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Abstract. In this article, we study Cohen–Macaulay modules over non–reduced curve
singularities. We prove that the rings kJx, y, zK{pxy, yq

´z2q have tame Cohen–Macaulay
representation type. For the singularity kJx, y, zK{pxy, z2q we give an explicit description
of all indecomposable Cohen–Macaulay modules and apply the obtained classification to
construct families of indecomposable matrix factorizations of x2y2

P kJx, yK.

Introduction

Cohen–Macaulay modules over Cohen–Macaulay rings have been intensively studied in
recent years. They appear in the literature in various incarnations like matrix factoriza-
tions, objects of the triangulated category of singularities or lattices over orders.

Our interest in Cohen–Macaulay modules is representation theoretic. In the case of
a reduced curve singularity, the behavior of the representation type of the category of
Cohen–Macaulay modules CMpAq is completely understood. Assume, for simplicity, that
A is an algebra over an algebraically closed field k of characteristic zero.

‚ According to Drozd and Roiter [17], Jacobinski [21] and Greuel and Knörrer [19], CMpAq
is representation finite if and only if A dominates a simple curve singularity. See also
the expositions in the monographs [25] and [28].

‚ Drozd and Greuel have proven in [15] that if CMpAq is tame then A dominates a singu-
larity of type

Tpqpλq “ kJx, yK{pxp´2 ´ y2qpx2 ´ λyq´2q

#

1
p `

1
q “

1
2 , λ P kzt0, 1u,

1
p `

1
q ă

1
2 , λ “ 1.

In particular, they have shown that the singularities

Ppq “ kJx, y, zK{pxy, xp ` yq ´ z2q, where p, q P Ně2,

are Cohen–Macaulay tame.
‚ A reduced curve singularity which neither dominates a simple nor a Tpqpλq singularity

has wild Cohen–Macaulay representation type [14].
‚ There are also other approaches to establish tameness of CM

`

Tpqpλq
˘

: one using the
generalized geometric McKay Correspondence [22, 16] and another via cluster–tilting
theory [12].

The definition of Cohen–Macaulay representation type of a Cohen–Macaulay curve sin-
gularity (finite, discrete, tame or wild) is recalled in Section 4. Concerning the case of
non–reduced curve singularities, the following results are known so far.

‚ By a theorem of Auslander [2], a non–reduced Cohen–Macaulay curve singularity always
has infinite Cohen–Macaulay representation type.

‚ Buchweitz, Greuel and Schreyer have shown in [9] that the singularities A8 “ kJx, yK{py2q

and D8 “ kJx, yK{pxy2q have discrete Cohen–Macaulay representation type.
1
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‚ Leuschke and Wiegand have proven in [26] that A8, D8 and kJx, y, zK{pxy, yz, z2q are
the only Cohen–Macaulay curve singularities of bounded but infinite Cohen–Macaulay
representation type. Here, “boundedness” means existence of an upper bound for the
minimal number of generators of an indecomposable Cohen–Macaulay module.

‚ Burban and Drozd have proven in [11] that the singularities T8q “ kJx, yK{px2y2´ yqq,
where q P Ně3, (respectively T88 “ kJx, yK{px2y2q) are Cohen–Macaulay tame (under
the additional assumption that charpkq “ 0, respectively charpkq ‰ 2). However, an
explicit description of the corresponding indecomposable matrix factorizations is still
not known.

In this article, we obtain the following results.

1. First, we prove (see Theorem 2.1 and Remark 2.4) that the curve singularities

P8q “ kJx, y, zK{pxy, yq ´ z2q and P88 “ kJx, y, zK{pxy, z2q

are Cohen–Macaulay tame for any algebraically closed field k of any characteristic (in the
case charpkq “ 2 the definition of P8q has to be modified; see Remark 2.3). The method
of the proof extends the approach of Drozd and Greuel [15] to the case of non–reduced
curve singularities and is based on Bondarenko’s work on representations of bunches of
semi–chains [5]. Our approach can be summarized by the following diagram of categories
and functors:

CMpPq CMpRq
F
--

„? _Ioo TripRq
P //

G
mm MPpRq.

We start with a singularity P “ P8q or P88 and replace it by its minimal overring R. The
forgetful functor I embeds CMpRq into CMpPq as a full subcategory. By a result of Bass [3],
the “difference” between CMpRq and CMpPq is very small. The category of triples TripRq
plays a key role in our approach. According to [11], the functors F and G are quasi–inverse
equivalences of categories. Finally, MPpRq is a certain bimodule category in the sense of
[13]. The functor P reflects isomorphism classes and indecomposability of objects. We
prove that MPpRq is the category of representations of a certain bunch of semi–chains.
According to a theorem of Bondarenko [5], MPpRq is representation tame. This implies
representation tameness of CMpPq.

2. Next, we show how to pass from canonical forms describing indecomposable objects of
MPpRq to a concrete description of the corresponding indecomposable Cohen–Macaulay
P–modules. We illustrate this technique by giving a full and explicit description of the
indecomposable Cohen–Macaulay modules over P88. They are described in terms of
quite transparent combinatorial data: bands and strings (see Theorem 3.28). The obtained
classification turns out to be perfectly adapted to separate those Cohen–Macaulay modules
over P88, which are locally free on the punctured spectrum from those which are not (see
Remark 3.26).

3. At last, we construct explicit families of indecomposable matrix factorizations of x2y2 P

kJx, yK. In this context, there is the following diagram of categories and functors:

CMpRq �
� J

// CMpTq // MFpx2y2q.

Here, R is the minimal overring of P88, the functor J is a fully faithful embedding,
T “ kJx, yK{px2y2q and MFpx2y2q is the homotopy category of matrix factorizations of
x2y2 (which is equivalent to the stable category CMpTq by a result of Eisenbud [18]).
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Results of this article provide a partial classification of the indecomposable objects of
MFpx2y2q as well as an equivalent category MFpx2y2 ` uvq.

Acknowledgement. This research was supported by the DFG project Bu–1866/2–1. We
are also thankful to Lesya Bodnarchuk for supplying us with TikZ pictures illustrating the
technique of matrix problems. Last but not least, we are indebted to the referee for his
or her thorough proofreading and numerous suggestions which considerably improved the
presentation of this article.

1. Survey on Cohen–Macaulay modules over curve singularities

In this section we collect definitions and some known facts on Cohen–Macaulay modules
over curve singularities. The proofs of the mentioned statements can be found in the
monographs [7, 25, 28]; see also the survey article [10].

1.1. Definitions and basic properties. Let pA,mq be a local Noetherian ring of Krull
dimension one (a curve singularity), k “ A{m its residue field and Q “ QpAq its total ring
of fractions.

Definition 1.1. A curve singularity A is

‚ Cohen–Macaulay if and only if HomApk,Aq “ 0 (equivalently, A contains a regular
element).

‚ Gorenstein if and only if it is Cohen–Macaulay and Ext1Apk,Aq – k (equivalently,
inj.dimApAq “ 1).

Note that a reduced curve singularity is automatically Cohen–Macaulay. However, in this
article we mainly focus on non–reduced ones.

Lemma 1.2. Let A be a Cohen–Macaulay curve singularity. Then Q is an Artinian ring.
Moreover, if

 

p1, . . . , pt
(

is the set of minimal prime ideals of A then there exists a ring

isomorphism Q
γ
ÝÑ Ap1 ˆ ¨ ¨ ¨ ˆ Apt making the following diagram

Q

γ

��

A

can1

88

can2
&&

Ap1 ˆ ¨ ¨ ¨ ˆ Apt

commutative, where can1 and can2 are canonical morphisms.

Proof. Since A is Cohen–Macaulay, the set of associated prime ideals of A coincides with
tp1, . . . , pnu. Therefore, the set of zero divisors in A is p1 Y ¨ ¨ ¨ Y pn. By [6, Chapter
IV, Proposition 2.5.10] Q is Artinian and its maximal ideals are p1Q, . . . , pnQ. Hence,
Q – Qp1Q ˆ ¨ ¨ ¨ ˆ QpnQ. Since QpiQ “ Api for 1 ď i ď n, the result follows. �

Definition 1.3. For an A–module M we set

ΓmpMq :“
 

x PM
ˇ

ˇ mtx “ 0 for some t P N
(

.

The following result can be easily deduced from Lemma 1.2.
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Lemma 1.4. Let A be a Cohen-Macaulay curve singularity. For a Noetherian A–module
M we have:

ΓmpMq “ ker
`

M ÝÑ QbA M
˘

“: torpMq.

Moreover, the following statements are equivalent:

‚ HomApk,Mq “ 0.
‚ M is torsion free, i.e. torpMq “ 0.

Definition 1.5. A Noetherian module M satisfying the conditions of Lemma 1.4 is called
maximal Cohen–Macaulay. In what follows we just say that M is Cohen–Macaulay. In this
case, the Q–module MQ “ QbAM is called the rational envelope of M . More generally, a
Noetherian module N over a Noetherian ring S (say, of Krull dimension one) is (maximal)
Cohen–Macaulay if for any maximal ideal n in S the localization Nn is Cohen–Macaulay
over Sn. In what follows, CMpSq denotes the category of Cohen–Macaulay S–modules.

Lemma 1.6. Assume that a Cohen–Macaulay curve singularity A is Gorenstein in codi-
mension zero (i.e. Q is self–injective). Then for a Noetherian A–module M , the following
conditions are equivalent:

‚ M is Cohen–Macaulay.
‚ M embeds into a finitely generated free A–module.

A proof of this Lemma can be found in [25, Appendix A, Corollary 15].

Remark 1.7. The statement of Lemma 1.6 is not true for an arbitrary Cohen–Macaulay
curve singularity. For example, let A “ kJx, y, zK{px2, xy, y2q and K be a canonical A–
module. Then K does not embed into a free A–module.

Definition 1.8. A ring R is an overring of A if A Ď R Ă Q and the ring extension A Ď R
is finite. We also say that R birationally dominates A.

Proposition 1.9. Let A be a Cohen–Macaulay curve singularity and R an overring of A.
Then the following results are true.

‚ R is Cohen–Macaulay.
‚ We have an adjoint pair

`

R�A ´ , Ip´ q
˘

, where I : CMpRq ÝÑ CMpAq is the restriction
(or forgetful) functor and R�A ´ : CMpAq ÝÑ CMpRq sends a Cohen–Macaulay module
M to RbA M{ torpRbA Mq.

‚ I is fully faithful.
‚ If M “

@

w1, . . . , wt
D

A
Ă Qn, then R�A M – R ¨M :“

@

w1, . . . , wt
D

R
Ă Qn.

Proof. The first statement follows from the fact that depthApRq “ 1 “ depthRpRq. The
second result follows from the functorial isomorphisms

HomR

`

R�A M,N
˘

– HomR

`

RbA M,N
˘

– HomA

`

M, IpNq
˘

.

For a proof of the third statement, see for example [25, Lemma 4.14]. The fourth result
follows from the fact that the kernel of RbA M ÝÑ R ¨M is torpRbA Mq. �

Corollary 1.10. Let A be a Cohen–Macaulay curve singularity and R be an overring of
A. Then the following statements are true.

‚ Let N1 and N2 be Cohen–Macaulay R–modules. Then N1 – N2 if and only if IpN1q –

IpN2q in CMpAq.
‚ A Cohen–Macaulay R–module N is indecomposable if and only if N is indecomposable

viewed as an A–module.
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The following result is due to Bass [3, Proposition 7.2] (see also [25, Lemma 4.9]).

Theorem 1.11. Let pA,mq be a Gorenstein curve singularity and let R “ EndApmq. Then
the following results are true.

‚ R –
 

r P Q
ˇ

ˇ rm Ď m
(

. In particular, R is an overring of A.
‚ If A is not regular, we have an exact sequence of A–modules

0 ÝÑ A
ı
ÝÑ R ÝÑ k ÝÑ 0,

where ı is the canonical inclusion. This short exact sequence defines a generator of the
A–module Ext1Apk,Aq – k.

‚ In the latter case, let S be any other proper overring of A. Then S contains R. In other
words, R is the minimal overring of the curve singularity A.

‚ Let M be a Cohen–Macaulay A–module without free direct summands. Then there exists
a Cohen–Macaulay R–module N such that M “ IpNq.

Remark 1.12. Theorem 1.11 gives a precise measure of the representation theoretic
difference between the categories CMpAq and CMpRq. Namely, an indecomposable Cohen–
Macaulay A–module M is either regular or is the restriction of an indecomposable Cohen–
Macaulay R–module. In more concrete terms, assume that M “

@

w1, . . . , wt
D

A
Ă Qn

contains no free direct summands (according to Lemma 1.6, any Cohen–Macaulay A–
module admits such embedding). Then M “

@

w1, . . . , wt
D

R
.

Proposition 1.13. In the situation of Theorem 1.11, assume that N “
@

w1, . . . , wt
D

R
Ă

Qn is an indecomposable Cohen–Macaulay R–module. Then either N – R or N “
@

w1, . . . , wt
D

A
.

