (E, VE)}

{s}xS
and
Mon oes) = J Tehlker DT VRPN it s even:
0, if n is odd.
Then Theorem 1.7 follows from (1.86), (1.95), (1.96) and (1.97).
The proof of Theorem 1.7 is complete. U

2. FUNCTORIALITY OF EQUIVARIANT ETA FORMS
In this section, we state our main result.
2.1. Functoriality of equivariant eta forms. Let W, VS be smooth manifolds. Let
m W =V, m: V — S be smooth fibrations with closed oriented fibers X, Y, with

dimX =n—m, dmY = m. Then 73 = mpyom : W — S is a smooth fibration with
closed oriented fiber Z with dim Z = n. Then we have the diagram of smooth fibrations:

X Z w

I

Y V S.
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Let TX, TY, TZ be the relative tangent bundles. We assume that T'X and T'Y have
the Spin® structures with complex line bundles Lx and Ly respectively. Let

(21) LZ:WT(Ly)(@LX.

Then T'Z have a Spin® structure with complex line bundle Lz. Recall the notations in
Section 1, we take quadruples (THW, 7%, htx VEx) (THV, gTY Rty VIv) and (TEW,
g'%, htz VL7) with respect to fibrations 7, my and 73 respectively. Then we can define
connections VI¥, VTV VTZ fundamental spinors S(T'X, Lx), S(TY, Ly), S(TZ, Ly),
metrics hSX, RS, hS7 and connections VX, VS, V7 as in Section 1.2. If U € TS,
U eTV, let U{H e THW, Ul € TEV, U € THW be the horizontal lifts of U’, U, U,
so that m . (UH) = U, mo (UF) = U, 73, (UM = U.

Set THZ := THW NTZ. Then we have the splitting of smooth vector bundles over
W,

(2.2) TZ=T"Z o TX,

and

(2.3) THZ = 1TY.

Let °V7TZ be the connection on TZ = TH7 7 & TX defined by
(2.4) 077 _ g TY g yTX

as in (1.16). Set

(2.5) Wiz = v @ 1 +1® VX,

Let DX and DZ be the Dirac operators associated to (THW, g7, VIx) and (THW,
g'%, VEiz). For v € V, let &x, be the set of smooth sections over X, of S(T'X, Lx).
We still regard &x as an infinite dimensional fiber bundle over V. For any v € V,
1,82 € Ex, as in (1.22), we define the scalar product

(2.6) (srosabi, = [ (si(a),sa(ohhx du,

where (-,-)x = hSX(-,-). Let {e;} be a local orthonormal frame of (T'X, ¢"¥). As in
(1.23) and (1.24), for U € TV, we set

o . 1
(2.7) Vi = Vih = 5 (Silenen U,

Then VX preserves the scalar product (-, ), .

We assume that ker DY is locally constant. Then ker DX forms a vector bundle over
V. Let P*rP¥ . & — ker DX be the orthonomal projection with respect to the scalar
product (2.6). Let A**P* be the L? metric induced by h5¥ and

(28) Vker DX = Pker DX vcgox,upker DX.

Then V2% preserves the metric h5r 2. Let DY be the Dirac operator associated to
(TQHV gTY /Sy @ker DX ).

Assumption 2.1. We assume that the quadruples (THW, g%, hix VLX) and (THV,
g™, htv VIv) satisfy the conditions that ker DX is locally constant and ker DY = 0.
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Let G be a compact Lie group which acts on W such that for any g € G, g -m =
m - g and w3 - ¢ = m3. Then we know that G acts as identity on S. We assume that
the action of G preserves the Spin® structures of TX, TY, TZ and the quadruples
(TEW, gTX hEx NVEx) (THV, g™V Wiy VEY) (TEW, gT%, htz VI2) are G-invariant.

On the other hand, we take another equivariant horizontal subbundle T:;H W cCcTwW,
which is complement of T'Z, such that

(2.9) THW c THW.
Let ¢7% be another metric on T'Z such that

Let V'7Z be the connection associated to (T37W, ¢7%4) as in (1.15).
Let S'(TZ, L) be the fundamental spinor associated to (g%, Lz). Then

(2.11) S(TZ,Ly) :=n*S(TY,Ly) ® S(TX, Lx).
Set
(2.12) hlz .= prply @ hEx,
Let
(2.13) g}TZ = 71g™ & T 27X

We denote the Clifford algebra bundle of TZ with respect to g/ Z by Cr(TZ). Let {f,}
be a local orthonormal frame of (TY,g™"). Then {Te;} U{ff}} is a local orthonormal
frame of (T'Z, g %). We define a Clifford algebra isomorphism

(2.14) Gr: Cr(TZ) — C(TZ)
by
(2.15) Gr(c(fyh) = c(fyh),  Grler(Te)) = cles).

Under this isomorphism, we can consider §'(T'Z, L) in (2.11) as a spinor associated to
(TZ,g7%). Let DZ be the fiberwise Dirac operator associated to (T3#W, g/, °V*#).

)

Comparing with [20, Theorem 1.5], we can get the following lemma.

Lemma 2.2. If Assumption 2.1 holds, there ewists Ty > 1, such that when T > Ty,
ker DZ = 0.

We will give another proof of this lemma in Section 4.3.
Now we state an analogue of Assumption 1.6 as follows.

Assumption 2.3. We assume that there exist an equivariant horizontal subbundle
TgH W C TW satisfying (2.9) and a smooth path constructed as the argument before
Assumption 1.6, connecting the quadruples (T#W, g"4, hlz, VEz) and (T3HW, g%,
h'lz OVLz) such that ker(DZ) = 0.

For any g € G, let TH(W|ye) = THW|ye N T(W|ys) be the equivariant horizontal
subbundle of T'(W|y4). We state our main result as follows.
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Theorem 2.4. If Assumption 2.1 and 2.3 hold, for any g € G, we have the following
identity in Q*(S)/d*Q*(9),

(2.16) 7y (THW, g7% Wbz Vhz) = j (THV, g, pby pler DT gl yer DY)

+/ A (TY, V™) Achg(Li/Q,ley/Q) ATy (TH(W o), g7, hEx, V)
Y9a

+ [ A (T2, V7%, OVTZ) A chy(LY?, VEE )
79
1/2 VL1/2

Z).

2.2. Simplifying assumptions. By anomaly formula Theorem 1.7, we only need to
prove Theorem 2.4 when (If/W, ¢"%, htz Viz)=(TH'W, g% h'tz, V’LZ). Therefore,
in the following sections, we assume that

W cTi'w, ¢ =g eng", B =mih™ @bt

- / A (TZ,OVT%) A chy (LY V2
Z9

2.17
(2.17) Viz = iviy @ 1+ 1@ VX,
Let
. 1
(2.18) g7 =mig"r @ ﬁgTX

and DZ be the fiberwise Dirac operator associated to (T4 W, g5%, V12). We assume that
ker DX is locally constant, ker DY = 0 and for any T' > 1, ker DZ = 0.

3. PROOF OF THEOREM 2.4

In this section, we use the assumptions and the notations in Section 2.2.

This Section is organized as follows. In Section 3.1, we introduce a 1-form on R, xR,.
In Section 3.2, we state some intermediate results which we need for the proof of Theorem
2.4, whose proofs are delayed to Section 4-8. In Section 3.3, we prove Theorem 2.4.

3.1. A fundamental 1-form. Let VZZ be the connection associated to (T W, g1.%) as
n (1.15). Let S;r be the tensor associated to (TH#W,T—2¢g"X) as in (1.17). Comparing
with [6, (3.10)] and [27, Theorem 5.1}, we have

(3.1) VTZ OVTZ+PTZS PTZ OVTZ+PTXS PTHZ+T1 PTHZS pTrz.
Let V52T be the connection on S(T'Z, L) induced by VEZ and V2. Set

(3.2) 0V .= VS @141 ® V5.
Then by (3.1),

(3:3) VT = OV 4 () (Jei, FIbele)el) + g (10 S L)

As the construction in Section 1.4, We consider the space S = R+ r xRy, xS, Let
prg : S — S denote the projection and consider the fibration 7 : W= Ryr xRy, X
W — 5. Let Pry : W — W be the canonical projection. Set THW = TRy xR,) &
Pri (THEW). Then TH W is a horizontal subbundle of TW as in (1.11). We define the
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metric g7Z such that it restricts to u=2g-Z over (T,u) x W. Let hlz = Pry,htz and
viz = Py, V2. We naturally extend the G-actions to this case such that the G-action
is identity on S.

We denote by Bs 27 the Bismut superconnection associated to (T4 W,u 2gh% hlz,
VEz). We know that the G-action commutes with this Bismut superconnection.

Let B be the Bismut superconnection for the fibration W3 , by the arguments
above (1.59), we can get

dT.

4 B B a2 9
(34) T = By + AT N o du Ao odu+ ™

Definition 3.1. We define 5, = du/\ﬁg—i—dT/\@g to be the part of ngvr[g exp(—éZ)] of
degree one with respect to the coordinates (T, u), with functions 3, BgT Ry xRy, —
Q*(9).

From (1.62) and (3.4), we have

( 1 OBs.2 1
— ———pg Tr, [g 2 exp(— B, )} , if n is even;
st~ ] VIV z e
9 1 OBs.2 7
o Teven ;U™ _B2 f . dd
(3.5 e e e B
. ( 1 w T |: aB37u27T ( BZ >1 if .
— o —=¥Yslls|g exXp(—D3 2, , 1 nis even,
gy ={ TV o
9 1 OBs.,
- ﬁws Trever [9 5”T2’T exp(—Bg,u;T)] : if n is odd.
\

By Definition 1.3 and Remark 1.4, we know that

—+00
(3.6) g (THW, g72 W2 V7)) = — i By (T, u)du

Proposition 3.2. There exists a smooth family ay : Ry p X Ry, — Q*(S) such that

0 0
(3.7) (du A g+ dT A aT) B, = dT A du d°ay,.
Proof. We denote by ay the coefficient of du AdT component of s Tr[g exp(—B?)]. Then
(3.8) s Trlg exp(—B2)] = ¢sTr[gexp(—B3 2 1)) + By + du A dT .

Since 1gTr[g exp(—B2)] and ¥sTr[g exp(— B} > )] are closed forms, we have

(3.9) (du A 82 +dT A %) wsTrlg exp(—B3 2 1)) — dT A du d°ay + d°,

(du/\aﬁdeT/\ )ﬁg—O

Then Proposition 3.2 follows from comparing the coefficient of dT" A du in (3.9). U
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Take ¢, 4,75, 0 < e <1 <A <o0,1<Ty< oo Let I' =T, 47 be the oriented
contour in Ry 7 x Ry ,,.

Ab---- 'z F
'3y U AT
Er---- | ? |
01 T
The contour I' is made of four oriented pieces I'y, - - - , I'4 indicated in the above picture.

For 1 <k <4, set I} = ka B,. Then by Stocks’ formula and Proposition 3.2,

. 9
(3.10) =1 B,= (du AN —=— +dT A —) B, =d° ( agdT A du) .
=], J

3.2. Intermediate results. Now we state without proof some intermediate results,
which will play an essential role in the proof of Theorem 2.4. The proofs of these results
are delayed to Section 4-8.

In the sequence, we will assume for simplicity that S is compact. If S is non-compact,
the various constants C' > 0 depend explicitly on the compact subset of S on which the
given estimate is valid.

Let Pry : V= Ry XV — V be the projection. For the fibration Vo S§= R, xS, let
(THV, 57, hlv  WIv) be the quadruple such that THV = T(R.) @ Pri(THV), Ghmy =
t~ gTY fort € Ry, v eV, Ly = Prj, Ly, hly = = Pr{h and viv = Pry, Vv, Let
hker DX and VRer DY be the induced metric and connection on the vector bundle ker DX
Let 5 and VS be the induced metric and connection on Pri,S(TY, Ly). We naturally
extend the G-action to this case such that the G-action is identity on Ry x S.

Let B, EQ and Bj,2 be the Bismut superconnections associated to (THV, g
hkerDX7 viv, VkerDX)7 (TQH‘//\" a8 hiy’ hkerD)?’ VZY, vkerD}?) and (T2HV’ u2gTY By
prer D X, Viv ykerD X) respectively. For any g € GG, let us decompose

(3.11) s Trlgexp(—B3)] = dt A a(t) + ra(t),

where v,(t), r2(t) € Q*(S). By Definition 1.3 and Remark 1.4,

TY L
hY,

+oo
(3.12) / Yo (t)dt = _ﬁg<TQI{‘/, gTY7 By hkerDX’ Vv vkerDX)‘
0
Theorem 3.3. i) For any u > 0, we have

(3.13) lim BT, u) = vy2(u).

T—o00
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ii) For 0 < uy < ug fized, there exists C' > 0 such that, for u € [uy,us], T > 1, we
have

(3.14) BT, 0)] < C.
ii1) We have the following identity:
(3.15) Tlirfm/l By (T, u)du = /1 Yo (u)du.
Theorem 3.4. We have the following identity:
. > T .
(3.16) ugrfoo/l By (T,u)dT = 0.

