COMPOSITION ALGEBRA OF A WEIGHTED PROJECTIVE LINE
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ABSTRACT. In this article, we deal with properties of the reduced Drinfeld double of
the composition subalgebra of the Hall algebra of the category of coherent sheaves on
a weighted projective line. This study is motivated by applications in the theory of
quantized enveloping algebras of some Lie algebras. We obtain a new realization of
quantized enveloping algebras of affine Lie algebras of simply-laced type and get new
embeddings between such algebras. Moreover, our approach allows to derive new results
on the structure of the quantized enveloping algebras of the toroidal algebras of types
Dfll’l), Eél’U, E§1’1) and Eél’l). In particular, our method leads to a construction of a
modular action and allows to define a PBW-type basis for that classes of algebras.

1. INTRODUCTION

By works of Ringel [33] and Green [15], the study of Hall algebras of the category
of nilpotent representation of a finite quiver plays an important role in the theory of
quantized Kac-Moody algebras. In this article, we deal with the Hall algebra of the
category of coherent sheaves on a weighted projective line X.

As it was established by Kapranov [22] and elaborated by Baumann and Kassel [2], the
Hall algebra of the category of coherent sheaves on the classical projective line P! is closely
related with Drinfeld’s new realization of the quantized enveloping algebra U, (;[2) In our
previous joint work [6] it was shown that the Drinfeld-Beck map U, (;[2) — U, (25[2)

(see [11, 3]) comes from the derived equivalence Db(Rep(Z)) — DP(Coh(P')), where A s
the Kronecker quiver. An attempt to generalize this result on other quantized enveloping
algebras leads us to the study of Hall algebras of weighted projective lines.

Weighted projective lines and coherent sheaves on them were introduced by Geigle
and Lenzing in [13]. This notion turned out to be quite useful from various points of
view. In particular, the so-called domestic weighted projective lines provide a “geometric
realization” of the derived category of representation of affine Dynkin quivers. Weighted
projective lines of tubular type lead to a very interesting class of the canonical tubular
algebras [32]. Geometrically, they correspond to the category of coherent sheaves on an
elliptic curve with respect to the action of a finite automorphism group [13]. As it was
shown in an earlier work of the second-named author [38], the Hall algebra of such weighted
projective lines is closely related with the quantized enveloping algebras of the toroidal

algebras of types ﬁ4, E’ﬁ, E7 and E’g.

The main results of this article are the following. Let X be a weighted projective line
over a finite field F,, H(X) = H(Coh(X)) be its Hall algebra. In a work of the second-
named author [38], the composition subalgebra U(X) C H(X) was introduced. We give an
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alternative definition of U(X) and show that is a topological bialgebra, i.e. it is a subalgebra
of H(X) closed under the comultiplication H(X) — H(X)®H (X).

Next, we prove that the subalgebra U(X)io of the composition algebra U(X), which
generated by the classes of the skyscraper sheaves, is isomorphic to Z ® Uqu (;[pl) X - ®

U; (g[pn), where Z = Cl[zy, 22,...,2,...] is the Macdonald’s ring of symmetric functions
and p = (p1,p2,...,Pn) is the weight type of X.

We study in details further properties of U(X). In particular, we show that the func-
tor Coh(P!) — Coh(X), which right adjoint to the functor of reduction of weights of
Geigle and Lenzing [14], induces an injective morphism of the reduced Drinfeld doubles
Uy(Lsly) = DU(P') — DU(X). In particular, this implies that the reduced Drinfeld
double of the composition algebra of an arbitrary weighted projective line X contains
a subalgebra isomorphic to Uq(glg). More generally, for any weighted projective line Y
of type dominated by the type of X, we construct an injective algebra homomorphism
DU(Y) — DU(X). These results are based on the notion of perpendicular categories
introduced by Geigle and Lenzing in [14]. We also discuss some general properties of the
reduced Drinfeld double of a perpendicular subcategory of a hereditary abelian category,
which can be applied in the context of quivers as well. For example, this technique allows
to construct a new embedding of the quantized enveloping algebras U, (21\3) — Uv(ﬁ4).

Using a recent result of Cramer [8], we show that for a domestic weighted projective
line X of affine Dynkin type A, any derived equivalence Db(Rep(Z))) — Db(Coh(X))

induces an isomorphism of the reduced Drinfeld doubles of the composition algebras
—

DC(A) — DU(X), commuting with the Coxeter transformation. This differs from the
isomorphism given by Drinfeld [11] and Beck [3] and might be interesting from the point of
view of quantum groups. The composition algebra of a weighted projective line of domes-
tic type was also considered in a recent paper [9], where applications to the Drinfeld-Beck
isomorphism were studied.

Next, for a tubular weighted projective line X, we show that the group of the exact
auto-equivalences of the derived category Aut(Db(Coh(X))) acts on the reduced Drinfeld
double DU(X) by algebra automorphisms. In particular, it leads to a very interesting
modular action on DU (X). Using this action, we construct a monomial basis of DU (X).

Notation. Throughout the paper, k = F, is a finite field with ¢ elements and @ =
Qv,v71]/(v™? — q) = Q[\/g]. For a Kac-Moody Lie algebra g we denote by U,(g) the
Q[v,v~!] algebra, which is the integral form of the corresponding quantized enveloping

algebra, whereas Uy(g) = Uy(8) ®qju,n-1) Q is the specialization of the integral form.

Acknowledgement. The research of the first-named author was supported by the DFG
project Bu—1866/1-2. Parts of this work were done during the authors stay at the Math-
ematical Research Institute in Oberwolfach within the “Research in Pairs” programme.

2. HEREDITARY CATEGORIES, THEIR HALL ALGEBRAS AND DRINFELD DOUBLES

In this section we recall some basic facts on Hall algebras of hereditary categories. Here
we follow very closely the notations of our preceding article [6]. Let A be an essentially
small hereditary abelian k-linear category such that for any pair M, N € Ob(A) the k-
vector spaces Homa(M, N) and Exth(M, N) are finite dimensional.
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e Let J =Ja := (Ob(A)/ =) be the set of the isomorphy classes of objects in A.
e For an object X € Ob(A), we denote by [X] its image in J and set ax = ‘AutA(X)’.
e For any triple of objects X,Y,Z € Ob(A) we denote

P)%,Y = H(fag) € Homa (Y, Z) x Homa(Z, X) 0—>Yi>Zi>XHO is exact}‘

pZ

and set F)%Y = ﬁ. Note that P)%’Y and F)%’Y are integers.

e Let K = Ky(A) be the K—group of A. For an object X € Ob(A), we denote by X
its image in K.

e Let Q[K] be the group algebra of K. For a class a € K we denote by K, the

corresponding element in Q[K].

e Let (—, —): K x K — Z be the Euler form: for X,Y € Ob(A) we have
(X,Y) = dimy Homa(X,Y) — dimy, Ext (X, Y).
Next, let (—, —) : K x K — Z be the symmetrization of (X,Y), i.e. (a,3) :=

(a, B) + (B, ) for all o, 5 € K.

Definition 2.1. Following a work of Ringel [33], the extended twisted Hall algebra of the
abelian category A is an associative algebra over Q defined as follows.

e As a vector space over Q, we have H(A) := @ Q[Z] and H(A) := H(A) ®p QIK].
AN

e The product o in H(A) is defined by the following formulae:

— For any o, 8 € K we have: K, 0 Kg= K,g. .

— For any a € K and [X] € J we have: K, o [X] =v"(®X[X]o K,.

— For [X],[Y] € J the product o is defined to be

(X]o[]=v" Y 37 PRy (2]
[Z]ed

e As it was shown in [33], the product o is associative and the element 1 := [0] ® K

is the unit element in H(A). In what follows, we shall use the notation [X]K,, for
the element [X] ® K, € H(A).

Definition 2.2. According to a work of Green [15], the Hall algebra H(A) has a natural
structure of a topological bialgebra endowed with a bialgebra pairing.

e There exists a comultiplication H(A) 2" (A)®H (A), given by the formula:

_<X?>P§,Y
A(Z]Ka) = Y o =
X],[Y]ed Z

XKy, ,®[Y]K,.

Here we refer to [5, Section 2] for the definition of the completed tensor product
H(A)®H(A). The map A is coassociative: (A® 1)o A = (1 ® A) o A. Moreover,
A is an algebra homomorphism.

e There exists a @flinear algebra homomorphism H (A) 1, @ given by the formula
n([Z]Ka) = dz0. For any a € H(A) it satisfies the equality (n ® 1) o A(a) =
(L1®n)oAa) = a.
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e There exists a bilinear pairing (—, — ) : H(A) x H(A) — Q given by the formula

([X]Ka, [Y]Kg) — (@0 XY
ax
This pairing is non-degenerate on H(A) and symmetric. Moreover, for any elements
a,b,c € H(A), the expression (a ® b, A(c)) takes a finite value and the equalities
(aob, ¢) = (a®b,A(c)) and (a,1) = n(a) are fulfilled.

e If A is moreover a finite length hereditary category (for instance, the category of
representations of a finite quiver) then H(A) is a true bialgebra over Q with the
multiplication o, unit 1, comultiplication A and counit . Moreover, by a work of
Xiao [44], the Hall algebra H(A) has a natural Hopf algebra structure.

