COHEN-MACAULAY MODULES OVER THE ALGEBRA OF PLANAR
QUASI-INVARIANTS AND CALOGERO-MOSER SYSTEMS

IGOR BURBAN AND ALEXANDER ZHEGLOV

ABSTRACT. In this paper, we study properties of the algebras of planar quasi—invariants.
These algebras are Cohen—Macaulay and Gorenstein in codimension one. Using the
technique of matrix problems, we classify all Cohen—-Macaulay modules of rank one over
them and determine their Picard groups. In terms of this classification, we describe
the spectral module of a rational Calogero—Moser system of dihedral type. Finally, we
elaborate the theory of the algebraic inverse scattering method, computing an explicit
example of a deformed Calogero—Moser system.

1. INTRODUCTION

A prototype for our work is given by the following setting. For any m € N, consider
d m(m+ 1)
. . . dm2 xQ . .
[10, 16]) that there exists a differential operator P, of order 2m + 1 with meromorphic
coefficients, such that [Pm, Lm] =0 and P2 = L2+

Let Ay, := C[Pp, L] = C[t?,t2™+1]. Then the algebra A, is Gorenstein and the following
results are true (see for instance Theorem [7.1)):

the so—called rational Lamé operator L,, := . It is well-known (see e.g.

e There exists an isomorphism of algebraic groups:
(1.1) Pic(Ap) = Ky, == ((C[a]/(am),o),

where Pic(A,,) is the Picard group of A, and 71 02 := (y1 +72) - (1 + 0y1y2)~*
for any v1,72 € K-

e Let @ be a torsion free A,,—module of rank one. Then either @) is projective or
there exists m’ < m and a projective module A,,,~module @’ of rank one such
that @ is isomorphic to Q" viewed as a module over A, C A,,.

One goal of this work is to generalize the described picture on the two—dimensional case.
As an input datum, we take any pair (IL, p) (called weighted line arrangement), where

e II C C is a finite subset satisfying the condition: o — 8 ¢ 7Z for any o # 5 € 11
o 11 -5 No, o = o := p(a) is any multiplicity function.

For any a € II, let us denote: lo(z1,22) := —sin(a)z1 + cos(a)ze € R := C[z1, 22]. The
main object of our paper is the following C-algebra of (II, ) —quasi-invariant polynomials:

(1.2) A=A(ILy) = {f € R | 12'*! divides (f — sa(f)) for all a € H},

where R 2% R is the involution associated with the reflection C2 —s C2, which keeps
the line [, = 0 invariant. It is not difficult to show that A (called algebra of planar
quasi—invariants) is a finitely generated C—algebra of Krull dimension two.

A motivation to study ring— and module-theoretic properties of the algebra A comes
from the theory of rational Calogero—-Moser systems. Assume that (H, H) = (An, m) isa
1
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Cozeter weighted line arrangement, i.e.
n—1

1
H:An::{O,—ﬁ,..., ﬂ}CRforsome n €N,
n

whereas p, = m for all a € IT and some m € N. For any vector 56 C? such that [, (5) #£0
for each o € Ay, consider the following rational Calogero—Moser operator

(1.3) H:H((An,m);f)::<82 + a2>_ZM

81‘% 836% = 2(z—¢§)

According to a result of Chalykh and Veselov [II] (who proved a much more general
statement for the real Coxeter groups of arbitrary rank), there exists an injective algebra
homomorphism (defining a so—called algebraically integrable quantum system)

(1.4) A(An, m) ﬂ D= (C[[m‘l,l'g]] [81, 82]

mapping the polynomial 22 + 23 € A to the operator H. In other words, H can be included
into a large family of pairwise commuting differential operators (quantum integrability).

It was proven by Feigin and Veselov [18], that in the Coxeter case, the algebra A is
Gorenstein (hence Cohen—Macaulay). This result was vastly generalized by Etingof and
Ginzburg [I5] on the case of arbitrary real Coxeter groups and multiplicity functions,
invariant under the action of the Weyl group. In [19, I7], the authors proved that the
algebra A(H, ,u) is Gorenstein in several non—Coxeter cases.

Let B = Im(E(g)) C ®©. The B-module F := D/(x1,22)0 = C[0y, 2] (called spec-
tral module of *B) is the key object relating algebraic and analytic tools in the study of
Calogero—Moser systems. Combining [10, Corollary 3.1] with [28, Theorem 3.1], one can
conclude that F' is a Cohen-Macaulay B—module of rank one. The analytic meaning of
F can be illustrated by the following fact. For any algebra homomorphism %5 X,
consider the vector space

(1.5) Sol(B,x) = { f € Clar, &3P o f = x(P)f for all P € B,

where ¢ denotes the usual action of ® on C[xy, z2]. Then there exists a canonical isomor-
phism of vector spaces (see Theorem [4.5)

F| :=F @ (B/Ker(x)) = Sol(B,x)",

explaining why the A-module F' is called spectral. The statement that F' has rank one can
be rephrased by saying that the vector space Sol(‘B, X) is one—dimensional for a “generic”
character y, i.e. the Calogero—Moser system is superintegrable; see [111 [12] [10].

In their recent paper [I7, Section 8], Feigin and Johnston raised a question about an
explicit description of the spectral module F' for the two-dimensional rational Calogero—
Moser systems. This leads to the problem of classification of all Cohen—Macaulay modules
of rank one over an arbitrary algebra of planar quasi-invariants A = A(H, ,u). Another
natural problem is to describe the Picard group Pic(A) of A. Obviously, the finitely
generated projective A—modules form a proper subcategory of the category of Cohen—
Macaualy A—modules. It turned out that it is in fact easier first to describe all Cohen—
Macaulay A-modules of rank one and then specify those of them which are locally free.

Now, let us give a short overview of main results, which were obtained in our work.

1. Ring—theoretic properties of the algebra of planar quasi-invariants. For any weighted
line arrangement (H, H)v the algebra A = A(H, H) is a finitely generated, Cohen—Macaulay
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and of Krull dimension two. The main new feature about the algebra A is the result
asserting that it is Gorenstein in codimension one; see Theorem [2.21

2. The divisor class group of A. Let CMY¥(A) be the abelian group of Cohen-Macaulay
A-modules of rank one, which are locally free in codimension one [0l [7] (it is an analogue
of the divisor class group of a normal domain [9, Section 7.3]). Then there exists an
isomorphism of abelian groups

CMY(A) — K(IL ) := [] (C(p)lo]/ ("), ),

a€ll

where the group law o on C(p)[o]/(c**) is the same as in the case of the one-dimensional
cuspidal curves (1.1]); see Theorem (3.2

3. Cohen—Macaulay A-modules of rank one. Let M € CM;(A) be a Cohen—-Macaulay
A-module of rank one, which is not locally free in the codimension one. Then there exists

a multiplicity function II £, Ny satisfying o > g, for any a € II and M’ € CM{(4)
for A" = A(II, i’) such that M is isomorphic to M’, where M’ is viewed as a module over
A C A’; see Corollary

4. Description of a dualizing module of A. In the Coxeter case Il = {0, %m ceey ”T_lw}, we
get an explicit description of a dualizing module of A for an arbitrary multiplicity function

; see Theorem and Lemma

5. The Picard group of A. For any o € C and m € N, we construct a certain homomorphism

T o, m
of abelian groups (C[z1, 22], +) o), (Clpl[o]/(™),0) (see Lemma [3.15), defining a

homomorphism

(Cler. 2], +) = [[ (Clellol/ (@), ), b (Tazun) (D) et

acll

In these terms we have: Pic(A) = Im(T)NK° (11, u), where K°(I1, p) := [] Clp][o]/(c**);
a€cll
see Theorem [3.17]

More explicitly, let F(H,H) = {h S (C[[zl,zg]]‘T(h) S K°(H,H)}. Then for any such
h e F(H, E)? we have a projective A-module P(h) of rank one, defined as

P(h) :={f € R| exp(h)f is (I, u) — quasi-invariant }.

Conversely, for any P € Pic(A), there exists h € T'(II, ) such that P = P(h). Moreover,

[ P(hl) = P(hg) if and OIﬂy if T(h1> == T(hg)
e The multiplication map P(h) ®4 P(h2) — P(h1 + ha), f1 ® fo — fif2 is an
isomorphism of A-modules.

6. The spectral module of a Calogero—Moser system of rank two. In the cases when there

exists an embedding A %; © (these are the so—called Baker—Akhieser weighted line
arrangements (II, 1), e.g. a Coxeter one; see Definition and Example , we have

an (B — A)—equivariant isomorphism F' = P(—u) (where u(z1, 22) = &121 + £222), i.e. an
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isomorphism of vector spaces F’ = P(—u) such that the diagram

F——= P(—u)
- oE(?)(f)l l— f
F——=— P(—u)

is commutative for any f € A, where o (respectively -) denotes the action of B (respectively
A) on F (respectively P(—u)). This answers a question of Feigin and Johnston [17] and
proves that the spectral module F' of the rational Calogero—Moser system B is projective.

The key role in the proof of this result is plaid by the following formula for the Hilbert

Hp(.
function Z — 2 Ny of the filtered module P(—u) C R:

(k—p+1)(k—n+2)

5 for k € Z,

Hp( (k) i= dime{w € P(—u) | deg(w) < k} =

where 11 := )" fiq; see Theorem [4.14
acll

7. Elements of the higher—dimensional Sato theory. One motivation of our work was to
find an appropriate generalization of Wilson’s description [37] of bispectral commutative
subalgebras of rank one of ordinary differential operators on the case of partial differential
operators (the main point is that bispectrality can be characterized by the property of the
spectral curve being rational with bijective normalization; see [37, Theorem 1]). Following
the main idea of the works [38], 27, 28], it seems to be natural to replace the algebra © by
a bigger algebra. Namely, we introduce an algebra of formal power series of differential
operators having the following special form:

G = Z ak17k2(x1,x2)8f18§2 Add e Z: k1 + ko — U(akhkz(ﬂfl,xQ)) <dVki,kg >0,
k1,k2>0

where v (a(z1,22)) is the valuation of the power series a(z1,2) € C[z1, 2]; see Definition
It turns out that the algebra & acts on C[z1, 2] (this action extends the natural
action of the algebra ® on C[z1,x2]) and contains some natural operators (e.g. operators
of a change of variables, delta—functions and integration operators) which do not belong
to D; see Example and Example

Inspired by the theory of Sato Grassmannian [34}, [3T], 37], we introduce the following sets:
: k42
Gr(R) = {W CR ‘ dime (w €W | deg(w) <k + u) = (") forany ke NO}

where p1 € Ng. It turns out that any Schur pair (W, A), where W € Gr,(R) and A C Ris a
C—subalgebra such that W - A = W, determines an injective algebra homomorphism A —
S, which is unique up to an appropriate inner automorphism of &; see Theorem If
A= A(H, u) is the algebra of quasi-invariants of a Baker—Akhieser line arrangement and
W = P(—&§121 — £222), then we recover in this way the algebra embedding .



COHEN-MACAULAY MODULES AND CALOGERO-MOSER SYSTEMS 5

8. Deformations of Calogero—Moser systems arising from Cohen—Macaulay modules. In
Section [6] we illustrate the developed “algebraic inverse scattering method” by construct-
ing an “isospectral deformation” of the simplest dihedral Calogero—Moser system associ-
ated with the operator

0?2 9?2 1 1
"= (6%*%3) =7 (m —er T <x2—§2>2) |

We tried to keep the exposition of this paper self-contained. Still, our work is based on the
following two external ingredients. Firstly, we essentially use the theory of multivariate
Baker—Akhieser functions of (generalized) Calogero—Moser systems [111, 12, [T, 14} [10]. The
second ingredient is the “matrix—problem method” of [0 [7] to study Cohen—Macaulay
modules over singular surfaces with non—isolated singularities.

Acknowledgement. The work of the first—named author was partially supported by the
CRC/TRR 191 project “Symplectic Structures in Geometry, Algebra and Dynamics” of
German Research Council (DFG). The research of the second—named author was partially
supported by the DAAD program “Bilateral Exchange of Academics 2016”, the RFBR
grant 16-01-00378-a and by the grant of scientific schools NSh 7962.2016.1. We are also
grateful to Misha Feigin for fruitful discussions.

List of motations. For reader’s convenience we make an account of the most important
notations used in this paper.

1. A weighted line arrangement (II, 1) is an input datum defining the corresponding algebra
of quasi-invariant polynomials A = A(II,u) C R = C[z1, 22] = C[pcos(y), psin(p)]. It
consists of a finite set 1T C C and a function IT —=» No, a = po = p(a). We put u =
> acti Ma- For a Baker—Akhieser weighted line arrangement, the function 1 has to satisfy
very strong constraints; see Section |4l In the Coxeter case, Il = A,, = {O, %77, ceey ”77177}

Finally, X always denotes the affine surface, determined by the algebra A and P is the
set of prime ideals in A of height one.

2. Next, I = Anng(R/A) is the conductor ideal of the algebra extension A C R. For
any m € N, we denote K,, = C(p)[o]/(¢™) and L,, = C(p)[e]/(*™). For any a € II,

we denote Ko = K, Lo = Ly, and lo(21,22) = —sin(a)z; + cos(a)ze € R. For each
k
fe (C[,o cos(cp),psin(gp)], «a € IT and k € Ny we put fék) = gcpé € Clp).
p=ua

3. Cohen-Macaulay modules in our work are always mazimal Cohen-Macaulay and CM(A)
denotes the category of Cohen—Macaulay A—modules, whereas CI\/I'f(A) stands for its full
subcategory consisting of those modules, which are locally free in codimension one. Next,
Pic(A) is the Picard group of A, whereas CM;(A) (respectively, CM'f(A)) denotes the set of
the isomorphism classes of rank one Cohen-Macaulay A-modules (respectively, the subset
consisting of those modules, which are locally free in codimension one). We denote by
Tri(A) the category of triples (see Definition [2.8)).

Finally, M (#,7) (respectively, B(¥) and P(h)) denote elements of CM;(A) (respectively,
CM(A) and Pic(A)), expressed through the corresponding classifying parameters; see

formula (3.5)) (respectively (3.3]) and (3.21)).

4. Gothic letters stand for objects, related with partial differential operators. In partic-
ular, ® = C[xy,z2][01, Do), whereas € = Clxy, 22] (97 1) (95 1)) is the algebra of pseudo-
differential operators. Next, G is another algebra of “infinite” partial differential operators
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(see Section [f]). We denote by ¢ the natural left action of © or & on C[z1,z2], whereas o
stands for the natural right action of © or & on C[0;, ds]. Finally, B C © is the commu-
tative subalgebra of ® containing the Calogero-Moser operator H and given by the
formula , whereas F' is the corresponding spectral module.

5. For any p € Ny, Gr,(R) denotes the set of all subspaces W C R with Hilbert polynomial
Hy (k+p) = (k;rQ); S € G is a Sato operator of such W € Gr,(R) (see Definition .

2. RING-THEORETIC PROPERTIES OF THE ALGEBRA OF SURFACE QUASI-INVARIANTS

We refer to the monographs [9], 29] 35] for the definition and main properties of Cohen—
Macaulay rings and modules.

2.1. Some results on the Macaulayfication. The exposition in this subsection closely
follows the survey article [6], where a special attention to the study of Cohen—Macaulay
modules on singular surfaces was paid. Let A be a finitely generated integral C—algebra of
Krull dimension two, @ = Q(A) its field of fractions, X an affine surface, whose coordinate
ring is isomorphic to A and P := {p € Spec(A) | ht(p) = 1}.

A proof of the following proposition can be for instance found in [27, Appendix 2].
Proposition 2.1. Let At := ) Ay C Q. Then the following statements are true.

peP

o At is a finitely generated Cohen—Macaulay C—algebra of Krull dimension two.
e We have: dimg(Af/A) < oo.
o Moreover, A= A" if and only if A is Cohen-Macaulay.

The C-algebra AT is called Macaulayfication of A.