Let PrW|vg W|Vg = R, x W|ys — W]ys be the projection. For the fibration
W|vg — V9 =R, x V9, let (TH(/W|V9) GTX  hIx VZX) be the quadruple such that
THWlvs) = T(Ry) & (Pryy|ve ) TH(W o), ATX) = t2gIX for t € Ry, w € Wy,
Lx = (Prw|ve)*Lx, hlx — (Pry|ve)*hEx and vix = (PrW]Vg) VEix . We naturally
extend the G-actions to this case such that g acts trivially on V9.

Let B, be the Bismut superconnection associated to (T# (W|ys), 7>, VEx). For any
g € G, let us decompose
(3.17) Yvo Trlgexp(—=B})] = dt Am(t) +ri(b),

where 7 (t),r1(t) € Q*(S). By Definition 1.3 and Remark 1.4,
+oo
(3.18) / n(t)dt = =g (T (Wlys), g™, hPx, V),
0

By (1.44), A\Q(TZ, VTZ) only depends on g € G and RT?. So we can denote it by
A, (R"?). Let RLZ be the curvature of V17, Set

0 ~ ovEZ
3.19 T=——| Aj(RMZ+b—%).
( ) 7./4( ) ab o g9 ( T + aT
By a standard argument in Chern-Weil theory, we know that
(3.20) 93 JTZ, N7 NI7) = —y4(T).

orT

Proposition 3.5. When T — +o00, we have y4(T) = O(T~2). Moreover, modulo ezact
forms on W9, we have

=~ Fo0
(3.21) A (TZ, V2, 0VT2) = — / Y a(T)dT.
1

Theorem 3.6. i) For any u > 0, there exist C' > 0 and § > 0 such that, for T > 1, we
have

(3.22) 1B, (T, u)| <

ii) For any T' > 0, we have

e—0

(3.23) lim e 57 (T 1,;5):/Y R, (TY, V™) A chy (LY2, VY Ay (T).
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iii) There exists C > 0 such that fore € (0,1], e <T <1,

1/2
z

(3.24) g? )| <.

BT(Te™e) — / va(Te™) Achy (LY V"

Z9
iv) There exist 6 € (0,1], C' > 0 such that, for e € (0,1], T > 1,

C
T1+68"

(3.25) eBI(Te )| <

3.3. Proof of Theorem 2.4. We now finish the proof of Theorem 2.4 under the sim-
plifying assumptions in Section 2.2. By (3.10), we know that

To

A To A
(3.26) / BX(Ty w)du— | B7(T, A)dT — / S+ [T c)ar

1
=h+hL+1L+1

is an exact form. We take the limits A — oo, T" — oo and then ¢ — 0 in the indicated
order. Let Ij’?, Jj=1,2,3,4, k =1,2,3 denote the value of the part I; after the kth limit.
By [21, §22, Theorem 17], d€2(.S) is closed under uniformly convergence on compact sets
of S. Thus,

(3.27) 24: I? = 0 mod dQ*(S).
j=1

From (3.6), we obtain that
(3.28) I3 =0y (T5'W, ,g"7 0= Vh2).
Furthermore, by Theorem 3.4, we get
(3.29) L=1=0.
From (3.12) and Theorem 3.3, we conclude that
(3.30) I} = =i (TFV, g™ pEy pler DY gy gher DYy

Finally, using Theorem 3.6, we get

(3.31) 153:—/ Ay(TY, VYY) A chy (L2, V) A i (TH(W o), g7, mEx, VEx)
Ya

- / A (TZ, V7%, OVTZ) A chy(LY?, VEE)
79
as follows: We write
+o0 +oo
(3.32) By (T,e)dT = / e Bl (Te ", e)dT.
1 €
Convergence of the integrals above is granted by (3.22). Using (3.23), (3.25) and Propo-
sition 3.5, we get
(3.33)

+o00o -

1/2 +oo
lim e BN(Te™ e)dT = / A (TY, V) Ay (L2, V) A / 1 (T)dT
1

g
e—0 1 vy
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and

1

(3.34) lg% e! [ﬁgT(Te_l,a)dT — /Zg Ya(Te™) A chg(LIZ/27lez/2)} ar

) 1
_ / A, (TY, V) A chy (L2, VA7) A / (T)dT.
Y9 0
The remaining part of the integral yields by (3.24)
(3.35)

+o0 1
/ / ya(Te™) A chy(LY?, VE2)dT = / / T) A chy(LY?, VF*)dT
Z9 g

— [ A(TZ, V7", ONT%) A chy (LY2, V.

Z9

These four equations for I}, k = 1,2, 3,4, imply Theorem 2.4.

4. PROOF OF THEOREM 3.3

In this section, we use the assumptions and the notations of Section 2.2 except DZ is
invertible for any 7' > 1.

This Section is organized as follows. In Section 4.1, we make some estimates of the
fibrewise Dirac operator DZ. In Section 4.2, we write the operator Bz in a matrix form.
In Section 4.3, we state two intermediate results, from which Theorem 3.3 follows easily.
We prove one of them in Section 4.3 and leave the proof of the other one to Section 4.4.
In Section 4.5, we prove Proposition 3.5.

4.1. Estimates of D?’Q.

Definition 4.1. For v € V, b € §, let E,, Eo; (resp. E;;) be the vector spaces of
the smooth sections of 7T3A(T*S)®S(TZ, Lz) on X,, Zy (vesp. niA(T*S)RS(TY, Ly) ®
ker D¥ on Y;). For yu € R, let EX, Eg b E’f’b be the Sobolev spaces of the order u of sections
of MiA(T*S)RS(TZ, L), msNT*S)RS(TZ, L), msA(T*S)&S(TY, Ly ) @ker DX on X,
Zy, Yy, with Sobolev norms || - || x,s | - [ || - |y,

For v € V| in this section, we simply denote by P, the projection from Eg}b to ]E(l),b and
let PL =1— P. Let E)'" be the orthogonal bundle to E? in EY. Let B = E® N EA.

Let {e;}, {fp}: {9} be the local orthonormal frames of TX, TY, T'S respectively and
{e'}, {f?}, {g®} be their dual. Recall that Vé*:* is the connection in (2.7). Set

(4.1) VN = @ 1410 VA
Let
(4.2) DT = ¢(f] )Vf{,@"fx a

By (2.8), we have
(4.3) PDYp = DY,
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Let Sy and S3 be the tensor associated to (TV,g™) and (THW,¢"%) as in (1.17).
Let Ty Ty, T3, be the torsion tensors defined before (1.25) associated to (THW, g*%),
(TEV, g™V, (THW, g77). By (1.25), we have

(44) <T3(go€{37g£{3)7 f;fl) = <T2(9£{27ng)afp>-

From (1.28) and [4, Theorem 10.19], the Dirac operator DZ associated to (T W, g7%, V%)
can be written by

1
(45) DZ = DX + DH - §<T1( Ifl?f(fl)>€i>c<€i)c( fl)c( qH,l)
If we replace the metric g7Z by ¢g-Z, by (1.25), we have
1
(4.6) DZ =TDX + D¥ + 8_T<[ zi{l’ fl],ei>c(ei)c( ;Il)c( qu)

Definition 4.2. For s, s’ € Eq, we set

(4.7) |57, := lIsll5,

(4.8)  |slzy == 1Psllg + T2 Pslg+ Y|l OV%Z{ISH% + T2 ||V Prs§.
p i

Set

/
(4.9) |s|r—1 = sup |<S’,S >0|.
0#s'€E} |8/l

Lemma 4.3. There exist C1,Cy,C3 > 0, Ty > 1, such that for any T > Ty, s, € Eq,
(4.10) <D:%2573>0 > Cl|3’%r,1 - C’2|5]%0,
. [(DF?s,8)o| < Csls|rals|ra-

Proof. The proof of Lemma 4.3 is almost the same as that of [5, theorem 5.19]. For the
completeness of this paper, we state the proof here.

Easy to check that DZ is a fiberwisely self-adjoint operator associated to (:,-)o in
(1.22). Set

1
(4.11) Di = D" + o7l ot fan)seie(ede(f)e(fan)-
Then by (4.6),

(4.12) D7? =T?D*? 4+ DI + T[DX, DY,

The family of operators (DX, DH) is uniformly elliptic. So there exists C}, Cf > 0, such
that for T € [1,+o0], s € Ey,

(4.13) ID¥ s[5 + 1107 sl > Cillslli = Callslls.
Since ker DX is a vector bundle, there exists C} > 0,

(4.14) ID* P55 > Cyll Pl
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Using (4.13) and (4.14), we get for T' € [1, +00),

T -1
T|DYPs|l + || D7 Psllg = CHIP st + —5—[1D7 Psg
(4.15) ,
Cl(T? — 1)
NI i

By elliptic estimate associated to the norm || - ||x, and (4.14), there exists C%} > 0, such
that
(4.16) ID*Ps|l§ > €3 Y 11°VE7 PEs|is.

Let °R be the curvature of °V5Z — 1(S(¢;)e;, ). Then from a easy computation given
by [6, Theorem 2.5], we have

(4.17) (DX, DH] = c(e;)e(fH) <°R(ei, 1) 0ySz )

p,1 T1(8i,ff1)

Since Ti(e;, f}) € TX, [D*, D] is a fiberwise first order elliptic operator along the

fibers X. By (4.14), (4.16) and (4.17), there exists Cf,C§ > 0, such that for T > 1,
S € ]E(),

(4.18) [(T[D*, Drls,s)ol < T[D¥, DY]P~s, Prs)o| + Cyl|Pslls < CiT||D¥ P[5,

From (4.8), (4.12), (4.16) and (4.18), there exist C{,C% > 0, Ty > 1 such that for any
T > Tg, S € EO

(4.19) (D7*P*s, Pts)y > CF|PLslp,y + CilIP* s} — C3sl3.
From (4.12) and (4.13), we have

(4.20) (D77 Ps, Ps)o > Ci||Ps|[t — Gyl s]3-
Since

(DE?Pts, Ps)y = (Pts, DI* Ps),
:2<Pl8’ [ng P]DJI“{‘S)O + <PJ_S, [DZI!’ [Dillgv PHS>0

and [DI, P], [DE,[D} P]] are operators with smooth kernels along the fiber X, there
exists C§ > 0, such that

(4.21)

(422) (DE2PLs, Ps)ol < CHlslrall PEsllo.
As in (4.18), there exists C] > 0, such that
(4.23) (T[DX, DE|P+s, Ps)o| < CJ|P*s|r.1||Ps|lo-
So by (4.12),
(1.24) (DZ2PLs, Pshol < (CY + CJ)slralslro.

Since [°V97, P] and [°V¥%, P+] are bounded operators, there exists C' > 0, such that
(4.25) 1P~ sl + [1Psll = )l Vi sl + Y I0VEEPs|§ — Cllslis.

p i

So from (4.19), (4.20), (4.24) and (4.25), we get the first inequality of (4.10). The second
inequality follows directly from (4.12) and (4.18).
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The proof of Lemma 4.3 is complete. U
2
1 AA
> T
-1 0
1 "

Let A be the oriented contour in the above picture.

If A e Z(EY) (resp. Z(Ey',E})), we note ||A| (resp. |A|;"") the norm of A with
respect to the norm || - ||o (resp. the norms |- |7y and |- |7;). Comparing with [14,
Theorem 11.27], we have the following lemma.

Lemma 4.4. There exist Ty > 1,C > 0, such that for T > Ty, X € A, the resolvent (A —
D?’Q)_1 exists, extends to a continuous linear operator from Eg' into E}, and moreover

Iy = D7)~ < C,
(426> Z2\—1|—-1.1 2
[(A = D7) < CL+ A7

Proof. Since D7, is fiberwisely self-adjoint, for A € C\R™, (A — DZ?)~! exists.
For \=a+i€C, seE

(4.27) (D7 = N)s, s)ol = |55
So there exists C' > 0, such that for any A € A,
(4.28) I(A = D7*) o < Clisllo-

So we get the first inequality of (4.26).
For A\g € R, \g < —2C%, by (4.10), we have

(4.29) (R0 = D7*)s, s)ol > Culsli,-
Then by (4.9) and (4.29),

o — DZ%)s, s
(4.30) |(Ao — DZ*)s|r_y = sup (o L )5, 5ol > 48|71
0#s' €E} ||
For \ € A,
(4.31) (A= D7) = (N — DI+ (A= X)) (A = D7) (N — DZ*)7L

From (4.28), (4.30) and (4.31), we deduce that (A — DZ?)~! extends to a linear map
from E;' into EY and

(4.32)
|(A = D7) slro < [(Xo — DZ*) sz + [Ao — AJ(A = D7) (o — DF?) sl
< CrYslr—1 + ClAo — M(Ao — D7) s|r
< (CTM 4 CCTH Ao = A slr,—1-
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On the other hand,
(4.33) (A= DZ*) ™ = (N — D)7+ (A = No) (Ao — DZA) N (A — DZ*) 7

So from (4.30), (4.32) and (4.33), we deduce that (A — DZ*)~! extends to a linear map
from E;' into E} and

(4.34)
(A = D7) s < (Ao — DZ2) 7 slra + (Ao — Al[(Ao — DZ2)7H(A — DZ2) sl
< CrYslr—1 + CTHXo = AN = DE) 7 Ls|rg
< (CTH 4 Cr' o = Al(CTH 4+ CCTY X = A])s] -1

Then we get the second inequality of (4.26). OJ

4.2. The matrix structure. In the sequence, if ar (T € [1,+0o0]) is a family of tensors
(resp. differential operators), we write that as T' — +o0,

1
(4.35) ar = 0o + 0 (ﬁ) ;

if for any p € N, there exists C' > 0, such that for T" > 1, the sup of the norms of the
coefficients of ap — a, and their derivatives of order < p is dominated by C/T k.