Proof. Put M :“
@

w1, . . . , wt
D

A
. Obviously, we have: N “ R ¨M . If M contains a free

direct summand, i.e. M –M 1 ‘ A then N “ R ¨M – R ¨M 1 ‘ R. As N is assumed to be
indecomposable, N – R. If M has no free direct summands, then by Theorem 1.11 and
Remark 1.12 we have: R ¨M “M . �

Definition 1.14. A Cohen–Macaulay A–module M is locally free on the punctured spec-
trum of A if for any minimal prime ideal p in A the localization Mp is free over Ap.

Remark 1.15. According to Lemma 1.2, a Cohen–Macaulay A–module M is locally free
on the punctured spectrum if and only if its rational envelope MQ is projective over Q.

In what follows, CMlfpAq denotes the category of Cohen–Macaulay A–modules which are
locally free on the punctured spectrum.

1.2. Category of triples. Let pR,mq be a Cohen–Macaulay curve singularity, S an over-
ring of R and I “ annRpS{Rq the corresponding conductor ideal. The next result is straight-
forward; see for example [11, Lemma 2.1].

Lemma 1.16. The following statements are true.

‚ I “ IR “ IS. In other words, I is an ideal both in R and in S. Moreover, I is the
biggest ideal having this property.

‚ The rings R “ R{I and S “ S{I are Artinian.

For a Cohen–Macaulay R–module M we denote

‚ ĂM :“ S�R M P CMpSq.
‚ M :“ RbR M P R–mod.
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‚ |M :“ SbS
ĂM P S–mod.

Then the following result is true; see [11, Lemma 12.2].

Lemma 1.17. The canonical map θM : S bR M ÝÑ |M is surjective and its adjoint map
rθM : M ÝÑ |M is injective.

Definition 1.18. Consider the following diagram of categories and functors:

CMpSq
SbS´
ÝÝÝÝÑ S´mod

SbR´
ÐÝÝÝÝ R´mod.

According to [27, Section II.6], the corresponding comma category CommapS |Rq is defined
as follows. Its objects are triples pN,V, θq, where

‚ N is a maximal Cohen–Macaulay S–module,
‚ V is a Noetherian R–module,
‚ θ : SbR V Ñ SbS N is a morphism of S–modules (called gluing map).

A morphism between two triples pN,V, θq and pN 1, V 1, θ1q is given by a pair pψ,ϕq, where

‚ ψ : N Ñ N 1 is a morphism of S–modules and
‚ ϕ : V Ñ V 1 is a morphism of R–modules

such that the following diagram of S–modules is commutative:

SbR V
θ //

1bϕ
��

SbS N

1bψ
��

SbR V
1 θ1 // SbS N

1.

The category of triples TripRq is a full subcategory of CommapS |Rq consisting of those
triples pN,V, θq for which

‚ the gluing map θ is an epimorphism and

‚ the adjoint morphism of S–modules rθ : V Ñ S bS N given as the composition V Ñ

SbR V
θ
ÝÑ SbS N is a monomorphism.

Definition 1.18 is motivated by the following theorem; see [11, Theorem 2.5].

Theorem 1.19. The functor F : CMpRq ÝÑ TripRq mapping a maximal Cohen–Macaulay

module M to the triple
`

ĂM,M, θM
˘

, is well–defined and is an equivalence of categories.
A quasi–inverse functor G : TripRq ÝÑ CMpRq is defined as follows. Let T “ pN,V, θq be

an object of TripRq. Then M 1 “ GpT q :“ π´1
`

Imprθq
˘

Ď N , where π : N Ñ qN :“ N{IN is
the canonical projection. In other words, we have the following commutative diagram

(1.1)

0 // IN // M 1 //

��

V

rθ
��

// 0

0 // IN // N
π // qN // 0

in the category of R–modules.

In many cases, Theorem 1.19 provides an efficient tool to reduce the classification of inde-
composable objects of CMpRq to a certain problem of linear algebra (a matrix problem).

Remark 1.20. There are several variations of the construction appearing in Theorem
1.19; see [11, Chapter 2] for an account of them.
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1.3. Cohen–Macaulay modules over simple curve singularities of type A. Let k
be an algebraically closed field. For simplicity, let us additionally assume that charpkq ‰ 2
(see however Remark 1.22). For any m P N, denote

(1.2) S “ Am :“ kJx, uK{pxm`1 ´ u2q

the corresponding simple curve singularity of type Am. The following is essentially due to
Bass [3] (see also [25, 28]).

Theorem 1.21. The indecomposable Cohen–Macaulay S–modules have the following de-
scription.

‚ Assume m “ 2n, n P N. For any 1 ď l ď n consider the ideal Xl :“ pxl, uq. Then
X0 “ p1q “ S, X1, . . . , Xn is the complete list of indecomposable objects of CMpSq.
Moreover, the Auslander–Reiten quiver of CMpSq has the form

(1.3) X0

¨x //
X1

¨x //

ι
oo X2

¨x //

ι
oo ¨ ¨ ¨

¨x //

ι
oo Xn

ι
oo π

kk

Here, ı denotes the inclusion of ideals and x¨ is the multiplication by x. The endomor-
phism π P EndSpXnq is defined as follows: πpxnq “ u and πpuq “ xn`1.

‚ Assume m “ 2n ` 1, n P N0. Again, for any 1 ď l ď n consider Xl :“ pxl, uq Ă S.
Additionally, denote X˘n`1 :“ pxn`1 ˘ uq. Then the indecomposable Cohen–Macaulay

S–modules are X0 “ p1q “ S, X1, . . . , Xn and X˘n`1. Moreover,

(1.4)

X`n`1

ι`||

X0

¨x //
X1

¨x //

ι
oo X2

¨x //

ι
oo ¨ ¨ ¨

¨x //

ι
oo Xn

ι
oo

π`
<<

π´

""

X´n`1

ι´

bb

is the Auslander–Reiten quiver of CMpSq in this case. Here, ι and ι˘ denote inclusions
of ideals, x¨ stands for multiplication by x. The maps π˘ : Xn ÝÑ X˘n`1 are defined as

follows: π˘pxnq “ pxn`1 ˘ uq and π˘puq “ xpxn`1 ˘ uq.

Remark 1.22. In the case charpkq “ 2 there are the following subtleties in defining simple
curve singularities of type Am.

‚ For m “ 2n`1 one should take the ring A2n`1 “ kJx, uK{pupu´xn`1qq (the ring defined
by (1.2) is no longer reduced!). Then the indecomposable Cohen–Macaulay modules are
X0, . . . , Xn, X

˘
n`1, where Xi has the same definition as in the case charpkq ‰ 2 for

0 ď i ď n, whereas X`n`1 :“ puq and X´n`1 :“ pu´ xn`1q.
‚ For m “ 2n there are more simple singularities than in the case charpkq ‰ 2. Namely,

for 1 ď s ď n´1 consider the ring As2n “ kJx, uK{pu2`x2n`1`uxn`sq. Then As2n � At2n
for any 1 ď s ‰ t ď n ´ 1. Moreover, As2n � A2n for any 1 ď s ď n ´ 1. However,
the description of indecomposable Cohen–Macaulay modules over As2n is essentially the
same as over A2n; see [3] and [23]. In particular, the Auslander–Reiten quivers of As2n
and A2n coincide.

The following result is due to Buchweitz, Greuel and Schreyer [9, Section 4.1].
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Theorem 1.23. Let S “ A8 :“ kJx, uK{pu2q, where k is an algebraically closed field of
arbitrary characteristic. Then the indecomposable Cohen–Macaulay S–modules are X0,
X1, . . . , X8, where X0 “ S, X8 “ puq and Xl “ px

l, uq for l P N. In particular, X8 is the
only indecomposable Cohen–Macaulay S–module which is not locally free on the punctured
spectrum of S. The Auslander–Reiten quiver of the category CMlfpSq has the form

(1.5) X0

¨x //
X1

¨x //

ι
oo ¨ ¨ ¨

¨x //

ι
oo Xi

ι
oo

¨x //

ι
oo ¨ ¨ ¨

ι
oo

Remark 1.24. It is natural to extend the quiver (1.5) with the remaining indecomposable
Cohen–Macaulay S–module X8. Moreover, for any l P N0 denote πl : Xl ÝÑ X8 the map
sending xl to u and u to 0. Of course, πl`1 “ x ¨ πl for any l P N0. The entire structure of
the category CMpSq can be visualized by the diagram:

(1.6) X0

¨x //
X1

¨x //

ι
oo ¨ ¨ ¨

¨x //

ι
oo Xi

ι
oo

¨x //

ι
oo ¨ ¨ ¨

ι
oo

π //
X8

ι
oo

Definition 1.25. Let S be a curve singularity of type Am for some m P NY t8u.

1. Consider the path algebra category ARpSq of the corresponding Auslander–Reiten quiv-
ers (1.3), (1.4) respectively (1.6) subject to the following zero relations:

‚ p¨xq ˝ ı “ ı ˝ p¨xq “ 0.

‚ The inclusion ı : X1 Ñ X0 is zero in ARpSq.

‚

$

’

&

’

%

π2 “ 0, if m is even,

π˘ ˝ ı` “ π˘ ˝ ı´ “ ı` ˝ π` ` ı´ ˝ π´ “ 0, if m is odd,

π ˝ ι “ 0, if m “ 8.

In other words, the objects of ARpSq are vertices of the Auslander–Reiten quiver of CMpSq
and morphisms are formal k–linear combinations of equivalence classes of paths. Observe

that all morphisms spaces in ARpSq are finite dimensional vector spaces over k and the

endomorphism algebra of any object of ARpSq is local.

2. We define the category ARpSq as the additive closure of ARpSq. More concretely:

‚ The objects of ARpSq are formal symbols X1‘¨ ¨ ¨‘Xt, where t P N and Xi P Ob
`

ARpSq
˘

for all 1 ď i ď t.
‚ Given two objects X “ X1 ‘ ¨ ¨ ¨ ‘Xt and Y “ Y1 ‘ ¨ ¨ ¨ ‘ Ys of ARpSq, we put

HomARpSqpY,Xq :“

¨

˚

˚

˝

HompY1, X1q . . . HompYs, X1q

...
. . .

...

HompY1, Xtq . . . HompYs, Xtq

˛

‹

‹

‚

,

where HompYj , Xiq is taken in the category ARpSq.

‚ The composition of morphisms in ARpSq is given by the matrix product rule.

Definition 1.26. Let pA,mq be a Cohen–Macaulay curve singularity with k “ A{m.
Consider the category CMpAq defined as follows:

‚ Ob
`

CMpAq
˘

“ Ob
`

CMpAq
˘

.

‚ For M,N P Ob
`

CMpAq
˘

we set

HomApM,Nq “ Im
´

HomApM,Nq ÝÑ Homk

`

M{mM,N{mN
˘

¯

.
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In other words, we have an isomorphism of k–vector spaces

HomApM,Nq – HomApM,Nq{Hom0
ApM,Nq,

where a homomorphism of A–modules M
f
Ñ N belongs to Hom0

ApM,Nq if any only if

the induced map M{mM
f
Ñ N{mN is zero.

‚ The composition of morphisms in CMpAq is induced by the composition of morphisms
in CMpAq.

Lemma 1.27. The canonical projection functor T : CMpAq ÝÑ CMpAq is full and reflects
isomorphism classes of objects (i.e. if TpMq – TpNq in CMpAq then M – N in CMpAq).
Moreover, if S is a curve singularity of type Am for some m P NYt8u, then the categories
CMpSq and ARpSq are equivalent.

Proof. Assume M
f
Ñ N and N

g
ÑM are two morphisms in CMpAq such that the induced

k–linear maps M{mM
f
Ñ N{mN and N{mN

g
Ñ M{mM are mutually inverse isomor-

phisms in CMpAq. By Nakayama’s lemma, gf P EndApMq and fg P EndApNq are epimor-
phisms. Since M and N are finitely generated A–modules, gf and fg are isomorphisms.
Therefore, the functor T indeed reflects isomorphism classes of objects.

The second statement is a consequence of some basic Auslander–Reiten theory; see [25,
Chapter 13] or [28, Chapter 5]. �

2. Tameness of CMpP8qq

Let k be an algebraically closed field such that charpkq ‰ 2 and p, q P Ně2. Consider the
curve singularity

Ppq :“ kJx, y, zK{pxy, xp ` yq ´ z2q.(2.1)

By a result of Drozd and Greuel [15, Section 3], the category CMpPpqq is representation
tame. For any q P Ně2 consider the limiting singularity

P8q :“ kJx, y, zK{pxy, yq ´ z2q.(2.2)

Since pxzq2 “ 0 in P8q, the ring P8q is non–reduced. Similarly, P88 :“ kJx, y, zK{pxy, z2q

denotes the “largest degeneration” of the family (2.1).

The first major result of this article is the following.

Theorem 2.1. The non–reduced curve singularities P8q have tame Cohen–Macaulay rep-
resentation type for any q P Ně2 Y t8u.

Proof. 1. Since P :“ P8q is a complete intersection, it is Gorenstein. Let Q “ QpPq be
the total ring of fractions of P and R “ EndPpmq – ta P Q|am Ă mu Ă Q be the minimal

overring of P. Note that u :“ xz
x` y and v “

yz
x` y belong to R. Clearly, u ` v “ z.