Let M be a Noetherian torsion free A-module. Recall that the rank of M is defined to be

rk(M) :=rkq(Q(M)), where Q(M) := Q ®4 M is the rational envelope of M.

A proof of an analogous result for modules can be for instance found in [6, Section 3.

Proposition 2.2. Let MT:= () M, C Q(M). Then the following statements are true.
peP

MT is a Noetherian Cohen—Macaulay module (both over At and A).

We have: dimc(MT/M) < occ.

Moreover, M = M' if and only if M is Cohen—Macaulay.

Assume A is already Cohen—Macaulay. Let Q) be a dualizing module of A. Then
we have: MT = MYV, where MY := Hom (M, Q).

Similarly to Proposition the At —module MT is called Macaulayfication of M.

From now on, we shall assume that the algebra A is Cohen—Macaulay. In what follows,
CM(A) denotes the category of all Cohen—-Macaulay A-modules.

Lemma 2.3. Suppose that A is Gorenstein in codimension one, i.e. Ay is Gorenstein for
any p € P. Then for any torsion free Noetherian A-module M we have: MV =2 M**
where M* = Homy (M, A).

Proof. We prove this fact here since the proof given in [6, Proposition 3.7] contained an
error. First note that both modules MYV and M** are Cohen-Macaulay; see for example

[0, Lemma 3.1]. Let M 5 MYV and M —L5 M** be the canonical morphisms. By the
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universal property of Macaulayfication [6, Proposition 3.2], there exists a unique morphism
MY Ly M such that the diagram

M
M\/\/ f

is commutative. Since both morphisms ¢ and j induce isomorphisms of the corresponding
rational envelopes, we may conclude that f is a monomorphism. Next, M, is automatically
Cohen-Macaulay over A, and Q, = A, for any p € P. Therefore, the morphisms of A,—
modules i, and j, are isomorphisms, hence f, is an isomorphism, too. As a consequence,
the cokernel of f is a finite dimensional A-module. Since both A-modules M"Y and M**
have depth two, f is surjective by the Depth Lemma [9, Proposition 1.2.9]. O

k3

Definition 2.4. A Cohen—Macaulay A-module M is called locally free in codimension
one if M, is a free Ay-module for any p € P. Equivalently, there exists a finite set Z C X
and a locally free sheaf N on the surface X \ Z such that M = 1,(N), where X \ Z — X
is the canonical open inclusion (the proof of this statement is the same as in [6, Corollary
3.12]). In what follows, CM'f(A) denotes the category of all Cohen-Macaulay A-modules,
which are locally free in codimension one.

Proposition 2.5. Assume that the algebra A is Gorenstein in codimension one. Abusing
the notation, let CMIIF(A) be the set of the isomorphism classes of Cohen—Macaualy A—
modules of rank one, which are locally free in codimension one. Then CMIIF(A) s an
abelian group (which is an analogue of the divisor class group of a normal domain [9)
Section 7.3]) with respect to the operation

(2.1) My Ry My := ((My @4 Ma)/tor),

where tor denotes the torsion submodule of My ® 4 M. The neutral element of CMY(A) is
A, whereas the inverse element of M is M* = Hom4(M, A).

Proof. For the associativity of Ky, see [6l Proposition 3.15]. It is also clear that A is the
neutral element of CM!f(A). Finally, let M be an element of CM!f(A). Then the evaluation
morphism M ®4 Hom (M, A) =% A induces a morphism of Cohen-Macaulay modules

M X4 Homy (M, A) ", A such that evy, is an isomorphism for any p € P. By [0, Lemma
3.6], eV’ is an isomorphism. Hence, M* is indeed inverse to M in CM!f(A). O

Remark 2.6. Let Z; C X be a finite subset, Ny be a locally free sheaf on Uy := X \ Zj
and My, := 1., (Ny) € CM(A) for k = 1,2. Then we have: M; Ky My =1, (Nl‘U ®N2‘U),
where U := X \ {Z; U Zy} and U — X is the canonical embedding. The proof of this
result follows from [6, Proposition 3.10].

2.2. Category of triples. Now we introduce a certain categorical construction [6} [7],
playing the key role in our paper. Let A be a reduced Cohen-Macaulay C-algebra of
Krull dimension two, either finitely generated or complete. Let R be the normalization of
A. Note that R is automatically Cohen-Macaulay [35, Theorem IV.D.11] and the algebra
extension A C R is finite.

We denote by I = Anny(R/A) = {r € A|rR C A} = Hom(R, A) the conductor ideal
of the algebra extension A C R. Observe that I is an ideal both in A and R. Moreover,
I is Cohen—-Macaulay (both over A and R); see e.g. [6, Lemma 3.1]. Both C-algebras
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A=A/I and R = R/I are Cohen-Macaulay of Krull dimension one (but not necessarily
reduced). Let Q(A) and Q(R) be the corresponding total rings of fractions. Then the
algebra extension A C R induces a canonical embedding Q(A4) C Q(R).

Let Assr(I) = {q1,...,qn} be the set of the associated prime ideals of I in R. Since
the algebra Q(R) is Artinian, the Chinese Remainder theorem implies that

Q(R) = Ry, x -+ x Ry,

where q1, ..., q, are the images of q1,...,qn in S. Of course, a similar result holds for the
algebra Q(A), too.

The proof of the following result can be found in [7, Lemma 3.1].

Lemma 2.7. For any M € CM(A), the following statements are true:

1. the canonical morphism of Q(R)-modules
Our = Q(R) g (a) (Q(A) @4 M) — Q(R) @r (R®a M) — Q(R) ®r (RN M)

s an epimorphism.
2. the adjoint morphism of Q(A)-modules

~ — — — 9 —

O = Q(A) @4 M — Q(R) ®q(a) (Q(A) ®a M) =5 Q(R) @k (RM4 M)
s @ monomorphism.
Definition 2.8. Consider the following diagram of categories and functors:

QR)®qa) —

_QBOR— | (R) — mod 29D~ o 1) — mod

CM(R)
According to [30, Section I1.6], the corresponding comma category Comma(A) is defined
as follows. Its objects are triples (N,V,0), where N is a Cohen—Macaulay R—module,

V is a Noetherian Q(A)-module and Q(R) g V N Q(R) ®g N is a morphism of

Q(R)-modules (called gluing map).
A morphism between two objects (N,V,60) and (N', V' 6") of the category Comma(B)

is given by a pair (f,g), where N L N’ is a morphism of R—modules and V %5 V' is a
morphism of @(A)-modules such that the following diagram

Q(R) ®q(a) — % L QR)®r N

(2.2) 1®gl Jl@f

Q(R) ®gca V' LN Q(R) ®r N’

is commutative.
The category of triples Tri(A) is the full subcategory of Comma(A) consisting of those
triples (IV,V,0), for which the gluing map 6 satisfies the following two conditions:

e ¢ is an epimorphism; B
e the adjoint morphism of Q(A)-modules 6 defined as the composition

V — Q(R) ®qg1) V = Q(R) ®r N

is a monomorphism. O
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In the above terms, we have a commutative diagram of C—algebras

A— Q(A)

o 1

R— Q(R).

The main idea is to realize the category CM(A) as a “categorical gluing” of the categories
CM(R) and Q(A) — mod along the category Q(R) — mod. This is implemented by the
following result |7, Theorem 3.5].

Theorem 2.9. The functor CM(A) x, Tri(A), mapping a Cohen-Macaulay A—module M
to the triple (R Xa M,Q(A) ®4 M, GM), 18 an equivalence of categories. The functor F

establishes an equivalence of categories between Cl\/l'f(A) and the full subcategory Tri'f(A)
of Tri(A) consisting of those triples (N, V,0) for which the Q(A)-module V is free and the
morphism 6 is an isomorphism.

Moreover, for any objects My and My of CI\/I'f(A) we have:

F(My Ra M) = F(M) @ F(Ma),
where (N1, V1,01) ® (Na, Va,05) := (N1 Xr No, Vi ®g(4) Ve, 01 ® 02) for any two objects of
the category Tri'f (A).

Finally, for any maximal ideal m in the algebra A, we have a commutative diagram of
categories and functors

(2.4) mml L.

where ]Lm(N, V, 9) = (Nm’f/m?fg\m)'

2.3. Category of triples for the algebra of planar quasi—invariants. From now
on, we put R := Cl[z1,2). As in Introduction, we fix the following datum (II, 1), called
weighted line arrangement:
e II C C is a finite subset satisfying the condition: a — 8 ¢ 7Z for any o # € 1L
o 11 -5 No, o = o = p(a) is a multiplicity function.
The above restriction on the elements of the set II has the following meaning: the lines
V(lo) and V(lg) are distinct for any o # S € II, where [, = —sin(a)z; + cos(a)z2 € R
and V(f) C A? denotes the vanishing set of f € R. Note that any complex line V(1) C A?
passing through the origin, with the only exception of two lines V(21 +iz2), can be written
as V(l,) for an appropriate a € C.

For any « € II, consider the reflection
C* 1% C%, T 7—2(7,€n)éa,
where &, := (—sin(a), cos(a)) and (Z,€,) = —sin(a)z1 + cos(a)z2. Let

R=% R, f(2) = (3()(2) = f(ra(2))

be the involution associated with the reflection 7.
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Let A= A(H, H) be the algebra of surface quasi—invariant polynomials |D correspond-
ing to the datum (H, H)' In what follows, we shall denote

— .24 .2
§ = H lhe and  w:= 2] + 2z3.
a€ll

Observe that both polynomials w and §2 belong to the algebra A.

Although the following result is not original (compare with [2, Lemma 7.3] and [21], Theo-
rem 3.3.2]), we provide its detailed proof for the sake of completeness and convenience of
the reader.

Proposition 2.10. The algebra A is a finitely generated homogeneous subalgebra of R of
Krull dimension two. Next, Q(A) = Q(R) = C(z1, 22) and the algebra R is the normal-
ization of A (i.e. the integral closure of A is Q(A)). Let X be an affine surface, whose
coordinate ring is isomorphic to A. Then the corresponding normalization map A2 —» X
1s bijective.

Proof. First note the following elementary fact: if [ € R is a homogeneous polynomial
dividing another (possibly, non—homogeneous) polynomial f € R, then [ divides the ho-
mogeneous component of f of the highest degree. It follows from the definition that
A is a homogeneous subalgebra of R.

To prove that the algebra A is finitely generated, put A° := Clw, %] C A. We claim that
R is finite viewed as an A°~module. Indeed, let J = (w,d%)g. Since V(21 +iz2,la) = {0}
for any « € I, we have: V(J) = {0}. Hence, the ideal J is (21, z2)-primary implying that
dim¢(R/J) < oo. Let hq, ..., hy, be abasis of R/.J consisting of homogeneous polynomials.
We claim that

(2.5) R={(h1,...,hp)a.

Indeed, let f € R be an arbitrary homogeneous polynomial. Then there exist A1..., Ay €
C as well as homogeneous polynomials g, h € R satisfying deg(g) < deg(f) and deg(h) <

m
deg(f), such that f = (> Ajh;) + gw + hé®. Proceeding inductively with g, h, we get the
j=1

result . Since we have a tower of algebra extensions A° C A C R and R is finitely
generated as A°~module, the algebra A is finitely generated of Krull dimension two.
Since for any f € R, the polynomial f§? belongs to A, we have: f € Q(A). Hence,
Q(A) = Q(R). The normalization map A2 -+ X is automatically surjective. We have to
show that v is injective. Our proof is a slightly modified version of the argument from [2]
Lemma 7.3]. By Hilbert’s Nullstellensatz, the injectivity of v is equivalent to the statement
that for any two maximal ideals m # n of R we have: ANm # ANn. Equivalently, for any
pair of points p # ¢ € A2, there exists f € A such that f(p) = 0 and f(q) # 0. Without
loss of generality, we may assume that ¢ # (0,0). Then the following two cases can occur.

Case 1. ¢ ¢ V(6) = UaentV (lo). Again, take any g € R such that g(p) = 0 and g(q) # 0
and put f :=dg. Then f € A and f(p) = 0, whereas f(q) # 0.

Case 2. q € V() = UaennV (ln). Since g # (0,0), there exists precisely one @ € II such
that l,(q) = 0. Again, take any g € R such that g(p) = 0 and ¢(q) # 0. Now we put

£ = (I (salla) - 15)%) - (salg) - 9)-
B#a



COHEN-MACAULAY MODULES AND CALOGERO-MOSER SYSTEMS 11

By construction, ZZ”B ‘ f for any 8 # «, whereas s,(f) = f. Hence, f € A. Obviously,
f(p) = 0. On the other hand, (s4(9))(q) = g(sa(q)) = g(g) # 0 and in a similar way,
(sa(lg))(a) = l5(salq)) # O for any 8 # . Therefore, f(q) # 0. O

It is convenient to rewrite the definition of the algebra A(H, u) in terms of polar coordi-
nates. We put z; = pcos(yp), z2 = psin(yp) and identify the algebra R with the subalgebra
C[pcos(y), psin(p)] of the algebra C{p, ¢} of analytic functions on C x C = C, x C,,. For
any f € C{p, ¢}, a € C and k € Ny, consider the analytic function

o f
(k) .—
(2.6) S = o

In these terms, we have an injective algebra homomorphism

: C—C.
p=a

oo Ek
Clo, o} — C{p}el,  fr Talf) = kZ:O 185

In the polar coordinates, we have: [, = psin(¢ — «) and

(sa(£)(p.0) = f(p.2a — ) forany fe R.
Lemma 2.11. For k € N, let Py := C|p,¢]/(e*) and

k—1 ;
NE
(27) T(a,k) : R — P, f — ZO f‘g‘Z)ﬁ
1=
Then the following results are true.
e The map Tq ) is an algebra homomorphism and Ker(T(mk)) = (lg)
o The algebra inclusion éa,k = R/(Ik) 5 Py induces an isomorphism 7 of the
corresponding total Tings of fractions.
Proof. The fact that T, ) is an algebra homomorphism, is a basic property of Taylor
series. If f € R is such that f}, = 0 then Iy | f. The statement that Ker(T(, 1)) = (I%) can
be easily proven by induction. Let
u:=pcos(p —a) and wv:= psin(p — ).
It is clear that R = Clu,v]. We put:

=) =p(l- S+~
3 5
v:=71(v) = (5—%4—%— )

Next, we denote: wy = @ and w; = ' ~¢* € Q(Py) for 1 <i <k —1. It is clear that

o @; € Im(Q(Rax) — Q(P)) and

e W; = p- s;, where s; = &' + h.o.t € C[¢]/(g¥)
for any 0 < i < k — 1. It is now easy to see that p and any element s € C[e]/(e*) belong
to the image of 7. Hence, Q(Rqx) = Q(FP%), as claimed. O
Corollary 2.12. We get the following description of the algebra of quasi—invariants:

(2.8) A=A(Lp)={feR|fl,=fo == fP"D =0 for all a €I}
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Lemma 2.13. Let f € R be such that Ti, 2m)(fg) € Clp,€?]/(e®™) for any g € R. Then
we have: T4 9m)(f) = 0.

Proof. Taking g = 1, we see that T, o) (f) = NeH 4 X189 244 N\ 162™72 for some
Ajy .oy Am—1 € C[p]. Suppose that j < m—1and \; # 0. Take g := v2m=i)=1 ¢ R. Then
we have: T{(q 2m)(9f) = p2m=i) =N, . g2m=1 ¢ C[p,e?]/(¢*™), giving a contradiction. [

Corollary 2.14. Let I := Anny(R/A) = {f € R|gf € Afor any g € R} = Homa(R, A)
be the conductor ideal. Then we have: I = (6°)r = R. In particular, the ideal I is Cohen—
Macaulay (both over A and over R, since depth 4(I) = depthp(I) = 2) and we have:

Assip(I) = {qa|a €I}, where qq:=(la)r C R.

In other words, the affine variety Vir(I) C A% is a union of n lines defined by the set II.

Proof. Tt follows from the definition of the conductor ideal I that
I={f€eR|Tnou,)lgf) €Clp, e%]/(e*) for all g € R and « € II}.