Recall that & is the infinite dimensional fiber bundle over S, whose fibers are the set
of smooth sections over Z of S(T'Z, Lz). Comparing with (1.24), for U € T'S, we define
the connections on &%

. 1 1
OV = OV — S(Sslen)en, Us) — S(Ss(fH, 1), Ush),
(4.36) bl :
Vipht = ngH’T - 5(53(61-)@1», Ug') — §<53(ff1, )08,

By (3.3) and (4.36), we have

p,1 p,1

£ u 7 U 1
(4.37) vérTu = 0yés + 57 (S1(U5es, fydelee(fh).

Recall that Bs,zr is the Bismut superconnection associated to (T4 W, u2g%%, hlz,
V.2). Denote by Bsr = Bsir. From (1.28), (1.33), (2.14), (4.6), (4.4), (4.36) and
(4.37), we can calculate Bsp and Bj 2 1 exactly.

Proposition 4.5. For T > 0 and u > 0,

- c(T: 1
(438) By =TD% + 09 1 D7~ VD S in (g 5 cefee f)e(rh)

1 1
+ o5 (5 (gh)es, [ ele)e(fi)g™ A —8—T<T3(gff,3, gh's), eele)g® A goa,
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and

u

8_T<Tl( zf,ilafql,{l)>€i>c(€i)c( ;{,{1)0( (fl)
1

+ OV ﬁ(sl(gg)% Tye(e)e(f) g™ A

_ C(TQ) 1

du  SuT (T5(Ggs Ghia)s e)elen) g™ A g” A

Let & be the infinite dimensional fiber bundle over S, whose fibers are the set of
smooth sections over Y of S(TY, Ly) ® ker DX. By (1.24), for U € T'S, we define the
connections on &y

(4.39) Bs,er =uTDY +uD™ —

Sy U v ®ker DX 1
(4-40) Vg C= széf@k P §<52(fp)fpa U2H>
From [27, Theorem 5.2}, we have
(4.41) (S3(fpr 31 Us') = (Sa(fo) f U2 ).
So by (2.7), (2.8), (4.36), (4.40) and (4.41), we have
(4.42) v = poyézup,

Recall that B, is the Bismut superconnection associated to (TZV, ™Y hly | pker P¥ kv
VrD®) and By, = u?3,2Byd . Then by (1.28),

(4.43) By = DY + V¥ — (Ty) /4.

Lemma 4.6. For any T € [1,+00|, the operator PBs P is a superconnection on E.
When T" — +o0,

1
Proof. Set
(4.45) C=vér 4 DH — oTz)
4
By (4.39), we have
1
(4.46) PB3yrP = PCP + O (T) :
From (4.3), (4.42) and (4.43), we get
(4.47) PCP = Bs.
So Lemma 4.6 follows from (4.46) and (4.47). O
Set
0B
(4.48) Br = B2 +udu A 5 gf’TduQ.
Then By is a differential operator along the fiber Z with values in A(T*(R, x S)). Set
B
(449) Bu,T = u26u26T5;21 = Bg,uQ,T + du A 0 ST

ou
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Then by (3.5), we have

(4.50) By = s Trlg exp(—Bur)]™ = 56,2 Trlg exp(—u’Br)] ™.

From Proposition 4.5,

_,0Bj3,2 c(Tz) 1
1 3,u?,T o X H 2 -
(4.51) 0. 5 dp2=TD" + D" + 4 +0 (T) .
Set
0By 2
(4.52) By = B2 +u2du N6} 226,
v Ou
By (3.11), we have
(4.53) Yo (1) = 1,2 Tr[g exp(—u?Bs)] ™.

From (1.33), (4.43), (4.51) and Lemma 4.6, we have

1
(4.54) PBrP =B, + O <f) .

Put
Ep = PBpP, Fr= PBrPt,

4.55
(4.35) Gr = P*BrP, Hp = PtB;yPt.

Then we write By in matrix form with respect to the splitting Eg = E? @ E?’l,

_( Er Fr
430 s (B0

Similarly as in [27, Theorem 5.5], we have

Proposition 4.7. There exist operators E, F,G, H such that, as T — +o0,
Er=E+0(/T), Fr=TF+0(1),

(4.57) Gr=TG + O(1), Hr =T*H + O(T).
Let
(4.58) Q=1[D%.Cl.

Then Q(EY) C E?’L, and Q) is a smooth family of first order elliptic operators acting

along the fibers X. Moreover,

E = P(C*+u%du A (DY —c(Ty)/4))P, F = PQP*,
(4.59) i LnX2pl
G = P-QP, H=P-D""P~,

and

(4.60) B,=FE—FH'G.
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Proof. By (4.38) and (4.45), we have

1
(4.61) B3y =TD* +C+0 <?) .
From (4.48) and (4.55), we get (4.59).

Let "Rz be the curvature of V52 — 2(Ss(e;)e;, -y — 3(Ss(f4) £, ). Asin (4.17), we
have

57U o, H ;
[D¥, Ovézy] = clei)gs™ A <ORZ(€iagg3) o OVTS»Z(%HQ:%)) 7

(4.62) | P .
(OVz)2 = g&H A gd A (032(953,953) - vz )

T3(9§{379£{3)

and Ti(e;, glls) € TX, Ts(gls, gl5) € TZ. By (4.17), (4.45) and (4.62), we know that
Q = [D¥,(C] is a smooth family of first order elliptic operators acting along the fibers X
and Q(EY) c E*.

By (4.43), (4.52) and (4.59), we know that
(4.63) E— FH'G = P(C* +u2dun (DY — c(Ty)/4))P

— PCD¥* PH(D*?)72P+D*CP = (PCP)* + udu A (DY — ¢(Ty)/4) = B,
The proof of Proposition 4.7 is complete. 0

4.3. Proof of Theorem 3.3. If C is an operator, let Sp(C') be the spectrum of C'. The

following lemma is an analogue of [8, Proposition 9.2].
Lemma 4.8. For anyu >0,T > 1,

(4.64) Sp(Bz) = Sp(D"?),
Sp(B..r) = Sp(u*DZ?) = Sp(u*Br).

Proof. We only prove the first formula. The proof of the second one is the same.
By (4.43), set

1 2 1
(4.65) R := By — D¥? = (vfy’“ — Zc(T2)> + {DY, Vo Z—lc(Tg)]

1 Y c(T3)
—i-@du/\(D — 1 )

Take A ¢ Sp(D¥?). Then
(4.66) (A=By) ' =(A=D") 7T = (A= D) "R(A = By) .
Inductively,

A=By) ' =(\=D"H' + (A= DV?)'R(A - D¥*)~!
(4.67) ) . "
+(A=D")"RA =D RA =D ...

Since R has positive degree in A(T*S), the expansion above has finite terms.
By elliptic estimate, there exist ¢, co > 0, such that for any s € Eq,

(4.68) I(A = D™*)sllvo > cillsllyz — czllsllyo-
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Then there exists ¢ > 0 such that
(4.69) (A= D) slys < —H 0 + ||( — D) sllyo < cllslyo-

From (4.62) and (4.65), there exists ¢ > 0 such that

(4.70) IRsllvo < cllsllva
By (4.67), (4.69) and (4.70), there exists ¢ > 0, such that
(4.71) 1A = B2)*sllvio < cllsllvo-
So A ¢ Sp(By).
Exchange By and DY?| we get the first formula of (4.64). O

By Lemma 4.8, we have

exp(—
exp(—u’Br) = / d)\,
\/_ A — B
(4.72) 2m ep(— r
—u’B / d)\.
exp(—u'By) = o~ \/— . 82

Lemma 4.9. There exist Ty > 1,C > 0,k € N, such that for T > Ty, X € A, the
resolvent (A — Br)™! emists, extends to a continuous linear operator from Ey' into E,

and moreover

I(A = Br)7Hl < O+ [AD",

4.73

47 [(A = Br) M < C(L+[AD~.
Proof. Set

(4.74) Ry = By — D77

By (4.17), (4.38), (4.48) and (4.62), we know that Ry is a first order fiberwise differential
operator along the fiber Z. Moreover, from (4.8), for i = —1, 0, there exists C; > 0, such
that for any s € Ef,
(475) |RTS|T71' S C,‘|S|T7i+1.
Take A € A. Then
(476) (A=Br)™ = (A= Df*) "'+ (A = D7*)'Re(A — D7)

| - (A= DI Ry~ DEY) Ra(A = DFY 4

Since R has positive degree in A(T*(R x S)), the expansion above has finite terms.
From (4.75), and (4.76) and Lemma 4.4, there exist Ty > 1,C > 0,k € N, such that for
T > Ty, A € A, the resolvent (A — Br)™! exists, extends to a continuous linear operator
from E;! into E}, and moreover
I(A = Br)7Hl < O+ AD",

(4.77) i .
(A= Br)""|p 7 < C(L+ A"

The proof of Lemma 4.9 is complete. U
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Similarly, there exist C > 0,k € N, such that for A € A, the resolvent (A — By)™!
exists, and for any s € EY, s’ € E{', we have

(4.78) 1A = B2) ' sllvio < C1+ A Isllvo,
' I3 = B2) ™' llya < O+ AN Il

Replacing By by Hr and D?Q by PLD?2Pl in the proof of Lemma 4.9, we can get
the following lemma.

Lemma 4.10. There exist Ty > 1,C > 0,k € N, such that for T > Ty, A € A, the

resolvent (\ — Hy)™" exists, and for any s € 2", we have

(479) 1A = Hr) sl < C(1+ [AD*Is]lo,
| (A= Hr) 'slra < CL+ A" [slr1.
Choose s, s' € g such that s = (A — Br)~'s’, A € A. Then by (4.55), we have

Ps' = (A — Ep)Ps — FpP*s,

(4.80) P+s' = —GrPs+ (A — Hr)Pts.
Let

(4.81) Er(A\) =\ — Er — Fr(A— Hy) 'Gr.
Then

(4.82) PO\ —Br) 'P =&AL

By (4.82) and Lemma 4.9, there exist Top > 1,C > 0,k € N, such that for T'> Ty, A € A,
S € Eo,

1Er(N) " sllo < C(1+ [AD*[Is]lo,
Er(A) " slmy < O+ IAD* sl -1
Lemma 4.11. There exist C >0, Ty > 1, k € N, such that for T > Ty, A € A, s € Ey,

C(L+[AD
T

(4.83)

(4.84) [(Er(N)™ = P(A = By) ™' P)s|lo < []]o-
Proof. We know that
(4.85) Er(N) L= P\ = By)'P = PEL(N)THN = By — Er(V) (A = By) 7P,
By (4.60) and (4.81),
(4.86) A\ —By—Er(\) = Er+ Fr(A\— Hy)'Gyr — E+ FH'G
=Er—E+ (Fr —TF)(\— Hy) 'GrPs+ TF((A\— Hy) ' + T*H Y)GrPs
+T'FH Y Gy — TG)Ps.

From Proposition 4.7, there exists C' > 0 such that for s, s’ € E,

C
(4.87) |(Er — E)Psllp < 7||P8||1,
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and

(4.88) (GrPs,s)o| < C||Ps||1|s|r.1-
By (4.88),

(4.89) |G Ps|r—1 < C||Ps||;.

Similarly, we have
C
(490) ‘(GT — TG)PS|T’,1 S T“P‘Sul

Since [P, OV‘;IZ{] is a bounded operator, by Proposition 4.7, there exists C' > 0, such
p,1
that for s € Eq, we have

(4.91) ||Frso < OTZ 10V Prsllo+C ) ||P0v§§1pis||o
7 p
< OTZ 1072 P s+ C Y [P, OVfIg]PLsHo < Clslr,.
4 P

From (4.91), we have
C
(4.92) I(Fr = TF)sllo < llsllz.
So from (4.8), (4.89), (4.92), Proposition 4.7 and Lemma 4.10, we have

C
H(FT — TF)(/\ — HT)_IGTPSHO S T|(/\ — HT)_IGTPS|T’1

(4.93)
C(1L+ Ak C(1+ |A)*
OO g, g, < Sy
By (4.75), there exists C' > 0, such that for any s € ES’L,
(494) |(HT — T2H>S|T’_1 S Oi|S|T,0-

From (4.8), (4.14), (4.89), (4.94), Proposition 4.7 and Lemma 4.10, we have
| TF((\— Hp)™' +T*H )G Ps||o
<C|(A\— Hy) "\ — (Hr — T*H)T*H 'GrPs|r
<ON||(A— Hy) M (T*H) ' GrPs|r,
+C|(\ — Hp) ™ (Hp — T*H)(T*H) *G7Ps|r,
(4.95) <O+ )T H) ' GrPslr—
+ C(1+ |(A\)¥|(Hpr — T*H)(T*H) ' GrPs|r 4

CL+ AD* C(L+[AD

S T2 |GTP8’T7_1 + T2 ”GTPSHO
CL+ AN

<= |Ps.