Remark 2.3. The fact that the map A is a homomorphism of algebras, was proven by
Green [15] in the case when A is the category of representations of a finite quiver. The
case of general hereditary abelian categories can be treated in a similar way, see [35, 40].

Our next goal is to introduce the reduced Drinfeld double of the topological bialgebra
H(A). To define it, consider the pair of algebras H*(A), where we use the notation

(M) = PQlZ]T 95 QK] and H™(A) = P Q[Z]” ©5 QlK].

zel zZel
In these notations H*(A) = H(A) viewed as Q-algebras. Let a = [Z]K and
__ pZ
1 2 - XY
0-Sded® = ¥ R oy,
' (], [V]ed z

Then we denote
HoYaEed®i = Y R
7 (X1, [Y]ed

Definition 2.4. The Drinfeld double of the topological bialgebra H(A) with respect to

the Green’s pairing (—, — ) is the associative algebra DH (A), which is the free product of
algebras H*(A) and H~(A) subject to the following relations D(a b) for all a,b € H(A):

(D)= 2)+ (1 D+ (2) (1) 12
S a0 Z b a; ), b5).
Y]
The reduced Drinfeld double DH (A) is the quotient of DH(A) by the two-sided ideal
I=(Kf®K ,-1"®1 |a €K).

Note that if A is a finite length abelian category, then I is a Hopf ideal and the reduced
Drinfeld double DH (A) is again a Hopf algebra.

Proposition 2.5. We have an isomorphism of @wector spaces
H'(A) @5 QK] 05 H (A)
also called the triangular decomposition of DH(A).

mult

™t DH(A)
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Remark 2.6. The notion of the reduced Drinfeld double was introduced by Xiao in [44].
In the case of Hopf algebras, a proof of Proposition 2.5 can be found in a book of Joseph
[21], whereas the case of topological bialgebras was treated in our previous joint paper [5].

The following important theorem was recently proven by Cramer [8].

Theorem 2.7. Let A and B be two k-linear finitary hereditary categories such that there

exists an equivalence of triangulated categories DP(A) R Db(B). Let D*(A)/[2] =,

D*(B)/[2] be the induced equivalence of the root categories. Then there is an algebra

isomorphism DH(A) x, DH (B) uniquely determined by the following property. For any
a € K we have: F(K,) = Kg(y). Next, for any object X € Ob(A) such that F(X) =

X[—np(X)] with X € Ob(B) and np(X) € Z we have:

n, X.X)ro1nr(X) -n
) F(XJ) = o O (R )

where np(X) = + if np(X) is even and — if np(X) is odd.

3. PERPENDICULAR CATEGORIES AND HALL ALGEBRAS

Definition 3.1. Let A be a hereditary abelian category and C be its full subcategory.
Following Geigle and Lenzing [14], we define the perpendicular category C* as follows:

Ct:={X € Ob(A) | Homa(C,X) = 0 = Extp(C, X) forall C € Ob(C)}.

Proposition 3.2. In the above notations, the category C+ is abelian, hereditary and
extension-closed in A.

Proof. Let X,Y € Ob(Ct) be any pair of objects and X LY be any morphism. We first

show that Z = im(f) belongs to C*. Let X % Z and Z % Y be the canonical morphisms.
Note that f =p and T := ker(p) = ker(f). For any C' € Ob(C) we have exact sequences

0 — Homa(C, Z) = Homa(C,Y) and Extp(C,X) 25 Exta(C, Z) — ExtA(C,T).

Since A is hereditary, we have: Homa(C, Z) = 0 = Ext}(C, Z), hence Z € Ob(Ct). Next,
let L = ker(f) =T and N = coker(f). Then we have the following short exact sequences

0—T-2-x2 7 0 and 0— 272 -5Y -L. N —0.

Taking into account that X,Y,Z € Ob(C') and the assumption A to be hereditary, the
induced long exact sequences of Extj imply that 7', N belong to Ct as well. Hence, the
perpendicular category C is an abelian extension-closed subcategory of A.

Using Baer’s description of the bifunctor Exté L(—, —), it is easy to see that for any
X,Y € Ob(C') the canonical morphism Ext%} (X,Y) — Exth(X,Y) is an isomorphism. It
remains to show that the category C is hereditary. Let w € Ext% L (X,Y) be an extension
class represented by an exact sequence

0—Y-“EFp S x o,
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where E, F € Ob(Ct). Let I = im(b) = ker(c), then I € Ob(Ct). Since the extension w
is zero, viewed as an element of Exti(X,Y), there exists an object .J of A such that the
following diagram is commutative

0 0
0 |y R 0
l b

A
0 Y J F 0
C
X —=X
0 0

where all rows and columns are exact sequences in A. Since the subcategory Ct is
extension-closed in A, it follows that J € Ob(Ct). Hence, ExtZ,(X,Y) = 0 and the

perpendicular category C is hereditary. 0

As a corollary, we obtain the following interesting result.

Theorem 3.3. Let A be a hereditary abelian category over k, C be some full subcategory

of A and Ct be its perpendicular category. Then the embedding functor C* L. A induces
an injective algebra homomorphism of the reduced Drinfeld doubles DH(CY) — DH(A).

Proof. By Proposition 3.2 we know that the category C is an extension-closed hereditary
full abelian subcategory of A. Moreover, for any X,Y € Ob(C*) and i = 0,1 the canonical
morphism Extf, (X,Y) — Extj(X,Y) is an isomorphism. Hence, the functor I induces an
isometry Ko(Ct) — Ko(A) with respect to the Euler forms. Moreover, for any X,Y, Z €
Ob(C1t) the Hall constants F' )%,Yv P)%’Y and ayx are preserved by I. Hence, we get an

injective algebra homomorphism H(C1) Log (A).
Next, let X,Y be objects of Ct and Z be an object of A such that there exist an
epimorphism X 2, Z and a monomorphism Z — Y. As in the proof of Proposition 3.2

it can be shown that all three objects Z, ker(p) and coker(z) belong to C*. This shows
that the relations D(X*,Y ™) of the Drinfeld double DH(C') are preserved by I and we

have a well-defined injective algebra homomorphism DH (Ct) . pH (A). Note that I
preserves the triangular decomposition:

H'(Ch) 05 QKo(CH)] @ H (CH) = H'(A) 05 Q[Ko(A)] ©g5 H (A).

As the first application of Theorem 3.3, consider the following example.
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Example 3.4. Let A be a lA?zrquiver with the orientation
1 4

3
2 5

_)
and A = Rep(A) be its category of representations. Consider the indecomposable object

A =

. . . 0 0 )
T with the dimension vector 1 and the perpendicular category B = TF. Let X,, X 35

RN
X, and X; be the indecomposable representations of A with the dimension vectors

0 0 0 0 1.0 0 1
“= 1ty b o' 7T 0% A 0%0
It is easy to see that X,, X, X, and X; belong to T+. Moreover, for any object X of

the category B with the dimension vector :: m3 Zi: there exists a short exact sequence

O—>Y—>X—>X2“@Xg”4—>0,

. . 0 0 . oy
where Y has the dimension vector ms . Asin the proof of Proposition 3.2 one shows

that Y belongs to B. Since Y is sug;ortegson a subquiver of type As, it is easy to deduce
that Y splits into a direct sum of several copies of X, and Xg. Hence, B is a finite length
hereditary abelian category with four simple objects X,, X3, X, and X.

Note that Extp (X, Xo) = Exta(X,, X3) = Exta(Xs, Xa) = Exta(X5, Xg) = k, whereas
all the remaining Ext!-spaces between the simple objects of B vanish. In the notations of
Keller’s work [23] we have: B = Filt(X,, X, X, X5). As in [23, Section 7] one can show

—

= Y
that B is equivalent to Rep(A’), where A’ is an As—quiver with the orientation

VN

r_
NS
B
By Theorem 3.3, we have an injective morphism of the reduced Drinfeld doubles
2) DH (Rep(A)) - DH(Rep(A)).
Note that the following equalities are true in H (Rep(Z)):
[Xo] =07 [S1] 0 [S5] = [Ss] o [S1] and [Xj] =07 [S5] 0 [S3] — [S5] o [S5],

whereas [X,] = [S1] and [Xs] = [S4]. Hence, the algebra homomorphism I restricts to

an injective homomorphism DC (Z’ ) L, pc (Z) of the reduced Drinfeld doubles of the
composition subalgebras.
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Remark 3.5. Passing to the generic composition algebras, the map I constructed in Ex-
ample 3.4, can be lifted to an injective algebra homomorphism of quantum affine algebras
UU(A\:;) N UU(ZA?4). A similar game can be played with the category of representations
of other affine Dynkin quivers. However, we prefer to postpone its further discussion to a
future work.

4. GENERALITIES ON COHERENT SHEAVES ON A WEIGHTED PROJECTIVE LINE

In this subsection, we recall some basic facts on the category of coherent sheaves on a
weighted projective line, following a pioneering work of Geigle and Lenzing [13]. Let k
be a base field. For a set of positive integers p = {pl,pQ, . ,pn} and a set of pairwise
distinet points A = {\1, A, ..., A, } of P! normalized in such a way that A\; = co = (1 : 0),
Ad=0=0:1),3=1=(1:1)and \; = (1 : \;) for ¢ > 3, consider the ideal
I=1I(p, ) := (xh? — Nl — al’|i > 3) and the algebra R = R(p, A) = k[z1,x2,...,3,]/1.
In what follows we shall assume that in the case of a finite field k its cardinality is bigger
than the cardinality of A.