Hence, the statement immediately follows from Lemma and Lemma [2.13 (]

Remark 2.15. The algebra A = A/I is Cohen—Macaulay of Krull dimension one, since
we have a finite extension A C R := R/I and the algebra R has these properties.

Lemma 2.16. The map Assp(l) — Assa(I), q — p := AN q is a bijection. Moreover,
for any q € Assr(l) we have: R, = Ry and the algebra extension A, C Ry, induces an
isomorphism of the corresponding residue fields.

Proof. The first statement is a consequence of the fact that the normalization morphism
A% 25 X is bijective; see Proposition It follows that qR, is the unique maximal
ideal of Ry, hence R, = Ry.

Next, the morphism of affine curves Al = V(q) — V(p) is bijective, hence it is auto-
matically birational. Therefore, the algebra extension A/p C R/q induces an isomorphism
of the corresponding fields of fractions and we have: A,/pA, = Ry/qR,. O

Corollary 2.17. Let q € Assp(0) and p = GN A. Then the algebra extension /_15 C Rq
induces an isomorphism of the corresponding residue fields.

Remark 2.18. If we view [ as an ideal in A then the corresponding affine variety V4 (I) C
X is the locus of those points where the surface X is not normal. If we view [ as an ideal
in R then we have A2 D Vg(I) = v~ 1(V4(I)). Since the map A2\ Vg(I) == X \ Va(I) is
an isomorphism, V4 (1) is precisely the singular locus of X. According to Corollary
the curve V(1) C A? is a line arrangement consisting of n lines passing through the origin
(0,0), whose slopes are determined by the set II. On the other hand, V4(I) = V(VR(I))
is a union of n rational cuspidal curves (the order of each cusp is determined by the
corresponding value of the multiplicity function p) meeting at the common point (0, 0).
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Proposition 2.19. For any o € 11, put q = qo, p = q N A and consider the following
diagram of C—algebras:

!
.

(2.9) \\l =~

T
]A‘_L;(—> Ra
T
P——1L
where
e R= EQ,QM := R/(I2") and § is the image of q in R;
e P=P, =C gl/(e*e) and T = Tia200);

[p,
p)lel/ (%)

e L =1L, :=C(
Then we have: Im(T) = K = K, := C(p)[g?]/(%=).

Proof. We first show that Im(T) C K. Indeed, for any a € A we have: T(a) = T(a) € K.
Next, observe that if ¢ € L is invertible and ¢ € K, then ¢! € K. Therefore, for any

% € Ay we have: T(%) =T(a)-T(b)! € K.
Let K’ := Im(T), then we have to prove that K’ = K. Note the following two facts.

(1) Consider the element 6o =2 - [] (sa(ls) - lﬁ)%ﬁ € R. Since s4(04) = do and
#

«

l;% ’ 0o for all § # «, we have: 6, € A. Moreover,
Sa = T(éa) = )\152 + o+ )‘m7152m_2 c K’

for some A1, ..., \p—1 € C(p) such that \; # 0.

(2) By Corollary the algebra extension Ay C Rj induces an isomorphism of the
residue fields. Next, according to Lemma [2.11] the morphism 7 is an isomorphism.
Therefore, we have an algebra extension

K'C K =C(p)[?]/ (%) € L = C(p)[e]/(£*"),

which induces an isomorphism of the corresponding residue fields.

The last assumption implies that for any g € C(p), there exists an element v, € K’ of the
form vy = g+ g1e? + - -+ guo—182#"2. If 1, = 1 then we are done. Otherwise, if f1o > 2,
consider the element 54> g = ()\‘fa_lg) -g2#a=2 ¢ K’ Tt follows that for any h € C(p)
we have: he?e=2 ¢ K'. Proceeding inductively, we conclude that K’ = K. O



14 IGOR BURBAN AND ALEXANDER ZHEGLOV

Corollary 2.20. We have the following commutative diagram of C—algebras:
Koy X - X Kq,

[ diag
X}
Lo, X -+ X Lg,

where {al,...an} = 1II and T(f) = (T(0172Na1)(f)""’T(Oén72ﬂan)(f)) for any f € R,
whereas K, = C(p)[e?]/(e**«) and L, = C(p)[e]/(e**«) for each o € 1.

1%

(2.10)

o

Now we are prepared to prove the following statement.

Theorem 2.21. The algebra of quasi—invariants A = A(H,H) is Cohen—Macaulay and
Gorenstein in codimension one. More precisely, let m € Max(A) be the mazimal ideal,
corresponding to any point of the surface X \ {p}, where p =1/(0,0) for the normalization
map A®> 5 X. Then the local ring Ay is Gorenstein.

Proof. Let A’ be the Macaulayfication of A (see Proposition and I' := Hom 4/(R, A)
be the corresponding conductor ideal. Since Q(A) = Q(A’), we have: Homa/ (R, A") =

Hom4 (R, A’). Moreover, the embedding A 2, A’ induces a commutative diagram

I —= Homu(R, A)

.

I — Homa(R, A).

Since the C—vector space A’/A is finite dimensional, Jp 1s an isomorphism for any p € P.
Therefore, the cokernel of jl* is finite dimensional, too. On the other hand, both A—modules
I and I' are Cohen—Macaulay; see Corollary and [0, Lemma 3.1] respectively. From
[0, Lemma 3.6] we deduce that I = I'.

Let A’ := A’/I. Then we have an algebra extension A C A’, where both algebras A and
A" are Cohen-Macaualy and dim¢(A’/A) < oo. This implies that Q(A) = Q(A’). Next,

we have the following commutative diagram:

14
IR

A QA" Q(A) —— Ag, x -+ x Ay, —— Koy X -+ X K,

S N N

R Q(R) —— Q(R) —— Rg, X -+~ X Ry, — Loy, X - X La,

R

where p := AN q for 1 < k < n; compare with diagram (2.10)).
Let U, := F(A’), where CM(A’) N Tri(A’) is the equivalence of categories from The-

orem Clearly, Us = (R,Q(A"),0), where Q(A') N Q(R) is the canonical inclusion.
In the terms of diagram (2.10]) we have:
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* Q(A) = Doen Ko,

e 0=((1),...,(1)).
Observe that A" = Hom (A, A’) = Homyi(ar)(Us, Us). Spelling out the definition ([2.2)
of morphisms in Tri(A"), we obtain:

HomTri(Al) (an UO)) = f € R VO[ € H T(f%?lta)(f J{ Jo fOI' some ga € Ka

Lo ¢ L,
)
LQ<TL

«

It follows that R D A’ = {f € R|T(a2u.)(f) € Clp][e?]/(e*) for all a € I} = A(II, ).
Hence, the algebra A is indeed Cohen—Macaulay.

It follows that the local ring Ay is Cohen—Macaulay for any m € Max(A). Moreover,
Ay is Gorenstein if and only if its completion A= ﬁm is Gorenstein. Let ¢ € X be the
point corresponding to m. If ¢ is smooth then Az Clu,v] is regular.

Now, assume that the point ¢ is singular and a € II is such that ¢ € V(ly) \ {p}.
It follows from the formula I = Homyu(R, A) that I := I, is the conductor ideal of the
algebra extension ACR= Clu,v]. The diagram for the algebra A has the form

A —— Ko = C((w)[v?)/ (ve)

(2.12) 1

R—— Lo = C(u)l]/(v%=),
Applying the same trick as in the proof of the Cohen—Macaulayness of A, we get
A= HOmg(A’ @ = EndTri(,Z)(UO) o (C[[u, 1)27 v2;m+1]]7

~

where U, = (1/%, s (1)) € Tri(A) is the triple corresponding to the regular module A.
Summing up, A 2 Cu, v?,v#e*1] = C[u, 2, t]/(t? — 2%#*1) is a hypersurface singularity.
Hence, A is Gorenstein. Summing up, the algebra A is Gorenstein in codimension one. [J

Remark 2.22. As a consequence of Theorem [2.21] we get the following statement: the
algebra of planar quasi-invariants A(II, H) is Gorenstein if and only if the its completion

~

(2.13) Ay = {f € Cllz1, 22] | 124+ divides (f — sa(f)) for all o € H}

at its “most singular” point p = v(0,0) is Gorenstein. Another proof of the fact that
A(TT, H) is Cohen—Macaulay can be found in the thesis of Johnston [21, Theorem 3.3.2].

3. RANK ONE COHEN—MACAULAY MODULES OVER THE ALGEBRA OF PLANAR
QUASI-INVARIANTS

In this section, we classify all Cohen—Macaualy A—modules of rank one, specifying those
of them, which are locally free in codimension one. Next, we give an explicit description
of a dualizing module of A. Finally, we describe the Picard group Pic(A) viewed as a
subgroup of the group CM!(A), defined in Proposition
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3.1. Description of the group CM!f(A). For any o € II we denote K, := C(p)[o]/(c#)
and L, := C(p)[e]/(¢?#). It what follows, we shall view K, as a C(p)-subalgebra of L, via
the identification o = £2. Note that we have a direct sum decomposition L, = K4 +eK,.
The proof of the following lemma is a straightforward computation.

Lemma 3.1. For any v',7" € Ko we put: v/ ov" := (v ++") - (1 + o7 - "), where +
and - are the usual addition and multiplication operations in the C(p)—algebra K,. Then
we have: (Ky,o0) is an abelian group.

For any o € IT and f € R, we define the following two elements 77, 2M)(f) € Ky

a—1 . i
T(Z,Q#a)(f) = HZ f(gz%)(a?)!
(3.1)

T(;,Q,ua)(f) = Z f2]+1 (23011)'

Note that T(q 2,,)(f) = T(J(; 2ua)(f) +€T(a Spie )(f) € L, for any f € R. Moreover, f € A
if and only if T, T, )(f) =0 for all a € IL.

Theorem 3.2. There is an isomorphism of abelian groups
(32) M (4) 2 K (L, 1) i= P (Ko, )
acll

such that for any element ¥ = (Ya)aen € K (11, ) we have:
(3.3) B()=0"'(M) = {f € R| T} 4, (f) =% T} 4., (f) foral aecll}.

Proof. By Theorem ﬁ we have an equivalence of categories CM'f(A) £, Tri'f(A), pre-
serving the monoidal structure on both sides. Let U be an object of Tri'f(A) corresponding
to a Cohen—Macaulay A-module of rank one. Then we have: U = (R, PacniKa, (Qa)aen),

where 0, € L, are some elements. Since the map L, boy L, is an isomorphism for any
a € II, we conclude that all elements 6, are in fact invertible. Applying an appropriate
automorphism of K, we can find a uniquely determined element ~, € K, such that

U= U(;Y’) = (R, @OAEHKQ7 (1 + 5'704)&61'[)-
Let B(¥) be the unique (up to an isomorphism) element of the group CM!(A) such that
F(B(7)) = U(7). By Theorem [2.9 we have: F(B(Y') K4 B(Y")) 2 U({) @ U(") =
(R, GaenKa, (1 +0707a) + (Vo +70)) werr) = (R, GaenKa, (Yo © Ya)acn) = U(F 07").

This implies that © is indeed an isomorphism of abelian groups. To get an explicit
description of the module B(¥), observe that

B(7) = Hom (A, B(Y)) = Homya)(Us, U(7)),

where Us, := F(A) = (R, ®acnKa, ((1),...,(1))). Writing down the definition of mor-
phisms in the category Tri(A4), we conclude that

Lo +— Ly,
HomTri(A)(Uo, U#F)={fER|Vaell T(a,Q;J,a)(f)J 9o for some g, € K,
Ly +— L,

1+eva
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It is easy to see that the constraints on f are precisely the ones given by (3.3)). ]

3.2. Classification of all rank one Cohen—Macaulay A—modules. We begin with
the following preparatory results.

Let k be any field, m € N, K = k[o]/(¢™) and L = kle]/(c*™). We view K as a
k-subalgebra of L, identifying o with £2. For any 0 < j < m we put: K; := K/(07) (in
particular, Ko =0 and K,, = K).

Lemma 3.3. Let V be a K -module and V -2 L an injective map of K -modules such that

the adjoint map of L-modules L Q@ V' O Lis surjective. Then there exists 0 < j < m
such that V = K © K;.

Proof. Let V := L ®k V. Then we have an isomorphism of K—modules VVael.
By Nakayama’s Lemma, the map V-4 Lis surjective if and only if the induced map
V/)eV N L/eL is surjective. Note that V/eV = V/e2V = V/oV.

Next, any K-linear map K 2y Lis fully determined by the element a = (1) € L, which
has to satisfy the condition ¢%a = 0, i.e. a = £2(m=3)g for some @ € L. The induced map

k=~ K;/oK; - L/eL = k

sends 1 to a(0), i.e. is zero for any j < m. Since any finitely generated K—module V splits
into a finite direct sum of Kj-s, it follows that 6 can be surjective only if V' contains K as
a direct summand. _

In the next step, we prove that the K—linear map 6 can be injective only if V' has
at most two direct summands. Let D := Homy(—,%k) : K — mod — K — mod be the
Nakayama functor. Obviously, D is an exact contravariant functor and D(K;) = K for
all 0 < j7 <m. We have: L = K? and

0—>VL>K€9K induces K@Kiﬂf*—>0.

It implies that V* has at most two direct summands, hence V has at most two direct
summands, too. Summing up, there exists 0 < j < m such that V = K © K. O

For0<j<mputV:=KoK; LetV 5 L be a K-linear map and L Qg V =
L®L; %5 Lbeits adjoint map, where L; := L/(¢%). Then both morphisms 6 and 0 can
be presented by a matrix (a|b) € Mat(;x2)(L), where e2/b = 0.

Definition 3.4. We call two such maps 6,60’ € Hom (L ®x V, L) equivalent if and only if
there exists an automorphism ¢ € Autg (V') such that 8’ =6 o .

We also assume that 6§ = (a|b) € Homp(L ®g V, L) is surjective and the corresponding
map 6 € Homg (V, L) is injective:

K@KjC&)L

L@Lj%[;.

It is clear that both these properties of the matrix (a |b) are preserved when we replace it
by an equivalent matrix. Let us first treat the following two “boundary cases”.
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Lemma 3.5. The following results are true.

(1) Assume j = 0, i.e. V.= K. Then 0 is equivalent to (1 + ev) for some v € K.
Moreover, (1 +¢ev) ~ (1 +¢ev) if and only if v = ~'.
(2) Assume j =m, i.e. V=K @ K. Then 6 is equivalent to (1 | ).

Proof. In the first case we have: § = (a) for some a € L. The surjectivity of € is equivalent
to the condition a(0) # 0, which also insures the injectivity of §. Applying an appropriate
automorphism of K, we get (a) ~ (14 e7), where v € K is uniquely determined.

In the second case, first observe that rkx (L) = 2, hence the surjectivity of 0 is equivalent
to its bijectivity (which in its turn, implies the injectivity of 5) Since both elements
1,e € L belong to the image of the map 6, we can transform 6 to (1 | €). O

Proposition 3.6. As above, let 0 < j<m andV = KO K;. Let V O L be an injective

K -linear map such that its adjoint map L @k V = L& L; AN P surjective. Then there
exists an element v = o + a1e> + -+ + am_j_152(m_j_1) € L such that

(3.4) 0~ 1= (14ey | 2mD+),
Moreover, U ~ U if and only if v ='.

Proof. Let 6 = (a | b) € Mat(;2)(L), where €%ib = 0. By definition, the second compo-
nent of # is void if j = 0. Since the “boundary cases” j = 0,m were already treated in
Lemma we can without loss of generality assume that 1 < j7 <m — 1.

According to the proof of Lemma [3.3] the surjectivity of 6 is equivalent to the non—
vanishing a(0) # 0. Moreover, the action of the group Autg (V) leads to the following
equivalence relations:

(1) (@ | b) ~(Aa | b) ~ (a | Ab) for any A € K*;
(2) (a | b) ~ (a | e2™Dya +b) for any v € K;
(3) (@ | b) ~(a+pub | b) for any p € K.