From (4.14), (4.16) and (4.59), there exists C' > 0, such that for any s € Eg", we have
(4.96) (T*Hs,s) > COls|r,.
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By (4.96),
(4.97) (T?°H) sy < Clslr 1.
From (4.90), (4.97) and Proposition 4.7, we have
IT FHAG(T)Ps|ly < C|(T*H) Y (Gy — TG)Psla.

(4.98) C
S C|(GT —TG)PS|T’_1 S THPSHl

Therefore, from (4.86), (4.87), (4.93), (4.95) and (4.98), there exists C' > 0, such that

C+ AP
T

(4.99) [(A =By = Er(A)) Ps|lo < | Ps]|s-

Then Lemma 4.11 follows from (4.78), (4.83), (4.85) and (4.99). O

Lemma 4.12. There exist C' > 0, Ty > 1, k € N, such that for T > Ty, X € A,

k
1PO - B P PO - By ey < ST RE
14+ [M\)F
1P~ By e < CEE A
(4.100) 1
1P+ By < CEEAE
_ C(1+ Ak
1PH - By < CEEAT

Proof. The first inequality follows from (4.82) and Lemma 4.11.
By (4.80), we find that

P\ = Br)'Pt =& (N Fr(A — Hy) ™Y,
(4.101) PO\ —=Bp)'P = (\— Hp) '\Gr&Er(N) 7,
P\ —Bp) Pt = (N~ Hy) (1 + GrP(\ — Br) ' PH).
From (4.83), (4.91) and Lemma 4.10, there exists C' > 0, such that for s € Ey,
1Ex(N) T Fr(X = Hr) "' Prsllo < C||[Pr(X — Hr) ™' P*sllo

(4.102) O
<C|(\ — Hp) 'Prs|ry < O+ |A)* PLs|r_y < %

From (4.8), (4.83), (4.89) and Lemma 4.10, there exists C' > 0, such that for s € Eo,

Isllo-

I(A = Hr) "' Grér(N) "' Psllo <

k
_Ca+)
- T

k
_Ca+)
- T

1
T|(>\ — HT)ilGTET()\)71PS|T’1

k
(irEr (0 Pef s < S0 D

C(1+|A[)*
T

(4.103) |Er(N) 7" Ps]lx

1Er(\) " Ps|ry <

||8||0-
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From (4.102) and (4.103), there exists C' > 0, such that for s € Ey,
(A = Hr) "' GrEr(\) " Fr(X — Hr) ™' Psllo

< 53— ) prsg < SRS g
T T

From (4.8) and Lemma 4.10, we have

_ 1 _ C(1+ |A)*
(1.205) [\~ Hr) sl < (3~ Hr) sl < S prgy

C(L+[AD*
< THSHD-
By (4.104) and (4.105), we get the last estimate in (4.100)
Then the proof of Lemma 4.12 is complete. O

We assume that ker DY = 0. There exists ¢; > 0, such that Sp(B;) = Sp(DY?) C
[2¢1, +00). By Lemma 4.8 and Proposition 4.12, we know that when 7' is sufficiently

large,
(4.106) Sp(D7?) = Sp(Br) C [c1, +00).

Note that in this section, we need not assume that ker DZ = 0. Therefore, we get another
proof of Lemma 2.2.
2y

O 1

Let A’ be the oriented contour in the above picture. Then all the estimates in this
Section hold for any A € A’. From (4.106), there exists Ty > 1, for u > 0, T > T,

1 e—uzz\
4.107 —u’Br) = d.
( ) eXp( “ T) 271'\/ —1 A/ )\ — BT

From (4.72) and Lemma 4.12, we get the following theorem.

Theorem 4.13. For ug > 0 fized, there exist C,C" > 0 and Ty > 1 such that for T > T,
U 2 Uo,

(4.108) | exp(—u?Br) — Pexp(—u®By)P|| < %exp(—C”uQ).

Let exp(—u?Br)(z, '), Pexp(—u?By)P(2,2') (2,2 € Zy,b € S) be the smooth kernels
of the operators exp(—u?Br), P exp(—u®B,)P calculated with respect to dvz(2).
By using the proof of [25, Theorems 5.22] and the fact that ker DY = 0, we have
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Proposition 4.14. (i) For uy > 0 fized, form € N, b € S, there exist C,;C" > 0, Ty > 1,
such that for z, 2" € Zy, u> uy, T > T,

glal+a|
(4.109) sup

lal o |<m | 02202

(i1) For ug > 0 fized, for m € N, b € S, there exist C,;C" > 0, Ty > 1, such that for
Z,Z, € Zb; U Z Uo, TZT(D

glal+a’|

exp(—u’Br)(z,2")| < Cexp(—C'u?).

(4.110) sup

lafla’|<m

P exp(—u2By) P(2, /)

- < 2 )
9200, < Cexp(—C'u?)

The complete proof of Proposition 4.14 is left to the next subsection.

From Proposition 4.14 i), we get Theorem 3.3 ii).

Let inj? be the injectivity radius of (Z,, g"%). For z € Z,,, we will identify B=%(0, ¢)
with B%(z,¢) by the canonical exponential map when ¢ < inj?.

Let ¢ : R” — [0,1] be a smooth function with compact support in B(0,inj?/2), equal
1 near 0 such that [, ¢(W)dv(W) = 1. Take v € (0,1]. By Taylor expansion and
Proposition 4.14, there exists ¢ > 0, such that
(exp(—u2Br) — Pexp(—u2By) P)(uW, oW1

—(exp(—u*Br)—P exp(—u?Bs) P)(0,0)| < cvexp(—C'u?)

for |W|, |W'| are sufficiently small. Then for U, U’ € E,

|{(exp(—u?Br) — Pexp(—u?By)P)(0,0)U, U"),

(4.111)

(4.112) - /Rn Rn((exp(—1,L2BT) — Pexp(—u?By) P) (oW, oW U, U

x QW)W )dv(W)dv(W')| < co|U||U"| exp(—C"u?).
On the other hand, By Theorem 4.13,

/ (exp(—u2Br) — P exp(—u2By) P) (oW, o W)U, '),
(4.113) o < S(W)p(W")dvo(W)dv(W"))|

< U exp(—C'u?).
Take v = T~ #+1. From (4.112) and (4.113), we get
(4.114) |(exp(—uBr) — Pexp(—u?Bz)P)(0,0)| < ¢ T~ exp(—C'u?).
Therefore, we can get the following theorem.

Theorem 4.15. For uy > 0 fixed, there exist C,C" > 0, Ty > 1, § > 0, such that for
u > ug, T > Ty,

(4.115) bsd,2Tr[g exp(—u?Br)] — 10,2 Tr[g exp(—u®Bs)]| < % exp(—C'u?).

By (4.50) and (4.53), we can get Theorem 3.3 by taking the coefficients of du in (5.5).
The proof of Theorem 3.3 is complete.
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4.4. Proof of Theorem 4.14. Recall that we assume that S is compact for simplicity
in Section 3.2. There exist a family of € sections of TY (resp. TX), Uy,---,U,
(resp. Uj,---,Ul), such that for any y € V (resp. = € W), Ui(y),---,U.(y) (resp.
Ui(z),-- ,Up(x)) span T,Y (resp. T, X).

Definition 4.16. Let D be a family of operators on Ey,
(4.116) D= {POVSZ P+ PLOVY PE P OVSZPL}

Note that in [25, (5.60)], the corresponding set of operators is stated as {pr OV
PF OVA(T*(O’I)Z)@){p%, P OVU,T*(O H2)ee p7}. We need to read [25, (5.60)] as Dy =

(0.1) «(0.1) ©0.1)
{p TOV (r=®D2)a pr+ pr OV (e Z)®£p LOVA(T RREES p7}. In this way, the cor-

respondlng commutator (@1, [QQ, o [Qp, AR -] has the same structure as A2 (see the
following proof of Lemma 4.17).

Lemma 4.17. For any k € N fized, there exists Cy, > 0, Ty > 1 such that for T > Ty,
Q1, - ,Qr € D and s,s € E2, we have

(4.117) [([Q1: [Q2, -+ [Qr, Brl, -+ ]Is, 8")ol < Cilslrals|r1-

Proof. Set . be the set of uniformly bounded operators along the fiber X with smooth
kernel. Set

0, = {aij ng? ng% +b : aij € cgoo(v[/’ C(TZ)),b € y}7

wiy O {aﬁvg% b a € CF(W,C(T2Z)),b e y},
O, = {bpqovsz OV 0,005 + 0OV b 0 € EF(W,C(TZ)),
bogs by, b € Y.
By (4.17), (4.38), (4.48), (4.51) and (4.62), we can split the operator By such that
(4.119) Br = T?P+A, P+ 4+ T(P+ Ay P+ + PA, P+ + PTALP) + As,

where A; € O, Ay, A}, € Oy, A3 € O3.
First, we consider the case when k£ = 1.
a) The case where Q) = POV P + Pt OVSZ Pt
b). ng% band b OV,

We observe that if b € .%, so are [OV‘;}% ,

Then we have

Q. PP = P- (|55 A + VS5 P Av+ Ay [V P ) P
L Q. P AP = P+ (V55 As) + |°V5 P A+ A, | V35, P ) P,
(Q, PA,P] :P([ngi,,A’} OV P Ay - Ay [0V P ) P
Q. PP = P+ (V55 A = [ V55 . P| A+ 4, | V75 P|) P,

A(T*OD) 2\
( )fp

?
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and [DVfﬁ,l,Ai] €0, A [Ov;ji]l,P} co, [vaﬁ,l,A’Z] € Oy, A, [ngﬁl,P] € ©,. For
the elemegt in O3, since the prfhcipal symbol of EQ is identity, we have TQ, As] € Os.

So [@, Br] has the same structure as By in (4.119).

b) The case where Q = P+0Vo7 PL.

As in (4.120), we have

/
k3

Q. PAAPY = P- ([ OV, A + VP A + A POVEE ) P,

o Q. PH4,P) = P (0957, 45| + V57 P Ay + A, POV ) P,
4.121 o ' '
Q. PALPH = P (V37 4,

| S

+ Agpovg%) P,

Q, PrA,P] = P* <_0v;§§,A’Q' - ngfPAg> P

Since [@, A3] € O3, we know that [@, Br] has the same structure as By in (4.119).
¢) Higher order commutators
The estimate of higher order commutators are obtained inductively from a) and b).
The proof of Lemma 4.17 is complete. ([l

For k € N, let D* be the family of operators @ which can be written in the form

If k € N, we define the Hilbert norm || - ||} by

k
(4.123) Islé=>_ > losls.

(=0 QeD*

Since [OV‘;,Z{ ,P], P°V3Z and °VSZP are operators along the fiber X with smooth
p,1

kernels, for any 7" > 1, the sobolev norm || - ||}, is equivalent to the canonical sobolev
norm || - ||
Thus, we also denote the Sobolev space with respect to || - ||}, by Ef.

Lemma 4.18. For any m € N, there exist p,, € N, C,, > 0 and Ty > 1 such that for
T>Ty,, e A, s € Ef,

(4.124) (A = Br) ' sllhy1 < Con(L+ (AP |Is]],,-
Proof. Clearly for T' > 1,
(4.125) Is[l} < Clslz1.

When m = 0, we obtain the lemma from (4.125) and Lemma 4.9.
For the general case, let Zr be the family of operators

(4126) ‘@T:{[Qi]?[Qi27.'.[Qip7BTj|7..':|j|}
where Q;,, -+ Q;, € D. We can express

(4.127) Q1 Qrpar(A = Br)™



FUNCTORIALITY OF EQUIVARIANT ETA FORMS 43

as a linear combination of operators of the type
(4.128) A —=Br) " Z(\N—Bp) ' %o B (N — Br) ' Qugr - Qrar, K <k,
with %, -+, % € %r. By Lemma 4.17, we have
(4.129) | %S| < |S|r1.
From (4.125), (4.129) and Lemma 4.9, we have

I\ = Br)sllin < C D 1Q2 - Quat (A = Br) sy
<CY NN = Br) "\ BN = Br) '\ Ry - - B (N = Br) "' Qugr -+ Qrgasly

(4.130)
<Cr(1+ |A[)P Z |Qrry1 -+ Qrtasllo
<Cr(1+ [A) (Il
The proof of Lemma 4.18 is complete. 0

Now we can complete the proof of Theorem 4.14.
From (4.107), for any k € N*,

By = [ s U e
(4.131)  exp(—uBr) = 270 Jar (A — BT)d)\ S 2miuk! ar (A= BT)kd)\.