Let L(p) be the abelian group generated by the elements &1, Zs, . .., Z, subject to the
relations p1Z1 = peZs = --+ = ppZy =: ¢ Then the polynomial algebra k[zi,...,x,] is
L(p)—graded and I is an L(p)-homogeneous ideal. Hence, the algebra R is L(p)—graded,

t
too. Note that L(p) = Z ® () Z/p;Z) and any & € L(p) can be uniquely written as
p N p

(3) r=Ic+ Z a;T;,
=1

where | € Z and 0 < a; < p; for all 1 < i < n. In what follows, the decomposition (3)
will be called the canonical form of an element ' € LL(p). We say that 7 € L(p)4 if in its
canonical decomposition (3) we have | > 0 and a; > 0 for all 1 <i <n.

Definition 4.1. The category of coherent sheaves Coh (X(B, A)) on a weighted projective
line X(p, A) is the Serre quotient grmod(R)/grmody(R) of the category of graded Noether-
ian R-modules modulo the category of finite dimensional graded R-modules. For a graded
R-module M we shall denote by M the corresponding object of Coh(X).

For an LL(p)-homogeneous prime ideal p consider the ring

Ox,p =Ry, = {f ’g € R is L(p)-homogeneous, g ¢ p} .
g p
Note that Oxp is again an L(p)-graded discrete valuation ring and we have an exact
functor Coh(X) — grmod(Ry) mapping a coherent sheaf F to the module F,.

The following observation is due to Geigle and Lenzing [13, Section 1.3].
Lemma 4.2. Let X = X(p,A) be a weighted projective line over a field k. Then there are
two types of homogeneous prime ideals of height one in R(p,\):

(1) Ideals of the form (f(xfl,:c?)), where f(y1,y2) € kly1,y2] is an irreducible homo-
geneous polynomaial in y1,yo, which is different from y1 and ys;
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(2) Ezceptional prime ideals (1), (x2),. .., (zy).

Definition 4.3. A coherent sheaf F on a weighted projective line X is called

e locally free (or a vector bundle) if F, is a projective object in grmod(R)) for all
L(p)~homogeneous prime ideals p;

e a skyscraper sheaf (or a torsion sheaf) if 7, = 0 for all but finitely many L(p)-
homogeneous prime ideals p. B

Let X = X(p,A) be a weighted projective line over a field k. It turns out that the
category Coh(X) shares a lot of common properties with the category of coherent sheaves
on a commutative smooth projective curve. We list some fundamental results on Coh(X),
which are due to Geigle and Lenzing [13] and [14], see also a recent survey article [7].

1. The abelian category Coh(X) is a hereditary noetherian category, which is Extfinite
over the base field k.

2. The canonical functor grmod(R) — Coh(X) induces an equivalence CM(R) — VB(X)
between the category of L(p)-graded Cohen-Macaulay R-modules and the category of
vector bundles on X. For ¥ € L(p) we denote O(%) = Ox(Z) := R(Z). Then the map

can

Rz = Homgmod(r) (R(Z), R(i])) = Homx (O(Z), O(7))
is an isomorphism of vector spaces for all Z, ¢ € L(p).
3. For any coherent sheaf F on a weighted projective line X, the canonical exact sequence
0 — tor(F) — F — F/tor(F) — 0
splits, i.e. any coherent sheaf on X is a direct sum of a vector bundle and a torsion sheaf.

4. The category of torsion coherent sheaves Tor(X) splits into a direct sum of blocks:

Tor(X) = @ Tory(X)

peP

where P is the set of L(p)-homogeneous prime ideals in R of height one and Tor,(X) is
the category of torsion coherent sheaves supported at the prime ideal p. Note that each
block Tor,(X) is equivalent to the category of finite length L(p)-graded modules over Ry.

5. In the notations of Lemma 4.2, let p = (f(x’fl,xQ )) be a homogeneous prime ideal of
the first type. Then the category grmodl(p)(Rp) is equivalent to the category of nilpotent

representations over of the Jordan quiver over the field k(p) := k[y]/f(y,1). Let d be the
degree of the homogeneous form f(yi,y2) € k[y1,y2]. Then the unique simple object S
in Tory(X) has a locally free resolution

:1:1 ,a:2 2)

0 — O(—d¢) ———— 0 — S, — 0.

6. If p = (x;) is an exceptional prime ideal for 1 < i < n, then the category Torp(X) is
equivalent to the category of nilpotent finite-dimensional representations of a cyclic quiver
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8pi with p; vertices over the base field k. In particular, the category Tor,(X) has p; simple
objects Si(] ), where 1 < j < p;. They have the following locally free resolutions:

0 — O(—jii) =5 O(—(j — Vi) — 8P — 0
for 1 < j < p;. Note that Ext! (SZ-(j),Sl»(jH)) =k for all 1 < j < p;, where Si(piﬂ) = Si(l).
All other Ext!-spaces between the simple objects Si(] ) vanish. The structure of the category

of torsion coherent sheaves Tor(X) can be visualized by the following picture

2—3

7 ~
\pl/

™~

1/2
™ \p P

n
7. Consider the element & := (n—2)cé— Y #; € L(p). Then the functor F — F(J) =: 7(F)
i=1 -
is the Auslander—Reiten translation in the triangulated category Db(Coh(X)). It means
that for any two coherent sheaves F and G we have a bi-functorial isomorphism
Hom(F,G) = DExt' (G, F(&)),
where D = Homy(—,k) is the duality over the base field. Note that for any L(p)-
homogeneous prime ideal p of the first type we have 7(S,) = S,, whereas for the ex-
ceptional simple modules we have: T(Si(J )) ~ SZ-(] U for all (i,4) such that 1 <4 <n and

1 < j < p;. In these notations, SZ-(piH) = Si(l) forall 1 <i<n.

n pi—1
8. The vector bundle F := O & @ (@ O(IF;)) & O(@) is a tilting object in the derived
i=1 1=1

category D(Coh(X)). In particular, the derived category DP(Coh(X)) is equivalent to
D*(C(p,\) — mod), where C(p,\) = End(F)°P is the so-called canonical algebra of type
(p, ) introduced and studied by Ringel [33]. In particular, if X is a weighted projective

line of domestic type A then DP (Coh(X)) is equivalent to Db(Rep(Z), where A is the
corresponding affine Dynkin quiver.

9. The K-group Ky(X) of the category Coh(X) is free of rank ) (p; — 1) + 2 with a basis
i=1

{6,0(51), 01— )T, O@n)s -, O(pn — 1)@),075)}.
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Let 2 € P! be a non-weighted point, S a simple torsion sheaf supported at = and § = S its
class in the K—group. Then for any 1 < i < n we have the following relations in K (X):

Pi — N o _
> Si(]) = O—0(—¢) = 6. Moreover, the set {S{l), e ,Sfpl_l), e ,87(11), e ,S,Sp"_l), 0, (’)}
j=1

is again a basis of Ky(X). The rank function Ky(X) X, 7 is defined by the rule tk(0) = 1

and rk(Si(j )) =0foralll <i<nand1l<j<p;. Moreover, for a coherent sheaf F the
integer rk(?) coincides with the geometrical rank of F as defined in [13, Section 1.6].

10. Let C = add (SZ-(U) be the Serre subcategory of Coh(X) generated by an exceptional
simple object supported at the point \; and C+ be the perpendicular subcategory. Let
L(p) be the abelian group generated by the elements ¥, ..., ¥, subject to the relations
(p1— 1)1 = paifo = - - = pp¥n and Y = X(\, p') be the corresponding weighted projective
line. Then we have: a
(1) The Serre quotient Coh(X)/C is equivalent to Coh(Y). Moreover, the canonical
functor Coh(X) RN Coh(X)/C has an ezact fully faithful right adjoint functor F.
(2) The functor C* — Coh(X)/C given by the composition of P and the embedding
Ct — Coh(X), is an equivalence of categories. Moreover, the essential image of

the functor Coh(X)/C =z, Coh(X) is the category C*.
(3) The functor Coh(Y) — Coh(X)/C R Coh(X) acts on objects as follows:
(a) Let 5 = I& + Y 7 bigii € L(p') be written in its canonical form (3). Then
F(Oy () = Ox(ic+ 37, bi).
(b) For any 2 <i<mnand 1 <j < p; we have: ]F(SZ-(j)) o Si(j).
(c) Let X be a object of the categ}ory Tory, (Y). Assume it is given by a repre-

sentation of the cyclic quiver C'p, 1

Ay Ay
Vi Vo Vi1

App—1

Then F(X) belongs to the category Tory, (X) and is given by the representation

I Aq Ao
App-1

—
of the cyclic quiver C',,, where I is the identity operator.