Moreover, by Theorem 1.11 we have: R “ P` ku. From this fact we get an isomorphism

(2.3) R – kJx, y, u, vK{pxy, yu, xv, uv, u2, yq ´ v2q.

The generator yq ´ v2 has to be replaced by v2 for q “ 8. In these terms, the canonical
inclusion ı : P ÝÑ R maps x to x, y to y and z to u` v.

According to Theorem 1.11, any non–free indecomposable Cohen–Macaulay P–module
is a restriction of some indecomposable Cohen–Macaulay R–module. Thus, it has to be
shown that the category CMpRq has tame representation type.
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2. Next, since px, uq X py, vq “ 0 in R, we have an inclusion R ãÑ Sx ˆ Sy, where Sx :“
R{py, vq – kJx, uK{pu2q and Sy “ R{px, uq – kJy, vK{pyq ´ v2q. Moreover, we have an
inclusion S Ă Q (thus S is an overring of R) and both idempotents of S can be expressed
as follows:

ex :“ p1, 0q “
x

x` y
and ey :“ p0, 1q “

y

x` y
.

The reason to pass from P to its overring R is explained by the following observation:
the conductor ideal I :“ annRpS{Rq coincides with the maximal ideal m “ px, y, u, vqR.
Moreover, m “ mxˆmy, where mx and my are the maximal ideals of Sx and Sy respectively.

Hence, R :“ R{I – k and S :“ S{I – kx ˆ ky “ k ˆ k. Under this identification, the

canonical inclusion RÑ S is identified with the diagonal embedding.
According to Theorem 1.19, the category CMpRq is equivalent to the category of triples

TripRq. Thus, we have to show the representation tameness of TripRq. Let T “ pN,V, θq
be an object TripRq. Then the following facts are true.

‚ Since V is just a module over R – k, we have: V – k
t for some t P N0.

‚ Since S “ Sx ˆ Sy, we have: N – Nx ‘ Ny, where Nx P CMpSxq and Ny P CMpSyq.
According to Theorem 1.21 and Theorem 1.23, the Cohen–Macaulay modules Nx and
Ny split into a direct sum of ideals
– X0 “ Sx, Xi “ px

i, uq for i P N and X8 “ puq.
– Y0 “ Sy, Yj “ py

j , vq for 1 ď j ď s´1 and Y ˘s “ pys˘vq if q “ 2s is even, respectively
Ys “ py

s, vq if q “ 2s` 1 is odd. If q “ 8 then Ny decomposes analogously to Nx.

‚ We have: Nx “ Nx{mxNx – k
m
x and Ny “ Ny{myNy – k

n
y for some m,n P N0. In

what follows, we choose bases of Nx and Ny induced by the distinguished generators
of the ideals which occur in a direct sum decomposition of Nx and Ny. Thus, the

gluing map θ : SbR V ÝÑ N{IN “ Nx ‘Ny is given by a pair of matrices pΘx,Θyq P

Matmˆtpkq ˆMatnˆtpkq.
‚ The condition that the morphism of S–modules θ is surjective just means that both

matrices Θx and Θy have full row rank. The condition that rθ is injective is equivalent

to saying that the matrix rΘ :“
´

Θx
Θy

¯

has full column rank.

3. Let us now proceed to the matrix problem underlying a description of the isomorphism
classes of objects of TripRq. If two triples T “ pN,V, θq and T 1 “ pN 1, V 1, θ1q are iso-
morphic, then N – N 1 and V – V 1. Hence, we may without loss of generality assume
that:

‚ N 1 “ N “ Nx ‘Ny, where Nx “
À8

i“0X
‘mi
i for some mi P N0 and

Ny “

$

’

’

&

’

’

%

‘
s´1
j“0Y

‘nj

j ‘
`

Y `s
˘‘n`s

‘
`

Y ´s
˘‘n´s if q “ 2s

‘8j“0Y
‘nj

j if q “ 8

‘sj“0Y
‘nj

j if q “ 2s` 1

where nj , n
˘
s P N0.

‚ V 1 “ V “ k
t for certain t P N0.

Note that we have: m “ m0 ` 2pm1 ` . . . q `m8 and

n “

$

’

&

’

%

n0 ` 2pn1 ` ¨ ¨ ¨ ` ns´1q ` pn
`
s ` n

´
s q if q “ 2s

n0 ` 2pn1 ` . . . q ` n8 if q “ 8

n0 ` 2pn1 ` ¨ ¨ ¨ ` nsq if q “ 2s` 1.
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According to Definition 1.18, we have an isomorphism
`

N,V, pΘx,Θyq
˘

–
`

N,V, pΘ1x,Θ
1
yq
˘

in the category TripRq if any only if there exist automorphisms Ψx P AutSxpNxq, Ψy P

AutSypNyq and Φ P GLtpkq such that

(2.4) Θ1x “ ΨxΘxΦ´1 and Θ1y “ ΨyΘyΦ
´1,

where Ψx P GLmpkq (respectively Ψy P GLnpkq) is the induced automorphism of Nx – k
m

(respectively Ny – k
n).

Before proceeding to the matrix problem, consider the following special case.

Let Nx “ X‘m0
0 ‘X‘m1

1 ‘X‘m2
2 ‘X‘m88 and V “ k

t. Then we have an isomorphism of
vector spaces over k:

(2.5) Nx “ Nx{mxNx
γx
ÝÑ k

m0 ‘ k
m1 ‘ k

m2 ‘ k
m8 ‘ k

m2 ‘ k
m1 “ k

m,

where m “ m0 ` 2pm1 `m2q `m8. The description of γx is specified by the following
rule: the generator x of X1 “ xx, uy contributes to the second direct summand in the
decomposition, whereas the generator u contributes to the last direct summand. Analo-
gously, the generator x2 of X2 “ xx

2, uy contributes to the third direct summand in the
decomposition, whereas the generator u contributes to the second last direct summand.

Therefore, the linear map V “ k
t Θx
ÝÑ k

m – Nx is represented by the following matrix.

)

m0

)

m1

)

m2

)

m8
)

m2

)

m1

ξ0

ξ1

ξ2

α8

α2

α1

Let us examine now the transformation rule (2.4). For any Ψx P EndSxpNxq, the induced
linear map Ψx P Endk

`

Nx

˘

is represented by the following matrix:

(2.6) Ψx “

d0 0 0 0 0 0

d d11 0 0 0 0

d d d12 0 0 0

d d d d8 0 0

d d d d d22 0

d d d d d d21
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From the description of morphisms in the category CMpSxq “ ARpSxq given by the
Auslander–Reiten quiver (1.6), we deduce the following results.

‚ We have the following equalities of diagonal blocks of Ψx: d11 “ d
2
1 and d12 “ d

2
2.

‚ Any matrix Ψx P Matmˆmpkq of the form (2.6) satisfying the constraints of the previous
paragraph belongs to the image of the linear map EndSxpNxq ÝÑ Matmˆmpkq.

‚ The morphism Ψx is an isomorphism if and only if all diagonal blocks of Ψx are invertible
matrices.

4. Choose isomorphisms of vector spaces Nx
γx
ÝÑ k

m and Ny
γy
ÝÑ k

n analogously to (2.5).
Then the transformation rule (2.4) leads to the following problem of linear algebra (a
matrix problem).

‚ We have two matrices Θx and Θy over k with the same number of columns. The number
of rows of Θx and Θy can be different. In particular, it can be zero for one of these

matrices. Additionally, Θx and Θy have full row rank, and
´

Θx
Θy

¯

has full column rank.

‚ Rows of Θx are divided into horizontal blocks indexed by elements of the linearly ordered
set

Ex “
 

ξ0 ă ξ1 ă ¨ ¨ ¨ ă ξi ă ¨ ¨ ¨ ă α8 ă ¨ ¨ ¨ ă αi ă ¨ ¨ ¨ ă α1

(

.

The role of the ordering ă will be explained below.
‚ The block labeled by ξ0 has m0 rows, the block labeled by α8 has m8 rows. The

blocks labeled by ξi and by αi both have mi rows. Thus, the matrix Θx has m “

m0 ` 2pm1 ` ¨ ¨ ¨ `mi ` . . . q `m8 rows.
‚ The row division of Θy depends on the parity of the parameter q.

– For q “ 8 the horizontal blocks of Θy are marked with the symbols of the linearly
ordered set

Ey “ E8y “
 

ζ0 ă ζ1 ă ¨ ¨ ¨ ă ζj ă ¨ ¨ ¨ ă β8 ă ¨ ¨ ¨ ă βj ă ¨ ¨ ¨ ă β1

(

,

completely analogously as it is done for Θx.
– For q “ 2s` 1, the labels are elements of the linearly ordered set

Ey “ Eqy “
 

ζ0 ă ζ1 ă ¨ ¨ ¨ ă ζs ă βs ă ¨ ¨ ¨ ă β1

(

.

For any 1 ď j ď s, the number of rows in blocks marked by ζj and βj is the same
(and equal to nj).

– For q “ 2s, the labels are elements of an (only partially!) ordered set

Ey “ Eqy “
 

ζ0 ă ζ1 ă ¨ ¨ ¨ ă ζs´1 ă ζ˘s ă βs´1 ă ¨ ¨ ¨ ă β1

(

as shown in (2.7) below. The elements ζ`s and ζ´s are incomparable in Ey. Again, the
number of rows in blocks ζj and βj is the same for 1 ď j ď s´ 1.

‚ We can perform any simultaneous elementary transformation of columns of Θx and Θy.
‚ Transformations of rows of Θx are of three types.

– We can add any multiple of any row with lower weight to any row with higher weight.
– For any i P N we can perform any simultaneous elementary transformation of rows

within the blocks marked by ξi and αi.
– We can make any elementary transformation of rows in block ξ0 or α8.

‚ The transformation rules for rows of Θy depend on the parity of q.
– Let us take the case q is even, which is the most complicated one; see (2.7).
˚ We can add any multiple of any row with lower weight to any row with higher

weight.
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˚ For any 1 ď j ď s´1 we may perform any simultaneous elementary transformation
of rows within blocks marked by ζj and βj .

˚ We can make any (independent) elementary transformation of rows in the block ζ0

or ζ˘s .
– For q “ 8, the transformation rules for Θy are analogous to those listed above for

Θx. The matrix problem for this case will be studied in detail in Subsection 3.1.
– For odd q “ 2s ` 1, the transformation rules of Θy are the same as for q “ 8. The

only difference between these cases lies in the absence of certain symbols in Ey.

(2.7)

...

...

γ

Θx

ξ0

ξ1

ξ2

...

α8

...

α2

α1

...

...

δ

Θy

ζ0

ζ1

...

ζs´1

ζ`s

ζ´s

βs´1

...

β1

5. As before, let Sx “ kJx, uK{pu2q and Sy “ kJy, vK{pyq ´ v2q. Next, define MPpRq to be
the comma category of the following diagram of categories and functors:

ARpSxq ˆ ARpSyq
ForˆFor
ÝÝÝÝÝÑ pkˆ kq ´mod

pkˆkqbk´
ÐÝÝÝÝÝÝÝ k´mod,

where ARpSxq and ARpSyq were introduced in Definition 1.26, and For is the forgetful
functor. In other words, MPpRq is defined almost in the same way as the category of

triples in Definition 1.18. An object of MPpRq is a triple T “ p rNx ‘ rNy,k
t,Θq, where

rNx (respectively, rNx) is an object of ARpSxq (respectively, ARpSyq), t P N0 and Θ is a

kˆ k–linear map. However, the isomorphism class of rNx (respectively, rNy) is completely
specified by the multiplicities attached to every vertex of the Auslander–Reiten quiver of
CMpSxq (respectively, CMpSyq). Therefore, we can represent (without loss of information)
any object of MPpRq as a pair of partitioned matrices pΘx,Θyq P MatmˆtpkqˆMatnˆtpkq,
where m “ dimk

`

Nx{mxNx

˘

, n “ dimk

`

Ny{myNy

˘

and the row partitions of Θx and Θy

arise from the direct sum decompositions of Nx and Ny, as well as by appropriately chosen

isomorphisms Nx
γx
ÝÑ k

m and Ny
γy
ÝÑ k

n, analogous to (2.5).
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The matrix problem introduced in the previous paragraph corresponds precisely to
the description of isomorphism classes of objects in the category MPpRq. Moreover, the
forgetful functor P : TripRq ÝÑ MPpRq assigning to a triple

`

N,V, θ
˘

the pair of partitioned
matrices pΘx,Θyq has the following properties.

‚ P is additive, full and reflects indecomposability and isomorphism classes of objects.
‚ The essential image of P consists of those pΘx,Θyq P Ob

`

MPpRq
˘

for which Θx and Θy

both have full row rank and
´

Θx
Θy

¯

has full column rank.

According to a result of Bondarenko [5], the category MPpRq is representation tame for
any q P Ně2 Y t8u. More precisely,

‚ If q P 2NY t8u, then MPpRq is the category of representations of an appropriate bunch
of chains. There are two types of indecomposable objects in MPpRq: bands (continuous
series) and strings (discrete series). In Section 3, the case q “ 8 will be discussed in
detail and the terminology will be explained.