By Lemma 4.18, there exist C' > 0, » € N* such that for any m’-order (resp. m”)
fiberwise differential operator R (resp. R') along Z, m',m" > n/2, choosing k > m/+m”,

(4.132) IR\ = Br) ™" R'sllo < Cl|(A = Br) ™ R's|l,y < C(L+[A)"[Is]o-
From (4.131) and (4.132), there exist C,C" > 0, such that
(4.133) | Rexp(—u?Br)R's|lo < Cexp(—C'u?)]|s]|o.

Now applying Sobolev embedding theorem, for R” a fiberwise differential operator of
order m' —n/2 along Z, there exists C' > 0, such that for any s € Eq,

(4.134) |R" exp(—u?Br)R's|go < Cexp(—C'u?)|s]lo,

and

(4.135) (R" exp(—u*Br)R's)(z) = /(R;,Rgexp(—u2BT)(z,z/))s(z’)dvz(z/),
z

here R!, acts on S(T'Z, Lz)* by identifying S(T'Z, Lz)* to S(T'Z, Lz) by h®z. Thus, we
have
(4.136) | R R exp(—u?Br)(z,-)|lo < Cexp(—C'u?).

Applying the Sobolev embedding theorem to the z’-variable, from (4.136), we can get
(4.109).

From (4.78), for any m € N, there exist p,, € N, C,, > 0 and Ty > 1 such that for
T>Ty, e A, s e Ef,

(4.137) [1P(A = Ba) ' Ps|lr 1 < Con( 1+ [ADP|| P,
Following the same process, we get (4.110).
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4.5. Proof of Proposition 3.5. Let Ny be the number operator acting on T'Z such
that for s € TZ,

(4.138) NxP™s=pPTXs  NxP""%5=0.
Let
(4.139) 'VIZ =T NxvlZrhx,
Let 'R1Z be the curvature of 'V1Z. By (3.1), we have
1 1
(4140)  VEF = OVIE 4 (PTYS PTE 4 PTTAS PTY) 4 o PTTS PTY,
Then by 3.19, we have
o R a/VTZ
4.141 T)=—| Ag('R}7+b—1).
( ) ’Y.A( ) ab b0 g ( T + aT
From (4.140), we have
oAvEd

(4.142)

1
o7 = O (ﬁ> and 'RYZ =0(1).

Then Proposition 3.5 follows from 'VZZ = V72,

5. PROOF OF THEOREM 3.4 AND THEOREM 3.6 1)

In this Section, we use the notations in Section 4.

Set
: 0B,
(5.1) By = B2, +dT A a:;T'
By (4.38), we have
OB 1
(52) —2t = DX — o ((fh fih edelede(Fh)e( 7))

+ <[9£37 9,4]3{3]» ei)c(es) g™ A gﬂ A +4(S1 (953)% ffﬁc(eﬁc(fﬁﬁg“/\) .

By Definition 3.1, we have
(5.3) Bg(T, u) = wséuzﬁ[g exp(—u*By)] ™.

Recall that By is the Bismut superconnection in (4.43). Comparing with (4.54), by
Lemma 4.6, we have

1

(5.4) PB.P =By + O <f> .

By (5.4), if we replace By to B/, and By to By, then everything in Section 4 works
well. As an analogue of Theorem 4.15, we can get the following theorem.

Theorem 5.1. For ug > 0 fized, there exist C,C" > 0, Ty > 1, § > 0, such that for
u = ug, T > Ty,

T / T C /
(5.5) V56,2 Tr[gexp(—u?By)] — V56,2 Tr[gexp(—u?By)]| < 73 exp(—C'u?).
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Take s > 0. By replacing 7" to sT" in Theorem 5.1 and taking the coefficient of ds,
forsT > Tj, we have

<

¢ = exp(—C'u?).

(5.6) 0,2 Tr[g exp(—u?B.;)]%* T

By (5.3), for T' > T, we have

(5.7) BI(T,u) = 56,2 Trlg exp(—u?Bly)) 4T

s=1

= T7' g8, Tr]g exp(—uBl,)] %

s=1 '
From (5.6) and (5.7), for ug > 0 fixed, there exist C,C" > 0, Ty > 1, § > 0, such that for
u > ug, T > Ty, we have

(5.8) 87(T, 0)| < %exp(_guz).

Then we get Theorem 3.4 and Theorem 3.6 i).

6. PROOF OF THEOREM 3.6 1I)

In this section, we use the notations in Section 2.2, 4, 5 and assumptions in Section
2.2.

In the first three subsections, we prove Theorem 3.6 ii) when dim Y and dim Z are all
even. In Section 6.4, we discuss the other cases. In Section 6.5, we prove the technical
result Theorem 6.5.

6.1. The proof is local on 7, (V7). Recall that B} is the operator defined in (5.1).
As in (4.49), we set

8B3,62,T’

(6.1) L) = €202B.05 = Bi o g+ AT A 5

T'=Te—1

By Definition 3.1, we have

(62) B (T /e, ) = s Trlg exp(—BLy, )]

Precisely, by (4.39), we have

(6.3) Bseo2q/e = TD* + D" + 5—2<[ R eele)e(f)e(f)

8T p,1v Jg,l p,1 q,1
voginn = AT C g e p)eleel( )9 A
4e 2T 1 ga,S 2 Jp,1 7 p,1 gs
1 (0%
+ 87([9537953]7600(61')9 AGoA,
and
_ 833752’71/ 1

(6.4) TS D* — @((52[ TR eadee)e(f)e(f1)

+4e(S1(gls)es, i ele)e(f) g5 N +(lgts, ghls), ei)eler) g™ A g° ).



46 BO LIU

Set Bi|ys be the Bismut superconnection associated to (T (W|y.), g7~ , htx, VEx).
For ¢ > 0, we denote 6, the operator on A*(T*V9) by multiplying by t~"/2. As in (1.32),
set
(65) Bl,T2‘V9 = T5¥2 o Bl|Vg o (5¥2)71-

As in (4.49), we set
aBLT2

(6.6) Telve = (Burelvs)® +dT A =

vy
Then by (3.17), we have

(6.7) N(T) = voTrlg exp(—Bfa|vs)] "

In the first three subsections we assume that dimY = m and dim Z = n are all even.

Let d¥, dV be the distance functions on V, W associated to g7V, ¢"". Let Inj",
Inj" be the injective radius of V, W. In the sequel, we assume that given 0 < o <
ag < inf{Inj",Inj""} are chosen small enough so that if y € V, d¥ (¢ 'y,y) < «, then
d"(y,V9) < sap, and if z € W, dV (g2, 2) < «, then dV (2, W9) < 1ay.

Let f be a smooth even function defined on R with values in [0, 1], such that

(65) ro={ g o

For t € (0,1], a € C, set

Fi(a) = +oo cos(ﬂva)e’gf(ﬁv) dv :
(6.9) /_Oo var

Gi(a) :/ Oocos(\/§va)e_§(1 - f(\/z_fv))\;l;}_w

Clearly,
(6.10) F,(a) + G(a) = exp(—a?).

The functions Fy(a) and Gy(a) are even holomorphic functions and the restrictions of
Fi(a), G¢(a) to R lie in the Schwartz space. So there exist holomorphic functions Fy(a)

and Gy(a) on C such that

(6.11) Fi(a) = Fy(a?), Gyla) = Gy(a?).
From (6.10), we deduce that
(6.12) exp(=By).) = Fa(Blyy) + Ge (Bly)).

Fix b € S. For z,2/ € Z,, let f‘az(B;T/E)(z,z’) and ég(BéT/E)(z,z’) be the smooth

kernels associated to F .2 (B 1/.) and G. (BL r/.) with respect to the volume form dvz(z').

Lemma 6.1. For § > 0 fized , there exist C1,Cy > 0, such that for any z,2' € Z,
0<e<9y, T>1,

(6.13) G .2 (B: 1)(2,7)

T2
< Ciexp (—C; ) )
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In particular,

(6.14) ‘ws Tr, [gG (B, H < eXp( Ojf) .

Proof. By (4.38), (5.1) and the elliptic estimate, there exists C' > 0 such that for any
T>1,

(6.15) Isll2 < ClIBsllo + CT|s]lo.

Then for a m-order fiberwise differential operator () along Z with scalar principal symbol,
by (6.15), we have

(6.16) [|Qsl2 < ClIBQsllo + CT*|Qsllo < CllQBEsllo + CT?[|Qsllo + CI[Br, Q]s]lo-
By (4.38) and (5.1), we have

(6.17) 1Bz, Qsllo < CT?||s]|m+1-

Thus we get the estimate

(6.18) Isllm+2 < ClIBysllm + CT?||sllmsr < CT*([|Brsllmrr + [I3llmra).

By induction, there exist ¢, > 0 for 0 < k < m, such that
(6.19) Isllm < T°™ Y " il (Br)*s]lo-

Let B} be the adjoint of B/.. Similarly, we have

m

(6.20) Isllm < T " il (BE)*sllo-

k=0

For m-order fiberwise differential operator @, for m’ € N, by (6.19) and (6.20), we have

/ " N 52 / /
(B Gy (7a80) Qs

* £ 62 * s«\m’ _/ ~ 52 * 1\’
oo =|(s0Cs (ﬁB’T) s )| < @ (5 ) @i | sl
- /% 52 /% rs\m’ 1
< (@G, (56r) @] sk
k=0 0

By [8, (11.18)], for m € N, there exist ¢/, > 0 and ¢ > 0, such that for any 0 < ¢ <9,
T>1,

m |~ g? cT?
(6.22) ?\1612 |Al ‘G;Z (ﬁ)\)‘ < exp <—5—2) .
From (6.21) and (6.22), there exists ¢y, »» > 0, such that

m! = 52 CT2

0
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Let P be a fiberwise differential operators along Z of order m’. Then by (6.19) and
(6.23), there exists ¢, ., > 0, such that for any 0 <e <4, T > 1,

~ 52 , — 52 , . CT2
620 |G (5mr) ] <[z (Fmr) ] <o (-57),

Following the same process in (4.134)-(4.136), there exist Cy,Cy > 0, such that for
any 2,2 € Z,,0<e <0, T >1,

m

~ 52 02T2
(6.25) ‘sz (ﬁB/T> (2,2")| < Crexp (— = ) .
Since B’% = ;—22(552 B.6;, we get the proof of Lemma 6.1. O
’ T2 T2

Using Lemma 6.1 with e = T and T replace by T'/e, for T > 1 fixed, we find

(6.26) ‘GSQ Bl )z, Z)’ <0 exp( 522) |

‘%Trs [9G52( T/ ” <Cy eXp( ;2) .

From (6.12) and (6.26), by the finite propagation speed for the solution of the hy-
perbolic equations for cos (s1 /B. T/E> (cf. [19, §7.8] and [32, §4.4]), it is clear that for

0<e<1,T>1,z72 € Z,if d (mz mz2) > a, then
(6.27) F.o(B..)(z,2) =0,
and moreover, given z € Zj, PN‘Ez(B;T /5)(2, -) only depends on the restriction of B’ crye b
a Y(BY (12, a)).

Let U,, (V) be the set of y € Y}, such that d¥ (y, V) < ap/4. We identify U, (V}?) to
{(w,U) : y €Y, U € Nyoy,|U| < ag/4} by using geodesic coordinates normal to Y9
in Y, where Nyq,y is the real normal bundle associated to g € G in Y. Let dvy, and

dvy, be the corresponding volume forms on TY? and Ny induced by ¢g”¥. Then there
exists the function ky on U, (Y}?), such that

(6.28) dvz(2) = ky (y,U)dvys(y)dvn, (U)dvx (z).
Thus, from (6.27),
Tr, [gf‘ez (B;T/E)}

= [ T [gFa By o5 )] dve(e)

/YH/GN|U|<%/4/ T [ngQ(BaT/E)( Ly, U, ), (y,U,z))
- ky (y, U)dvys (y)don, (U)dvx ().

Therefore, from (6.2), (6.29) and Lemma 6.1, we see that the proof of Theorem 3.6 ii) is
local near 71 (V9).

(6.29)
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6.2. Rescaling of the variable U and of the Clifford variables. By (1.34), (3.3),
(4.41) and (6.1), we have

Lrje = = (TOVE + S(Si(e)es, S eles)el £15)
(S e, PR + 5 {Salees, alla)eles)g A
oSl UG A+ (Su(e oty g™ A o7 )

CdT A (c<el.> VS (U S edele)el S fD)

+42(S1 (gl 5)es, [ ele)e(fiT)gs A +(glls, gé"g] e)c(e)g® A g’A))

6.30
( ) — g2 (OV?Z + ﬁ<51( )eu H>C(€z)c( ;,Il) + <S3(fp 1)62>ga 3> (6 )ga/\

(S g ) g A

2
2e 422 <52(fp)ga2a952>9 /\gﬁ/\)

e T ., Te 1, o H
+ Ky + R e ¢)clei)el(ey) + - B (en fia)ele)e( )

4 4
RLZ( p,1s ;,11)0( ;{1)0( 1)+ RLZ(9a3a953)9 /\95/\
+ §RLZ( 517953)0( 51)9& A +§RLZ(61'>QZ3)C(61')9§C’ N

Set

/ 1 1 «
H) = Ovsle - 5(51(%)61‘;,}651) + 2_E<S2(fp)fq7952>c(ff1)g A
(6.31) ’ P 1

4 2 <52<fp)ga 2> 93, 2>g /\gﬁ A

Recall that &y, = €°°(X,,, S(I'X, Lx)), which is naturally equipped with a Hermitian
product attached to g% and hS% as in (1.22). By (1.24), the connection V' preserves
the scalar product on &x.