11. More generally, let C be the Serre subcategory of Coh(X) generated by the simple
objects 851),...’S£p171)"”787(11)"”’87(1%*1). Then the perpendicular category C is
equivalent to the Serre quotient Coh(X)/C, which on its turn is equivalent to the category
Coh(P!). The canonical functor Coh(X) £, Coh(X)/C has an exact fully faithful right
adjoint functor F, whose essential image is the perpendicular category Ct. The functor
Coh(P') = Coh(X)/C =z, Coh(X) acts on objects as follows:
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(1) F(Oﬂml (l)) >~ Ox(I¢) for all | € Z.
(2) If x € P! is a regular point then for any S € Tor,(P') we have: F(S) = S.
(3) If 2 = \; is a special point, 1 < i < n then F(Op1/ml) belongs to Tor,(X) and is

given by the following representation of the cyclic quiver C',:

kl 1 kl 1 Ce 1 kl
\_//
J

where [ is the identity matrix and J a nilpotent Jordan block of size [ x I.

Proposition 4.4. Let X = X(p, A) be a weighted projective line, C = add (Sgl)) be the Serre
subcategory of Coh(X) generated by an exceptional simple object Sgl) and Y be the weighted
projective line such that Coh(Y) is equivalent to C+. Then the functor Coh(Y) LR Coh(X)
induces an injective homomorphism of the reduced Drinfeld doubles DH (Y) RN DH(X).

Proof. 1t is a consequence of Theorem 3.3 and results of Geigle and Lenzing quoted above.
O

5. COMPOSITION SUBALGEBRA OF A WEIGHTED PROJECTIVE LINE: PART I

In this section we recall the definition of the composition subalgebra U(X) of the Hall
algebra H(X) of a weighted projective line X introduced by Schiffmann in [38]. The main
result of this part is the fact that U(X) is a topological bialgebra. We start with the case
of the usual non-weighted projective line P!.

5.1. Composition subalgebra of P!. The composition subalgebra of the category of
coherent sheaves on a projective line P! was introduced by Kapranov [22]. Later, it was
studied in details by Baumann and Kassel [2]. In this subsection, we recall its definition
and main properties.

1. The map Ko(P') WodeB) 72 is an isomorphism of abelian groups. Let 6 = (0,1) be

the class of the simple torsion sheaf supported at a k—point of P'. Then § generates the
radical of the Euler form (—, —).

2. For any integer r > 1 consider the element
(4) 1,4 := > [T] € H(PY).
T €Tor(P1): T=(0,r)
The elements {TT}T>1 are determined by 1,s using the generating series

(5) 1+ i 1,5t" = exp (i Ir t’“).
r=1

r=1 [T]U

Finally, the elements { 9T}r>1 are defined by the generating series

(6) 1+ Z 0,t" = exp((v™! —v) Z T.t").
r=1

r=1



HALL ALGEBRA OF A WEIGHTED PROJECTIVE LINE 13

In what follows, we set 1(g,) = To = ©¢ = [0] = 1.
3. In the above notations we have the following results, see for example [40, Chapter 4].

(a) These three sets {ﬂ(o,r)}r>17 {Tr}r>1 and {GT}T>1 generate the same subalgebra
U(PY)4or of the Hall algebra H (PL);

(b) For any r, s > 1 we have the equalities:

2
(1 ML) =T,01+ Koy oT (0.7)= "0 and (5.1) =8
4. For any n € Z we have the following formula:

®) A([0(m)]) = [Op ()] @1+ 30, K (10 ) @ [Opi(n—1)],
r=0

see also [22, Theorem 3.3] or [39, Section 12.2].

Definition 5.1. The composition algebra U(P!) is the subalgebra of the Hall algebra
H(P') generated by the elements L; := [Opla)], T, and K, where | € Z, r € Z~¢ and
o € Ko(Coh(P')) = Z*. We also use the notations: C' = Kj and O = K1 ). From the
equalities (7) and (8) it follows that U(PP!) is a topological subbialgebra of H(P!).

A complete list of relations between the generators of the composition algebra U(P!) was
obtained by Kapranov [22] and Baumann—Kassel [2], see also [40, Section 4.3].
Theorem 5.2. The elements Ly, T,, O and C satisfy the following relations:
(1) C is central;

(2) [0, 1] = 0= [Ty, T] for all m,n € Z;
(3) OLn:v 2L,0 for alln € Z;

(4) [Tr, L ] [2T] Lyyy foralln € Z and v € Zso;

(5) LiyLpy1 + L nLmt1 = v?*(Lny1Lim + L1 Ly) for all m,n € Z.
Let U(PY)yee be the subalgebra of U(PY) generated by the elements L, (n € Z). Then the

mult

map U(PY)yee ®g U(PY)tor ®g Q[K] = U(P') is an isomorphism. Next, the elements
Buas =[] Lim o I] T o K°C",
nez rezZ+
where a,b € Z, m = (myp)nez and | = (I,)rez., are sequences of non-negative integers
such that all but finitely entries are zero, form a basis of U(P') over the field Q.
5.2. First results on the composition subalgebra of a weighted projective line.
Let X be a weighted projective line of type (p,A) and C be the Serre subcategory of

Coh(X) generated by the simple torsion sheaves S}l),...,Sfpl*l),...,Sfll),...,Sflp"fl).
Recall that the Serre quotient Coh(X)/C is equivalent to the category Coh(P') and the

canonical functor Coh(X) RN Coh(X)/C has an exact fully faithful right adjoint functor
Coh(PP1) N Coh(X). The second-named author suggested in [38] the following definition.
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Definition 5.3. The composition algebra U (X) is the subalgebra of the Hall algebra H (X)
generated by the elements [Si(])] for1 <i<nand1l <j<p; K, for a € Ko(X) and
the image of the composition algebra U(P!) under the homomorphism H (P!) Ny (X).
For the sake of simplicity, we use the same notation 7, for a generator of U (IP’I) and its

image in H (X) under the algebra homomorphism F. Recall that for any [ € Z we have an
isomorphism F(Op: (1)) = Ox(I¢). Summing up, we set

U(x) = ([00@)], T, [sV], Ka

Remark 5.4. At the first glance, the definition of U(X) depends on the choice of a Serre
subcategory C and is not canonical. However, as we shall see later, this is not the case
and U(X) can be redefined in an intrinsic way as an invariant of the category Coh(X).

| €2, 1€Z00,1<i<n, 1<) <piya€ Ko(X)).

Lemma 5.5. Let £ € Pic(X) be a vector bundle. Then the element [L] belongs to the
composition subalgebra U (X).

Proof. Any line bundle £ on a weighted projective lines X can be written as O(Z), where

T=mc+ Y., aF is an element of the group L(p) written in its canonical form (3). For

any 0 < i < n consider the line bundle £; = O(m5’+ Zle alfl). Note that Ly = O(mc)

and £, = L. Then for any 1 < ¢ < n we have a short exact sequence
0—Lig — L, — T, —0,

where 7; is the torsion sheaf of length a; supported at the vgighted point \; and corre-

sponding to the following representation of the cyclic quiver C',:

By a result of Ringel on the Hall algebra of a Dynkin quiver [33], the element [7;] belongs
to the subalgebra generated by [SZ-(Z)} for 1 <1 < p;. Note that we have the isomorphisms:

Ext! (7;, ﬁi—l) =k and Extl(ﬁi_l,’ﬂ) = HOITI(’Z;, Ei—l) = H0m<£i_1,7;) =0.
They yield the following identities in the Hall algebra H(X):
[T [£et] = o([£] + [ ®T]) and (i) o [F] = [£ir ©T].

Hence, for any 1 < i < n we obtain the equality [EJ =L [TZ] o [[,i,ﬂ — [Ei,l] o [TZ]
proving the statement of the lemma. O

5.3. Composition subalgebra U (X)o.
Definition 5.6. Consider the subalgebra U (X)or of U(X) defined as follows:

U(X)tor = <T7“7 [S(j)]a K,

)

TEZ>0,1§i§n,1§j§pi,a€K0(X):rk(a):O>.
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In this subsection, we give another characterization of the subalgebra of U(X)io, and show
it is a Hopf algebra. For this purpose it is convenient to use the technique of stability
conditions.

Let A be an abelian category of finite length, (F, {-, - }) a lattice (i.e. a free abelian
group equipped with a bilinear form) and (KO(A), (—, — >) b, (F, {—, - }) an isometry.

Assume T' -2 Rng is a group homomorphism such that Z o ch([X ]) # 0 for all non-zero
objects X of A. For any a € I' we set

To= > [X] and 15=1%5,:= Y [X],
[X]eJ: ch(X)=a [X]e): XeAy

where A¥ is the category of semi-stable objects of A of class a with respect to the stability
condition Z o ch. The following result is well-known.

Proposition 5.7. For any element a € I' we have the equality

(9) 1, = ﬂzs + Z Z UZKJ'(aiaj)]lzsl 00 ﬂift'
t>2 o1t-tar=a
p(on)>->p(on)

Note that the sum in the right-hand side of the equality is finite. Moreover, the elements
{ﬂﬁ}ﬁer and {:ﬂ'sﬁS,Z}ﬁEF generate the same subalgebra of the Hall algebra H(A).