‚ For q P 2N` 1, the category MPpRq is the category of representations of an appropriate
bunch of semi–chains. In this case, an indecomposable object either a band (continuous
series) or a bispecial, special, or usual string (discrete series). The precise combinatorics
of the discrete series is rather complicated.

6. Summing up, we have the following diagram of categories and functors:

(2.8) CMpPq CMpRq
F
--

„? _Ioo TripRq
P //

G
mm MPpRq.

Representation tameness of MPpRq implies that for any q P Ně2Yt8u, the curve singularity
P8q is Cohen–Macaulay representation tame in the “pragmatic sense”: we have full control
over the indecomposable objects of CMpRq. See also Remark 4.6 concerning the proof of
tameness in the formal sense. �

Remark 2.2. Following Bondarenko [5] and Drozd [13], there is another way to formalize
the matrix problem, corresponding to the description of the isomorphism classes of the
category MPpRq. For any q P Ně2 Y t8u, consider the following combinatorial data:

‚ The index set Ω “ tx, yu.
‚ Let Fx “ tγu, Fy “ tδu, F “ Fx Y Fy.
‚ Let Ex and Ey “ Eqy be as in the proof of Theorem 2.1, E “ Ex Y Ey.
‚ In the set B “ EY F consider the symmetric (but not reflexive!) relation „ defined as

follows:

γ „ δ, ξi „ αi for i P N,

ζj „ βj for

#

1 ď j ď s if q “ 2s or q “ 2s` 1

j P N if q “ 8,

ζ˘s „ ζ˘s for q “ 2s.

The entire data B “
`

Ω,E,F,ă,´,„
˘

(which is an example of a bunch of (semi)–chains)
defines a certain bimodule category ReppBq; see [13] or [11, Section 7.2] for definitions
and examples. This category coincides with MPpRq. The combinatorics of Bondarenko
of the indecomposable objects of MPpRq is given in terms of the data B; see the next
Section 3 for the case q “ 8. The language of bimodule categories was introduced by
Drozd [13] to formalize the notion of a matrix problem. Talking about representations of



COHEN–MACAULAY MODULES OVER NON–REDUCED CURVE SINGULARITIES 15

a bunch of (semi–)chains, bimodule categories allow to give a rigorous definition of the
reduction procedure, which is crucial to prove the representation tameness as well as to
establish the precise combinatorics of the indecomposable objects together with the Krull–
Schmidt property (i.e. the uniqueness of a decomposition of an object into a direct sum
of indecomposable ones). See also [11, Chapter 12] for a similar case. However, we do not
need the language of bimodule categories in this article.

Remark 2.3. Let charpkq “ 2. Then the simple curve singularities of type A have to
be redefined according to Remark 1.22. It follows that the equation of P8,2s should be
kJx, y, zK{pxy, zpys ´ zqq. Moreover, there are more singularities of type P8,2s`1, namely

Pt8,2s`1 :“ kJx, y, zK{pxy, y2s`1 ` ys`tz ´ z2q, 1 ď t ď s´ 1.

Nevertheless, all rings Pt8,2s`1 are tame and the proof of Theorem 2.1 applies literally to
this case as well.

Remark 2.4. For any q P NY t8u consider the hypersurface singularity

T “ T8,q`2 “ kJa, bK{
`

b2pa2 ´ bqq
˘

.

Observe that R is an overring of T via the embedding

T ÝÑ R, a ÞÝÑ x` v, b ÞÝÑ y ` u

where R is the ring defined by (2.3). It was shown in [11, Theorem 11.1] that CMpTq has
tame representation type (under the additional assumption charpkq “ 0). This gives an-
other argument that CMpRq (and hence CMpPq) has either tame or discrete representation
type. The latter case does also occur: if q “ 1, then T83 is representation tame whereas

P81 “ kJx, y, zK{pxy, y ´ z2q – kJx, zK{pxz2q “: D8

is representation discrete [9].

3. Cohen–Macaulay modules over P88 and T88

In this section we shall explain that the technique of matrix problems, introduced in
the course of the proof of Theorem 2.1, leads to a completely explicit description of in-
decomposable Cohen–Macaulay modules over P “ P88 “ kJx, y, zK{pxy, z2q. Although
P is the “maximal degeneration” of the family (2.1), the combinatorics of the indecom-
posable objects in CMpPq are more transparent than for the less degenerate singularities
P8,2s. The reason is that the underlying matrix problem has the type representations
of a bunch of chains and not of semi–chains as for P8,2s. Another motivation to study
Cohen–Macaulay modules over P is that it allows one to construct interesting examples
of Cohen–Macaulay modules over the hypersurface singularity T “ T88 “ kJa, bK{pa2b2q.

All results of this section concerning the study of indecomposable Cohen–Macaulay
modules over P can be transferred in a straightforward way on the curve singularities of
types P8,2s`1 or P2r`1,2s`1.

Until the end of this section we keep the following notation:

‚ R “ kJx, y, u, vK{pxy, yu, uv, vx, u2, v2q is the minimal overring of P. The embedding
P ÝÑ R sends z to u` v.

‚ Let S “ Sx ˆ Sy “ kJx, uK{pu2q ˆ kJy, vK{pv2q.

‚ For any l P N we denote Xl “ pu, xlqSx and Yl “ pv, ylqSy . Next, we put X0 “ Sx,
Y0 “ Sy, X8 “ puqSx and Y8 “ pvqSy .
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‚ Let Q “ kppxqqrus{pu2q ˆ kppyqqrvs{pv2q.
‚ Denote m “ px, y, u, vqR. Recall that m “ annRpS{Rq “ radpSq.

Observe that Q is the common total ring of fractions of P,R and S. In particular, we have
the following equalities in Q:

(3.1) u “
xz

x` y
, v “

yz

x` y
, ex :“ p1, 0q “

x

x` y
and ey :“ p0, 1q “

y

x` y
.

According to Remark 2.4, R is also an overring of T. Summing up, we have the following
diagram of categories and functors:

(3.2)

CMpPq

CMpRq „

F
--

2 R

I
dd

lL

Jzz

TripRq
P //

G
mm MPpRq

CMpTq

‚ I and J denote restriction functors. According to Proposition 1.9, they are both fully
faithful. Moreover, by Theorem 1.11 Ind

`

CMpPq
˘

“ tPu Y Ind
`

CMpRq
˘

.
‚ F and G are quasi–inverse equivalences of categories from Theorem 1.19.
‚ The functor P assigns to a triple

`

N,V, θ
˘

a pair of matrices pΘx,Θyq, whose rows are
equipped with some additional “weights”. P reflects isomorphism classes of objects as
well as their indecomposability. However, P is not essentially surjective because Θx and
Θy obey some additional constraints (see (3.4) below). Moreover, P is not faithful.

The goal of this section is to show how one can translate the combinatorics of indecom-
posable objects of MPpRq into an explicit description of indecomposable objects of CMpPq
and CMpTq.

3.1. Indecomposable objects of MPpRq. According to the proof of Theorem 2.1, the
matrix problem corresponding to a description of isomorphism classes of objects in MPpRq
is as follows.

We are given two matrices Θx and Θy as depicted in (3.3) with entries from an algebraically
closed field k and the same number of columns. The rows of Θx (respectively Θyq are both
divided into horizontal blocks, labeled by symbols from the set

 

ξi | i P N0

(

Y
 

αj | j P

N Y t8u
(

(respectively, set
 

ζi | i P N0

(

Y
 

βj | j P N Y t8u
(

. Any two horizontal blocks
in Θx (respectively Θy) connected by a dotted line have the same number of rows.

Transformation rules. The following transformations of columns and rows of Θx and Θy

are admissible:

‚ any simultaneous elementary transformation of columns of Θx and Θy.
‚ addition of any multiple of any row of Θx (respectively, Θy) with lower weight to any

row of Θx (respectively, Θy) with higher weight.
‚ any simultaneous elementary transformation of rows within horizontal blocks of Θx

(respectively, Θy) connected by a dotted line.
‚ any elementary transformation of rows in the horizontal block of Θx (respectively, Θy)

which is not connected to any other block by a dotted line. (These are the blocks labeled
by ξ0, α8, ζ0, or β8).
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(3.3)

...

...

γ

Θx

ξ0

ξ1

ξ2

...

α8

...

α2

α1

...

...

δ

Θy

ζ0

ζ1

ζ2

...

β8

...

β2

β1

Additionally, there are the following regularity constraints on Θx and Θy:

(3.4)
Θx and Θy both have full row rank,

the matrix
´

Θx
Θy

¯

has full column rank.

Definition 3.1. Consider the following data B “
`

Ω,E,F,ă,´,„
˘

, which is an example
of a bunch of chains. It is given by the following ingredients.

‚ The index set Ω “ tx, yu.
‚ The set of column symbols F “ Fx Y Fy, where Fx “ tγu, Fy “ tδu.
‚ The set of row symbols E “ Ex Y Ey, where Ex and Ey are “chains”

Ex “
 

ξ0 ă ξ1 ă ¨ ¨ ¨ ă ξi ă ¨ ¨ ¨ ă α8 ă ¨ ¨ ¨ ă αi ă ¨ ¨ ¨ ă α1

(

,

Ey “
 

ζ0 ă ζ1 ă ¨ ¨ ¨ ă ζj ă ¨ ¨ ¨ ă β8 ă ¨ ¨ ¨ ă βj ă ¨ ¨ ¨ ă β1

(

.

‚ The set B “ EY F is equipped with a symmetric (but not reflexive) relation „ defined
as follows:

γ „ δ, ξl „ αl and ζl „ βl for l P N.
Finally, we introduce another symmetric (but not reflexive) relation ´ on B as follows:

γ ´ εx for any εx P Ex and δ ´ εy for any εy P Ey.

Following Bondarenko [5], we define strings and bands of the bunch of chains B. They
describe the invariants of the indecomposable objects of MPpRq. As we already mentioned
in Remark 2.2, one can describe MPpRq as the bimodule category ReppBq.
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Definition 3.2. Let B be the bunch of chains from Definition 3.1.

(1) A full word w of B is a sequence

(3.5) w “ χ1ρ1χ2ρ2 . . . χn´1ρn´1χn

of symbols χk P B and relations ρk P t„,´u subject to the following conditions:
‚ the relation χkρkχk`1 holds in B for 1 ď k ď n´ 1.
‚ the sequence of relations alternates, i.e. ρk ‰ ρk`1 for 1 ď k ď n´ 2.
‚ either χ1 P tξ0, α8, ζ0, β8u or ρ1 is „.
‚ either χn P tξ0, α8, ζ0, β8u or ρn´1 is „.
The first and the last two conditions explain why w is called “full”: if for some
1 ď i ď n the element χi has a “partner” in B, then this partner enters the word w
as a neighbour of χi.

(2) The opposite word of a full word w given by (3.5) is defined by

wo “ χnρn´1χn´1ρn´2 . . . χ2ρ1χ1.

(3) A string datum of B is given by any full word w.
(4) Two string data w and w1 are equivalent if and only if w1 “ w or w1 “ wo.

Example 3.3. The word ξ1´γ „ δ´ζ1 „ ξ1´δ „ γ´ζ0 is not full since the first element
ξ1 occurs without its partner ζ1. On the other hand,

ζ1 „ ξ1 ´ γ „ δ ´ ζ1 „ ξ1 ´ δ „ γ ´ ζ0

is a full word. Its opposite word is ζ0 ´ γ „ δ ´ ξ1 „ ζ1 ´ δ „ γ ´ ξ1 „ ζ1

Definition 3.4. Let B be the bunch of chains from Definition 3.1.

(1) A cyclic word rw is the concatenation rw “ w´, where w “ χ1ρ1χ2 . . . χn´1ρn´1χn is
a full word in the sense of Definition 3.2 such that the following additional conditions
are satisfied.
‚ The relation χn ´ χ1 holds in B.
‚ Both relations ρ1 and ρn´1 are equal to „.
Note that the length n of a cyclic word rw is automatically divisible by eight.

(2) The opposite of a cyclic word rw “ w´ is rwo “ wo´.
(3) For any k P 2Z the k-th shift of a cyclic word rw is defined to be

rwrks “ χk`1ρk`1χk`2ρk`2 . . . χk`n´1ρk`n´1χk`nρk`n´

where the indices are taken modulo n.
(4) A cyclic word rw is periodic if rw “ rwrks for some shift k R nZ. Equivalently, rw is

periodic if there exists a smaller cyclic word rv such that rw “ rv . . . rv.
(5) A band datum p rw,m, λq of B consists of a non–periodic cyclic word rw, a “multiplicity”

parameter m P N and a “continuous” parameter λ P k˚.
(6) Two band data p rw,m, λq and p rw1,m1, λ1q are equivalent if and only if p rw1,m1, λ1q is

equal to p rwo,m, λq, p rwr4ls,m, λq or p rwr4l`2s,m, λ´1q for some l P Z.

Remark 3.5. The last equivalence relation explains why it is actually more natural to
view a cyclic word rw as a cycle.