Take yo € V9 and ma(yo) = b. We identify B (yo, ap) with B(0,aq) C T, Y = R™
by using normal coordinates. Take a vector U € R™. We identify TY |y to TY |0y by
parallel transport along the curve ¢ — tU with respect to the connection VY. We lift
horizontally the paths ¢ € R} ~ tU into paths t € R} — xz, € Z, with 7, € Xy,
dr,/dt € THZ,. 1f 2 € X,,, we identify Th, X, S(TZ,Lz)a, to To, X, S(TZ,Lz)a by
parallel transport along the curve t — x; with respect to the connection V¥, V’. Then
we can define the operator B, ;. to a neighborhood of {0} x X, in T),)Y" x Xy,.

Let p: T,,Y — [0, 1] be a smooth function such that

o-{}

Let ATY be the ordinary Laplacian operator on T,,Y.
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Recall that ker DX| v (0 a0/2) i & smooth vector subbundle of &, on BY (yo, o/2).

If ap > 0 is small enough, there is a vector bundle X' C &%, over T,,Y, which coin-
cides with ker D¥ on B(0, ag/2), with ker DY on T, Y\ B(0, ap), such that if K is the
orthogonal bundle to K in &, then

1 X
(6.33) K* Nker DX = {0}.

For U € T,Y, in the following sections, let PX be the orthogonal projection operator
from &y, to Ky. Set PX+ =1 — PE.
Set

(6.34) Lig=(1-p(U) (= AT + T2PF D Ppt) + p*(U)(BLye)-

Comparing with (6.26), for any m € N and T > 1 fixed, there exist C7,Cy > 0, such
that for |U|, |U'| < ap/4, 0 <e <1,

(6.35) G2 (LL7) (U, z), (U, )| < Cyexp (—%) :

For (U,x) € Nys vy, X Xy, |U| < ag/4, € >0, set
(6.36) (Se8)(U,x) = s(U/e, x) .
Put
Ly = ST LpSe = (1= p(eU)) (=S ATV S, + T2 Pl Dy Py )

6.37
(637 + p*(eU)S'BL 1) e

Let dimT,,Y? = I" and dim Nys,y,, = 2I". Then ' + 21" = m. Let {fi,---, fv}
be an orthonormal basis of T}, Y? and let {fy41,-- -, fr4o} be an orthonormal basis of
Nyayy,. For a € C(fP A iy )i<per, let [@]™%® € C be the coefficient of f1 A -+ A fU' in
the expansion of «. Let R. be a rescaling such that

Re(c(ei)) = c(e),

p,H/\
(6.38) R (c( ]fl)) S — e, for1<p<lUl,
R(e(f1)) = e(f5), for V' +1<p<l+2"

Then R, is a Clifford algebra homomorphism. Set

(6-39) L?,T - Ré(Lg,T)'

Let eXp<_L2,T)((U7 I>7 (U/7 13/)), F€2 (Lf;‘,T)<<U7 l‘), (U,7 I/)) ((U7 I)a (U/7 SL‘/) < TyOYXX?JO?
i = 1,2,3) be the smooth kernels of exp(—LZ ), F.2(L ;) with respect to the volume
form dvr, y(U')dvx,, (7). Using finite propagation speed as in (6.27), we see that if

(U, .CI]) S Nyg/y’yo X Xy07 ‘U‘ < CYO/4, then

(640) ﬁez( Q,T/s)(g_l(ym U, J]), (y07 U, x))ky<y0a U) = ﬁEQ(L;,Tﬂg_I(U? l’), (Uv l‘))
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By (6.12), (6.26), (6.35) and (6.40), there exist Cy,Cy > 0, such that for |U| < /4,
T € Xy,

’ eXp(_B;T/a)(g_l(yO) U7 .CC), (y(]a Ua l’))kY(ym U)

6.41
(64 (L™ V) U)) < Crewp (- 2).

Since T,,Y; is an Euclidean space, on T;,Y},
(6.42) S(TY, Ly)y, = S(TY))&S(Nysy) ® L3/,
where S(-) is the spinor space. From (6.38), we know that L2 (U, z), (U’, ")) lies in
(6.43)  mA(TyS)S(End(A(T*Y?))EC(Nysy) @ End(Ly/*)),, & End(S(TX, Ly))
and acts on
(6.44) ATy )R(ATY DS (Nyosy) @ L), OS(TX, Lx).

Recall that ¢rys is the trace element defined in (1.8).

Lemma 6.2. Fort >0, (U,x) € Nyo/vy, X Xy, and g € G, we have

645) [ oo, [ Trlaesp(LLo) ™ (V). (W) (), (©)dox (o)

[U|<ap/4

= o Jis JoFr e e (07 @) )]
\<040/4E
- dvye(y)dun, (U)dvx ().
Proof. From (6.37) and the uniqueness of the heat kernel, we have
(6.46) exp(—Lg,T) =St exp(—L;T)SE.

For U e T,Y, z € X,, supp¢ C B(0,ap/2) x X,,, we have
/ / exp(—L2 1) (U, 2), (U, ) (U, & )dvpy (U )dvx ()
Ty Y
=(exp(—LZ7)¢)(U,x) = (S exp(~Li7)S:0)(U.x) = (exp(—Li7)S:0)(eU, z)
(6.47) / /exp (—LLp) (€U, ), (U, 2"))(S-0) (U, 2" )dvry (U')dvx ()
TUO
=gdim¥ / / exp(—LéT)((eU,m),(5U’,x'))¢(U’,x')dva(U’)de(:p’).
T,V J X

Thus,

(648) exp(—L;T)(g_l(U, ZE), (U7 J])) = g—dimY eXp(—Lg’T) (g_l(U/€7 ZL‘), (U/ga CL’)) :
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By (1.8), (1.10), (6.43), (6.48) and the definition of L? ., we have

Tr. [gexp(=Lig) (97! (U/e.2), (U/e,2))] ™
(6.49) = Gy I [gexp(=L2g) (97 (U/e,2), (U, )]

=Sy N Tr, [gexp(—LL ) (g7 (U, 2), (U, )] .

The proof of Lemma 6.2 is complete. U

6.3. Proof of Theorem 3.6 ii). Let K~ be the scalar curvature of the fibers (T'X, 7).
Comparing with [6, (3.15)-(3.17)], for T > 1, we can compute that

(6.50) lim eKf. = T°K*~.

Let I be the connection form of V', which is defined in (6.31). By using [1, Proposition
3.7], we see that for U € TY = R™,

(6:51) T = S (V2. + O(UP).

Lemma 6.3. For U,V € TY, the following identity holds.

1 1
(6.52) (V)0 V) = ZURTX (UL, Vifes, eg)cles)ele;) + 5 RE (U, Vi)

+ (R (Lo J)U Vel fph)e(f3h) + i<1?JTY(952, 952)U, V) g™ A g” A

4e2

— S(Si(een ML V) + 5= (B (o gl)U VIl f)g° A

N

Proof. By the fundamental identity of [6, Theorem 4.14] (see also [27, (7.15)]), for Z, W €
TV,

(6.53) (R™(U, V)P Z PTYW) 4 ((SoP™Y So) (U, V) Z, W)
+ (VIY S\ (U, V) Z, W) = (RTY (Z, W)U, V).

Since Sy maps TY to THV | we have
(6.54) (8P S) (U V) fy =0, (VTS (U V), fo) = 0.
Then Lemma 6.3 follows from (6.31), (6.53) and (6.54). O

Lemma 6.4. When ¢ — 0, the limit L} ; = lim._, L2 exists and

1 S|
(6.55) L plve = — (810 + Z<RTY|V9U, f;ﬁ)) + ERLY|V9 + Bizz|va.

Proof. By (6.51) and Lemma 6.3, we have



FUNCTORIALITY OF EQUIVARIANT ETA FORMS

)

(6.56) lim R.» 52V [0Se2] = ), + lim R [€2(S-H(V)2S)(U, £,)]

=04 3 B Uy U ST A S A (R (6l U, )" A g

1<q,r<l

b5 ST B g £ A g A

1<q<l
Then by (6.30), (6.50) and the definition of L2, we have

(6.57)

_ 1
L = <T°fo w1 S (suedes fhbeten s
1<pV

‘Fff > QﬂﬁﬂﬂﬁuﬁiﬂmquA+é@%0%k¢gigquﬂA

1<p,g<V’
1 H _H\ ¢p a 1 H H\ « B ’
+om D (Sa(e)fh 0da) P A gt A o (Ss(en) g, 989 A g

1<p<l/

+dT A (DX - ( ST (U FAL edele) 7 A A

1<p,q<l’

+4 > (Si(glly)en £h)ele) f7 A g™ A+(gks, gbls) en)elen)g® A gﬁ/\))

1<p<l

1 T
- <8p+1 Z <RTY(U7fp)fq7fr>fq/\f/\

1<qr<l’

2
1 1
+ LB )0 95209 N N5 Y (BT (U, fo) fa ghia) f* 1 go%)
1<q<l/
2

2
+ I" px + T—RLZ(% ej)c(ei)c(e;) + g > R (e, fI)elen) fPA

4 4 P,
1<p<l
1 1 .
5 D BEERL SN FON AR (gl g8s)9" A g
1<p,g<V

1 N T N
T3 Z RE(fh, g8l3) P N g% A —i—ERLZ(ei,gg?,)c(ei)g?, A
1<p<l
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By (1.34) and (6.5), we have

(6.58) (Bz|ve)® = — (T0v32+ > (Silee, £ )eley) fo1

1<p<¥’

+% D (S F A fq/\—i—%(Sg(ei)ej,gg?))c(ej)ga/\

1<p,q<l’

1 1 ?
+ﬁ Z <S3<€Z)fplaga3>fp/\g /\+ <S3(ez)ga3agﬁ3>g /\gﬁ/\)

1<p<V
T2 T T
+ IKX + ZRLX (62', 6j)C<€i>C(€j) + 5 Z RLX (Gi, fl)c(ei)fp/\
1<pV

1 1
T Z REX(LL, FI TP A FON +ZRLX(Q£{3,gg3)gO‘ A gPA

1<p,g<V

1 o T a
LS R g A+ DR gl 1
1<p<¥’

S0
S|
(6.59) lim L= (3 + - (RTY|VQU o, 1>) + §RLY|VH + Bre|vs.
The proof of Lemma 6.4 is complete. U

Theorem 6.5. i) For T > 1 fized and k € N, there exist ¢ > 0,C > 0,7 € N such that
for any (U,z),(U',2") € T,,Y x X, € € (0,1],

(6.60)  sup

laf,la’|<k

exp(— L) (U, ), (U, x’>>\

<c(1+|U|+ U exp(—=C|U — U'?).
ii) For T > 1 fized, there exist ¢ > 0,C > 0,r € N, v > 0, such that for any
(U,x), (U, 2") € T, Y x X, € € (0,1],
(6.61) [(exp(—LZy) — exp(—Lg ) (U, z), (U, 2))]
< e (L+ U]+ [U'])" exp(=C|U = U'P?).
The proof of Theorem 6.5 is left to the next subsection.
On the vector space Nyq/y,,, there exists ¢ > 0, such that for any U € Nyq,y,,,
(6.62) lg7'U = U| > c|U].

Then by (6.41), Lemma 6.2, 6.4, Theorem 6.5 and the dominated convergence theorem,
we have

lim ¢ T [g exp(=BL 7. )]

(6.63) L
/ / / Zryve s Tra [gexp(— L3 ) (g7 (U, 2), (U, 2))] do(U)dvx ().
Y9 JNyg;y
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By Mehler’s formula (cf. [24, (1.33)]) and (1.47),
/X Tr, [gexp(— L 7) (g™ (U 2), (U, 2))] dvx ()
(A bdimY g ] R™ /2 R™ /2
=(4m) det ( ) exp <tanh RTY/Q)U U>

i) o -
< B2 (R j2)U g1U>}

1 Y /2
= R / flU g 1U
4 tanh(RTY/Z) sinh(R™Y /2)

6.64
(6.64) p
2
Trs[g\S(N)] A Tr [g exp (——RLY|Vg)] A Trg[gexp(Bi r2|va)l.