Proof. The equality (9) is an easy consequence of existence and uniqueness of the Harder-
Narasimhan filtrations with respect to the stability condition Zoch, see [36]. In particular,
for any a € K((A) the element 1, belongs to the algebra {lsﬁs,Z}BeF' From a “triangular”
form of the equality (9) it follows that for any a € Ko(A) the element 13 ; belongs to the

algebra generated by { 1s } ser O

Remark 5.8. A result of Reineke [30, Theorem 5.1] provides an explicit formula expressing
the elements 13, via 1g for an arbitrary stability function Z:

ZS,Z =1s+ Z(—l)til Z vzi<j<0¢i0‘j>ﬂal 0---01,,.
t>2 aj+-Far=a: V1<s<t—1
plon )+ (o) >p(a)

Definition 5.9. Let X be a weighted projective line of type (p,A) and A = Tor(X) be the

category of torsion coherent sheaves on X. For the lattice (Ko(X),(—, —)) let Ko(A) <h,

K((X) be the canonical morphism. We construct the linear map Ko(X) Z, R>¢ as follows:
(1) For any pair (i,7), where 1 < i < mn and 1 < j < p; we attach a positive weight
ng) € Ryg.
(2) Moreover, we assume that the following conditions are fulfilled:
W s p® > s P
(b) There exists w € R such that for all 1 <7 <n we have >-7*, ng) = w.
(¢c) Forany 1 <i<mnand1<a<b<p; we set:

(ab) . Dbi (

(a) For all 1 <1i <n we have: w

.

(@) , (b)
¢ '_b—a—i-lw' tootw )

[ [
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(a,b) (e,d) . e .
Then o, = o;7 " if and only if i = j, a = ¢ and b = d. Note that
this condition is automatically satisfied when we take arbitrary elements

wgl), e ,wgpl_l), cee wg), e ,w,(f"_l), w from R<g \ Qs, which are linearly

independent over Q and such that w — Z?gl wz(j ) >0foralll <i<n.
(3) We take the group homomorphism Ko(X) i LN R? given by the formulae:
(a) d(Si(j)) = wl(j) forall1<i<nand1<j<p;and d(O) = 1.
(b) 6(Si(j)) = ]% forall 1 <i<nand1<j<p; and §(O) = 0.
Lemma 5.10. In the above notations, the indecomposable semi-stable objects of the cate-

gory Tor(X) with respect to the stability function Ko(Tor(X)) Zoch, R%o are the following:

(1) Any indecomposable torsion sheaf supported at a regular point of X. The slope of
such a sheaf is w.

(2) For a special point © = X\ (1 < i < n) the indecomposable semi-stable sheaves
correspond to the following representations of the cyclic quiver 8;& :
(a) Representations T;(l), | € Zso of slope w:

kl { kl ! A ! kl
\_//
J

where I is the identity matriz and J is a nilpotent Jordan block.

epresentations 1. of slope o, 7 :
b) R . T,Z(a b) f I l(a b)
0

where 1 <a<b<p; and b—a < p; — 1. In these notations, the top of Ti(a’b)
8 SZ-(Q) and the socle of Tl-(a’b) is Si(b).

Proof. Let x € P! be a non-special point. Then the unique simple sheaf S, supported at
x is stable with respect to any stability condition. Any torsion sheaf supported at = has a
filtration, whose factors are S,. Since any extension of semi-stable sheaves of a given slope
is again semi-stable with the same slope, any torsion sheaf supported at x is semi-stable.

Let £ = \; be a special points and 1 < a < b < p; are such(th)at b—a < p;—1. It is clear
c,b

that any subrepresentation of Ti(a’b) is isomorphic to some 7; " with a < ¢ < b. However,

from the assumption wga) > > w§a) it follows that the slope of Ti(a’b) is bigger than the
slope of TZ-(C’b). Hence, Tl-(a’b) is stable with respect to the stability function Z o ch. Since

all representations Ti(a’b) are rigid, the category of semi-stable objects of Tor(X) of slope

Jl(a’b) is equivalent to the semi-simple abelian category add(Ti(a’b)).

Next, consider the representation T;(1). Note that its slope is w. Moreover, any proper

subrepresentation of T;(1) is isomorphic to Ti(a’p ) for some a > 2. Since w > O'Z-(a’p D for any

2 < a < p;, the representation T;(1) is stable. Moreover, for any [ > 1 the representation
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T;(l) can be written as a successive extension of T;(1). Hence, T;(l) is semi-stable of slope
w for all [ > 2.
It regains to check that all the remaining indecomposable representations of the cyclic

quiver (', are not semi-stable. Indeed, let X be an indecomposable representation, which

(@5 " Then X either have a subrepresentation

Pi

is neither isomorphic to T;(l) nor to T

(Lb) i

isomorphic to T for some 1 < b < p; or a quotient isomorphic to Ti(a ) for some

2 < a < p;. In both cases, X is not semi-stable, what completes the proof. ]

Proposition 5.11. In the notations of this subsection we have:
U(X)tor = (La, Ko | @ € Ko(X) @ k() = 0).

In particular, U(X)ior is stable under the action of the Auslander-Reiten translation .

Proof. Let Coh(P') =z, Coh(X) be the exact fully faithful functor defined at the beginning
of Subsection 5.2. For any r > 1 we set 1,5 := F(1,s5) € H(X), where 1,5 € H(P!) was

defined by the equality (4). Let Ky(X) N RZ, be the function introduced in Definition
5.9. Note that -

1. Forany 1 <¢<nand1<a<b<p; such that b —a < p; — 1 the element [ i(a’b)} of
H(X) belongs to the subalgebra generated by the elements [Si(a)] s [S »(b)].

)

2. From the equality (5) it follows that the subalgebras <L5 ! r> 1> and <Tr } r> 1> of
the Hall algebra H (X) are equal.

3. By Proposition 5.7, we get the equality

(1o | a € Ko(X) : tk(a) = 0) = (T,5, [SP] | r € Zog, 1 <i <m, 1< j <pi).
This concludes the proof. ]
Corollary 5.12. The subalgebra U(X)ior of the Hall algebra H(X) is a Hopf algebra.

Proof. This result follows from Proposition 5.11 and the formula

(10) Ay = Y v 1K 1,
a+B=y
valid for any v € Ky(X) such that rk(y) = 0, see for example [40, Lemma 1.7]. O

We conclude this subsection by the following important corollary.

Corollary 5.13. The composition subalgebra U(X) defined in [38], coincides with the
following subalgebra V (X) of the Hall algebra H(X):

V(X) := ([0(D)], 1, Kg | F € L(p); o € Ko(X) : tk(a) = 0; 8 € Ko(X)).
Proof. This result follows from Lemma 5.5 and Proposition 5.11. 0

Remark 5.14. Corollary 5.13 gives an intrinsic description of the composition subalgebra
U(X). Moreover, it shows that U(X) is invariant under the natural action of the groups
Pic(X) = L(p) and Aut(X).
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5.4. Composition algebra U(X) is a topological bialgebra. In this subsection, we
complete the proof of the fact that the composition subalgebra U(X) is a topological
bialgebra. Because of the equality A(Kg) = Kg ® Kg(8 € Ko(X)) and the formula (10)
it is sufficient to compute the coproducts of the line bundles on X. For any & € L(p)+

consider the element Oz € H (X)or defined as follows:

(11) A(O) =[Ol@1+ Y O:Kg—z© [O(-F)).

Tel(p)+

In this subsection we show that Oz € U(X)to for all ¥ € L(p)y. By Corollary 5.13, the
algebra U (X) is closed under the action of the Picard group Pic(X). This will allows us to
conclude that U(X) is a topological bialgebra.
We start with the case when X = P! is the usual non-weighted projective line. Recall
the following formula for the elements ©, defined in (6), see [40, Example 4.12]:
oo m
(12) O, =v") > [ =95 (S, .,
m=1zq,.. zmePl;z;#£x; 1<i#£j<m i=1
tlyentm ey tg deg(ay)=r

Lemma 5.15. For any r € Z~o consider the element & = ré € L(p)s+. Then we have:

0,z =F(0,), where H(P') RN H(X) is the algebra homomorphism from Definition 5.3.