Example 3.6. The words α1 „ ξ1 ´ γ „ δ´ and α8 ´ γ „ δ ´ ζ1 „ β1 ´ δ „ γ´ are not
cyclic. On the other hand, the word

rw “ α1 „ ξ1 ´ γ „ δ ´ ζ1 „ β1 ´ δ „ γ´



COHEN–MACAULAY MODULES OVER NON–REDUCED CURVE SINGULARITIES 19

is cyclic. We have:

rwr2s “ γ „ δ´ζ1 „ β1´δ „ γ´α1 „ ξ1´ and rwr4s “ ζ1 „ β1´δ „ γ´α1 „ ξ1´γ „ δ´.

Moreover, rwo “ γ „ δ ´ β1 „ ζ1 ´ δ „ γ ´ ξ1 „ α1´.

The above definitions are motivated by the following result of Bondarenko [5].

Theorem 3.7. There is a bijection between the equivalence classes of string and band
data of the bunch of chains B and the isomorphism classes of indecomposable objects in
the category MPpRq.

Remark 3.8. There exists a more general class of tame matrix problems called repre-
sentations of decorated bunches of (semi–)chains generalizing representations of bunches
of chains; see [11, Chapter 12]. It arises in the study of Cohen–Macaulay modules over
certain non–isolated surface singularities.

Following [5], we explain the construction of indecomposable objects in MPpRq correspond-
ing to a string or a band datum.

1. Let w be a string datum of B. The corresponding object Spwq of MPpRq is given by a
pair of matrices Θxpwq and Θypwq defined as follows:

(1) Let t be the number of times the symbol γ occurs as a letter in w (since the word w is
full, t is also the number of occurrences of δ). Then both matrices Θxpwq and Θypwq
have t columns.

(2) For each ε P E, let mε be the number of times the symbol ε occurs as a letter in w.
Then the horizontal block labeled by ε in Θxpwq (respectively Θypwq) has mε rows.

(3) Next, we assign to every letter χk in w the number of times the letter χk occurred in
the subsequence χ1ρ1 . . . ρk´1χk. In other words, we assign to every letter in w the
number of times it occurred in w; see Example 3.9.

(4) Every appearance of the relation ´ in w contributes to a non-zero entry of one of the
matrices Θxpwq,Θypwq in the following way. More concretely, we fill the entries of Θx

and Θy according to the following rule.
‚ Let ε ´ ν or ν ´ ε be a subsequence in w such that ε P Ez and ν P Fz, where
z P Ω “ tx, yu. Let i be the occurrence number of ε and j be the occurrence number
of ν. Then the pi, jq-th entry of the ε-th horizontal block of Θz is set to be 1. This
rule is applied for every relation ´ in w.

‚ All remaining entries of Θxpwq and Θypwq are set to be 0.

2. Let p rw,m, λq be a band datum. We assume that rw “ w´ starts with an element
of F “ tγ, δu (this can be achieved by applying a cyclic shift). The corresponding ob-
ject Bp rw,m, λq of MPpRq is given by the pair of matrices

`

Θxp rw,m, λq,Θyp rw,m, λq
˘

con-
structed in the following way.

(1) Using the recipe of the previous paragraph, construct first the matrices Θxpwq and
Θypwq, viewing w as a string datum.

(2) Replace any zero entry in Θxpwq (respectively Θypwq) by the zero matrix and any
identity entry in Θxpwq (respectively Θypwq) by the identity matrix I, both of size m.

(3) Finally, consider the relation χn´χ1 in B. As we assumed that χ1 P Fz for z P tx, yu,
we have: χn P Ez. Replace the zero block of Θzpwq lying at the intersection of the
first m columns of the vertical block labeled by χ1 and the last m rows labeled by χn,
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by the Jordan block

Jmpλq “

λ 1 . . . 0 0

0 λ . . . 0 0
...

...
. . .

...
...

0 0 . . . λ 1

0 0 . . . 0 λ

P Matmˆmpkq.

Here are some examples of canonical forms of band and string data.

Example 3.9. Consider the string datum given by the full word

w “ αi „ ξi
#1 #1

´ γ „ δ
#1 #1

´ ζj „ βj
#1 #1

´ δ „ γ
#2 #2

´ ξi „ αi
#2 #2

´ γ „ δ
#3 #3

The corresponding string object Spwq is given by the following pair of matrices
`

Θxpwq,Θypwq
˘

1 0 0

0 1 0

0 0 0

0 0 1

γ

ξi

αi

1 0 0

0 1 0

δ

ζj

βj

Note that the first matrix Θxpwq does not have full row rank. Therefore, the regularity
conditions (3.4) are not satisfied and the object Spwq of MPpRq does not belong to the
essential image of the functor P.

Example 3.10. Consider a band datum p rw,m, λq where rw is the following cyclic word:

rw “ δ „ γ
#1 #1

´ ξi „ αi
#1 #1

´ γ „ δ
#2 #2

´ ζj1 „ βj1
#1 #1

´ δ „ γ
#3 #3

´ αi „ ξi
#2 #2

´ γ „ δ
#4 #4

´ ζj2 „ βj2
#1 #1

´

Suppose that ζj1 ă ζj2 . Actually, this assumption is not essential and only used to write
the second matrix Θyp rw,m, λq in the form conformal with the notation of this section.
Then the corresponding canonical forms

`

Θxp rw,m, λq,Θyp rw,m, λq
˘

are the following:

I 0 0 0

0 0 0 I

0 I 0 0

0 0 I 0

γ

ξi

αi

0 I 0 0

0 0 0 I

J 0 0 0

0 0 I 0

δ

ζj1

ζj2

βj2

βj1

Here, I “ Im is the identity matrix and J “ Jmpλq is the Jordan block with eigenvalue
λ P k˚, both of size m.

Example 3.11. Consider the string datum given by the word

w “ δ „ γ ´ ξi „ αi ´ γ „ δ ´ ζj „ βj ´ δ „ γ.

Then the corresponding canonical forms
`

Θxpwq,Θypwq
˘

are the following:
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1 0 0

0 1 0

γ

ξi

αi

0 1 0

0 0 1

δ

ζj

βj

Example 3.12. Consider the string datum given by the word

w “ ξ0 ´ γ „ δ ´ ζj1 „ βj1 ´ δ „ γ ´ ξi „ αi ´ γ „ δ ´ βj2 „ ζj2 ´ δ „ γ

Then the corresponding canonical forms
`

Θxpwq,Θypwq
˘

are the following:

1 0 0 0

0 1 0 0

0 0 1 0

γ

ξ0

ξi

αi

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

δ

ζj1

ζj2

βj2

βj1

Example 3.13. Consider the string datum given by the word

w “ α8 ´ γ „ δ ´ βj „ ζj ´ δ „ γ ´ ξi „ αi ´ γ „ δ ´ β8.

Then the corresponding canonical forms
`

Θxpwq,Θypwq
˘

are the following:

0 1 0

1 0 0

0 0 1

γ

ξi

α8

αi

0 1 0

0 0 1

1 0 0

δ

ζj

β8

βj

Remark 3.14. Let p rw,m, λq be a band datum and

Bp rw,m, λq “
`

Θxp rw,m, λq,Θyp rw,m, λq
˘

be the corresponding object of MPpRq. Then both matrices Θxp rw,m, λq and Θyp rw,m, λq
have the same size mnˆmn and are invertible, where n is the length of rw. In particular,
the regularity conditions (3.4) are automatically satisfied for bands. Moreover, we may
replace Jmpλq by any conjugate matrix in Matmˆmpkq, for example by the transposed
matrix Jmpλq

tr or by the Frobenius block corresponding to the polynomial pt´λqm P krts.
Any such substitution yields an isomorphic object in MPpRq. In the case the base field k

is not algebraically closed, essentially the same rules for the canonical forms remain true.

Remark 3.15. Let Spwq “
`

Θxpwq,Θypwq
˘

be a string object of MPpRq associated to a
full word w. The regularity constraints (3.4) are satisfied if and only if

‚ w begins and ends with symbols from the set E˝ Y F, where E˝ :“
 

ξ0, α8, ζ0, β8
(

.
‚ w ‰ γ „ δ, δ „ γ or e with e P E˝.

3.2. Indecomposable Cohen–Macaulay modules over P88. Our actual goal is to
describe all indecomposable Cohen–Macaulay modules over P “ P88 in an explicit way.
To achieve this, recall the following logical steps.

‚ We view CMpPq as a full subcategory of CMpRq, using the restriction functor I.
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‚ Next, we have an equivalence of categories F : CMpRq ÝÑ TripRq. Its quasi–inverse
functor G is also explicit.

‚ Next, we have a functor P : TripRq ÝÑ MPpRq, which reflects the isomorphism classes
and indecomposability of objects.

‚ Finally, the indecomposable objects of the category MPpRq are known: these are bands
Bp rw,m, λq and strings Spwq. Moreover, the essential image of the functor P is also
completely known.

These steps were already summarized in the diagrams of categories and functors (2.8) and
(3.2). The rest of this subsection is devoted to the the answer of the following question.

Question. How to go back from the category MPpRq to CMpPq in a constructive way?
In other words, how to translate the combinatorics of strings and bands in B and the
corresponding canonical forms in MPpRq into an explicit description of Cohen–Macaulay
modules over P?

Taking into account properties of categories and functors from diagram (3.2), this clas-
sification is essentially given by the combinatorics of strings and bands of the bunch of
chains B. However, it is not the way we wish to state the final answer! The reason is that
the combinatorial structure of B has no intrinsic meaning for the category CMpPq and can
be further compressed. The strategy is the following

‚ Consider a new alphabet

(3.6) G :“ Gx YGy “
` 

x˘l | l P N
(

Y
 

x0,x8
(˘

ď

` 

y˘l | l P N
(

Y
 

y0,y8
(˘

,

which will replace the bunch of chains B introduced in Definition 3.1.
‚ We shall define certain Cohen–Macaulay R–modules Spωq and Bprω,m, λq, where ω

(respectively, rω) are certain words in G, whose precise shape will be specified below,
whereas m P N and λ P k˚.

‚ Then we shall show that PF
`

Spωq
˘

– Spwq and PF
`

Bprω,m, λq
˘

– Bp rw,m, λq for some
explicit translation rule GÑ B assigning to ω (respectively, rωq a full word (respectively,
a non–periodic cyclic word) in the sense of Definitions 3.2 and 3.4. Because of that we
shall say that Spωq (respectively, Bprω,m, λq) is a string (respectively, band) Cohen–
Macaulay R–module.

‚ Finally, we shall specify the rules to determine the Cohen–Macaulay P–modules I
`

Spωq
˘

and I
`

Bprω,m, λq
˘

.

3.2.1. Band and string Cohen–Macaulay R–modules. We define certain Cohen–Macaulay
modules over R, called band (respectively, string) modules. In the course of the proof of
Theorem 3.25 below we shall see that their images under the functor PF are precisely the
band (respectively, string) objects of MPpRq.

Definition 3.16. A band module B “ Bprω,m, λq is defined by the following parameters.

‚ A band word rω, which is a non–periodic sequence of the form

(3.7) rω “ xσ1i1 yτ1j1xσ2i2 yτ2j2 . . .x
σn
in

yτnjn

where σk, τk P t`,´u and ik, jk P N for 1 ď k ď n. The condition for rω to be non–
periodic means that rω ‰ rγrγ . . . rγ, where rγ is a smaller word.

‚ m P N and λ P k˚.

Consider the following Cohen–Macaulay S–module

N “ Nprω,mq :“ X‘mi1 ‘ Y ‘mj1
‘ ¨ ¨ ¨ ‘X‘min ‘ Y ‘mjn
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Note that N Ď S2mn. By definition, B is the following R–submodule of N :

(3.8) B :“ x
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

f2i1I

g1j1I

0

0
...

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

g2j1I

f 1i2I

0
...

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

0

f2i2I

g1j2I
...

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, . . . ,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

0

0

0
...

f2inI

g1jnI

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

f 1i1J

0

0

0
...

0

g2jnI

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

y
R

where for any 1 ď k ď n the elements f 1ik , f
2
ik
P Xik and g1jk , g

2
jk
P Yik are determined by

the values of σk, τk P t`,´u according to the following tables:

(3.9)

σk f 1ik f2ik
` u xik

´ xik u

τk g1jk g2jk
` v yjk

´ yjk v

Here as usual, I “ Im is the identity matrix of size m and J “ Jmpλq is a Jordan block of
size m with eigenvalue λ. The number of columns in (3.8) is 2n (the length of rω). Recall
that Xl “ xu, x

ly and Yl “ xv, y
ly for any l P N. Therefore, f 1ik , f

2
ik
P Xik and g1ik , g

2
ik
P Yik

for all 1 ď k ď n and B is indeed a submodule of N . Moreover, B is a submodule of R2mn.

Definition 3.17. A string module S “ Spωq is defined by a string word ω in G having
the following structure: it has a beginning pxqy, an intermediate part and an end qxpy. The
beginning as well as the end may consist of zero, one or two letters. The following table
lists all possible beginnings and ends for ω (any beginning from the first two columns can
match any ending from the last two columns):

px qy intermediate part qx py

void

void

xσ1i1 yτ1j1 . . .x
σn´1

in´1
y
τn´1

jn´1

void

void
y0 x0

y8 x8

yτ0j0 xσnin
x0 yτ0j0 xσnin y0

x8 yτ0j0 xσnin y8

(3.10)

where n P N and additionally

‚ For n “ 1, the intermediate part of ω is void.
‚ For any 1 ď k ď n´ 1 we have: ik, jk P N and σk, τk P

 

`,´
(

.