Following the same computations in [24, (1.33)-(1.38)], by (1.43), (1.44), (1.56) and
(6.63), we have

(665) ll_rf(l) wS Trs [g exp(_B{e,T/e)]
=g / Crys(4m)”
vo

Using (1.55), (6.2) and (6.7), we get Theorem 3.6 ii) when dim Z and dimY are all
even.

dlm Y9I

1/2 1"
Uh (Rg(TY, V) Ay (132, VA7) A by Tr[g exp(Bia) v )

6.4. General case. When dim Y is odd and dim Z is even, by (1.10), following the same
process in this section, we can get an analogue of (6.65):

(6.66) lim g Tro%[g exp(—B;,T/a)}
e—0

:ws/y ETY9<47T)

dlm Y9

1/2
Uvh (Ry(TY, V™) Ay (132, VA7) A by Tr[g exp(Bla) v )

Then Theorem 3.6 ii) in this case follows from (1.55), (6.2), (6.7) and (6.66).
When dimY is even and dim Z is odd, it is the same as the case above.
When dimY and dim Z are all odd, by (1.10), as in (6.66), we have

dim Y9

(6.67)  lim g Tr,[g exp(=BL 7.)] = 2v/ 11 / Cryo(4m)” 2
@szg < ,(TY, V) Ach o(L i/z,VL;/Q) A Pyg Tr[gexp(8%2|vg)]> )

Since the left hand side of (6.67) takes value in even forms and dim Y7 is odd, by (1.7)
and (1.55), we have

(668) }Cli% wS Trs [g eXp<_B;,T/e)]

= / KQ(TY, VI A chg(Lly/Q7 VL;/Q) A Pye TroY g exp(Bls|ve)]-
Yy

The proof of Theorem 3.6 ii) is complete.
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6.5. Proof of Theorem 6.5. We prove Theorem 6.5 by following the process of [14,
Section 11] and [7, Section 11].

Let I° be the vector space of square integrable sections of w5 A(T*S)@A(TY )RS (Nys )y )®
L;/Q@S(TX, Lx) over T,,)Y, x X,,. For 0 < ¢ < dimY?, let I(? be the vector space of
square integrable sections of w3 A(T*S)RAYTY )RS (Nys/y) ® L;P@S(TX, Lx). Then
I° = @ZZOIS. Similarly, if p € R, I? and I} denote the corresponding p-th Sobolev
spaces.

For U € T, Y7, set

(6.69) g (U) = 1+ (L4 [UP)p (TU) .

If s € 1), set

(6.70) |s

20 :/ [5(U, 2)*9-(U)*"Vdvry (U)dvx ().
Ty Yo X Xy
Let (-, -)c0 be the Hermitian product attached to | - |. 0.
So, for 1 <p <!l s eI, we can get
(6.71)
2 2 2
|Ljvizao/2l UL (F7 A —€%ig,)s]. o = [Leppiao2lULP A 8| + [Levizao ol Ule?is, 8|

:/ ISRIU(1 4+ (14 [U]2) 520D g (1)
|U|<32

+/ EsPU (L + (1 +|U]2)2) 2P Doy (U).
lU|<32

Since there exists C' > 0, such that
U]
1+ (1+|UP)z ~

we have the following lemma.

(6.72) 1, UPQ+ @+ |UP)I)?<C,

Lemma 6.6. The operators l.uj<ao/2(f? A —€%is,) and 1ui<ay2|U|(fP N —€%iy,) are
uniformly bounded with respect to the norm | - | .

Lemma 6.7. (¢f. [14, Theorem 11.26]) For T > 1 fized, there ezist ¢y, ca,c3,c4 > 0,
such that for any e € (0,1], s € I',

Re<L§,TS’ $)e0 = C1|3|g,1 - C2|5’z,07
(6.73) |Im(L§’7T$, $eol < csls|c1l$]0,
(L2 s, 8")c0l < calslenls’]eq.

Proof. let V denote the gradient in the variable U. Since p has compact support, there
exists C' > 0, such that

(6.74) IV (g:(U))] < C.

From Lemma 6.6 and the definition of L2 ;., we can get Lemma 6.7. O
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As in (4.9), set

/
(6.75) |s]c.—1 1= sup M.
0#£s'ell \5 |s,1

Lemma 6.8. There exist ¢,C' > 0 such that if

(6.76) AeU = {AG(C:Re()\) <

the resolvent (A — L2 ;)™ exists, and moreover for any ¢ € (0,1], s € I',

’()‘ - Lg,T)ilsls,O < C|S|€,07

6.77
(6:77) = L) sl < O+ A5l

Proof. Take ¢y in Lemma 6.7. If A € R, A\ < —2¢,, for s € I', we have

(6.78) Re((Lg’yT —N)s, 8)eo > cl\s|§’0.
So
(6.79) |slo0 < e (L2 p — N)sleo-

Since |s|0 < c(g)]s]o for ¢(e) > 0,
(6.80) [slo < Isleo < e (L — Msleo < cle)er (L — Mslo.

So (LZp — A)~" exists for A € R, A < —2¢;.
Set A =a+ib € C. Then by Lemma 6.7,

[{(L27 = A)s, 5)eol = max{Re(L? s, 5)c0 — als|2 o, Im(L2 15, 5)e0 — bls|Z|}

(6.81)
> max{ey|s[2) — (c2 + a)ls|Z g, —csls|ealsleo + [blls[Z o}
Set
(6.82) C(\) = inf max{c,t* — (cz +a), —cst + |b]}.

teR,t>1

If ¢ > 0 is small enough, we can get

(6.83) co = )l\IellfJ C(A) > 0.

Since |s|.0 < |s|c1, if the resolvent (A — L2 ;)" exists, then
(6.84) (A= L2p) " sleo < ' Isleo-

From (6.84), if X € U, [N — A < ¢o/2, then the resolvent (X — L2 ;)" exists. By (6.80),
we get the first inequality of (6.77).
For \g € R, \g < —2¢; and s € I', by Lemma 6.7, we have

(6.85) (Ao = L2 7)s, 8)e0| = cals]Z .

Following the same process in (4.30)-(4.34), we get the second estimate of (6.77).
The proof of Lemma 6.8 is complete. U
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Set Dy = {9,, Vox}. Set

k
(6.86) k=2 > 1@ Quslp:

=0 Q;€Dy

As in Lemma 4.17, since [Q, L? ;] has the same structure as L? ;- for Q € Dy, for any
k € N fixed, there exists Cj > 0 such that for ¢ € (0,1], Q, -+ ,Qx € Dy and s,s" € I?,
we have

(6.87) ([Q1, Q2+ [Qu, L], -+ ]]5, ") el < Ciklslen] sz
Then using the proof of Lemma 4.18, we can get the Lemma as follows.

Lemma 6.9. For any ¢ € (0,1], \ satisfies (6.76) and m € N, there ezist C,, > 0 and
Pm € N, such that

(6.88) (A= L) slemsr < Con(L + [ADP" [3]c,m-
Set
I 2
(6.89) [ =0U = {AGC:Re(A): H;(Cé) —02},
and
(6.90) I"={\eC:|Im)\ <c}.

Then the map A — A? sends I to I'. Let A = =A™ + D*2 For A e I, k,m € N and

k < m, from Lemma 6.9, there exist C, > 0 and p/, > 0 such that
(6.91) AN = L2 7)™ sle0 < [(A = LEg) sl
' <CR(L+ MNP (A = LEg) ™" Fsle0 < Cp(1 + A [s]0.

*

Denote by L:;’ZT the formal adjoint of L? ;, with respect to the usual Hermitian product

in 7° Then Li’} has the same structure as LgT except that we replace the operators
fPA, iy, by iy, and fPA. For s € I), set

(6.92) = [ )P0 oy (U)dox ).
Tyo Yo X Xyg

From the above analysis associated to | - |, we obtain (6.91) for Lg’} and |-|.,. Taking
adjoint with respect to the usual Hermitian product in I°, we have

(6.93) (A= L27) 7" A |0 < Cr(1+ |A)P[s]c 0.
So for k,k',m € N and m > k + k', there exists C > 0, such that
(=)™ (m —1)!

|Ak eXp(—Lg’T)Ak,S|€70 = ‘ /e_AAk(/\ — LS’T)_mAk/s
r

271 0

(6.94) <Chr (/ e M1+ |)\|>p;”d>\> |s]=,0
r

=Chir (/ e_’\2(1 + |/\2|)”;"d)\> 15]c.0 < C|sleo-
F/
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Take p € N. Let J°, be the set of square integrable sections of A(Tvg)®S(Nyg/Y) ®

p;Yo

L%P@S(TX, Lx) over
1
(6.95) {(U,x)GTyOYnyO;xEXyO,|U| §p+§}_

We equip .J), with the Hermitian product for s € .JJ, .

(6.96) 151500 —/ / s(U, z)Pdvr,, ydvux.
U\<p+2 Xy
Obviously, there exists C' > 0 such that for any p € N, s € ngo
(6.97) 5100 < Isleo < C(L+ D) I3]0

By (6.94) and (6.97), we find for any & < m, k' < m/, there exists C’ > 0 such that
fore € (0,1], pe N, se J°

Pyyo?

(6.98) |Ak exp(—Lg,T)Ak/skp)vo < |AF exp(—Lg,T)Ak/s , < C'(1 —|—p)l/|s|(p) 0

g,

Thus, following the same process in (4.134) - (4.136), for k, k' € N there exists C' > 0,
r > 0 such that for e € (0,1], p € N,

(6.99) sup  |Aly Ak exp(—LE) (U, ), (U, ') < C(L+ p)'.
|UI,|U'[<p+1/4

So we get the bounds in (6.60) with C' = 0.
By (6.9) and (6.11), we write

(6100) Gu(LLr)(U; ), (U',2))
e 3 Iy -2 dv
:/_ cos (\/iv, /L&T) (U, z), (U, z")e" 2 (1 — f(\/ﬂv))\/%

[e.9]

Lemma 6.10. There exist C1,Cy > 0, r > 0, such that for e € (0,1], m,m' € N,

(6.101)  sup (3505, Gu(LE D) (U, @), (U, )| < Ci(1+ U] + |U'))" exp(‘%)

|B]<m,| 8’| <m/

Proof. After replacing exp(—L2 ) to éu(LgT) in (6.94)-(6.99) and using (6.22), we get
Lemma 6.10. O

If [v/uv| < /2, then f(y/uv) = 0. Using finite propagation speed of the hyperbolic
equation for the solution of hyperbolic equations for cos(sy/L2,) (cf. [19, §7.8], [32
§4.4]), there exists a constant Cj > 0, such that

(6.102) Gu(LE ) (U, 2), (U',2") = exp(LE ) (U, ), (U', ")),
if |[U—U'| >4/
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Then by (6.102) and Lemma 6.10, For m, m’ € N, there exists C;,Cy > 0, 7 > 0, such
that for € € (0, 1],

sup {0007, exp(—L 1) (U, @), (U',2")
[B|<m,|B'|<m’

(6.103)

Co|lU — U'|?
< Ci(1+ U]+ |U'|)" exp (—u) )

2
Co

So we get the bounds in (6.60).

For U € T,,)Y, set U = U,f,. Let |- |ox be the limit norm of |- |.; as ¢ — 0 for
k € {—1,0,1}. Note that all the estimates in this subsection work for ¢ = 0. For
ke {-1,0,1} and k' € N, set

M = {sel: U*sel" for |a| <K'}.
For s € I(]f’kl, set

(6.104) ‘Slé,(k,k’) = Z ‘UQS|§,I~:‘

|a| <K'

Lemma 6.11. There exist C > 0, k, k' € N such that for s € I,

(6.105) [ =22) 7" = (- LaT)_l]sLO < C=(1+ M) s o

Proof. Clearly,
(6.106) (A=Li;) —(A=Lig)
Since | - |0 < |- |o,0, then by (6.51),

-1 -1 -1

= (/\ - L?,T)_l (LE,T - Lg,T) ()‘ - Lg,T)

(6.107) ‘<(L§T - L&T)s, 3’>870‘ < Cs‘s|07(1,4)‘3'|571,
which implies that
(6.108) ‘(LS’T — LS,T)SL’_l < C’s‘s}o’(l,@.
On the other hand, we have
(6.109) ‘([Uila [~ [Uz'p, LS,T] - s, Slﬂ ‘00 < Cp’5|0,1|3”0,1-
From (6.109) and the argument as in the proof of Theorem 4.18, we obtain
3 -1 k
(6.110) (A= L) 8o 0y < OO D) [s]g 0
This completes the proof of Lemma 6.11. O

By (6.97) and Lemma 6.11, there exists r € N for s € ‘];?,yw

(6.111) (A= L2p) ™ = (A= L) sl < ce(L+ [A)*(1+p)"|slm)0-
So there exists C' > 0, r € N, such that for e € (0,1], p € N,

(6.112) |[(exp(—L2 1) — exp(—L§ 1))s| 0 < Ce(14p)"|s|p)0-
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By the same process in (4.111)-(4.114), there exist ¢ > 0,C' > 0,7 € N, such that for
any (U, z),(U',2") € T,,)Y x X, € € (0,1],

(6.113) [(exp(—LZ7) — exp(—Lg 7)) (U, z), (U, 2))]
< ce YD U]+ [U')) exp(—C|U — U'P2).
Then the proof of Theorem 6.5 is complete.
7. PROOF OF THEOREM 3.6 I1I)
In this Section, we use the notations and assumptions in Section 2.2 and 6.

7.1. Localization of the problem near 7;'(V9). We replace T' by u and T/ by T".
By Lemma 6.1, there exist Cp,Cy > 0, such that for any z,2 € Z, and u € (0,1],
T >1,

N u2 / / C TIQ
(7.1) ‘Gu2/T’2 (ﬁ T’) (2,2)| < Crexp (_ ?ﬂ ) ’
and

s B , _ C T/2
(7'2) ‘1/15Tr [gGuz/le (Bu/T/7T/)_ ‘ < Chexp <_ Zz ) .