Proof. Let 0 — O(—ré) — O — T — 0 be a short exact sequence in Coh(X). Since

the essential image of the functor Coh(PP!) x, Coh(X) is closed under taking kernels and
cokernels, the object 7 belongs to Im(FF) as well. This means that all contributions to ©,z
come from P! and Proposition 4.4 implies the claim. O

Lemma 5.16. Let C = 5’,3 be a cyclic quiver with vertices labeled by the natural numbers
{1,2,...,p}, A= Rep(@) be the category of finite-dimensional nilpotent representations
ofE') and K = Ko(A) be its K-group. Let § :== S; +---+ S, € K and a € K be an
element of the form S1+ ---+ Sy for some 1 <t < p. For anyl € Z~q let Tjs1o be the
unique indecomposable object of A of class 10 + « with the simple top S1. Then we have:

(13 Tssod ={ (170 (1] © 0T o (7] f {20

Proof. This formula is trivial for = 0, so we consider the case | > 1. Since Homa(S;, S;) =
k = Extp(Si, Si+1) for all 1 < i < p (as usual, we set S,1 := S1), whereas all other Hom
and Ext! spaces between the simple objects are zero, we have: (5,3) = 0 = (3,0) for
all § € K. It is easy to see that Homa(7}s,T,) = k, hence Ext,&(Thg,Ta) = k as well.
Moreover, a generator of Exth (75, Tw) corresponds to a non-split extension of the form
0 — To — Tisya — Tis — 0. Note that Homa (T, Tjs) = 0, hence Extp(Ty,Tis) = O.
Summing up, we have the following equalities in the Hall algebra H(A):

Tis) o [Ta] = [Tissa] + [T @Ta] and [T] o [Tis] = o2 [Ty © T,
which conclude the proof. O
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Proposition 5.17. Let p be a non-empty subset of the set A of exceptional points of our

weighted projective line X. For a simplicity of notation, we assume that p = {)\17 . m}
forsome 1<m<n. Foranyl <t <m we fir a number 1 < a; < p; and forr €Z>0 set
Z:=rc+ > v, a;%. Then we have:

"

(14)  Oz=v"" > ((-1)"'Ty 00,50 Ty — v (=1)" Ty 0 O,20 Tyy),

p=p I
where the sum is taken over all decompositions of p into a disjoint union of two (possibly
empty) subsets, m" = ||, m" = |p"|, Ty = Hzep' T(1 %) ond Ty = Tiew T (Lai) .
particular, Oy is an element of U(X)tor for all § € L(p)+

1EW

Proof. Consider a short exact sequence in the category Coh(X):
0— O(-7) % 0 -5 T —0.

Note that we have the following equality for the Euler form: <7, O(—f)> = —<@, 7> =
—r —m. Our next goal is to compute the Hall constant P?O(—f)' To do this, we assume

(15) T= Sll,ﬂcl ©--- D Slpvxp @ 7;56)+a - T( 5)+am
where z1, ..., ), are distinct points of P! \p, whereas l1,...,l, € Zsg and ty,...,ty € Z>o

are such that > P I;deg(x;) + > im t; = r. If 1 < i < p is such that the point z;
is non-special, then &, ;, is the unique torsion coherent sheaf of length /; supported at
z;. If 2; € A\ p then the sheaf Sy, ,, corresponds to the representation Tj(l;) of the
cyclic quiver E')M (we follow the notations of Lemma 5.10). For any 1 < i < m the

coherent sheaf ’ZZEZ)JF o 18 supported at the point x; € p and corresponds to the unique

indecomposable representation of 6}% of length t¢;p; + a; with the simple top Si(l). Note

that the decomposition type of the sheaf 7 given by (15) determines the map O(—Z) — O
uniquely up to a non-zero constant. Hence, the Hall number Pg O(-7) is equal to the
number of epimorphisms from O to 7. Note that a morphism @ —— 7T is an epimorphism
if and only if all its components O — &, », and O — 7;§J(5)+
1<i<pand1<j<m.

The number of epimorphisms from O to &, is equal to qdes@l _ gdeg(@)(=1) - Gimilarly,

o, are epimorphisms for all

the number of epimorphisms from O to 7, ((SJ)F . 1s equal to ¢t — ¢'. Hence, we obtain:
e 1
Oz =v rem Z C&[Sll»xl] 0---0 [8117331] © [7:555)_5_(11] 0---0 [Z%Lamh
z, Lt
where ¢; = (1 —v?de8@)) ... (1 — p2dee(@r)) (1 — v2)™ and the sum is taken over all
decomposition types (15). Replacing each term [’];S ) it az] by the expression given by (13),
we end up with the formula (14). O

Theorem 5.18. Let X be a weighted projective line. Then the composition algebra U (X)
is a topological subbialgebra of the Hall algebra H(X). In particular, the canonical mul-

tiplication map U+(X) g QIK] ®g U (X) mult, DU(X) is an isomorphism of Q-vector
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spaces, where Ui(X) is the subalgebra of the reduced Drinfeld double DU (X) generated by
the elements [O(lé)]i (1€2Z), T (r € Z~o) and [Si(j)}i (1<i<n,1<j7<p).
Proof. The composition algebra U(X) is a topological bialgebra by Corollary 5.12 and

formula (14). The triangular decomposition for DU (X) is a general property of the reduced
Drinfeld doubles of (topological) bialgebras, see Proposition 2.5 and references therein. [

5.5. Further structure properties of the reduced Drinfeld double DU (X). First
note that Theorem 5.18 implies the following interesting result.

Corollary 5.19. The algebra DU (X) is generated by one of the following sets:
(1) the elements [O(l@)]i (leZ), [Si(j)]i (1<i<n,1<j<p),
(2) the classes of the line bundles [O(f)]i (7 € L(p),

together with the generators Ko (a € K) of the Cartan part Q[K].

Proof. Let Coh(P!) £, Coh(X) be the functor from Definition 5.3. By Proposition 4.4,
we get the induced morphism of the reduced Drinfeld doubles DH (P!) . pH (X), which
restricts on the algebra homomorphism DU (P') = pU (X). In particular for any | €
Z~o we get the following relation in DU(X): [[O]F,[0(~18)]"] = == ©/50C ™", where
O = Kz and C = K;. Since the elements {@lc}l>0 and {Tl}l>0 generate the same
subalgebra of the composition algebra U(X) (see Subsection 5.1), this shows that for any
r € Z~q the generator T can be expressed through the elements [(’)(lé’)]i (I € Z). The
case of the elements 7, can be treated in the same way. Similarly, for any 1< i <n
and 1 < j < p; we have the following equality in DU (X): [[O((l — DT, [O(=57)] ] =

ﬁK@(,ﬁ.)[Si(j)]' By Lemma 5.5, the element [O(Z)] belongs to U(X) for all 7 € L(p).
O

Remark 5.20. Notice that the line bundles and the exceptional simple sheaves are rigid
objects in the category Coh(X). Hence, Corollary 5.19 says that the reduced Drinfeld
double DU (X) is generated by classes of (certain) rigid objects. This observation will be
elaborated one step further for weighted projective lines of domestic and tubular types.

Theorem 5.21. Let X = X(p,A) be a weighted projective line, C = add(Sfl)) and
Coh(Y) = C* be as in Proposition 4.4. Then the (injective) algebra homomorphism of the
reduced Drinfeld doubles DH (Y) R DH(X) induced by the functor Coh(Y) R Coh(X)

restricts to an injective algebra homomorphism DU (Y) LR DU (X).

Proof. The statement of theorem is a consequence of the following observations. Let D
be the Serre subcategory of Coh(X) generated by the torsion sheaves Sfl), . ,591_1), ceey
ST(LI), e ,ST(LP "~V Then the perpendicular category D is a full subcategory of C+ equiv-

alent to Coh(P'). Consider the canonical inclusion functors D+ St 5 Coh(X).
By Proposition 4.4, we get an injective algebras homomorphisms of the reduced Drinfeld

doubles DH(P') -5 DH(Y) - DH(X). Note that
e For any r € Z~o we have: FG(T,) = T,.
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e For any (7,j) such that 2 <i <mn and 1 < j < p; we have: IF(Si(j)) = Si(j).
e Assume that p; > 3. Then for any 2 < j < p; — 1 we have: IF(SfJ)) = Sfﬁl),

whereas T (89)) corresponds to the representation

A ER—

of the cyclic quiver 5)])1. If p; = 2 then the point Ay is non-special for Y.
e For any [ € Z we have: F(Oy(I¢)) = Ox(10).
By what was said above it follows that the image of the reduced Drinfeld double DU (Y)

of the composition algebra U(Y) under the injective algebra homomorphism DH(Y) F,

DH (X) belongs to the algebra DU(X). In the terms of Definition 5.3, the action of F on
the generators of DU(Y) is the following (for a simplicity we assume that p; > 3):
(1) For all [ € Z we have: F([Oy(I&)]¥) = [0x(1d)] .
(2) For all 7 € Z( we have: F(TF) = T,
(3) For all 2 <i <nand 1<j<p; we have: F([Sl.(j)]i) = [Si(j)]i.
(@) We haves F([SU]) = o [S0] o (2] [52]* 0 [s0V] and F([s]*) =
[S§j+1)]i forall 2 <j <p —1.
(5) Finally, F(O) = O; F(KY) = K9 for 2 < i <mand 1 < j < p; F(K") =
KF)KF) and ]F(K{j)) = K{jﬂ) forall 2 <j<p; —1.
O

6. COMPOSITION SUBALGEBRA OF A WEIGHTED PROJECTIVE LINE: PART II

The goal of this section is to clarify the structure of the subalgebra U (X)or of the compo-
sition algebra U(X) and to derive some relations in the reduced Drinfeld double DU (X).

6.1. Remainder on the Hall algebra of a cyclic quiver. Let
— —
C = Cp =1 2 .. P
be a cyclic quiver with p > 2 vertices labeled by the natural numbers 1,2,...,p and

A= Rep(E')) be the category of its nilpotent representations. The following result is
well-known, see for example [10].

Theorem 6.1. Let E‘)oo be an (infinite) quiver of type A with vertices labeled by the in-
—
tegers and linearly ordered arrows. Let Rep(C ) be the category of its finite-dimensional

— —
representations. Consider the exact functor Rep(C ) E, Rep(C'p) sending a represen-

tation V into the representation P(V') such that P(V); = @ Vj forall1 < i < p.
j=imodp

Then the indecomposable objects of Rep(ﬁp) are precisely the images of the indecomposable
—
objects of Rep(C ).