‚ If qy “ yτ0j0 then j0 P N and τ0 P
 

`,´
(

. Analogously, if qx “ xσnin then in P N and

σn P
 

`,´u.

In other words, a string word ω is given by a sequence of letters from the alphabet G such
that the letters of Gx and Gy alternate and a letter from the set

 

x0,x8,y0,y8
(

may only
occur as the first or last letter of ω.
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Consider the Cohen–Macaulay S–module

N “ Npωq “ pX ‘ qY ‘Xi1 ‘ Yj1 ‘ ¨ ¨ ¨ ‘Xin´1 ‘ Yjn´1 ‘
qX ‘ pY ,

where for each i P
 

i0, in
(

and each j P
 

j0, jn
(

, we set

pX “

$

’

&

’

%

X0 if px “ x0,

X8 if px “ x8,

0 if px is void

qX “

$

’

’

’

&

’

’

’

%

X0 if qx “ x0,

X8 if qx “ x8,

Xl if qx “ x˘l ,with l P N,
0 if qx is void

with analogous rules for pY and qY .

By definition, S “ Spωq is the following R–submodule of N :

S :“ x
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

f2i0
g1j0
0
...

0

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

g2j0
f 1i1
...

0

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, . . . ,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

0

0
...

g2jn´1

f 1in
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

0

0
...

0

f2in
g1jn

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

y
R

(3.11)

where for any 1 ď k ď n´ 1, the elements f 1ik , f
2
ik
, g1jk and g2jk are defined by the tables:

σk f 1ik f2ik
` ux xik`1

´ xik`1 ux

τk g1jk g2jk
` vy yjk`1

´ yjk`1 vy

(3.12)

The remaining entries are defined as follows:

px f2i0
x0 x

x8 ux

void 0

py g1jn
y0 y

y8 vy

void 0

qx σn f 1in f2in
void 0 0

in “ 0 x 0

in “ 8 ux 0

in P N ` ux xjn`1

in P N ´ xjn`1 ux

qy τ0 g1j0 g2j0
void 0 0

j0 “ 8 0 vy

j0 “ 0 0 y

j0 P N ` vy yj0`1

j0 P N ´ yj0`1 vy

(3.13)

Remark 3.18. As in the case of bands, the number of generators of the R–module Spωq
defined by (3.11) is equal to the length of the word ω. Again, the rules (3.12) and (3.13)
insure that we indeed have an inclusion Spωq Ă Npωq, as claimed. Comparing with
the corresponding rule for band (3.9) there is a deviation in the definition of the entries
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f 1ik , f
2
ik
, g1ik and g2ik . The explanation is the following: since x P Sx and y P Sy are regular

elements, we have: Xl – xXl and Yl – yYl for all l P N0 Y t8u. Therefore,

Npωq – x pX ‘ yqY ‘ xXi1 ‘ yYj1 ‘ ¨ ¨ ¨ ‘ xXin´1 ‘ yYjn´1 ‘ x
qX ‘ ypY Ă R2pn`1q.

In this way we achieve that the R–module Spωq is automatically defined as a submodule

of R2pn`1q. This will be convenient in the light of Proposition 1.13, since we actually wish
to describe Bprω,m, λq and Spωq as modules over P. If the string parameter ω contains
neither x0 nor y0, then there is a simpler presentation of the module Spωq, analogous to
the case of bands. Namely, for 1 ď k ď n´ 1, the elements f 1ik , f

2
ik
, g1jk and g2jk are defined

according to (3.9), whereas the rules for the remaining entries are given by the tables:

px f2i0
x8 u

void 0

py g1jn
y8 v

void 0

qx σn f 1in f2in
void 0 0

in “ 8 u 0

in P N ` u xjn

in P N ´ xjn u

qy τ0 g1j0 g2j0
void 0 0

j0 “ 8 0 v

j0 P N ` v yj0

j0 P N ´ yj0 v

(3.14)

These rules give an isomorphic R–module. For the sake of uniqueness, we shall use the
convention of Definition 3.17 (in particular, in Remark 3.29 and Remark 3.32).

Remark 3.19. Any string module S “ Spωq defined by (3.11) has a more compact
presentation by “merging” every odd row with its subsequent row:

S – x
¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

f2i0 ` g1j0

0

...

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

g2j0

f 1i1
...

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

f2i1 ` g1j1
...

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

, . . . ,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

0

...

g2jn´1

f 1in

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

0

...

0

f2in ` g1jn

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

y
R

The same will be done with the horizontal stripes of any band module B “ Bprω,m, λq
defined by (3.8):

B – x
¨

˚

˚

˚

˚

˚

˝

pf2i1 ` g1j1qI

0

...

0

˛

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˝

g2j1I

f 1i2I

...

0

˛

‹

‹

‹

‹

‹

‚

, . . . ,

¨

˚

˚

˚

˚

˚

˝

0

0

...

pf2in ` g1jnqI

˛

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˝

f 1i1J

0

...

g2jnI

˛

‹

‹

‹

‹

‹

‚ y
R

The interpretation of this rule is the following: we use the embedding Xl ‘ Yk ÝÑ S for
any k, l P N0Yt8u. This allows one to embed a string module Spωq (respectively, a band
module Bprω,m, λq into a free R–module of a smaller rank.
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Example 3.20. In the following we construct some indecomposable Cohen–Macaulay
modules over R from strings and bands.

(1) Let prω,m, λq be the band datum given by rω “ x´i y´j1x
`
i y´j2 with i, j1, j2 P N, m P N

and λ P k˚. Then the corresponding band module is given by

Bprω,m, λq – x
¨

˚

˚

˚

˚

˝

uI

yj1I

0

0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

0

vI

uI

0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

0

0

xiI

yj2I

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

xiJ

0

0

vI

˛

‹

‹

‹

‹

‚ y
R

– x
˜

pu` yj1qI

0

¸

,

˜

vI

uI

¸

,

˜

0

pxi ` yj2qI

¸

,

˜

xiJ

vI

¸

y
R

Here, J denotes the Jordan block with eigenvalue λ and I the identity matrix, both
of size m.

(2) Let ω be the string ω “ x´i y´j , where i, j P N. The corresponding string module Spωq
is given by

Spωq – x
˜

xi`1

0

¸

,

˜

ux

yj`1

¸

,

˜

0

vy

¸

y
R

– pxi, u` yj , vqR

(3) Let ω be the string ω “ x0y
´
j1

x´i y`j2 , where i, j1, j2 P N. The corresponding string
module is given by

Spωq – x
¨

˚

˚

˚

˚

˝

x

yj1`1

0

0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

0

vy

xi`1

0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

0

0

ux

vy

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

0

0

0

yj2`1

˛

‹

‹

‹

‹

‚ y
R

– x
˜

x` yj1`1

0

¸

,

˜

vy

xi`1

¸

,

˜

0

ux` vy

¸

,

˜

0

yj2`1

¸

y
R

(4) Let ω be the string ω “ x8y`j x´i y8, where i, j P N. The corresponding string module
is given by

Spωq – x
¨

˚

˚

˚

˚

˝

ux

vy

0

0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

0

yj`1

xi`1

0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

0

0

ux

vy

˛

‹

‹

‹

‹

‚ y
R

– x
˜

u` v

0

¸

,

˜

yj

xi

¸

,

˜

0

u` v

¸

y
R

Definition 3.21. Let rω be a band word as in (3.7) and ω be a string word as in (3.10).

‚ For any k P Z, we define the shifted word rωrks by

rωrks :“ x
σk`1

ik`1
y
τk`1

jk`1
x
σk`2

ik`2
y
τk`2

jk`2
. . .x

σk`n`1

ik`n`1
y
τk`n`1

jk`n`1
,

where all indices are taken modulo n.
‚ The opposite word of rω is by definition

rωo :“ xσ̄1i1 yτ̄njnxσ̄nin y
τ̄n´1

jn´1
. . .xσ̄2i2 yτ̄1j1 ,

where σ̄j and τ̄j denote the opposite signs of σj respectively τj for each 1 ď j ď n.
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‚ The opposite word ωo of ω is given by reversing the letters and taking opposite signs in
the word ω. For example, in the notations of Table 3.10, if

ω “ px yτ0j0xσ1i1 yτ1j1 . . .x
σn´1

in´1
y
τn´1

jn´1
xσnin py then ωo “ py xσ̄nin y

τ̄n´1

jn´1
x
σ̄n´1

in´1
. . .yτ̄1j1xσ̄1i1 yτ̄0j0 px.

Note that ωo need not have the form (3.10): if for example ω “ y0x8 then ωo “ x8y0

does not occur in (3.10).
‚ We say that two bands prω,m, λq and prυ, n, µq are equivalent if and only if there is some

k P Z such that prωrks,m, λq “ prυ, n, µq or prυo, n, µ´1q.

Remark 3.22. If the beginning and the ending of ω are void then ω is also a band word.
This is different from the case of full and cyclic words over the alphabet B.

3.2.2. From triples to Cohen–Macaulay modules. Let us look more closely at the functor
IG : TripRq ÝÑ CMpPq. Consider an object T “

`

N,V, pΘx,Θyq
˘

of the category TripRq.
Then we may assume that

‚ N “ Xi1 ‘ ¨ ¨ ¨ ‘Xik ‘ Yj1 ‘ ¨ ¨ ¨ ‘ Yjl for some i1, . . . , ik, j1, . . . , jl P N0 Y t8u.
‚ V “ k

t for some t P N0.

According to Theorem 1.19, the corresponding Cohen–Macaulay R–module M “ GpT q is
determined by the following commutative diagram in the category of R–modules:

(3.15)

0 // mN // M
σ //

��

k
t

rθ
��

// 0

0 // mN // N
π // N{mN // 0.

Lemma 3.23. Let
 

e1, . . . , et
(

be the standard basis of kt. For any 1 ď i ď t choose

wi P N such that πpwiq “ rθpeiq. Then we have:

(3.16) M “
@

w1, . . . , wt
D

R
Ď Sk`l

and t is the minimal number of generators of M .

Proof. By definition of M , for any 1 ď i ď t we have: wi P M . Moreover, M “
@

w1, . . . , wt
D

R
` mN . Next, mM “ mN , the induced map σ : M{mM ÝÑ k

t is an

isomorphism (see the proof of [11, Theorem 2.5]) and σpwiq “ ei. Hence,
 

w1, . . . , wt
(

is
a basis of M{mM and (3.16) follows from Nakayama’s Lemma. �

Lemma 3.24. Let T “
`

N,kt, pΘx,Θyq
˘

be an indecomposable object of TripRq as above

and M “ GpT q “
@

w1, . . . , wt
D

R
Ď Sk`l. Then the following results are true.

(1) We have either

‚ T –

´

S,k,
`

p1q, p1q
˘

¯

(in this case M – R), or

‚ IpMq “
@

w1, . . . , wt
D

P
Ď Sk`l.

In both cases we have: JpMq “
@

w1, . . . , wt, vw1, . . . , vwt, uw1, . . . , uwt
D

T
Ď Sk`l.

(2) The Cohen–Macaulay module M , respectively IpMq and JpMq, is locally free on the
punctured spectrum of R, respectively P and T, if and only if N contains no direct
summands isomorphic to X8 or Y8.

Proof. (1) The statement about IpMq is a corollary of Proposition 1.13. The statement
about JpMq follows from the fact that JpTq “ x1, u, vyR Ă Q in R–mod.

(2) The Cohen–Macaulay module M is locally free on the punctured spectrum of R if and
only M – S �R M is locally free on the punctured spectrum of S; see Remark 1.15. The
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latter is equivalent to the condition that N contains no direct summands isomorphic to
X8 or Y8. Since the rational envelopes of M , IpMq and JpMq are the same, the result
follows. �

3.2.3. Classification of indecomposable Cohen–Macaulay R–modules. Recall that

R “ kJx, y, u, vK{pxy, xv, yu, uv, u2, v2q.

Theorem 3.25. The following results are true.

‚ The Cohen–Macaulay R–modules Bprω,m, λq and Spωq are indecomposable. Moreover,
any indecomposable Cohen–Macaulay R–module is isomorphic to some band module
Bprω,m, λq or some string module Spωq.

‚ Bprω,m, λq � Spω1q for any choice of parameters rω, ω1,m and λ.
‚ Spωq – Spω1q if and only if ω1 “ ω or ω1 “ ωo, where ωo is the opposite word.
‚ Bprω,m, λq – Bprω1,m1, λ1q if and only if the bands prω,m, λq and prω1,m1, λ1q are equivalent

in the sense of Definition 3.21.

Proof. According to Theorem 2.1, the classification problem of indecomposable objects
of CMpRq is equivalent to the matrix problem defined by the bunch of chains B from
Definition 3.1. More precisely, we had a diagram of categories and functors

CMpRq „

F
--
TripRq

P //

G
mm MPpRq

where F and G are mutually inverse equivalences of categories and P is a full functor
reflecting isomorphism classes and indecomposability of objects.