Using transformations of the first type, we get: (a | b) ~ (1 +ec | e2m=9)d) for some
ceKandd=0y+¢eB1+ -+ 52j7152j—1 € L. Using an appropriate transformation of
the second type, we can kill all coefficients Sy, B2, ..., f2j—1 (i-e. entries at 1, g2,...,e¥2
of the element d). In other words, § ~ ¢ = (1 +ec | 2m=D+le) for a certain e =
o+ 4+ -+ 62(7_1)§j,1 € K C L. Now observe that for z = (0, sz(j_l)) € Ko Kj we
have: 5’(36) = ¢?m=1¢,. Since the map 0 is injective, we conclude that & # 0, i.e. e € K
is a unit. Hence, we get: 8 ~ 8 ~ (14 ec | €2m=)+1) Finally, using an appropriate
transformation of the third type, we can kill all entries at e2(m=9) . . &2(m=1) of the
element ¢ and end up with a normal form 6 ~ ¥, as in .

It is not difficult to see that the K-linear map ] corresponding to the L-linear map
6 = v, given by the formula , is injective for any v € L as in the statement of
Proposition. Next, consider the following K—modules

t(V) = {veV|olv=0} ="K ®K;
t(L) = {ueL|e¥u=0}=cXmI)L.
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Since the submodule #(V') is mapped to itself under arbitrary automorphisms of V', we

obtain an induced map V/t(V) RaR L/t(L) such that

V/HV) il L/H(L)
J _ 1+e J7n_«
k[o]/(0™) T K]/ (€207,
Hence, ¥, ~ 9., if and only if v = /. O

Now we are ready to prove the main result of this subsection.

Theorem 3.7. For vV = (Va)aen € Nj such that 0 < vy < po and 7 = (%‘)aen such that
Yo € C(p)lo]/(ate7") for any o € TT we put:

(35)  M@A) ={f € R| T o0 un(f) =Y T o vay(f) forall aell}.

Then the following results are true.

e M(7V,7) is a Cohen—Macaulay A—module of rank one.
o Conversely, any Cohen—Macaulay A—-module of rank one is isomorphic to some
M(U,7) for appropriate parameters 7,7 as above.
o M(7,5) =MV ,7) if any only if V=70 and 7 = 7.
Proof. According to Theorem [2.9] the isomorphism classes of Cohen-Macaulay A-modules
stand in bijection with the isomorphism classes of objects of the category of triples Tri(A).

Let U = (]Tj, V. 0) be a rank one object of Tri(A) (i.e. an object corresponding to a Cohen—

Macaulay A-module of rank one) then M = R. Moreover, by Lemma there exists a
uniquely determined vector 77 € Nij as above such that

V @ V., = @Ka D (Ka/(a-ﬂa—Va))‘
a€ll acll
Next, Proposition [3.6] implies that there exists an automorphism of the triple U trans-
forming every component of the gluing map 6 into the canonical form

Oo = (1 + e, | 2ot

for an appropriate vector ¥ = ('ya)a cnp as above. Since Aut r(R) = C*, in order to describe
the isomorphism classes of rank one objects of Tri(A) it is sufficient to take into account
only the action of the groups Autg, (V,) on the matrices 6,. Proposition then insures
that the vector v is in fact uniquely determined.

Summing up, consider the following object of the category Tri(A):
U@,7) i= (R aen (Ko @ Ka/(0" 7)), (1+ 27 | 20077004 ).

Then the following results are true.

e Any rank one object of Tri(A) is isomorphic to some U(%,7) for appropriate pa-
rameters I/, 7 as in the statement of the theorem.
o U(,7) 2 U, if any only if 7 =7 and ¥ = 7.
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Let M(7,7) := F~}(U(7,7)), then we have: M(¥,7) = Homyi( 4y (Us, U(#,7)), where
Us := F(A) = (R, ®actiKa, ((1),...,(1))). Following formula (2.2) we have: f € R
belongs to Homyi ) (Uo, U(i)) if and only if for any a € II there exists a K,-linear map

()

K, —= K. (Ka/(ol‘a_”a))) such that

Lq La

(3.6) T(a,wmj l(ii)
1 - 2(pa—va)+1
L., (I+evale ) Lo ® (La/(EQ(MQ—Va)))'

Writing down explicitly the constraints (3.6]), we end up with the description ({3.5)). O

Corollary 3.8. Let (/,7) be as in Theorem|[3.7. Then the following results are true.

e The Cohen—Macaulay module M (V,7) is locally free in codimension one if and only
if 7= 0. In notations of Theorem we have: M(0,7) = B(7).

o Consider the weight function 11 £, No given by the rule: p'(a) = po — va for
any o € II. Let A" := A(H,H’) be the corresponding algebra of quasi—invariant
polynomials. Theorem implies that M(V,¥) is a Cohen—Macaulay A'-module
of rank one, locally free in codimension one.

Example 3.9. Consider the special case of a constant multiplicity function II A Ng
given by the rule: p, = 1 for all @ € II. Then the classification of Cohen—Macaulay
A—modules of rank one takes the following form.

e Any object of CM!f(A) is isomorphic to some
(3.7) B(¥)={f € R| [y =7afa forall aecll},

where 7 = (7a)act € C()®".

e Moreover, B(¥) = B(¥') if and only if ¥ = 4 and B(Y) K4 B(¥') & B(7 + 7).
Note that A = B(0).

e We get the full list of objects of CM;(A) by the following rule: one takes any
non—empty subset II° C II and just omits the conditions in for « € TI°. In

particular, for II° = II (no conditions on f), we get the module R.

3.3. Dualizing module of the algebra of dihedral quasi—invariants. It was already
pointed out by Etingof and Ginzburg in [I5, Section 6] that the algebra A = A(H,H) is
not Gorenstein for a general weighted line arrangement (II, ). However, A is a finitely
generated Cohen—Macaulay algebra (see Theorem , hence it has a dualizing module
Q (which is a Cohen—-Macaualy A-module of rank one, uniquely determined up to a
tensoring with an element of Pic(A)). It is a natural question to describe €2 in terms
of our classification.

We give an explicit description of € in the so—called Cozeter (or dihedral case), when

1 —1
(3.8) II=A,:= {O, 771',...,” 71'}

n n
for some n € N. For m := max{ua ‘ a € H} let A, — Np, a +— m be the corresponding
constant multiplicity function and C := A(A,, 5) the corresponding ring of quasi—invariant
polynomials. By [I8, Corollary 5.6] (see also [I5, Theorem 1.2]), the algebra C'is a graded
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Gorenstein domain. In particular, C' viewed as a module over itself, is a dualizing module
of C} see for instance [9), Section 1.3.6]. Therefore,

(3.9) Q := Hom¢ (A, C)
is a dualizing module of A, see for instance [4, Section X.9.3]. The following theorem is

the main result of this subsection.

Theorem 3.10. For any o € A, put: vy :=m — po. Then we have:
(3.10) x{feC|fO=fP= =) =0foralach,}.

Remark 3.11. It is a pleasant exercise in elementary calculus to verify directly that the
right hand side of the expression (3.10]) is an ideal in the algebra A given by (2.8]).

Proof. For any a € A, we put: K := C(p)[0]/(c™) and L := C(p)[¢]/(€2™). Then we have
the following

Claim. Let U, := F(A), where CM(C) N Tri(C) is the equivalence of categories from
Theorem Then we have: U, = (R, V,0), where V = @,enp,, Vo with

v o— K if po=m
“ K (K/(o")) if 0<pa<m—1

and

0. — 1 if pe=m

T (et i 0 < g <m— 1.
We prove this claim by computing the morphism space HomTri(C)(Uo, U,), where U, is the
canonical triple corresponding to the regular module C. As in the proof of Theorem
we get: f € R belongs to Homri)(Us, U,) if and only if for any a € A, there exists a

()

K-linear map K % K @ (I?/(J”a)) making the diagram

: L

)
(1]e2watl)

L@ (L/(e)).

R

commutative, i.e. Tiqom)(f) = ga + g2uatlp  for some gu,ha € L. This condition is

equivalent to the vanishing fo(émfl) =0 for any o € A, and 1 <1 < p,. Hence, (R,V,0) is

indeed isomorphic to F(A), as asserted (compare with Corollary [2.12]).

Now, in virtue of (3.9), we have an isomorphism: € = Homcy(U,, Us). A polynomial
f € R belongs to the vector space Homyj(c)(Us, Us) if and only if for every a € A, there
exist elements pg, o € K , making the diagram

~ (1|<=_‘2.u(¥+1) ~

L L& (L/(e))
(3.12) T<a,gm)(f>l ypm% 0)
L ! L

commutative. In other words, for any a € A,, there exist p,, ¢a € K such that
(T(oz,Zm)(f) ‘ ‘52'ua+1T(oz,2m)(f)) = (pa | EZMQQa)-
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The first condition Ty 0m)(f) = pa just means that T(q 0. (f) € K for any a € A,
i.e. f is an element of the algebra C. The second condition e?#e+1T, (a2m)(f) = g2Hag, is

equivalent to the vanishing fo(f)) = fo(?) =...= f,§2(y"_1)) =0 for all o € A,,. O
As a further refinement of Theorem [3.10] we have the following result.
Lemma 3.12. For any k € Ny, consider the multiplicity function A, £, No given by the

rule: pig =k +1 and pio =1 for any o € A7 := Ay \ {0}. Let Q be a dualizing module of
the algebra A = A(An,g) given by 3.12]). Then we have:

0= R
9 g> =0 forall aeAl. [’
i),

where ly = x1 = pcos(yp).

Proof. In the notation of Theorem we have: m =k +1, v, =k for each o € A}. Let
C = A(An,ﬁ), then

Q={feC|fO=fP = . =D =0foralla € A%}
is a dualizing module of A. More explicitly, for any oo € A; and f € €2 we have:
fo(f) =0 forany 0<[!<2k—1 and fo(?k“) =0.
The first condition is equivalent to the statement that [2* | f for every a € AS. Let
5 = j2k _ 2k(n—1) L= L\
= T = oo [ L))"

Then there exists a uniquely determined g € R such that f = g-d,. Note that d,(p, —¢) =
do(p, ), hence (50)((]2p+1) = 0 for all p € Ny. It is not difficult to show by induction that

the condition fél) = fés) =...= fé%H) = 0 (recall that f € C = A(Ay,K)) is equivalent
to o) = ¢B® — ... = J@k+D) _

09gp =9y = =9 = 0.

Finally, it remains to interpret the constraint fog%“) = 0 for o € Ay in terms of the

polynomial g. Since (50)59 =0 for all 0 <[ <2k — 1, we have:

(3.13) FEHD = (2 + 1)(00)FP g + (6) 7 ga = 0.

« «

As usual, we put 62 := [] 2) = 12F. §,. Then we have: §%(p, —p) = 6%(p,¢), hence
O(GA’VL

5(()2p+1) = 0 for all p € Ny. Moreover, §%(p, o + a) = §%(p,¢) for any o € A, (here, we

essentially use the fact that the image of the set A, in R/7Z is a subgroup). Therefore,

5D = 0 for any a € A, and p € Ny. In particular, we get:

(3.14) SR = (2k + 1)(8) M (18" + (02) V(187 = 0.

a
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Comparing the equations 1| and li we see that the condition O(é%ﬂ) = 0 is
!/

equivalent to l% = 0. Summing up, we obtain:
0 «
2k+1
Q=14 - €ER
g g) =0 forall acAS [’
l2k n
0 «
what implies the result. O

Remark 3.13. According to a result of Feigin and Johnston [I7, Theorem 7.14], the
algebra of quasi-invariants from Lemma is Gorenstein if and only if & = 0, what
matches with our description of a dualizing module.

3.4. Picard group of the algebra of quasi—invariants A(II, y). In this subsection, we
describe the Picard group Pic(A) of the algebra of planar quasi-invariants A = A(II, u).
We begin with the following elementary observation.

Lemma 3.14. Let k be any ring, m € N, K = k[g?]/(e*™) and L = ke ]/(527”). Then for
any g € L, there exists a unique element y(g) € K such that g- (1 +¢v(g)) €

Let R := C[z1, 22] = C[pcos(¢), psin(p)]. For any h € R and a pair (a,k) € C x N, we
define the power series T(, 1) (h) € C[p][e]/ (%) by the rule

(3.15) Tia k) (exp(h)) = T(a,k)(h) . exp(hg))).
It follows from the definition, that for any hy, ho € R we have:
(3.16) Tl sy (h1 + ha) = Ta gy (1) - Ty (h2).

T(a,m)

Lemma 3.15. For (a,m) € CxN, let R —=" C[p][o]/(c™) be given by the composition

(3.17) B T2, o)™ 2 Clollol/(o™),

where v is the map from Lemma|3.14 Then we have: (R, +) ——""s (a ) (Clpl[o]/(c™),0) is
a group homomorphism.

Proof. Let hy € R and Vi = Y (a,m)(hg) for k = 1,2. By definition, we have:
(1+ %) Tia,2m) (h) € Clpl[e%]/(e¥™) for k=12,
Note that we have the following identity in C[[p][€?]/(e*™):
(1—'_571) (1+572) T(a 2m)(h1) (a 2m)(h2) ((1+82’}/1’)/2)+6(’)/1 +72)) 'T\(a,2m)(hl+h2)'

Then we have: T(a72m)(h1 +ha)- (1+e(v1+72) - (1+e%y172) ") belongs to C[p][e?]/(e2™).
It follows from the definition of the operation o that

T(a,m)(hl + h2) = T(a,m)(hl) ° T(a,m)(hQ)a

proving the statement. O
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Lemma 3.16. Let B = C[u,v?,v®*™*!] for some m € N. Then its normalization is
R = Clu,v] and the diagram has the form

B—— K = C((u)[v?]/(v*™)
(3.18) 1 [
R—— L = C(u)[v]/(v*™)

for some m € N. Let U = (]%,IA(,(l + 177)) be an object of Tri(B) for some v €
C((w)[v?]/(v*™). Then we have: F(B) = U if and only if v € Clu][v?]/(v®™).

Proof. Recall that F(B) = U, = (R,K,1). Let U (E,IA(, (1 + v)) be such that

m—1 )
v € Clu][v?]/(v*™). Then we have an expansion v = Y. v;(u)v%, where v; € C[u] for
5=0
all0<j<m-—1.Letg:=1+v- ( > ’yjfu2j) € R. Then g is a unit and g~!- (1+v7) =1
j=0

= 1 . . . . .
in L. Hence U, Q U is an isomorphism in the category Tri(B).

On the other hand, if 7; € C((u)) has a non-trivial Laurent part for some 0 < j <m—1
then U % U, (since we can not eliminate the Laurent part of v by multiplying it with the
image of a unit from R). O

Theorem 3.17. Let (H’H) be any datum and A = A(H,H) be the corresponding algebra
of quasi—invariants. Consider the following homomorphism of abelian groups:

(3.19) Clar, 2] = [T (Clellol/(0"%),0), b (T2 () e
a€ll
Then we have:

(3.20) Pic(4) = Im(Y) N K°(I1, n),

where K°(IL, u) := [] (Clpl[o]/(c"=),0). More explicitly, let
acll

L(IL p) := {h € C[z1, 22]|T(h) € K°(II, 1) }.

Then for any h € F(H,H), the corresponding projective A—module of rank one is given by
(3.21) P(h):={f¢€ R‘ exp(h) f is (IL, p) — quasi-invariant } = B(Y(h)).
Conversely, for any P € Pic(A), there exists h € T'(I1, ) such that P = P(h). Moreover,

e P(hy) = P(hg) if and only if Y(h1) = Y (ha).

e The multiplication map P(hy) ® 4 P(ha) — P(h1 + ha), f1 ® fo — fife is an

isomorphism of A—modules.

Proof. Let P € CM(A), then we have: F(P) := U = (R, V, ), where V = ®,en K, and
0 = (0a)act, where 0, =1 + 7, € Ly, for some v € K,,.