Let S1,...,Sp be the simple objects of A. In what follows, we denote K; = K3, € H(A)
and § = Sy +---+ 5, € K := Ko(A). The following result is due to Ringel [34].
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Theorem 6.2. We have: C(?) = ([S1],---, [Sal; K&, ..., Kr) =~ Uq(b(;[p)), where
Uq(b(sA[p)) & UqJr (5[p) ®g Q[K] is the Borel part of the quantized enveloping algebra of sl,.

—

The structure of the complete Hall algebra H(C') has been clarified by Schiffmann [37]
and Hubery [19]. Let F(?) be the non-extended Hall algebra of A, i.e. H(E’)) = F(B) ®5
Q[K]. Then for any 1 < i < p we have a linear operator e : ﬁ(ﬁ) — ﬁ(ﬁ) given by the
rule (e;-“(x), y) = (x, [Si] ® y) fgr any ,y € F(U) Here we use the fact that the Green’s

form is non-degenerate on H(C'). Let

2(C) = ﬂ ker(ef) = {z € H(C)|(A(x),[Si]® =) =0V1<i<p}.

The following results are due to Schiffmann [37] and Hubery [19].

Theorem 6.3. In the above notations we have:
— —
(1) The wvector space Z(C') is the center of the Hall algebra H(C'). In particular,
—

Z(C) is a commutative algebra.
= mult

(2) The canonical morphism Z(C') ®g C(E')) — H(a) is an isomorphism of vector

spaces over Q.

(3) The algebra Z(Ez) is freely generated by the primitive elements of the Hall algebra
— — ~ —
H(C). This means that Z(C') = Q|z1, 22,...,2r,...]|, where z, € H(C)[rd] are

such that A(z,) = 2, @1+ K,s Rz, for anyr € Zso. In particular, Z(E’)) ®@@[K§[]
is a commutative subbialgebra of the Hall algebra H(B)

In a work of Hubery [19] some further properties of the center Z (8) were studied.
Theorem 6.4. For any r € Z~q consider the element

(16) = (=17g7 DD (L)ImEROD jAu(d)| (M) € H(C)[rd).
M:dim(M)=ré
top(M) sq. free

Then the following statements are true:

(1) The elements ¢, are central and generate the algebra Z(B)
T

(2) For any r € Zo we have: A(z) = Y ctl(,_)5 @ Cr—y-
=0

(3) For any r,t € Zso we have: (¢y,ct) =6,0q7 P (1 —q7P).

—

We set z1 = ¢1 and for any r > 2 define the element z, € Z(C)[rd] using the recursion

r—1
(17) Zr = TCp — Z 21Cr_].
=1

Then the following formulae are true:
(1) A(zr) = 2, @ 1 + K5 ® 2. In other words, z, is primitive for all r € Z~y.

—rp 1 —rp
(2) (zr,cr) = 1 g 7 =771 and (zp, zp) = 1 E 7 = qrpr_ T
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[N
(3) (2zr,ab) =0 for any pair a,b € H(C') such that both a and b are non-scalar.

Let C'; be the Jordan quiver. Then we have an exact functor Rep(z')l) 5 Rep(ap)
mapping a representation (V, N) into the representation
FV,N) =V ——tsy—ts...Ioy

\/

N

where [ is the identity map. For any r € Z-g and any partition A of r let I, be the
— —
corresponding representation of C';. Consider the following element of H(C'1):

(18) pr= 2 ng(IV)[1],
Alr
where [()) is the length of X and ny(i) =1 for i =1 and (1 —¢q)...(1 — ¢ !) for i > 2.
—
Recall the following standard facts on the classical Hall algebra H(C'1), see [28].

Theorem 6.5. For the elements p, € H(al) the following properties are true:
(1) A(pr) =pr @ 1+ K,.5 ® pr are primitive for all r € Zsg.

(2) (Prope) = bri 7

Proposition 6.6. In the above notations, set t, = F(p,) € H(ap) for all v € Z~y.

-
Then there exists an element u, € C(C'p) such that t, = —p2r + ur. In particular,

l—q
the difference 7(t,) — t, belongs to the composition subalgebra C(E')p), where T is the
—
Auslander-Reiten translation in Rep(C'p).

Proof. The existence of a constant v € Q and an element u, € C(E’)p) such that t, =
~zr +u, can be proven along the same lines as in [19, Theorem 14]. In order to determine
the value of v note that (¢,,t,) = ¢ ", (¢v,2,) = ¢ "P(1 — ¢~ "P) and (¢, u,) = 0. Hence,
v = 171_”0. It remains to observe that the translation 7 acts as identity on the center

— —

Z (6’)) of the Hall algebra H(C') and maps the composition algebra C(C') to itself. O

Definition 6.7. Let X be a weighted projective line and x € X be a closed point.
(1) Assume z is a non-special point of X and d = deg(z) is the degree of x. Then
—
Tor,(X) is equivalent to the category of representations of the cyclic quiver C1
—
over the field Fa. We set T, , = Z,., = d@pg, where pr € H(Rep]qu(C’l)).
(2) Assume z is a special point of weight p. Then Tor,(X) is equivalent to the category
—
of representations of a cyclic quiver C';, and we set
r] 1

1 q_’"pzr'

Thp=—t, and Z,,=
r

The following lemma is a straightforward corollary of Theorem 6.4 and Theorem 6.5.
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Lemma 6.8. Let x be a closed point of X. Then for any r € Z~y we have: (TmaTr,x)

@Qﬂ,p where d is the degree of x. Moreover, if x is a special point of X then (Zm«, Zm)
r? 1

r q'rp_17

where p is the weight of x.

Next, for any r € Z~q we define:

(19) T,=) > T and Z, =) > Zp,.

dlr reX:deg(z)=d dlr zeX:deg(z)=d

Note that this definition of the elements 7, coincides with the one given by Equation (5)
and Definition 5.3, see [38, Section 5] for more details.

Proposition 6.9. Let X = X(p,)) be a weighted projective line. Then the following
statements are true.
(1) The algebra V (X)sor := {Zy, [SZ(])],KZ»(j) ”I“ € Zso, 1 <i<mn,1<j<p)is equal
to the algebra U(X)ior. In particular, we have a decomposition:

(20) U(X)tor = Z @5 Uy (1)) ® -+~ @ Uy (s1p,) @ Q[K],

where Z = @[Zl, Zoy.ooy Ly, ...] is the ring of symmetric functions. The algebra
Z is invariant under the action of the Picard group Pic(X) = L(p).

(2) For any r € Zso we have the equalities:

1 [2r] [27]

il — and (7,,0,)=-—.

vTh—v T r

ap = (T,,T,) =

2
Moreover, B, := (Z,,T,) = (Z,, Z,) = a,+ >, def,, where def, = @(qrpxl_ T~
zell

1 ) is the defect of the special point x and v, = (Z,,0,) = (v —v)3,.

q —1

Proof. Since for any r € Z~¢ the difference Z, — T, belongs to the algebra generated by
the classes of the exceptional simple modules [Si(] )], 1<i<n, 1< 75 <p;, we have
the equality V(X)ior = U(X)tor. Next, Z = @[Zl, Zyy ..., Zr,...] belongs to the center of
U(X)tor- Hence, the decomposition (20) follows from Ringel’s Theorem 6.2. Since for any
closed point = € X, the element Z, , is invariant under the action of the Auslander-Reiten
translation in the category Tor,(X), the element Z, is invariant under the action of the
Picard group Pic(X). The formulae for the value of the Green’s form on the generators
T, ©, and Z, follow from the local formulae of Lemma 6.8 and the equality

o) d=P(Fy)=(¢+1)
dlr z€P!: deg(z)=d
O

Corollary 6.10. Let X be a weighted projective line. The reduced Drinfeld double DU (X)or
is a subalgebra of the reduced Drinfeld double DU (X). Moreover, we have a decomposition:

(21) DU (X)tor 2 H @4 Ug(sly,) @4+ ©.4 Uy(sly,),
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where A = @[Ci] 1s the Ting of Laurent polynomials in the variable C' := K5 and H is the
Heisenberg algebra. More precisely, H := Q<Zr |r e Z\{0}> ®@A subject to the relations:

(22) (Zy, Z4) = 6140 B (C7" = C") and  [Z,,CE] =0 rteZ\{0}.