1. The indecomposable objects of the category MPpRq are classified by string and band
data according to Theorem 3.7. Moreover, the indecomposable objects of MPpRq lying in
the essential image of P are described by Remark 3.15.

2. Let w (respectively, rw) be a full (respectively, cyclic) word of string (respectively, band)
datum in B; see Definition 3.2 (respectively, Definition 3.4). It follows that we may delete
from w and rw all subsequences of the form γ „ δ or δ „ γ and relations ´ without any
loss of information. Now we can translate the remaining subsequences as follows:

ξ0 αi „ ξi ξi „ αi α8 ζ0 βj „ ζj ζj „ βj β8

x0 x`i x´i x8 y0 y`j y´j y8

This table yields the translation rule B ÝÑ G, which will allow to pass from the indecom-
posable objects of MPpRq to the underlying indecomposable Cohen–Macaulay R–modules.

3. Consider a string datum pwq (obeying the constraint from Remark 3.15), respectively a
band datum p rw,m, λq. In Subsection 3.1 we explained the construction of the correspond-
ing indecomposable object Θ “

`

Θx,Θyq of MPpRq. Now we give the construction of a

triple T “ pN,V, θq in TripRq such that PpT q “ Θ. Let m0, m˘l , m8, n0, n˘k respectively

n8 be the number of times the letter x0, x˘l , x8, y0, y˘k respectively y8 occurs in w,

respectively in rw. For any l P N, we put ml “ m`l `m
´
l and nl “ n`l ` n

´
l . Let t be the

number of times γ (or δ) occurs in w. Then T “ pN,V, θq, where

‚ N “
`

‘8l“0X
‘ml
l

˘

‘
`

‘8l“0Y
‘nl
l

˘

,

‚ V “ k
t,

‚ θ is the kˆ k–linear map given by
`

Θx,Θyq.
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4. Now recall the construction of the indecomposable Cohen–Macaulay R–module M “

GpT q. Consider a basis of a k–vector space N{mN given by the images of the distinguished
generators of the indecomposable direct summands of N . Let π : N Ñ N{mN be the

canonical projection and rΘ :“
´

Θx
Θy

¯

: V Ñ N{mN . By Theorem 1.19 we have:

M :“ GpT q “ π´1
`

imprΘq
˘

Ď N.

Moreover, the description of M as a submodule of a free R–module is provided by Lemma

3.23. Namely, M is generated by the columns of the matrix obtained from rΘ by the
following procedure.

(1) At the first step, we (formally!) multiply each entry of rΘ with its horizontal weight.
(2) At the next step, we construct from it a matrix with entries from S using the following

table:

ξ0 ξk αk α8 ζ0 ζk βk β8

ex xk u u ey yk v v
k P N.

Here, ex, ey are the primitive idempotents of the ring S “ Sx ˆ Sy.

‚ If the matrix rΘ was constructed from a band datum p rw,m, λq then we get precisely the
module Bprω,m, λq from Definition 3.16.

‚ In the case the matrix rΘ was constructed from a string datum pwq, we use an iso-
morphism of R–modules M – px ` yqM . Again, we get precisely the R–module from
Definition 3.17.

5. The statement about the isomorphism classes of string modules in CMpRq is a direct
translation of the corresponding result for the category MPpRq stated in Theorem 3.7.
Considering all pairwise non–equivalent band data p rw,m, λq, we may assume that the first
letter of w is δ by the equivalence conditions in Definition 3.4. Then Theorem 3.7 yields
the statement about the isomorphism classes of band modules Bprω,m, λq as stated in the
theorem.

6. Summing up, the key point of the proof of Theorem 3.25 is that by construction we
have the following isomorphisms in the category MPpRq :

PF
`

Bprω,m, λq
˘

– Bpw,m, λq “
`

Θxpw,m, λq,Θxpw,m, λq
˘

for a band module Bprω,m, λq from Definition 3.16 and

PF
`

Spωq
˘

– Spwq “
`

Θxpwq,Θxpwq
˘

.

for a string module Spωq from Definition 3.17. �

Remark 3.26. According to Lemma 3.24, any band module Bpω,m, λq is locally free
on the punctured spectrum. A string module Spωq is not locally free on the punctured
spectrum if and only if ω contains a letter x8 or y8.

Remark 3.27. The canonical forms of Examples 3.10, 3.11, 3.12 and 3.13 of the preceding
subsection correspond exactly to the string and band modules of Example 3.20 via the
translation in the proof above.
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3.2.4. Classification of indecomposable Cohen–Macaulay P–modules. Our original motiva-
tion was to describe indecomposable Cohen–Macaulay modules over P “ kJx, y, zK{pxy, z2q.
Theorem 1.11, Lemma 3.24 and Theorem 3.25 yield the following result.

Theorem 3.28. An indecomposable Cohen–Macaulay P–module is either P, or one of the
band modules (3.8) respectively string modules (3.11). Moreover, in the formulae (3.8)
and (3.11), the generation over R can be replaced by the generation over P (with the only
exception of Spy0x0q – R).

Remark 3.29. Any string or band module M over R can be translated into a Cohen–
Macaulay module IpMq over P as follows.

(1) Assume that M “ Bprω,m, λq is a band module given by (3.8). We compute IpMq
replacing the elements of R by elements of P according to the following table:

xi u yj v

xi`1 xz yj`1 yz

(2) If M “ Spωq � Spy0x0q is a string module given by (3.11), (3.12) and (3.13), then the
translation rule is the following:

xi ux yj vy

xi xz yj yz

This statement follows directly from Lemma 3.24, taking into account that the embedding
PÑ R is given by the formulae (3.1). The reason for a deviation in the recipes for bands
and strings is explained in Remark 3.18.

Remark 3.30. An analogue of Theorem 3.28 remains valid for any curve singularity of
type P2r`1,2s`1, where r, s P N0 Y t8u, but string and band modules have to be redefined
in the following way:

(1) The band and string modules over P2r`1,8 are given by the Definitions 3.16 and 3.17,
but their string and band words ω may only contain letters xi such that 0 ď i ď r or
yj , where j P N0 Y t8u.

(2) Band and string data over P2r`1,2s`1, where r, s P N0, may only contain the letters xi
such that 0 ď i ď r or yj such that 0 ď j ď s.

The method of this section can also be generalized using Bondarenko’s work on represen-
tations of bunches of semi–chains [5] to obtain an explicit classification of indecomposable
Cohen–Macaulay modules over the remaining curve singularities P2r,q, where r P N and
q P N Y t8u. This generalization is straightforward to carry out, but the explicit combi-
natorics is too complicated to be stated in the present article.

Example 3.31. In the following, we apply Remark 3.29 to rewrite the string and band
modules over R from Example 3.20 as indecomposable Cohen–Macaulay modules over P.

(1) Let prω,m, λq be a band datum with rω “ x´i y´j1x
`
i y´j2 , where i, j1, j2 P N. Then the

image of the corresponding band module B “ Bprω,m, λq under I is

IpBq – x
˜

pxz ` yj1`1q I

0

¸

,

˜

yz I

xz I

¸

,

˜

0

pxi`1 ` yj2`1q I

¸

,

˜

xi`1 J

yz I

¸

y
P
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(2) Let ω “ x´i y´j with i, j P N. Then I
`

Spωq
˘

is given by

I
`

Spωq
˘

– x
˜

xi`1

0

¸

,

˜

xz

yj`1

¸

,

˜

0

yz

¸

y
P

–
`

xi`1, xz ` yj`1, yz
˘

P

(3) Let ω “ x0y
´
j1

x´i y`j2 , where i, j1, j2 P N. Then I
`

Spωq
˘

is given by

I
`

Spωq
˘

– x
˜

x` yj1`1

0

¸

,

˜

yz

xi`1

¸

,

˜

0

px` yq z

¸

,

˜

0

yj2`1

¸

y
P

(4) Let ω “ x8y`j x´i y8 with i, j P N. Then I
`

Spωq
˘

is given by

I
`

Spωq
˘

– x
¨

˚

˚

˚

˚

˝

xz

yz

0

0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

0

yj`1

xi`1

0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

0

0

xz

yz

˛

‹

‹

‹

‹

‚ y
P

– x
˜

z

0

¸

,

˜

yj

xi

¸

,

˜

0

z

¸

y
P

3.3. Cohen–Macaulay modules over T88 and their matrix factorizations. Our
next motivation was to study Cohen–Macaulay modules over the hypersurface singularity
T “ kJa, bK{pa2b2q. At the beginning of Section 3 we have constructed a fully faithful

functor J : CMpRq �
�

// CMpTq. Its explicit description, adapted to the combinatorics of

bands and strings, was explained in Lemma 3.24.

Remark 3.32. The image under the functor J of any band (respectively, string) Cohen–
Macaulay R–module M defined by (3.8) (respectively, (3.11)) can be computed as follows.

‚ Let M be a band module Bprω,m, λq. To compute JpMq, we use Lemma 3.24 and the
table

xi u yj v

ai`2 a2b bj`2 ab2

‚ Let M “ Spωq be a string module. In this case, the translation rule is the following:

xi ux yj vy

ai`1 a2b bj`1 ab2

Example 3.33. Now we translate the string and band modules over R from Example 3.20
into indecomposable Cohen-Macaulay modules over T using Remark 3.32.

(1) Let prω,m, λq be a band datum with rω “ x´i y´j1x
`
i y´j2 , where i, j1, j2 P N. Then the

image of the corresponding band module Bprω,m, λq under J is

x
˜

pa2b` bj1`2q I

0

¸

,

˜

ab2 I

a2b I

¸

,

˜

0

pai`2 ` bj2`2q I

¸ ˜

ai`2 J

ab2 I

¸

y
T

(2) Let ω “ x´i y´j , where i, j P N. Then J
`

Spωq
˘

is given by

JpSq –
`

ai`2, a2b` yj`2, ab2
˘

T
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(3) Let ω “ x0y
´
j1

x´i y`j2 , where i, j1, j2 P N. Then J
`

Spωq
˘

is given by

J
`

Spωq
˘

– x
˜

a2 ` bj1`2

0

¸

,

˜

ab2

ai`2

¸

,

˜

0

a2b` ab2

¸

,

˜

0

bj2`2

¸

y
T

(4) Let ω “ x8y`j x´i y8, where i, j P N. Then J
`

Spωq
˘

is given by

J
`

Spωq
˘

– x
˜

a2b` ab2

0

¸

,

˜

bj`2

ai`2

¸

,

˜

0

a2b` ab2

¸

y
T

Remark 3.34. There is an involution τ on R “ kJx, y, u, vK{pxy, xv, yu, uv, u2, v2q which
interchanges x and y, u and v. Restricted to P “ kJx, y, zK{pxy, z2q Ă R , τ is still an
involution such that τpzq “ z. The restriction of τ to T “ kJa, bK{pa2b2q Ă A interchanges
a and b. Overall, τ induces an involution on the category of Cohen–Macaulay modules
over R, P or T. The corresponding action of τ on words ω of string or band data of CMpRq
is given by interchanging x and y in ω.

In the following table, we give a list of all indecomposable Cohen–Macaulay ideals of R
and P (except P itself) and the corresponding ideals of T up to isomorphism and involution
τ . Let i, j P N and λ P k˚. For all band data the multiplicity parameter m is set to 1.

word of G ideal in R ideal in P ideal in T

x0 pxq pxq pa2q

x8 puq pxzq pa2bq

x´i pxi, uq pxi`1, xzq pai`2, a2bq

y0x0 p1q px` y, xzq pa2 ` b2, a2b, ab2q

x`i y0 pux, xi`1 ` yq pxz, xi`1 ` yq pa2b, ai`2 ` b2, ab2q

x`i y´j pu, xi ` yj , vq pxz, xi`1 ` yj`1, yzq pa2b, ai`2 ` bj`2, ab2q

x´i y0 pxi`1, ux` yq pxi`1, xz ` yq
i “ 1 : pa3, a2b` b2q

i ě 2 : pai`2, a2b` b2, ab2q

x´i y´j pxi, u` yj , vq pxi`1, xz ` yj`1, yzq pai`2, a2b` bj`2, ab2q

x´i y`j pxi, u` v, yjq pxi, z, yjq pai`2, a2b` ab2, bj`2q

y0x8 pux` yq pxz ` yq pa2b` b2, ab2q

x8y´j pu` yj , vq pxz ` yj`1, yzq pa2b` bj`2, ab2q

x8y`j pu` v, yjq pz, yjq pa2b` ab2, bj`2q

y8x8 pu` vq pzq pabq

px´i y´j , 1, λq pxi ` λv, yj ` uq pxi`1 ` λyz, yj`1 ` xzq
pai`2 ` λab2, bj`2 ` a2bq

unless i “ j “ 1, λ “ 1

px´1 y´1 , 1, 1q px` v, y ` uq px2 ` yz, y2 ` xzq pa, bq

px´i y`j , 1, λq pxi ` λyj , u` vq pxi ` λyj , zq pai`2 ` λbj`2, a2b` ab2q
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Remark 3.35. The above list does not contain all indecomposable ideals of T. For
example, the ideal pa2` λb2, a2b` ab2q is not a restriction of an ideal in R for any λ P k˚.