We trivialize the bundle 75A(T*S)®S(TZ, L) as in Section 6.2. By (6.34), we can
get

(7.3) Ly ypry = w282 Ly 70 10
Comparing with (6.41), there exists C' > 0, such that for |U| < ap/4,
|€Xp 2‘Bl/T’) (g_l(Ua IL‘),(U,ZE))k’y(M),U)
271 -1 C,T"
_eXp(_u Ll/T’,l)(Q (U7 l’), (Ua x))} < Cexp - w2 .

Then we can replace the fiber Z by T,)Y x X, for yo € V9.

(7.4)

7.2. Proof of Theorem 3.6 iii). We will use the notation of Section 6.2 with ¢ replaced
by 1/T", and T by 1. By Lemma 6.4, we see that as T" — +o0

(7.5) L3y — Lg .
Let exp(—iLi 1) (U, 2), (U, 4%)) ((U,2), (U'2) € TyoY x Xy) (i = 1,2,3) be the
smooth kernel associated to the operator exp(—u”L! ;) with respect to dvr, y( Ndvx, ().

Then by (6.45),

Vs /Y g / . / 5,27 [gexp (—LL g ) (67 (U, 2), (U, 2))] doysduy (U)dvx ()

U|<ag/4

=g /Yg/ vew / Ery o0, Tr [gexp(—u Ll/T, ) (971U, ), (U, x))]max

|UI<T ag /4

- dvyodvoy (U)dvox (x).
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By (7.6) and the argument of Section 6.2, to calculate the asymptotic of the left hand
side of (7.6) as u — 0 uniformly in 7" > 1, we have to find the asymptotic as v — 0 of

(17) s / / by ab T [gexp(—? L) (g7 (U 2), (U, 2))]™ doy (U)dox (2).
UeN JX
The following lemma is a modification of Lemma 6.5.

Lemma 7.1. There exist Cy,Cy > 0,p,r € N such that for any (U, z),(U',2") € T,,)Y x

Xyo» € €10,1], u € (0,1],

|u? exp(—uw? L7 ) (U, x), (U, 2'))]
(7.8)

< Cy(1L+ U] +U]) - exp (—

u2

T2 X N2
o, U= U+ d¥ (e, )

Proof. By (6.94),

|AF exp(—u2L§’1)Ak/s|€70 <C (/ e M1+ |/\|)p’"d/\) |s]e.0

(7.9) r

<Cy~2Pm=2 </ e M1+ \)\|)p;ﬂd>\) |8]c0 < Cu™2Pm72|s|. 0.
u2l

So, there exists p € N, such that
(7.10) |[uP A exp(—ung”l)Ak,sk,o < C|s)e0-
Following the process in (6.95)-(6.99), we have
(7.11) [u” exp(—u®LZ,)((U,2), (U, a")] < C(L+ U+ U'])".
Following the process in (6.100)-(6.103), We get Lemma 7.1. O

Let Nx¢/x be the normal bundle to X9 in X. We identify Nxs,x to the orthogonal
bundle to TX9 in TX. Let ¢V~ be the metric on Nxg/x induced by gTX. Let duy, be
the Riemannian volume form on (Nxq/x, g"%).

For U eT,Y,xzc X9 V& Nxoux, |U,|V| < /4, let kx(U,z,V) be defined by
(7.12) dvx (U, z,V) = kx(U,z,V)dvon,, (V)dvxa(z).

Set n’ = dim Z9. By standard results on heat kernel (cf. [4, Theorem 6.11]), there exist

smooth functions az, _,,/(7),- -+ a7 o(7) (v € W7) such that as u — 0, for z € X7,

[/eNX’UGNY’(szr [gexp(—u’L ) (97" (U, 2, V), (U,2,V))]™™
U1VI<eo/4
(7.13) 0

kx (U, z,V)doy,doy, = Z alp ;(x)u! + O(u),

j=—n!

where the ah ](x) only depend on the operator L3 701 and its higher derivatives on x.
By (7.5), ayv ;() is continuous on 7" € [1, +-o0].
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By (6.29), (7.5)-(7.8) and (7.13), there exist ar; depending continuously on 7" €
[1, +00] such that for any u € (0,1], 7" € [1, +o0],

0
(7.14) UsTr [gexp (=B )] — Z ar ju’ | < Cu.
j=—n’
Since ¢ = u/T", (7.14) is reformulated by
0
(7.15) g Tr [gexp (=BLy)] — Z ar j(eT')| < CeT'.

j=—n!

Following the process in (5.6)-(5.8), we have

7.16) oS [gesp (<BLp)]™ — 3 lap ST | < e
=
For T" > 1 fixed, by Theorem 1.2 and (3.20), we have
aan) T fges (<B)] T = [ @) ndy (LY V),
From (7.15) and (7.17),
(718)  far T =0 i j< -1 fapgT = / a(T') A ehy(LY? V50,
Since T" = T,
(719) a1 = e o )T

From (7.18) and (7.19), comparing the coefficients of d7T" in (7.15), we have

1/2

(7.20) s Tr [gexp (—BéT/E)}dT —e! / va(T/€) Achy (LY V7 )| < C.
Z9

By (6.2) and (7.20), we get Theorem 3.6 iii).

8. PROOF OF THEOREM 3.6 1V)

In this section, we prove Theorem 3.6 iv) by following the process of [5, Section IX]
and [26, Section 9]. In Section 8.1, as in Section 6.1, we reduce the problem to a local
problem near ;' (V). In Section 8.2, we study the matrix structure of L? 1 as in Section
4.2. In Section 8.3, we prove Theorem 3.6 iv).

We use the same notation as in Section 4, 6 and the assumptions in Section 2.2.

8.1. Finite propagation speed and localization.
Proposition 8.1. There exist C > 0, C' >0, § > 0, Ty > 1, such that for 0 < e <1,
T Z TO)

. dr
(8.1) ¥sTr [9 G.: (B;,T/e)]

T1+6"
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Proof. As we noted in Section 5, if we replace By by B, /e and B, to By, everything in
Section 4 works well. So there exist C' > 0, § > 0, Ty > 1, such that for 0 < ¢ < 1,
T Z TO)

~ =~ ~ =~ C
(8.2) ‘wSTr [gng(szB}/a)} — T [gGaz(ngg)] ’ < 75"
Since the second term above does not involve dT" part, by (6.1) and following the argu-
ment in (5.5)-(5.8), we get Proposition 8.1. O

By Proposition 8.1, to establish Theorem 3.6 iv), we only need to prove the following
result.

Theorem 8.2. There exist C > 0, C' >0, § > 0, and Ty > 1 such that for 0 < e <1,
T>T,

s Tr [gj?€2(8/a,T/e)]dT <L

By the finite propagation speed as in (6.27), if z € W, f‘€2(B;,T/a)<x7 -) only depends
on the restriction of B, ,_ to 7~ (BY (miz, ).

Now we can use the same argument as discussed in (6.27)-(6.29) to know the proof of
Theorem 8.2 is local near 7, '(V9).

8.2. The matrix structure of the operator L}, as T — +oco. We use the same
trivialization and notations as in Section 6.1.

By (6.45),

[ ..., TlaFalLlle (U0, (U.))dow, dos
Y9 Uizag/a

(8.4) o~
:/Yg /UGN% Crys Ir [gFgg(Li”T) (g_l (U,x), (U, x))} dvp,, .

[U|<ag/4e

Recall that the vector bundle K was defined in the argument before (6.33) and the
operator S. was defined in (6.36). Let F? be the vector space of square integrable sections
of A(T*VI)RS(Nya/y )RS K ® LY/ over T,,)Y. Then F? is a Hilbert subspace of I°.
Let F%+ be its orthogonal complement in I°. Let p. be the orthogonal projection operator
from I° on FY. Set p- =1 —p.. Then if s € I°,

(8.5) p-s(U) = PYs(U,-) U€T,Y.
Put
E&‘,T = paLz,Tpa Fe,T = paLg,Tng,

(8.6)
Ger =prLEpp., Hop=ptL3p?.

€

Then we write L?,T in matrix form with respect to the splitting 1° = F? ¢ Fo+,

Eer For
: o= 770 7).
(8 7) e, T ( GE,T HE,T >

The following lemma is an analogue of Proposition 4.7.
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Lemma 8.3. There exist operators E., F., G, H. such that as T — o0,
E.r=E.+0(1)T), F.r=TF. +0(),

(8:8) G.r=TG.+0(1), H.r=T*H. + O(T).
Set
(8.9) Qe = p*(eU)R.ST' [DX, DM 4 "v¥2] S,
Then Q. maps F® into FO+. Moreover,
F. = p.Qup;,
(8.10) G = P Qep-,

H. = pz (P (e|UN) DL + (1 = p*(eU) Dy )z -

Proof. From (6.1), (6.3), (6.37) and (6.39), we find the coefficient of T2 in the expansion
of L2 ;- is given by

(8.11) H. = (1= (U PA DX PA + p(elUN) DY
When p(e|U|) # 0, K.y = ker D3> So
(8.12) H. = P (1= pUN)DS? + U DX?) PA

Using (8.5), we see that (8.12) fits with the last formula in (8.10).

By (6.1), (6.3), (6.37) and (6.39), we find that the coefficient of 7" in the expansion of
L3 is the operator Q..

Using (8.9), it is clear that Q. maps F? into F%+. Also (8.8) and the remaining
equations in (8.10) follow.

The proof of Theorem 8.3 is complete. U

Clearly, for U € T,,,)Y, H.y, the operator H, at U, is an elliptic operator acting along
Xyo-
Proposition 8.4. For any e > 0,

(8.13) ker Hoy = A(T*V)RS(Nyo )y )R Ko @ Ly,

Proof. By (8.10), if s € A(T*V9)RS(Nys/y )@ K.y @ L;/Q, then
(8.14) H.s = 0.
The operator H,y is self-adjoint and nonnegative. Therefore if H.s = 0, then

Py p*(e|U) D2 Pay s = 0,

£

(8.15)
PLiH(1 = p*(eU))D)?)Phits = 0.

If p*(c|U|) # 0, we deduce from the first identity in (8.15) that PX"s = 0, ie.
s € A(T*VI)RS(Nys)y) 2Ky @ L%,/Z. If p?(e|U]) = 0, by the second identity in (8.15),
Pits € ker DX Using (6.33), we deduce that Pirs=0,ie.,s¢€ MT*V9RS(Nya )y )R K.p®
LY.

The proof of proposition 8.4 is complete. 0J
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8.3. Proof of Theorem 8.2. For s € I, put
1
(8.16) |S|5T1 = | P, U5| +T2| U 530+Z|pr3|§,o+TQZ|Ovészd 5?,0-
P 7

Lemma 8.5. There exist ¢, cq,c3,¢4 > 0, Ty > 1, such that for any s,s' € I with
compact support, € € (0,1], T > Ty, we have

Re(‘Ls 755 S>€O > C1| |z—:T1 02’8‘3:,07
(8.17) |Im(L3Ts 3>50| < csls |5T1| |50a
’<L3TS S >ao‘ < C4‘S|5T1|S ‘aTl

Proof. By (6.1), (6.3), (6.37) and (6.39), the 2-order term of the differential operator
L?  is a fiberwise elliptic operator

(8.18) T?°H, + A™Y.

From (8.9), since K is a vector bundle over T, )Y x S, for s € I with compact support,
there exists C; > 0, such that

(819) <]—If:‘P)aKU7L PIEL‘g)eO > Cl| U 860

€

Since H. is a fiberwise selfadjoint elliptic operator along the fibers X, from the elliptic
estimates, there exist Cy, C3 > 0, such that

(8.20) <HEP§J’LS7 Pafl?L8>e,0 = Gy Z | OvSZPU s eo — Gyl P, U s 50‘
From (8.19) and (8.20), there exists Cy > 0, such that
620 (PR 0 (SR R )
By (6.74), there exist Cs, Cs > 0, such that
(8.22) <ATY57 5>a,0 > Cs Z ’vfp8|g,0 - 06‘5|§,0~
p

Then there exist C, C%) > 0, such that
(8.23) (T*He + A™)s, 5)e0 2 Cils[2 7y — ChlslZ,.
By Lemma 6.6 and (8.9), there exist C' > 0, such that
(8.24) (TQe:s, 5)c0| < C|sleralseo-
Then Lemma 8.5 follows from (6.74), (8.23) and (8.24). O
Set D. = {PL0,Pl + Pay 0pPa, Pay VX Py}
Let =, be the operator from F, to itself,
(8.25) E.=E. - F.H'G..

Following the same argument in (4.72)-(4.137), we can get an analogue of Theorem
4.15.
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Theorem 8.6. There exist C >0, d > 0, and Ty > 1 such that for 0 <e <1, T > Ty,
~ 7 ~ ~7 ~ C
(8.26) [T [gFur (L 1)] = T [9Fe(20)]| <

Since there is no dT" part in the second term above, as in (5.5)-(5.8), we get Theorem
8.2.
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