Note that the module P is projective if and only if P, = A, for any maximal ideal
m € Max(A). Let p € X be the point corresponding to m and ¢ := v~ !(p) € A%2. Assume
that ¢ ¢ UaerrV (la). Then Py = Ay is automatically true.

Now, let ¢ € UpennV (la). According to Theorem Py & Ay if and only if the triples
Lw(U) and Fp(Am) are isomorphic in the category Tri(Am).
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Case 1. Assume that ¢ # (0,0). Then there exists uniquely determined « € II and
po € C* such that ¢ = (po cos(a), posin(a)) € V(ly). Denote u = pcos(¢ — @) — po and
v = psin(p — «). Obviously, we have: R = Clu,v], R := Ry = Clu,v] and T := I, =
(v2e). Moreover, the following diagram is commutative:

T(Ch?/ﬁa)

T R C(p)[e]/ (%)
1? R QR/T) |

(v*#e)—— Clu, v] — C((u)[v]/(v*)

where A, (9) € C(u))[o]/(c#*) is the Laurent expansion of g € (C(p)ia] /(o#=) at the point
po € A 2V (l,). Note that we are in the setting of Lemma A =2 Clu, v?, v2#at1].
The key point is that we have the following formula for the localized and completed triple:

Lun(U) = (Clu, o], C(u) [0°]/ (™), 1 + 0Ag (7))

According to Lemma the module P is locally free at the point p € X if and only if
Ya € C(p)[o]/ (o) has no pole at pg € Al

Case 2. For the point ¢ = (0,0) we have:

Ln(U) 2 (Cl21, 22], @aenC(p)lo]/ ("), (1 + e7a)aen),

where the element v, € C(p)[o]/(o#*) is viewed as an element of C((p))[c]/(c#) for each
« € II. Similarly to the previous case we conclude that P can be projective only if v, € K,
is regular at 0 for each o € II. Hence, ¥ = (Va)acn € K°(IL, p).

It follows from the definition of the category Tri(Ap) that Luy(U) & Fy(Ay) if and only
if there exists a unit f € R such that

(3.22) Tla2ua) () - (1 +€7a) € Clo][e?]/ (%)

for every a € II. Every unit in the algebra R can be written as the exponential of some
power series, hence f = exp(h) for some h € R. In the notation of formula , the
condition can be rewritten as: f(ag#&)(h)'(l—i—sva) € C[p][e?]/(e?),i.e. Y(h) = 7.
Note that the constraints on a polynomial f € R from the formula defining the
module B(¥) and the ones from are in fact the same. It implies that P(h) =
B(¥) = B(Y(h)). Moreover, Theorem implies that P(h;) = P(hg) if and only if
Y (h1) = Y(hg). Finally, the diagram

P(h1) ®a P(h2) e P(h1 + ha)
(3.23) B(Y(h1)) ®a B(Y(h)) ———— B(Y(h1) o Y (hy))

| |

R®R R mult R
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mult

is commutative. It implies that the multiplication map P(h;) ® 4 P(he) — P(hy + ho)
is indeed an isomorphism of A-modules. Theorem is proven. O

The following special cases of Theorem [3.17] are perhaps of independent interest.

Example 3.18. Let IT = {0, g} Note that for any f € C[z,y], we have the following
formulae for the directional derivatives (2.6)):
of of
2(p) = p==(p,0 d  fx(p) = —p==(0,p).
fop) = p,(p,0) and  fz(p) = =p757-(0.p)
(1) Let IT £ No be given by the rule: p(0) = 1 and H(g) = 0. Then we have:
A = C[2?,23,y] and the Picard group Pic(A) has the following description:

CMIf(4) —2—— (C(p), +
Pic(A) Clol,+),

where © is the isomorphism from Theorem It is interesting to note that
Pic(D[t]) = Pic(D) for any Noetherian normal domain D; see for instance [30].

(2) Let II £, Np be given by the rule: p(0) = p <g) = 1. Then we have:

A=Cla? 2% % y’] 2 Cla?, 2°) ®c Cly?, ).
Then the description of Pic(A) from Theorem gets the following form:

cMf(A) © (Clp), +) & (Clp), +)

Pic(A) ————— {(pf.pg) € pClp] ® pClo] | £(0) + ¢/(0) = 0}.

4. SPECTRAL MODULE OF A RATIONAL CALOGERO—-MOSER SYSTEM OF DIHEDRAL TYPE

In this section, we shall discuss a link between results on Cohen—Macaulay modules over
an algebra planar quasi—invariants with the theory Calogero—Moser systems.

Definition 4.1. For any o € C we put: e(«) = exp(2icr). A weighted line arrangement
(Hvﬁ) is called Baker—Akhieser if for any o € Il and 1 < k < p, we have:

2k—1 2k—1
4.1 Hp (e(ﬁ) + e(a)) =0 and 'uﬁ(/w + 1 e (e ) = 0;
4 g%% (e(B) — e(a)) g%% (e(8) — e(a))z’f“

see [12, 14] and [17, Lemma 2.1].

Example 4.2. A so—called Cozxeter weighted line arrangement (An, ,u) defined below is
Baker—Akhieser; see [12, [14] [17].
o A, —{0,n ,...,"T_lﬂ} C R for some n € N.
o /o =m for all & € A,, and some m € N (constant multiplicity function), or
e n = 271 and B(%T{') = my and ,u(2k+17r) =mg for all 0 < k£ < 7n — 1 and some
my, mo € N.
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We put pn = p(TL 1) == > eqp o and 6(21, 22) := [T, 167 (21, 22). Note that §(z1, z) is
a homogeneous polynomial of degree p.

4.1. Some results on two—dimensional rational Calogero—Moser system. Let
(H, H) be a Baker—Akhieser weighted line arrangement. The rational Calogero—Moser
operator H = H(II, 1) is defined by the formula

o fa(pa +1)
(4.2) H:= (ax% + (‘31’%) -2 e

According to a result of Chalykh and Veselov [I1] (elaborated in their later joint work with
Styrkas [12]) extending earlier results of Heckman and Opdam [25] and Heckman [24], the
operator H can be included into a large family of pairwise commuting partial differential
operators. In order to make this statement more precise, we recall the following formula of
Berest [I, Theorem 2.8] (see also [14, Theorem 3.1]) for the so—called multivariate Baker—
Akhieser function, corresponding to the datum (H, u):

1 2

o
(4.3)  ®(x1, 29521, 22) == TR (H(zl’m) . — 22> o (0(1,2) - exp(z121 + T222)).

Theorem 4.3. The following results are true.

(1) The Baker—Akhieser function ®(x1,xe; 21, 22) s an eigenfunction of the Calogero—
Moser operator in the following sense:

(4.4) Hg 20)© D(x1,x9; 21, 22) = (z% + zg) - ®(x1,x9; 21, 22).
(2) Moreover, there exists an injective algebra homomorphism
(4.5) A(H, ﬁ) i) (C(l‘l, @)[81, 82]
such that the highest symbol of Z(f) is equal to the highest symbol of f(01,02) and
(4.6) (B() (219 © (@1, 25 21, 22) = (21, 22) - (w1, 225 21, 22).

for any [ € A(H,H). In particular, H = Z(w) for w = 2% + 23.
(3) The Baker—Akhieser function ® has the following expansion:
(4.7) O(x1,29; 21, 22) = ((5(21,2'2) + Z Ci17i2($1,x2)zi1Z;2) -exp(z121 + T222),
11+io<p
where ¢;, i, (x1,22) € C(x1,22) for all (iy,i2). Moreover,

1
co,0(x1,x2) = .
OEI lo(x1 — &1, 290 — &o) e

(4) Let z1 = pcos(p) and zo = psinp. Then we have:

2l—1(I)
(4.8) B (z1, 295 p)FV = éa)g,ﬁll =0 forallaeIland 1 <[ < pq.

p=a

Comment to the proof. From the historical perspective, the development of results col-
lected in Theorem was slightly different. The notion of a multivariate Baker—Akhieser
function ®(z1,z2; 21, 22) corresponding to a Baker—Akhieser datum (H, ,u) was axioma-
tized (in arbitrary dimension) by Chalykh, Styrkas and Veselov in [11} [12]. The properties
and were stated as defining axioms, whereas the eigenfunction properties (4.5

and (4.6) were shown to be formal consequences of the proposed axiomatic.
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In [I, Theorem 2.8], Berest discovered an explicit formula for a multivariate Baker—
Akhieser function; see also [I4, Theorem 3.1]. There is a closed expression for the homo-
morphism =; see [I, Section 2.3], [14, Theorem 1.3] or [16, Corollary 3.3].

In our exposition, we start with Berest’s formula for the Baker—Akhieser function
®(x1,x9; 21, 22). The formula can be deduced from by induction on u. We refer
to a paper of Chalykh, Feigin and Veselov [14] for further details. O

Our next goal is to study the rational Calogero—Moser operator using methods
of the higher—-dimensional Krichever correspondence developed in [27, 38, 28]. To do
this, we have to introduce the following minor modification of the operator . Let
€= (£1,&) € C? be such that

] la({) = —sin()&; + cos(a)éy # 0 for all a € I1.
° 5% + 5% # 0 (for example, one can simply take £ € R?\ {6})

The second condition on € implies that one can find (po, po) € C* x C such that
£= (po cos(o), po cos(¢o)).

For any such vector £, we have an automorphism

C(z1,x2) ﬂ C(z1,22), where ( ) f(@— é’),

which can obviously be extended to an automorphism t(f) of the algebra of partial differ-
ential operators C(x1,z2)[01, 02).

—

Summing up, we have an injective algebra homomorphism =(§) given as the composition

(4.9) A(H ,u) i) C(x1,$2)[81782] @) (C(:z;l,:cg)[81,82].

—

Then the perturbed Calogero-Moser operator H = H ((IL, ), @ (E(¢)) (w) is given by
the formula

2 2
1
(4.10) H = <82 + 82> = “‘;(“%JZ)

whereas the conventional Calogero—Moser operator 1' is H ((H, H)76)‘ Note that the
potential of (4.10) is regular at the point (0,0). Moreover,

(4.11) B = Im(E(E)) CD := Clxy, 22][01, s,

hence we get the embedding (|1.4)).

Definition 4.4. The B-module F' := D/(z1,22)0 = C[0y,ds] is called spectral module
of the algebra ‘B.

Note that F' is actually a right ®-module. However, since the algebra 8 is commutative,
we shall view F' as a left B—module, having the natural right action o in mind.
Theorem 4.5. The following results are true.

(1) F is a finitely generated Cohen—Macaulay B-module of rank one.

(2) For any character B == C (i.e. an algebra homomorphism), consider the vector
space

(4.12) Sol (B, x) = {f € Clay, @] |P o f = x(P)f for all P ¢ SB}.
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Then there exists a canonical isomorphism of vector spaces
(4.13) F|, = F @ (B/Ker(x)) = Sol (B, x)".

1 op1 +p2f
p1!pa! Ol O2h?

assigning to a class 95 € F‘X the linear functional f

(0,0)
on the vector space Sol(%,x). In particular, dimc (Sol(%,x)) < oo for any x.

Proof. We get the first statement, combining [28, Theorem 3.1] with [I0, Corollary 3.1];

see also [27, Theorem 2.1].

In the one-dimensional case, the isomorphism is due to Mumford [32, Section 2].

For partial differential operators, we follow the exposition in [8, Theorem 1.14]. The key

point is the following isomorphism of left ®—-modules:
oo

(4.14) Home (F,C) — Clay,z2], 1+ >

p1,p2=0

1
p1!p2!

107 057 )t ay?,

where we take the right action o on F' and the usual right action ¢ on C[z1,z3] of the

algebra ©. Let B =5 C be a character, then C = C, := B/Ker(x) is a left B-module.
Next, we have a B-linear map

(4.15) b : Homgs (F, Cy) — Homg(F,C) — C[z1, 24],

where 1 is the forgetful map. The image of i consists of those C-linear functionals, which
are also B-linear, i.e.

Im(i) = {I € Hom¢(F,C) | I(Po —) = x(P)-1(—) for all P € B}.

This implies that Im(b) = Sol(*B, x). By adjunction, we have a canonical isomorphism
of B-modules: Homg(F,Cy) = Home(F ®g (B/Ker(x)),C). Taking duals, we get an
isomorphism of vector spaces Sol(B, )* — (F ®@g (B/Ker(x)))"" = F|x' It remains to

*\—1
observe that F‘X ®, Sol(B, x)* is the map from the statement of the theorem. O

Remark 4.6. By Hilbert’s Nullstellensatz, the characters 8 — C stand in bijection
with the points of the spectral surface X of the Calogero-Moser system 9B (i.e. an affine
surface, whose coordinate ring is isomorphic to A(H, H) =~ 9B). The finitely generated

B-module F' determines a coherent sheaf of X, so the C—vector space F |X is the fiber of

F over the point of X corresponding to the character B X C.
4.2. Spectral module of a two—dimensional rational Calogero—Moser system. In
their recent paper [I7, Section 8], Feigin and Johnston raised a question about an explicit

description of the spectral module F' of the algebra B given by (4.11]). In this subsection,
we give a solution of this problem. To do this, we need a more concrete description of the

algebra homomorphisms = and E(g), see 1' and 1'
Lemma 4.7. Consider the following variation of the function :

o L R 1 2
(4.16) ¥(z;z€) = m(H(m,m) - Z% - Z%) © (5(371 —&1,22 — &2) - exp(a121 +£L‘222))‘

Then the following results are true.
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(1) For any quasi—invariant polynomial f € A we have:

— —

(4.17) (EEW) (4.00) © Y@ E) = fl21,22) - (T 7).
(2) For any p1,p2 € Ng we have:

opt +P2\Jy

M S C[Zl,ZQ].

(5617562):(0,0)

(4.18) w(phpz)(zl, Zg)

Here, we view w,, p,) as a function of Z depending on the parameter E e C2
Moreover, we have the following expansion:

(4.19) Wy po) (21, 22) = 21" 257 - 0(21, 22) + lower order terms.

(3) For any p1,p2 € No, the function exp(—ppo cos(o — @o)) - Wi, py) (s @) is quasi-
invariant with respect to the datum (IL, ), i.e
(4.20) (exp(*p,oo cos(p = ¢0)) - Wy, py) (P, @))Sll) =0foralla € Mand 1 <1< pig,
where as usual, (z1,22) = (pcos(p), psin(p)) and (&1, £2) = (po cos(o), po sin(epo)).
Proof. Observe that we have the following equality:
B(F — £, 2) = W(F 5E) - exp(—€iz1 — a22) = U(F; 7€) - exp(—ppo cos(y — o).

Hence, all statements of Lemma are straightforward consequences of the corresponding
results from Theorem 4.3 O

Let € := Clzy, 22] (07 1) (95 1) be the algebra of partial pseudo-differential operators;
see for instance [33] for a precise definition and main ring—theoretic properties. This
algebra admits the following convenient characterization.

Lemma 4.8. Let M := Clay, w2 (27 1) (25 1) - exp(w121 + w222) be the so—called Baker—
Akhieser module. Then we have an injective algebra homomorphism

4

mapping 8} € € to z]jE

Q € M, there exists a uniquely determined element S € & such that
Q = Soexp(x121 + x229) := (e(S)) (exp(xlzl + xgzg)).

Remark 4.9. The recipe to construct the operator S € € corresponding to an element
Q € M is as follows. Let Q(x1,x9;21,22) = T(x1,x2; 21, 22) - exp(x121 + T222), where

(4.22) T(x1,22321,22) = ) apy (@1, 22)2” 2 € Clan, 2 (1) (25 ).

p1,p2

€ End(c((z;1))(z;1))(fm) for j = 1,2. Moreover, for any element

Then we have:

(4.23) S= ) appo(21,22)0]" 057 € Clar, 2] (07 ) (05 1)).

p1,p2

Here, both sums (4.21]) and (4.23|) are taken in the appropriate sense.