Let MFpa2b2q be the homotopy category of matrix factorizations of a2b2. By a result of

Eisenbud [18] there is an equivalence of triangulated categories CMpTq
„ // MFpa2b2q.

In the following table, we list the matrix factorizations of a2b2 which originate from an
indecomposable ideal in R (up to isomorphism and involution). Let i, j P N and λ P k˚.

ideal in kJa, bK{pa2b2q matrix factorization pφ, ψq of a2b2

pa2q pb2q pa2q

pa2bq pbq pa2bq

pai`2, a2bq

˜

b 0

´ai b

¸ ˜

a2b 0

ai`2 a2b

¸

pai`1 ` bj`1, a2b, ab2q

¨

˚

˝

ab 0 0

´ai b 0

´bj 0 a

˛

‹

‚

¨

˚

˝

ab 0 0

ai`1 a2b 0

bj`1 0 ab2

˛

‹

‚

pa3, a2b` b2q

˜

ab 0

´a2 a2b

¸ ˜

ab 0

´a b

¸

pai`3, a2b` b2, ab2q

¨

˚

˝

b 0 0

´ai`1 ab 0

0 ´b a

˛

‹

‚

¨

˚

˝

a2b 0 0

ai`2 ab 0

ai`1b b2 ab2

˛

‹

‚

pai`2, a2b` bj`2, ab2q

¨

˚

˝

b 0 0

´ai ab 0

ai´1bj ´bj`1 a

˛

‹

‚

¨

˚

˝

a2b 0 0

ai`1 ab 0

0 bj`2 ab2

˛

‹

‚

pai`2, bj`2, a2b` ab2q

¨

˚

˝

b 0 0

0 a 0

´ai ´bj ab

˛

‹

‚

¨

˚

˝

a2b 0 0

0 ab2 0

ai`1 bj`1 ab

˛

‹

‚

pa2b` bj`1, ab2q

˜

ab 0

´bj a

¸ ˜

ab 0

bj`1 ab2

¸

pbj`2, a2b` ab2q

˜

a 0

´bj ab

¸ ˜

ab2 0

bj`1 ab

¸

pabq pabq pabq

pai`2 ` λab2, a2b` bj`2q

˜

ab ´bj`1

´ai`1 λab

¸ ˜

u ab λ´1 u bj`1

λ´1 u ai`1 λ´1 u ab

¸

where i or j or λ ‰ 1 where u is the unit
`

1´ λ´1ai´1bj´1
˘´1

pa, bq

˜

ab2 0

0 a2b

¸ ˜

a 0

0 b

¸
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ideal in kJa, bK{pa2b2q matrix factorization pφ, ψq of a2b2

pa3 ` ab2, a2b` b3, ab3q

¨

˚

˝

b 0 0

´a ab 0

0 ´b a

˛

‹

‚

¨

˚

˝

a2b 0 0

a2 ab 0

ab b2 ab2

˛

‹

‚

pai`2 ` λbj`2, a2b` ab2q

˜

ab 0

´λbj`1 ´ ai`1 ab

¸ ˜

ab 0

λbj`1 ` ai`1 ab

¸

Remark 3.36. By Knörrer’s periodicity [24] the functor

MFpa2b2q
„
ÝÑ MFpa2b2 ` uvq

´

φ, ψ
¯

ÞÝÑ

˜

φ ´u ¨ I

v ¨ I ψ

¸ ˜

ψ v ¨ I

´u ¨ I φ

¸

is an equivalence of triangulated categories. It allows to get explicit families of matrix
factorizations of any potential of type

a2b2 ` u1v1 ` . . .` udvd P kJa, b, u1, . . . , ud, v1, . . . , vdK.

Remark 3.37. Let charpkq ‰ 2. Then there is a ring isomorphism

kJa, b, cK{pa2b2 ´ c2q – kJx, y, zK{pz2 ´ xyzq “: T882.

The indecomposable Cohen–Macaulay modules over the surface singularity T882 have
been classified in [11]. On the other hand, Knörrer’s correspondence [24] relates T882 to
T88 by a restriction functor

MFpa2b2 ´ c2qÝÑMFpa2b2q,

such that every indecomposable matrix factorization of a2b2 appears as a direct sum-
mand of the restriction of some indecomposable matrix factorization of a2b2 ´ c2. With
some efforts, one can compute the matrix factorizations of a2b2 corresponding to Cohen–
Macaulay T882–modules of small rank. However, the derivation of all indecomposable
matrix factorizations of a2b2 is not straightforward by this approach.

Remark 3.38. The approach to classify indecomposable Cohen–Macaulay modules using
the technique of tame matrix problems is close in spirit to the study of torsion free sheaves
on degenerations of elliptic curves. See [4] for a survey of the corresponding results and
methods.

3.4. Some remarks on the stable category of Cohen–Macaulay modules. Let
pA,mq be a Gorenstein singularity (of any Krull dimension d). By a result of Buchweitz
[8], the natural functor

CMpAq ÝÑ DsgpAq :“
Db

`

A´mod
˘

PerfpAq

is an equivalence of triangulated categories. If the singularity A is not isolated, then
CMpAq is Hom–infinite [1]. On the other hand, the stable category of Cohen–Macaulay

modules CMlfpAq is always a Hom–finite triangulated subcategory of CMpAq. By a result



COHEN–MACAULAY MODULES OVER NON–REDUCED CURVE SINGULARITIES 35

of Auslander [1], the category CMlfpAq is pd ´ 1q–Calabi–Yau. This means that for any

objects M1 and M2 of CMlfpAq we have an isomorphism

HomApM1,M2q – D
`

HomApM2,Σ
d´1pM1qq

˘

,

functorial in both arguments M1 and M2, where D is the Matlis duality functor and
Σ “ Ω´1 is the suspension functor. In particular, if A is a Gorenstein curve singularity,
then for any M P CMlfpAq the algebra EndApMq is Frobenius. Thus, Theorem 2.1 gives
a family of examples of representation tame 0–Calabi–Yau triangulated categories and
Theorem 3.28 provides a complete and explicit description of indecomposable objects in
one of such categories CMlfpPq for P “ kJx, y, zK{pxy, z2q.

4. On the definition of tame representation type of a curve singularity

Let k be an uncountable algebraically closed field (the field of complex numbers C is
of major interest) and pA,mq a Cohen–Macaulay k–algebra of Krull dimension one (a
Cohen–Macaulay curve singularity).

Definition 4.1. Let Ind
`

CMpAq
˘

be the set of the isomorphism classes of indecomposable
Cohen–Macaulay A–modules. The Cohen–Macaulay representation type of A is

‚ finite if the set Ind
`

CMpAq
˘

is finite.

‚ discrete if the set Ind
`

CMpAq
˘

is infinite but countable.
‚ wild if for any finitely generated commutative k–algebra Λ there exists an exact functor

Λ´ fdmod
E
ÝÑ CMpAq preserving indecomposability and isomorphism classes of objects.

The definition of tame representation type of a Cohen–Macaulay curve singularity is more
involved. Let Q “ QpAq be the total ring of fractions of A. According to Lemma 1.2, Q
is an Artinian ring. For a Cohen–Macaulay A–module M we denote by MQ :“ Q bA M
its rational envelope, also called the rational type of M in what follows. For any finite
length Q–module F we denote by IndF

`

CMpAq
˘

the set of the isomorphism classes of
indecomposable Cohen–Macaulay A–modules such that MQ – F .

Let X “ SpecpAq be the spectrum of A. As usual, we shall identify a coherent sheaf on X
with the corresponding Noetherian A–module of global sections.

Definition 4.2. Let F be a finite length Q–module and T a scheme of finite type over k.
A coherent sheaf F on X ˆ T is a family of Cohen–Macaulay modules of rational type F
over the base T if the following conditions are satisfied:

‚ F is flat over T .
‚ For any point λ P T we have: Fλ :“ F |Xˆtλu is a Cohen–Macaulay A–module.

‚ Moreover,
`

Fλ
˘

Q
– F for all λ P T .

Definition 4.3. A Cohen–Macaulay curve singularity A has tame Cohen–Macaulay rep-
resentation type if the following conditions are satisfied.

‚ The set Ind
`

CMpAq
˘

is uncountable.

‚ The set Ind
`

Q–modq is finite, i.e. the Artinian ring Q has finite representation type.
‚ For any finite length Q–module F there exists an at most countable (but possibly finite

or empty) set ΩpF q with the following properties.
– For any i P ΩpF q there exists a quasi–projective curve Ei and a family of maximal

Cohen–Macaulay A–modules Fi of rational type F such that for any λ P Ei the
Cohen–Macaulay A–module Fi,λ :“ Fi

ˇ

ˇ

Xˆtλu
is indecomposable.
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– For any indecomposable Cohen–Macaulay A–module M of rational type F there exist
i P ΩpF q and λ P Ei such that M – Fi,λ.

In other words, Cohen–Macaulay representation tameness of A means that Ind
`

CMpAq
˘

is
uncountable and can be written as a union of countably many families, whose bases are
quasi–projective curves.

Remark 4.4. Let A be a Cohen–Macaulay curve singularity over k.

‚ If A is reduced then Q is semi–simple, hence of finite representation type. The rational
type of a Cohen–Macaulay A–module is given by its multi–rank. In this case, our
definition of tameness coincides with the one of Drozd and Greuel [15, Section 1]. Note
that for the reduced Cohen–Macaulay tame singularities, all sets ΩpF q are actually finite
[15].

‚ Our definition of tameness for curve singularities is consistent with the corresponding
definition for surface singularities [11, Definition 8.13] as well as with the notion of
tameness for finite dimensional k–algebras [11, Proposition 8.20].

‚ Conjecturally, any Cohen–Macaulay curve singularity has either finite, countable, tame
or wild Cohen–Macaulay representation type. This result is known to be true for the
reduced curve singularities [14]. In fact, the Cohen–Macaulay representation type of all
reduced curve singularities was determined in [15].

‚ In all non–wild cases of Cohen–Macaulay curve singularities known to us, the total ring
of fractions Q is a product of several copies of kpptqq or kpptqqrεs{pε2q.

‚ A rigorous definition of Cohen–Macaulay representation types in the case the base field
k is countable (e.g. Q) requires further elaboration.

Theorem 4.5. Let P “ kJx, y, zK{pxy, z2q and R be its minimal overring. Then P and R
have tame Cohen–Macaulay representation type in the sense of Definition 4.3.

Proof. First of all, note that Q :“ QpPq “ QpRq – kpptqqrεs{pε2qˆkpptqqrεs{pε2q. Therefore,
Q has finite representation type, as required in Definition 4.3.

Using the morphism of schemes SpecpRq Ñ SpecpPq, we can push–forward any family of
indecomposable Cohen–Macaulay R–modules to a family of indecomposable P–modules.
Because of Theorem 1.11, it is sufficient to prove tameness of R.

Let M be a Cohen–Macaulay R–module and ĂM :“ S bR M , where S “ kJx, uK{pu2q ˆ

kJy, vK{pv2q. Clearly, the rational types of M and ĂM are the same. For any indecompos-
able Cohen–Macaulay module M of string type, we attach a constant family of Cohen–
Macaulay modules. Clearly, for any finite length Q–module F , there are at most countably
many indecomposable Cohen–Macaulay R–modules of rational type F , which are strings.
Therefore, we only need to care about families for band modules.

Let p rw,m, λq be a band datum of the bunch of chains B from Definition 3.4. We denote
by rω the corresponding non–periodic word over the alphabet G, as in Definition 3.16. Let
N “ Nprωq be the Cohen–Macaulay S–module from Definition 3.16 and B “ Bprω,m, λq
the indecomposable Cohen–Macaulay R–module given by (3.8). Note that BQ – NQ – Qr

for some r P N.
Put C “ krt, t´1s and T “ SpecpCq “ A1

k
zt0u. For any R–module L we denote Lrt˘s :“

L bk C. Note that Lrt˘s is free and hence flat as a module over C. Now we define the



COHEN–MACAULAY MODULES OVER NON–REDUCED CURVE SINGULARITIES 37

following Rrt˘s–module M “Mprω,mq:

(4.1)

0 // pINqrt˘s // M //

��

Cr

rΘrt˘s
��

// 0

0 // pINqrt˘s // N rt˘s
π // qN rt˘s // 0,

where the matrix rΘrt˘s :“
´

Θxp rw,mq
Θyp rw,mq

¯

is determined by the same recipe as in the

discussion of Theorem 3.7. Observe that both modules pINqrt˘s and Cr are free over
C. Thus, Mprω,mq is free (hence, flat) over C as well. According to Theorem 1.19 and
Theorem 3.25 we have:

`

Mprω,mq
˘ˇ

ˇ

Xˆtλu
– Bprω,m, λq for any λ P T . Therefore, Mprω,mq

is a family of indecomposable Cohen–Macaulay R–modules of rational type Qr over the
base T . This gives us a recipe to construct the set Ω

`

Qrq from the Definition 4.3 as well
as the corresponding families of indecomposable Cohen–Macaulay R–modules. �

Remark 4.6. In the same way, based on the proof of Theorem 2.1 and Bondarenko’s
result [5], we can complete the formal proof of tameness of the curve singularities P8,q “
kJx, y, zK{pxy, yq ´ z2q for q P Ně2.
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