Definition 4.10. Let U(z1, z2; 21, 22; E) € M be the Baker—Akhieser function of 9B given

by (4.16). Then the corresponding pseudo—differential operator S € €&, defined by the
recipe (4.23)), is called Sato operator of the algebra B.
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Lemma 4.11. For any quasi—invariant polynomial f € A we have:

(4.24) (EE) () =5 f(01,02)- 57",
where both sides of are viewed as elements of the algebra €.

Proof. Let © = @(:cl,xg;zl,zQ;g) = \Il(xl,azg;zl,ZQ;g) . pr(—xlzl — x929). Then we
have an expansion © = 0(z1,22) + Y. b (21, 22)21" 25? for some coefficients b;, ;, €
i1+i2<pu
C[z1,z2]. In particular, the Sato operator of the algebra B belongs to D:
(4.25) S=06(01,0) + Y biy (w1, 32)0] 052
i1+t <p

Since the highest symbol 0(0;,02) of S is a partial differential operator with constant
coefficients, S is a unit in the algebra &; see for instance [33, Proposition 1].

By definition, we have: \Il(xl,xg;zl,zz;g) = S oexp(r121 + x222). Hence, the equality
(4.17) can be rewritten in the form:

(((E(E))(f)) ‘ S) oexp(r121 + z222) = f(21,22) - (Soexp(l‘lzl + 1‘222))-
Since ¢(S) is a C[z1, zo]-linear endomorphism of the Baker—Akhieser module 9, we have:
f(z1,22) - (Soexp(ﬂflzl + 33222)) =So (f(zl, z2) - exp(z121 + $2Z2)) =
S o (f(01,02) o exp(w121 + 2222)) = (S - (81, 02)) o exp(w121 + @222).
Summing up, (((E(g))(f)) -S—S-f(on, 82))<>exp(a:121 +x229) = 0, implying the result. O

Remark 4.12. Using the identification z; = 9; for j = 1,2, we can view the algebra of
quasi—invariants A C R = C|z1, 22| as a subalgebra of the algebra of partial differential
operators with constant coefficients C[0;, 02]. If S the Sato operator of B given by ,
then we have: B =5-A4-5"1

Proposition 4.13. Consider the vector space
(4.26) W .= <wp17p2|(p1,p2) S No X N0> CR= C[Zl, 22],
where wy, p, are the elements given by (4.18 . Then W is an A-module and the map

(4.27) F=Clo, 0] =25 W, f(81,02) — f(D1,05) 08

is a (B — A)—equivariant isomorphism, i.e. the following diagram

Y w

F
=] |-+
F——% w

is commutative for any f € A.

For any j € Ng put W, = {w € W| deg(w) < j}. Then we have the following formula
for the Hilbert function Hy of the filtered A—module W :

(k+1)(k+2)

5 for k € Np.

(4.28) Hy (p + k) := dimg (Wqr) =
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Proof. We have the following commutative diagram:

@/(.’El, m)@ i) (C[(‘)l, 82] ;> (C[Zl, ZQ]

| |

€/ (z1,02)€ —— CATN(31) —— C(=7 N (=31)).

Let Wy = Clz1,29]. Then W := Wy oS C C((2;")(25"). Indeed, it follows from
the definition of the action o of the algebra @ on the vector space C((d;1))(95 ") that
OP1tP2 s
(F'052) oS = D 5 for any (p1,p2) € Ng x Ny, implying the claim. Since
L =22 1(z1,22)=(0,0)
the operator S is a unit in the algebra &, the C-linear map (4.27)) is an isomorphism.
Next, by Lemma for any w € F = Wy and f € A we have:

—

wo ((E(€)(f)) - S) =(woS)-f

Therefore, W - f C W and the map F % Wis (B — A)—equivariant, as claimed.

Next, the highest degree homogeneous term of wy, ,, (21, 22) is 20" 28% - §(21, 22); see

formula (4.19). This shows that
Wi/ Wygk—1 = Clz1, 22]k, == {w € C|z1, 23] | w is homogeneous of degree k}.
Hence, dim¢ (Wqk/Wytk—1) = k + 1, implying that

dimC(ka)=1+2+-~+(k+1):W.

Proposition is proven. O

Theorem 4.14. Let £ = (po cos(0), posin(go)) € C2\ {0} be such that sin(2(a—o)) #0
for all « € TI. Let W be the A-module defined by (i.e. W is the spectral module of
the algebra B ). Then we have:

(4.29) W = P(—ﬁlzl—xgzg) = {f € R‘ exp(—&121—x222) f is (H,B)—quasifinvariant}.
In particular, the spectral module W is projective; see Theorem |3.17

Proof. Let u = &121 + 22292 = ppocos(p — ¢p). According to (4.20)), we have an inclusion
W C P(—u). Our goal is to show that in fact W = P(—u). By (4.28), dimc(W,4x) =
(k+1)(k+2)

5 for any k£ € Z. Hence, it is sufficient to prove that

(k+1)(k+2)

(4.30) dime (P(—u)yqk) < 5

for any k € Z. Let g(p, ) := exp(—u) = exp(—ppo cos(¢ — ¢o)) and v = pposin(p — ¢p).

Consider polynomials t,, € Clu,v] defined by the rule: tn - g. We have: tg = 1 and

n_

oty Oty
%('Lh ’U) + u7<u7 U) + vtn(u7 U)

(4.31) tnt1(u,v) == —v 5
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for any n € N. Note that the highest order term of ¢,(u,v) is v". For any a € II and

J € Ng we put: t(4 ;) = tn(u, v)‘ € C|p|. Then in notation (3.15) we have:
«

7 1) SR
(a,?ua)(_u) - Z ]| e € [pv‘g]/(g )
=0

By definition, a polynomial f € R belongs to the subspace P(—u) if and only if

2“11_1 f(k) QHa_l t ) )

(4.32) ( 3 ;;&) YD @) e clp e/ ().

k=0 =0 I
The constraint (4.32)) is equivalent to the following system of polynomial identities:

( f%//+ t(a}/l)fa ’ t =0
ta1) | fa t@2) (a,3)
(] (63 ) 8] ) ) _
I I TR TR R G TR

31
(4.33) :

2@—1 fo(l2uaflfj) t

a,j)
> — .2 = 0.
=0 Qua—1-7)1 4!

Let d = deg(f) and f = fq+ fa—1 + -+ + fo be a decomposition of f into a sum of its
homogeneous components. We prove the following

Claim. Suppose that f € R satisfies the system for m = po. Then 7' divides fj.
Proof of the claim. It is instructive to begin with the special cases, when m =1 or 2.
For m = 1, the system consists only of one equation: f + t(a,1)fa = 0. We put
0 := pposin(a — @) (note, that the conditions on the vector ¢ insure that ¢ # 0). Taking
the homogeneous part of the top degree of the left—hand side, we obtain: o - ( fd)a =0
(recall that the top degree homogeneous part of (4 j)(u,v) is v/). Hence, we have the
vanishing ( fd)a = 0, which implies that [, ‘ fa-

Let m = 2. In this case, the system (4.33]) consists of two equations:

f%// t(a}/l)f? / t 0
4.34 o tia o
( ) a , Ja, (a,1) fa CYa2) fo - (a,3) 0.

3! 2! 1! 1! 2! 3!

We have already seen in the previous step, that the first equation of (4.34)) implies that
( fd)a = 0. Taking the top degree (with respect to p) of both equations of 1) we get
the following system:

(fd);-i-Q(qu)a = 0
02 ;o
oo + 57 (fa-1)y = 0
1 p 1 .
Since det | o? o? = —593 # 0, we conclude that (fd)a = (fd—l)a = 0. The
PIET

conditions (fd)a = (fd):x = 0 imply that [2 ‘ fa; see Lemma 2.11
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Now we proceed to the general case. We prove by induction on m that

(fa)., - (fd)/a = ... = (fd)im—2)2 _ (fd)im—l) _ 0
(4.35) (fdfl)a = (far), = ... = (J)"? = 0

(fd—m—f—l)a = 0.
Consider the following infinite matrix

G Hy 0o 0o 0 0o 0 0
B Gr @ G2 0o 0 0 o0
B Or QX 0N OX Q¥ o o0
(4.36) O Ox (X 02 OX OxX O3 @ON
G Or QX O3 (DX QN O3 @N

To prove the induction step, it is sufficient to show that the first principal (m x m)-minor
of the matrix (4.36]) in non—zero. Suppose it is not the case. Then the elements
(T4+X),(1+X)3,...,(1+ )21 eC[N/(\™)

are linearly dependent. Hence, there exist ¢y, c1,...,¢cpn—1 € C such that A™ divides the
polynomial ¢o + ¢1(1 4+ X2 4 -+ 4 epo1(1 + X)), Let 1 < m < m be such that
cm—1 # 0, whereas ¢z = ¢e1 = -+ = 0. Let (q,...,{m-1 € C be such that

7T(t) =co+cit+---+ Cm_ltmfl = Cm_l(t — C1) ceees (t — Cm—l) € C[t]
Taking the substitution t = (1 + \)2, we get:

m—1

(4.37) A | emar JT (@422 =)

j=1
However, the order of vanishing at 0 of the polynomial in the right hand side of (4.37) is
at most m — 1, contradiction. Hence, co =c1 =--- =¢pyp_1 = 0.
Therefore, for any f € P(—u) we have: (fd)a = (fd)/a == (fd)gnfl) = 0. By Lemma
the polynomial [ divides fg4, proving the claim.

Summing up, we have shown that the polynomial 6 = [] I4* divides the top homogeneous
a€cll
part of any element of the module P(—u). Since deg(d) = p, it implies that

dimc(P(—u),) <1 and dime(P(—u)upk/P(—w)psr—1) < k+1
for any k£ € N. Therefore,

dime (P(-wyar) <1424 - 4 (k4 1) = FFDEE)

Theorem is proven. O

Corollary 4.15. Since the normalization map A*> — X s bijective, any character

A X5 C is given as the composition A R—>5C, where X(P) = P((1,¢2) for

any P € Clzy, 2] and some uniquely determined ((1,(2) € A%, For any € € C2 satisfying
the conditions of Theorem the power series V(x1,x2; (1, (2;&1,&2), given by formula
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[4.16)), is non—zero and regular at (z1,x2) = (0,0). Combining Theorem[].5 with Theorem
we end up with the following result:

Sol(%B, x) = {f € Clzy, z2]|Pof = P(C1,¢2) f for all P € %} = (U (1,223 C1, 2 €1,€2) ) o

Remark 4.16. The A-module module P(—u) from Theorem appeared also in [2]
Proposition 7.6], where another proof of its projectivity was given.

5. ELEMENTS OF THE HIGHER—DIMENSIONAL SATO THEORY
For any n € N, let B = C[xy,...,x,| and B = Clz1,...,z,]. For any d € Z, we

denote by By be the vector space of homogeneous elements of B of degree d (in particular,
By = 0 for d < 0). Next, let m = (z1,...,2,) be the unique maximal ideal of B and
B % NyuU {o0} be the corresponding valuation. To simplify the notation, we denote
Y := N and for any k = (ki,...,k,) € ¥ we write:

o k.= xlfl .%7’3” and 9% := 8{“ 82”

o kl=k!...ky)and |k| = k1 4+ -+ + kp.
We denote 0 := (0,...,0) € ¥ and for k,l € ¥ say that £ > [ if any only if k; > [; for all
1 <4 < n. Next, consider the following C—vector space:

(5.1) W = Clar, ..., 2] [01, .., 0n] = { 3 apd® ’%e B forallkeys
k>0

Note that 20 has no natural C—-algebra structure since the natural product - is not defined
on the whole vector space 2.

Definition 5.1. For any element P := Y az0% € 20 we define its order to be
k>0

(5.2) o(P) := sup{|k| —v(ag) | k € £} € ZU {oc}.
In particular, if d = o(P) < oo then we have:

v(ag) > k| —d= (k1 +- -+ ky) —d foranyk € 3.
The key role in this section is plaid by the following subspace of the vector space 2U:
(5.3) S :={Q € W|o(Q) < oo}.
Note that for a partial differential operator

P= Z a@QE+ Z b@Qi € Clz1,...,zp][01, .-, Onl,

|k|=m li|<m

with constant highest symbol 0 # o(P) = >, apdt € C[dy,...,0y], the order of P
taken in the sense (5.2)) is equal to m and coincides with the usual definition of the order
of a differential operator.

Let P € &. Then for any k,i € X, we have a uniquely determined «y,; € C such that

(5.4) P = Z o 2O
ki>0
For any m > —d we put:
P, = Z aMfQE
kicy
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to be the m-th homogeneous component of P. Note that o(P,,) = —m and we have a

decomposition P = Y P,,. Finally, o(P) := P_; is the symbol of P (i.e. the sum of all

m=—d

components of P of maximal order). We say that P € & is homogeneous if P = o(P).

Example 5.2. Let n = 1. Then we have:
o Lk
e The operator exp(z*d) := > %ak belongs to &. Moreover, exp(z+d) is homoge-
k=0 R
neous of order zero.

e The element ) %82’“ of 20 does not belong to &.
k=0 K-

Theorem 5.3. The following results are true.

(1) The vector space S is a C—algebra with respect to the natural operations - and +.
In particular, & contains the subalgebra ® := Clx1,...,z,][01,...,0n] of partial
differential operators.

(2) We have a natural isomorphism of C—vector spaces F' := &/m& — C[04, ..., 0.

(3) We have a natural injective algebra homomorphism & — End?c(é), where Endfc(ﬁ)
is the algebra of C-linear endomorphisms of E, which are continuous in the m—
adic topology. In particular, B has a natural structure of a left G—module, which
extends its natural structure of a left D —module.

Proof. (1) The main point is to show that the natural product - is well-defined for any
pair of elements P,Q € &. Let d = o(P) and e = 0(Q). Assume first that P and Q

are homogeneous. Then we have presentations P = ) aEQE and Q=) bLQL, where
kex ey

ap € Bjy—q and b € By, for any k,[ € 3.

Having the Leibniz formula in mind, we define:

k1> (k:n> Mo,
5.5 P.Q:= ) . -
(5:5) 0= % (G Gl oy

- in
kEX IS 0<i<k

Since for any j € ¥, there exist only finitely many k,[,i € ¥ such that
j=k+l—-i and k>i,

the right—hand side of (5.5)) is a well-defined homogeneous element of &. Moreover, o( P -
Q) = o(P) + o(Q) provided P - Q # 0.
Now, let P,Q € & be arbitrary elements and P = »_ P, respectively Q@ = > Q; be

m=—d l=—e¢
the corresponding homogeneous decompositions. Then we put:

o0

(5.6) P-Q:= > > Pu-@
p=—(d+e) | m+i=p
m>—d
I>—e
It is a tedious but straightforward computation to verify that & is indeed a C—algebra
with respect to the introduced operations - and +. Note that o(P - Q) = o(P) - 0(Q),

provided o(P) - o(Q) # 0.
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(2) Note that we have a well-defined injective C-linear map
&/m& — C[d1,...,0n], P=) apd* > P| = ay(0)0*
E>0 k>0

whose image contains the subspace C[0,...,0,]. Let d = o(P), then by the definition we
have: v(ay) > |k| — d for any k € 3. In particular, a;(0) = 0 for any k& € ¥ such that
|k| > d+ 1, hence P‘o € C[o,. .., 0] as claimed.

(3) In order to define the natural left action of the C-algebra & on B, take first P € &

homogeneous of order d € Z and f € B, for some e € Ng. Then we have an expansion

P=> aEQE with ay € Bjy_q for any k € 3. Since 9% o f =0 for any k € ¥ such that
k>0

|k| > e+ 1, we have a well-defined element Po f € B._g.

Now, let P € & and f € B be arbitrary elements and d = o(P). Since we have
homogeneous decompositions P = Z P, and f = Z fe, we can define:

m=—d

Pof::Z( Z Pmofe)'

k=0 m>—d, e>0
m—+e=k

It follows from the definition that P o f € m* provided f € m**¢. This shows that the
action of G on B is indeed continuous in the m-adic topology.

It remains to prove that the algebra homomorphism & — End¢ (B ) is injective. For this,
it is sufficient to show that for any homogeneous operator

P= Z amfﬁk €6
ki>0

|| —i|=d
of order d, there exists f € R such that P o f # 0. Let [ be an element of the set
{E € E‘ there exists ¢ € ¥ such that oy ; # O}
with |I| smallest possible. Then P o zt = [! a2t # 0, implying the statement. O

One evidence that the algebra & deserves a further study is due to the fact that it contains
several operators, which do not belong to the subalgebra © but act “naturally” on B.

Example 5.4. Let n = 1. For any u € zC[z], consider the following operator:
k
(5.7) exp(u*d) Z x 8

Obviously, exp(u*d) is an operator of the algebra G of non—positive order. Moreover, for
any f € B we have:

(5.8) exp(uxd) o f(z) = f(u+ ),

i.e. the operator exp(u*d) can realize an arbitrary C—-linear endomorphism of C[z]. Indeed,

m

exp(uxd) o 2™ <Z k:' a’f) =3 (TIZ) W = (ot )™,

k=0
implying the statement.
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In particular, let E := exp((—z)%0). Then E o f(z) = f(0), i.e. the operator FE is Dirac’s
delta—function.

Now, let n € N be arbitrary. For any 1 < ¢ < n and u € m, consider the operator
k
(5.9) exp(ux0;) := Z E@ .
k=0

Then for any f € B , we have the formula:
exp(uxd;) o f(T1,. .., Ti1, %4, Tig1,. .., Tp) = f(xla cey Ti—1, Ti T U, Tig 1, - - -,xn)-
As a special case, for E; := exp((—x;)*0;) we have the following formula:
(510) Ez o f(.%'l, ooy Li—1,Ljy Lid1y - - - ,I'n) = f(;b'l, cees L1, 0,1'1'_;,_1, cee ,a:n).
Finally, note that the formula (5.10) implies that 9; - F; = 0 in &. As a consequence,
2 .
(Elaz) =0forany 1 <i<n.

Example 5.5. Again, let us first assume that n = 1. Consider the operator
oo k+1

11 = (1— - o7 = —9)k.
(5.11) G ( exp(( 1‘)*6)) 0 2 (k—l—l)!( 0)
Then for any m € Ny we have:
m k+1 m+1 M m+1
+1 T
m _ _k? koomy_ L kL _ '
Gow kzo( )(k+1)!(8 °a”) m+1kz( ke 1) T
Hence,
G m __ G am m+1
(5.12) Gomzz:oamx —mzz:om+1x ,

i.e. G acts on B as the integration operator. In particular, we have: 0-G =1 in 6.
Similarly, for n € N and any 1 < i < n, the operator G; := (1 — exp((—z;)*0;)) -0 s
the operator of indefinite integration in the i-th variable.

In what follows, we shall study more precisely the right action of the algebra & on the
C—vector space F' = &/m& = C[0y,...,0n].

Definition 5.6. Let P € G be an operator of order d given by the expansion (5.4)). Then
we have another form of the formal power series expansion of P called slice decomposition:

(5.13) P = Z % P@), where P@ = Q' Z OzE&'QE.
>0 © k>0
|k|—i|<d

For any ¢ € ¥, the partial differential operator with constant coefficients P; € C[0y, ..., 0y]
is called i-th slice of P.

Remark 5.7. Note that for any i € ¥ we have the following identity 9% o P = P;, where
P; is viewed as an element of the module F'. In particular, for any P, Q) € &, the following
statement is true:

P=Q ifandonlyif 9oP =90Q forany iecX.

In other words, the algebra homomorphism & — Endc(F) is injective.
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Definition 5.8. An element P € & is called regular if the C-linear map F' L(P)> Fis

injective. In particular, P is regular if and only if its symbol o(P) is regular.

Lemma 5.9. Let P € &. Then the following results are true.
(1) The operator P is reqular if and only if for any m € Ny, the elements of the set
{QE oo(P) |E € X :|k| =m} C F are linearly independent.
(2) Assume that P is reqular. Then P is not a right zero divisor in &, i.e. the equation
Q- P =0 in & implies that Q = 0.
Proof. (1) Let d := o(P) = o(o(P)). Then for any k € ¥ we have: O(QEO o(P)) = k| +d

provided 9% o o(P) # 0. Therefore, the linear map F L(P)> F splits into a direct sum of

—oo(P
its graded components F;, °o(P) Fy 14, implying the first statement.

(2) Let @ # 0 be such that @ - P = 0. Then o(Q) # 0 as well, whereas ¢(Q) - o(P) = 0.
Next, there exists k € ¥ such that 9 - ¢(Q) # 0 in F. On the other hand,

- 0(Q)oa(P)=08"-0(Q)-o(P) =0,
hence P is not regular, contradiction. O

Definition 5.10. Let 6_:= {P € & ! o(P) <0} and &* be the group of units of &_.

Lemma 5.11. The following results are true.
(1) Let P € &_. Then we have: P € &* if and only if o(P) € &*.

(2) Let Q € &~. Then o(Q) =0 and o(Q) = Q) € C*.

Remark 5.12. It is not true that any unit in the algebra & belongs to its subalgebra & _.
Indeed, let P = exp((—z)0) -9 € 6. Then P? =0, hence 1 + P is a unit in &, which is
not an element of &G_.

Definition 5.13. Let W C F = C[04,...,0,] be a C-linear subspace.
(1) For any k € Z, we put: Wy, := {w € W |o(w) < k}.
(2) Hy (k) := dimg(Wy) is the Hilbert function of W.
Definition 5.14. Let pu € Ny.
(1) We put: Gr,(F) := {W CF ‘ Hy(p+k) = ("Zk) for any k€ NO} (recall that

Hp(k) = ("}")).
(2) Let W € Gry(F). Then S € & is a Sato operator of W if the following conditions
are fulfilled:
e S is regular and o(S) = p.
e We have: W =FoS.

Proposition 5.15. Let i € No, W € Gr,(F) and T be a Sato operator of W. Then the
following results are true.

(1) U -T is a Sato operator of W for any U € &* ..

(2) For any m € Ny, the elements {T(E) ‘E € ¥ such that |k| < m} form a basis of the
vector space W, 1m, where Ty € F' is the k-th slice of the operator T'.

(3) Moreover, for any m € Ny, the elements {T(b) |k € ¥ such that |[k| = m} form a
basis of the vector space Wi /Wyym—1, where T(E) denotes the class of T(y,.

(4) The linear map F =W ois a bijection.
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Proof. (1) If U € &* then U-T # 0 and o(U -T) = o(U) 4+ o(T) = p. Next, Fo (U -T) =
(FoU)oT =FoT =W. Finally, o(U-T) = o(U) - o(T) and o(U) € C*. Hence, the
linear map F M F' is injective, implying that the operator U - T is regular. Hence,
U - T is indeed a Sato operator of W.
k

(2) Recall that we have a slice expansion: T = %

k>0 2
o(T(E)) < p+ k[, ie. Ty € Wigjqy for any k € 3. Moreover, there exists [ € ¥ such that

o(Tyy) =+ 11l

Ty Since o(T) = p, we have:

o(Tw) if o(Tw) =+ |k

0 » o(T(E)) <n+ k. Then we have

Next, for any k € ¥ we put: (T(y)) = {

k
the formula: o(T) = > %5(T@), which implies that §% o o(T) = 7(Ti)) for all k € 3.
k>0 K

Since T is regular, &(T(g)) # 0 and o(T(y)) = p + |k| for all k € 3, hence
k

(5.14) o(T) = o (Tw).
k>0 —

By assumption, dim¢(W,, = ("T™). Therefore, to prove the second statement, it is
y +p n

sufficient to show that for any m € Ny, the elements {T(E) ‘E € ¥ such that k| < m}

are linearly independent. We prove it by induction on m. The case m = 0 is clear: since

dime¢(W,) = 1 and o(T(x)) = |k| + p, we have W, = <T(Q)><C‘ Next, let {8 € C|k € ¥ :

|k| < m} be such that Y BT = 0. Then we have: Y By o (T(y)) = 0 in the vector
kl<m |E|=m N

space Fy,4,. From formula (5.14) and Lemma we deduce that 8, = 0 for any k£ € ¥

such that |k| = m. Proceeding by induction, we get the second claim.

(3) Analogously, assume that > ;T = 0 in the quotient vector space Wit/ Wiy p—1.

|k|=m
Then we get: > ’YEO'(T(E)) = 01in F,4,, hence B = 0 for any k € ¥ such that |k| = m.
|k|=m

The third claim follows from the fact that dim¢ (WmﬂL / Wm—‘,—/,t,—l) = (n+m_1).

m

(4) For any m € Ny, the linear map F), =T, Winsp, OF— T(x) is an isomorphism by the
dimension reasons. This implies the fourth statement. ]

Theorem 5.16. Let pn € Ng and W € Gr,(F). Then the following statements are true.

(1) The vector space W possesses a Sato operator S.
(2) IfT is another Sato operator for W then there exists a uniquely determined U € &*
such that S =U -T.

In other words, a Sato operator of W exists and is unique up to a unit of the algebra &_.

Proof. (1) Our construction of a Sato operator S is algorithmic and depends on the fol-
lowing choice. Namely, for any k € 3, we choose wy € W, ;|5 such that for any m € N,
the set {U_)E ‘ keX: |kl = m} forms a basis of the vector space Wy, 4,/ Win4pu—1 (at this
place, we essentially use the assumption on the Hilbert function of W). Then the following
statements are true:

e o(wg) = p + |k| for any k € %;

e the set {wy ‘ k€ X :]k| <m} is a basis of the vector space W4,
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Consider the operator S := } ~—S4) € & such that S;) = wy for all £ € X. By

construction of S we have:
k
ok
e 0(S5) = kg() EU(S(E)), hence o(S) = p.

° QEoSzwﬁfor all k € X, hence W = F o S.

e Foo(9) = o (wy) for all k € X. Since {wy, |k € ¥ : |k| =m} form a basis of the
vector space Wi 4,/ Winipu—1, the vectors from the set {U(SE) ‘E €X: |kl = m}
are linearly independent. According to Lemma the operator S is regular.

Summing up, S is a Sato operator of the vector space W.

(2) Let S and T be two Sato operators of W and

zk : z*
S = Z ES(E) respectively T = Z ET(E)
k>0 k>0

be the corresponding slice decompositions. According to Proposition the following
statements are true:

° O(S(E)) = O(T(E)) = u+ |k| for any k € X.
e For any m € Ny, the elements of the set {T(E) ’E € ¥ such that |k| < m} form a
basis of the vector space W p,.

Therefore, for any i € ¥ we can find (uniquely determined) scalars {~;x € C ‘ keX: |kl <
i|} such that Sw = > YikT(k)- Moreover, there exists at least one [ € ¥ such that
k<[]

1
% - Y 4ix0% € &. Tt is clear that o(U) = 0,
>0 L |k<lsl
hence U € 6_. We claim that S = U -T. According to Remark it is equivalent to the
statement that 9* 0 S =90 (U-T) = (8 oU) o T for all i € ¥.

By the construction of U, we have:

(@ oU)oT =Y %pdoT=> %iTw="5w

|k <l |k <ld|

|l| = |i| and ;; # 0. Now we put: U :=

so S = U -T as asserted. In a similar way, we can find V € &_ such that T =V - S.
Therefore, we have: (1 —U -V)-S = 0. Since S is regular, Lemma implies that
U-V =1. In a similar way, V - U =1, hence U,V € &* as claimed.

The uniqueness of the unit U also follows from Lemma [5.9 Theorem is proven. O
Definition 5.17. Let u € Ng and F = C[0,...,0,] (viewed as the polynomial algebra).

We say that (W, A) is a Schur pair of index p if W € Gr,(F) and A C F' is a subalgebra,
such that W-A=W.

Theorem 5.18. Let (W, A) be a Schur pair of index pn € Ny and S be a Sato operator of
W. Then the following statements are true.

(1) For any polynomial f € A, there exists a uniquely determined operator Lg(f) € &
such that S - f =Lg(f)-S. Moreover, o(LS(f)) = deg(f) for any f € A.
(2) Next, for any fi1, fo € A and A\, Ao € C we have:

Ls(fi-f2) =Ls(f1) -Ls(fe) and Lg(A1fi+ Xaf2) = MLs(f1) + AoLs(f2)
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In other words, the map A — &, f — Lg(f) is a homomorphism of C—algebras,
which is moreover injective.
(3) Finally, for any polynomial f € A, the following diagram of C-linear maps

| N
(5.15) oLs<f)l Lf
—oS

F—

15 commutative.
k

Proof. (1) Let S = > %S(E) be the slice decomposition of S and f be an element of A
k>0 K

with d = deg(f). Then for any ¢ € ¥ we have:
"0 § =S € Wiy and "0 (S f) = Sa - f € Wirasu

According to Proposition there exists uniquely determined scalars {VLE eC ‘ keX:
k| < |i] + d} such that Si;) - f = > 7irS®k) € Wiij+d+u- In these terms, we put:

|k|<|i|+d
&i k
(5.16) Ls(f) == o > qrdkee.
20 © |k|<[i+d

Since for any ¢ € X, there exists at least one [ € ¥ such that |I| = [i| + d and ~;; # 0,
we have: o(Ls(f)) = d. The identity S - f = Lg(f) - S in the algebra & follows from the
fact that 9% o (S - f) = 9% o (Ls(f) - S) for any i € ¥ (which is true by the construction of
Ls(f)). The uniqueness of Lg(f) follows from the regularity of S and Lemma

(2) Let f1, f2 € A. By construction, we have:

S (fi-f2) = (Ls(f1) - S) - f2 = (Ls(f1) - Ls(f2)) - S.
Since the operator Lg(f) is uniquely determined by f € A, we get: Lg(f1) - Ls(f2) =
Ls(f1 - f2). The proof of the second statement is analogous, hence A — &, f — Lg(f)
is indeed a homomorphism of C-algebras. For f # 0 we have: (S - f) = o(S) - o(f) # 0,
hence Lg(f) # 0, too.
(3) The commutativity of diagram is a reformulation of the first assertion of this
theorem. Note that by Proposition [5.15] the linear map — oS is an isomorphism. O

Remark 5.19. Let (W, A) be a Schur pair of index p € Ny. According to Theorem
any choice of Sato operator S € & of the vector space W specifies an injective algebra

homomorphism A s, 6. However, a Sato operator is determined only up to a unit of the
algebra &_; see Theorem 5.16} IfV € &* and T =V - S is any other Sato operator of W,
then we have: Ly = V-Lg-V ™. In other words, any Schur pair defines an injective algebra

homomorphism A N S, which is unique up to an appropriate inner automorphism of
the algebra &.

Remark 5.20. The modern algebro—geometric study of commuting differential operators
was initiated by Krichever [22] 23] and investigated by many authors in what follows. Our
work was especially influenced by the approaches of Mumford [32] and Mulase [31]. In
particular, the higher—dimensional Sato theory developed in this section was inspired by
[31]. The idea to enlarge the algebra of differential operators in the context of a generalized
Krichever correspondence was suggested by the second-—named author in [38], see also
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[27, 28]. The algebra & introduced in Definition deviates from its cousins studied in
[38] (on the one-hand side it is larger, on the other hand it is much more symmetric).
The construction of commutative subalgebras of & based on Schur pairs (W, A) can be
thought as an attempt to generalize Wilson’s theory of bispectral commutative subalgebras
of ordinary differential operators of rank one [37].

6. ON THE ALGEBRAIC INVERSE SCATTERING METHOD IN DIMENSION TWO

In this section, we are going to discuss some examples of the theory developed in the
previous section in the special case n = 2. Let R = Clz1, 23] and ® = C[x1, x2][01, 2],
whereas

G =S > gy (w1, 22)00 05 |3d € Z: Ky + ky — vk, gy (1, 22)) < d Yk ko > 0

k1,k22>0

is the algebra from Definition (here, v(a(w1,22)) is the valuation of the power series
a(z1,x2) € Clzy, z2]).

Lemma 6.1. Let (Hvﬁ) be a Baker—Akhieser weighted line arrangement, A = A(H,E) the
corresponding algebra of quasi—invariants and W = P(—&121 —&222) C R the projective A—
module from Theoremfor an appropriate (£1,£2) € C2. Then the embedding A — &
determined by the Schur pair (W, A) (see Theorem coincides (up to an appropriate
inner automorphism of &) with the embedding E(g) of Chalykh and Veselov defined by the

formula @

Proof. The fact that W € Gr,(R) (where p := Y fta) Was established in Proposition
The same Proposition implies that the differential operator S of order u from Lemma
[4.17]is a Sato operator of the vector space W in the sense of Definition Recall that
for any f € A, we have the following equality S - f(01,02) = (E(E))(f) -S'in ® C G; see
formula . This implies the result. O

Remark 6.2. Let A = A(IL, 1) be an algebra of planar quasi-invariants and W € Gr,(R)
be a finitely generated torsion free A-module of rank one (as usual, p = fa)-

1. It is not true that W is automatically a Cohen—Macaulay A-module. Indeed, let
A= Clz?, 23,92,y and W := <x2,x3,y3,y4>A. Obviously, W is a finitely generated
torsion free A—module of rank one and W € Gry(R). Moreover, A/W = (1,%*)c is non—
zero and finite dimensional. Hence, the module W is not Cohen—Macaulay (in fact, the
regular module A is the Macaulayfication of W).

2. Nevertheless, there are good reasons to focus on those Schur pairs (W, A) of index
w, for which W is a Cohen-Macaulay A-module of rank one. Assume that I, u) is a
Baker—Akhieser weighted line arrangement (see Definition and A = A(II, H)iis the
corresponding algebra of quasi-invariants. Consider the Rees algebra (respectively, the

Rees module)

o0 oo
A= @Aktk C Alt] respectively W = @ Wit ut® € Wt
k=0 k=0
Let X := Proj(A) (projective spectral surface), C' := V(t) C X and F := Proj(W)
(projective spectral sheaf). Then the following statements are true; see [38, Lemma 3.3
and Lemma 3.8] as well as [27, Theorem 2.1].
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(1) There exists an isomorphism of algebraic varieties X = X \ C. In particular, we
have an isomorphism of C—algebras A = F()Z \C,0 )?)

(2) Moreover, there exists a natural isomorphism of A-modules W = F()Z' \ C, F).

(3) The variety C is an integral projective curve. Moreover, there exists d € N such
that C' = dC is a Cartier divisor, and £ = O¢(C’) is an ample line bundle.

(4) F is a torsion free coherent sheaf of rank one on X. Moreover, we have:

= kd+1
X(X,f@)ﬁ@k):( ;)foranykENo.

Let M, be the moduli space of stable torsion free coherent sheaves on X with Hilbert
polynomial x = (kd; 1) with respect to the ample line bundle £. Then M, is a projective
variety (see e.g. [26, Theorem 4.3.4]) and F € M,. More precisely, let & € Coh(X x M,)

be a universal family of the moduli functor M, . Then any Schur pair (W, A) as above

defines a point p = p(W') € M, such that U), := Z/{’XX{p} = F= Proj(W).

Now, let B := Im(E(g)) C © be the algebra defined by . Then the corresponding
projective spectral sheaf F is Cohen-Macaulay; see [28, Theorem 3.1]. Let p € M, be the
corresponding point. Then by [20, Théoréme 12.2.1], there exists an open neighbourhood
p € U C M, such that for any g € U, the coherent sheaf U, is Cohen-Macaulay of rank
one. As a consequence, the A-module W, := I'(X,U,) is Cohen-Macaulay of rank one,
too. Therefore, in order to construct algebra embeddings A — & arising from Schur

pairs (W, A), which are “deformations” of the standard Calogero-Moser system A % D

given by (4.9), it is natural to take those rank one torsion free A-modules W € Gr,(R),
which are Cohen—Macaulay. O

In the remaining part of this section, we illustrate the “algebraic inverse scattering
method” of Theorem by constructing an “isospectral deformation” of the simplest
dihedral Calogero—Moser system associated with the operator

0* 0 > ( 1 1 )
6.1 H= {2+ 2 ) 9 n :
( ) <8ac% 3.%% (x1 — 51)2 (332 - 52)2
where (£1, &) € C? is such that 1€ # 0. In this case we have:

o A= A(IL, p) = C[2%, 23, 23, 23], where Il = Ay = {0, g} and p(0) = B(g) =1.
e It follows from Theorem that the spectral module F of the corresponding

Calogero—Moser system has the following description:

0
8i(o,m — &1pf (0, p)

15,
a,;i(’* 0) = &apf(p,0)

F=<J(feR

e Let K = C(p) and L = K[e]/(¢?). Then the diagram (2.3)) for the algebra A has
the following form:

A— K x K

o f

R———LxL,
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where 7(7) = (£(0.0) + ep 5 (4,010 = 20 0.)).

e In terms of Theorem (3.2 we have: F' = B(¥), where 7 = (&2p, —£1p).

Lemma 6.3. For (£,&) € C? such that &6 # 0 and B # &1 € C, consider the
Cohen—Macaulay A-module Wg := B(73) € CMf(A), where

. &p &y )
'w_(gwﬁp’ &t pp) EEWECH)

Then Wy € Gra(R). Moreover, W is not projective over A for 5 # 0.

Proof. By definition, we have:

of &p
( ,P) = f(O, ﬂ)
_ 0 L+ P
(6.3) Ws=<f€ER 8Zfl 1€§p P

D29 (pv 0) - € +5,0f(p’ 0)

A lengthy but straightforward computation shows that
(6.4) W5 =C-w (& + & z0 + B21)2iClz1] + (&1 + €121 + B22)23C[29] + 2323C |21, 22],

2 2
where w = 14+&121 + 8220+ (182 — ) - (2122 + (Z; + Zg)) . The description ((6.4]) implies
3 1

that W3 € Gra(R). Since the rational functions i (p) and y2(p) have a pole provided 5 # 0,
Lemma (see also the proof of Theorem [3.17) implies that the A-module Wj is not
projective. O

Remark 6.4. It is interesting to note that the A-module Wj is actually locally free at
the point p := (0,0) € X (the “most singular” point of X), where A? -2+ X is the
normalization of the spectral surface X of the algebra A. Indeed, the Cohen—Macaulay
A-module W3 corresponds to the following object

&o . &p >>
<R’K@K’<1+€£Q+ﬂp’1 “a+pp))

of the category of triples Tri(A); see Theorem As in the course of the proof of
Theorem one can show, that Wy is locally free at the point p if and only if there exist
h € C[z, z2] and f, g € C((p)) making the following two diagrams

L—1 1L L—1 1L
fl l(lﬁpé’;; (0,0))-exp(h(p,0)) gl l(l—apa‘?l (0,0))-exp(h(0,0))
L— L L— L
&3p 2p
1e 20 1—e 212
&+ &+

commutative in the category of L—modules. To achieve this, we have to put f :=
exp(h(p,0)) and g := exp(h(0, p)), whereas the power series h has to fulfil the constraint

A oh s & )
<321 ©.0), 322(p70)> B <51+5P’€2+5P ’

which (as one can easily see) is consistent. O
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Theorem 6.5. The operator Sg := So + 1 € &, where

0= Aot 2 — 5”281 " & — 27182 * (&1 — 1) (&2 — x2)
and
1
T :(51 — l‘l)(fz — ZL‘Q) <§2 (E261 + (fl - $1)E281) + { (E182 + (52 — x2)E13§)> +

1 o 82>>
BB, (148 < ,
(@& -G —a)(& — ) 2( & &
with E1,Ey € & defined in Example is a Sato operator of the space Wpg, given by

formula .

Proof. 1t is easy to see that 0o(S3) = 2 and o(S3) = 8182+§2 Ex0? + =
2

B

~ Ey92. Leti,j € Ny
&

be such that ¢ + j = m. Then we have:

gitigit! P20
B om+2 +1 o
o —oo(S _ym P g g, i (i) = (m,0
Clon, 0y > oiof =222, ) (ZD" 21 , if (i, §) = (m,0)
8

()"0 T2+ oy oy i (4,5) = (0,m).

By Lemma the operator Sg is regular.
21 29 1

§o — o * §1— 11 * (&1 —x1) (62 — w2)

&

It follows

Let Oq(z1,x2; 21, 22;£1,&2) = 2122 +
from Berest’s formula [I] that
Wo(x1, x2; 21, 22; 61, &2) i= Op(x1, 2; 21, 22; &1, &2) - exp(x121 + T222)

is a Baker—Akhieser function of the Calogero—Moser operator H given by (6.1)). This
implies that Sy is a Sato operator of the unperturbed space Wy. For general 3, consider
the formal power series Wg = Wg + ¥, where V(x1, x9; 21, 22;§1,&2) =

1+58 <€2 2) 1
2
66 =D —o1)(& —52) (@ a6 —an)g OP@E)A+ (G —a) expl@ia)) +
1

(exp(m222)z0 + (&2 — x2) exp(T222)23) -

(&1 —21)(&2 — 22)&2
A straightforward computation shows that Wz satisfies the same equations (6.3)

Vg &y .
= 8
921 | (21,22)=(0.) S0P 1 m)=(00)
Vg _ &
922 |z ,2)=(p0) €282 l(z1 22)=(00)

which define the vector space Ws. Thus,
op1tpP2\{y 3
Oz 0252 1(@1,22)=(0,0) c

Since both vector spaces Wy and Wj belong to Gra(R), we conclude that Wj = Ws. [0

Ws 2 Wg := Cl[d1,02] 0 Sp = <

(p1,p2) € Ng X N0>
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Example 6.6. Let A L4 & be the algebra homomorphism corresponding to the Sato
operator Sg from Theorem for the special value (£1,&2) = (1,1) and Hg := L(w), where
w = 2} + 22 € A. Proceeding along the lines of the proof of Theorem we get the
formula Hg = Ho + 3(Z + Z'), where Hy = H is the unperturbed operator (6.1,

(1 1 p
7= (1 - w1E1 Tz x2E2> G102 (1-8)1—z1)(1 - m)ElE2(al )

1 2
T FE109 — 1=y Ey01 + ﬁl_BlElEQ — (G2E181 -+ G1E282)

and Z’ is some operator of negative order.

For any f € A of the form f = 2723 - g for some g € R it can be shown that

) =0 (s 1) (o 5).

Finally, the formal power series Wg(z1,x2; 21,22) = ¥g(x1,x2; 21, 22;1,1) introduced in
the course of the proof of Theorem [6.5] is a Baker—Akhieser function of the deformed
Calogero—Moser system L(A) C &: for any f € A we have:

L(f)(a:l,acz) o Wp(w1,w2; 21, 22) = f(21, 22) - V(1,725 21, 22).

Remark 6.7. Let A = A(H,,u) be the algebra of planar quasi-invariants of Baker—
Akhieser type. A description of those ¥ € K (H, ,u), for which the corresponding Cohen—
Macaualy module B(¥) € CMY(A) belong to Gr,(R) (see Theorem for the used no-
tations), is a non—trivial problem, which will be studied in a future work. Theorem m
on existence and uniqueness of the corresponding Sato operator can be understood as an
analogue of the axiomatic description (in terms of the works [13], 12]) of a Baker—Akhieser

function for the corresponding deformed Calogero—Moser system A 6.

7. APPENDIX: THE COMPACTIFIED PICARD VARIETY OF AN AFFINE CUSPIDAL CURVE

For any m € N, let A,, := C[t?,t*™T!]. Although the (compactified) Picard variety of
an algebraic curve is a well-studied object, we were not able to find a precise reference
in the literature for an explicit description of the Picard group Pic(4,,), mentioned in
Introduction. For the reader’s convenience we give its proof below.

Theorem 7.1. There is an isomorphism of algebraic groups:
(7.1) Pic(An) = Ky, := (Clo]/(a™),0),

where 1 0 vy == (y1 +72) - (1 + 0y172) ! for any v1,72 € K,,. Next, let Q be a torsion
free Ap,—module of rank one. Then either Q is projective or there exists m' < m and a
projective module of rank one Q' over A, such that Q is isomorphic to the restriction of
Q' on A, C Ay

Proof. To simplify the notation, we denote A = A,,,. Then the normalization of the algebra
Ais R = CJt] and we have:

A={feR|f(0)=f"(0)="= femD(0) = 0}.

Let I := Anng(R/A) be the conductor ideal, then we have: I = (t*™)g and K :=
Clo]/(e™) =2 A/I, whereas L := Cle]/(¢>™) = R/I. The canonical inclusion A/I C R/I
realizes K as a subalgebra of L via the identification ¢ = 2. Note that L = K + K.
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Let TF(A) be the category of finitely generated torsion free A-modules. Similarly to
Theorem we have an equivalence of categories

TF(A) -5 Tri(A), A4H>(02®AAﬂ/umz(®AﬂmeM),

where tor denotes the torsion part of the R—module R ®4 M. Here, the category of triples
Tri(A) is the one-dimensional prototype of its two—dimensional descendent from Definition
Namely, it is the full subcategory of the comma category associated with the pair of

functors

TF(R) =22~ 5 L — mod <25~ K — mod.

consisting of those triples (M ,V,0), for which the morphism of L-modules (gluing map)
LoxV -5 LegM

is surjective and its adjoint morphism of K—modules V — L Qg V L Rr M is
injective. The functor F restricts to an equivalence of categories Pro(A) N Tri'f(4),
where Pro(A) is the category of finitely generated projective modules and Tri'f(A) consists

of those triples (M,V,0), for which the gluing map 6 is an isomorphism (this condition
actually implies that V' is a free K—module); see [5, Theorem 1.3 and Theorem 3.2], [3]
Theorem 16|, [7, Theorem 2.5] as well as the beginning of [7, Chapter 2] for a survey of
similar constructions.

It follows from the definition of the functor F that F(P, ®4 P») = F(P1) @ F(P,) for any
finitely generated projective A—modules P; and P, where the definition of the monoidal
structure on the category Tri'f(A) is straightforward.

Let P € Pic(A). Then F(P) = (R, K, ), where the gluing map L %, L can be written
in the normal form: 6 ~ 9, = 1+ ¢ - v for a uniquely determined v € K. Conversely, we
put P, := F_I(R, K,9,) for any v € K. Then we have:

F(Py, ®aPy,) = (R, K, ((1+€2W1-72)+6-(71+72))> ~ (R, K, 14e(vi+72) (1+e*n7y2) 7).

This implies that Py, ®a Py, = Py, 0y, for any v1,v2 € K, proving the isomorphism ([7.1)).
It is clear that the regular module A = Py corresponds to the triple (A, K, 1). Hence, for
any v € K, we have the following realization of the module Pj:

Py = Hom (A, P,) = Homyya) (4, K, 1), (A, K, 14¢7)) = {f € R | T, (f) =150, ()},

where the elements T3 (f) € K are defined by the rules:

—1
me o and Ty (f) = Y T

J

3

23+ (o
10
25+ 1)!

I\
=)

Let Pic(A) be the set of the isomorphism classes of finitely generated torsion free A-
modules of rank one (compactified Picard variety) and Q € Pic(A). Then F(Q) = (R, V,6),
where V = K @ K/(c') for some uniquely determined 1 < i < m; see Lemma By
Proposition we can transform the gluing map 6 into a uniquely determined normal
form 6 ~ 9., := (1 + ey | 2m=D+) where vy = ag + a1e? + -+ - + apy_j_162m 77D € L.
This implies that

Q = Homyica) (4, K, 1), (A, K © K/(07),9,)) = {f € R| Ty, () =7 Ty, (H)}-
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Hence, the vector space ) C R is stable under the multiplication with the elements of the
algebra A,,_; = C[t?, ¢2(m—j )H]. Moreover, from the above description of the Picard group

Pic(A) it follows that @ is a projective module over the algebra A,,_; D A,, = A. O
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