Proof. We have the equalities A(ZF) = ZF @ 1 + C*" ® ZF for any r € Z~(. Denoting
ZF = Zy, for r € Z\ {0} it is easy to see that the first relation of (22) is just the structure
relation D(Z,, Z,) of the reduced Drinfeld double. The decomposition (21) is a corollary
of Proposition 2.5. g

6.2. Some further properties of U(X). For the reader’s convenience, we give a proof
of the following result from [38].

Proposition 6.11. Let U(X)yec be the subalgebra of U(X) generated by the classes of
the line bundles on X and U(X)ior be the subalgebra of U(X) generated by the elements

T, (r € Zso) and [SZ.(j)] (1<i<mn,1<j<p;). Then the canonical morphism

TT mul
(23) U(X)vec ®@ U(X)tor ®@ Q[K] —t> U(X)
s an tsomorphism of vector spaces over @

Proof. Let H(X)yec be ' the subalgebra of the Hall algebra H(X) generated by the classes
of vector bundles and H(X)ior be the subalgebra of H(X) generated by the classes of the

=~ mult

torsion coherent sheaves. Then the map H (X)yec ®p H(X)tor ®g Q[K] — H(X) is an
isomorphism of vector spaces. Hence, the corresponding map (23) for the composition
subalgebra is at least injective. In order to show the surjectivity of mult first note that for

any line bundle £ and an arbitrary exceptional simple sheaf SZ-(j ) there exist a line bundle

N and constants o, 8 € Q such that [Si(j)] o [£] = a[N]+B[L] o [Si(j)]. Next, we have

the relation T, o [O(10)] = [O(1&)] o T; + [%ﬂ—r}[(’)((l +7)@)] for all | € Z and r € Z.
Recall that for any r € Z( the difference Z, — T, belongs to the subalgebra of U(X)or
generated by the exceptional simple sheaves [SZ-(j )]. Moreover, the element Z, is invariant
under the action of Pic(X). Hence, the product Z, o [L] belongs to the image of mult for
any £ € Pic(X) and r € Z-o. It remains to note, that by Proposition 6.9, the algebra
U(X)tor is generated by the elements Z, (r € Z~g) and [SZ(J)] (1 <i<n,1<j<p).
This concludes the proof. O

Corollary 6.12. Assume that Fi,...,F are objects of VB(X) and aq,...,a4 € @ are

t
such that a := >, a;[F;] belongs to U(X). Then a € U(X)yec.
i=1
Proof. Let H(X) =5 Q be > the projection on the class of the zero object [0]. We consider
pr as an endomorphism of H(X). Since b € U(X), there exist elements by, ...,b, € U (X)"SC
and ci, ..., c; € U(X)ior such that @ = bicy + -+ -+ bep. Let pr(c;) = Ai[0] for some A; € Q.
Since there is a decomposition H(X) = H (X)yec ®g H (X)tor, we have: b= (1 ® pr)(b) =
t t

S Nib; ® [0], where Y \ib; € U(X)yec. This implies the claim. O
i=1 i=1
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Our next goal is to study the action of the central elements Z, of the algebra U(X)ior on
the algebra U(X)yec. We have the following Hecke-type equality.

Theorem 6.13. For any & € L(p) and any r € Z~o we have the following equality:

(24) |20 [0@)]] = [0 +19),

where By = (Z,0,) is the constant introduced in Proposition 6.9.

Proof. Since the Picard group Pic(X) acts on U(X) by algebra automorphisms and the
element Z, is stable under the this action, it is sufficient to prove the equality (24) in the
special case £ = 0. By Proposition 6.11 there exist a,b,c € Q, T € <[Si(])], VAT ZT_1>,
cg € Q and Ty € U(X)or for @ € L(p),0 < @ < ¢ such that

Z, 00l =alO(rd)] + > ca|O(ré—a)oTz+b[0]o Z, +¢[0]oT.
o<a<ré

We first show that b = 1 and ¢ = 0. Let Z, = ) ds[S], where we sum over the isomorphism
S

classes of torsion sheaves of class rd in the K-group Ky(X). Assume we have an extension
0—0—087T —S§—0,

where 7 is a torsion sheaf. Since Hom(O, Q) = k, it follows that 7 = S and the above

sequence splits. Note that Ext'(O,S) = 0, hence (O,S) = dimj(Hom(O,S)) = r and

FS% = q¢". This implies that

(Z ds[S]) o [O] =v7" st [O® 8]+ terms involving [O(7)], 7 > 0.
S S

On the other hand, [O] o (Y sds[S]) = v" > gds[O ® S]. Hence, b = 1 and ¢ = 0 as

stated. Our next goal is to show that ¢z = 0 for all 0 < a < r¢. Recall that

A([0) =[01® 1+ Kz@[0]+ Y 0; @ [0(-7)] and A(Z) =2, @1+ K, 5@ Z,,
>0

where in the notations of the equation (11) we denote éf = G)me. Then we have:

A([Zr, [OH) = [A(Zr), A([O])] = [Zr ®1+ K s®Z,[0]@1+)> 6;® [O(—f)]} =
>0
=[Z,,[0]] @ 1+ K,5,6 ® [2:,[0]] + ) _ K50z ® [Z,,[0(-)]).
>0
Here we benefit from the fact that [Zr, éf] = 0 because the elements Z, are central in
U(X)tor- On the other hand, we have already shown that

Z:,[0]] =a0(ra) + ) cz[O(ré—a)]oT;.
0<a<re
Apply the operator A to the right-hand side of this equality. Let 0 < & < r¢ be a maximal

element such that ¢, # 0. Then A(a[O(rd)]+ Y. ¢g[O(ré—d)]oTz) contains a sum-
o<a<re
mand cg[O(rc—a)| K, ® Ty and the remaining part of the coproduct has no contributions
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to the graded piece U(X)[51] ® U(X)[B2], where 81 = O(ré — d) € Ko(X) and B2 € Ko(X)
is the class of the summands of the element T5. Contradiction. Hence, ¢z = 0 for all
0 < @ < rc and we have the equality [Z,,[0]] = a[O(r¢)] for a certain constant a € Q.
Our last goal is to determine a explicitly. Note that

a([063), [063)]) = (2,0 [0] - [0] 0 2., [06:3)]) = (2 © 0], A(IO())

= (2.,6,)((0),10]) = 7(10),[0)).

Here we use the vanishing ([O] o Z,, [O(rc)]) = 0 following from fact that O is not a
quotient of O(r¢c) for any r € Z~o. Hence, a = ~, as stated. Theorem is proven. O

Lemma 6.14. For any ¥ € L(p) and r € Z~o we have the following equality in the reduced
Drinfeld double DU(X): [Z,[0(Z)]"] = 7 [O(Z — ré)]C~".

Proof. Recall that A([0(#)]*) = [O(F)]* ® 1 + Ko @ [0O@)]" + ¥ 6F @ [0(F - )]
>0

and A(Z;) = Z; ®14+C7"® Z,. Note that ©; contains contributions of sheaves of class

rd only for ¢ = ré. Moreover, ©,z = 0, and (O, Z,) = 7,. This implies the result. O

Remark 6.15. By Theorem 5.21 we know that for any [,t € Z the following equalities
are true in the reduced Drinfeld double DU (X):

- _”v_l o ,0c! if 1>t
[oad)]*, [0@td)]7] = 0 it 1=t
—Y—0, ,07tCc7t if I<t

v — v

Unfortunally, we have not succeeded to find an explicit formula expressing the elements

O, through the generators Z; and [Si(j )] of the algebra U(X)or, although by Proposition
5.11 it is known that such a formula does exist.

6.3. Summary. In this subsection we collect the main structure results on the composi-
tion algebra of a weighted projective line.

Let X be a weighted projective line of type (), p), where A = (A1,...,\,) € PY(k) is a
sequence of pairwise distinct points and p = (py, o Pn) € Z=o is a sequence of weights.
Let L(p) be the abelian group generated by the elements 71, . . ., @, subject to the relations
p1#] = --- = &, = & Next, let K = Ky(X) be the K-group of the category Coh(X) and
for any coherent sheaf F let K= be the corresponding element of the Cartan part @[K | of
the Hall algebra H (X).

1. For any | € Z we denote L; = [O(l¢)] € H(X). Then the composition algebra U(X) is
the subalgebra of the Hall algebra H(X) defined as follows:

U(X) := <Ll, 7., [sY], 0,k9 ¢ ‘ l€Z,releg 1<i<n, 1<j< pi>.

Here Ki(j) =K O =Kz and C = Ki(l) .. .Ki(pi) for any 1 < i < n. Note that the

SO

algebra U(X) onfy depends on the weight sequence p and does not depend on the set A.
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2. The subalgebra V(X) := <Ll, 7., 0,C | leZ,r e Z>o> of the composition algebra
U(X) is isomorphic to the composition algebra of a non-weighted projective line P!. The
elements L;, T, O and C satisfy the following relations:

(1) C is central;
(2) [0, Ty = 0= [T}, T,] for all r,t € Z~yp;
(3) OL; = v~2L;0 for all | € Z;

4) [T, L)) = %—T]LHT foralll € Z and r € Z~o;

(5) LynLiy1+ Ll = v2 (LH_le + Lm+1Ll) for all m,l € Z.

Moreover, this is a complete list of relations of the subalgebra V(X).

3. The algebra U(X) is a topological bialgebra. Let U(X) be the subalgebra of U(X)
generated by L;, T and [Si(])] forl € Z,r € Z~o and (i,7) such that 1 <i <mn,1 <j <p,.

Then we have a triangular decomposition: DU (X) = U(X)* ®g QIK] g U(X)~, where
DU (X) is the reduced Drinfeld double of U(X). Moreover, the algebra V' (X) is a topological

subbialgebra of U(X). In particular, there is an injective algebra homomorphism
DV(X) =V (X)* 95 QK] 05 V(X)~ — U(X)" @5 QK] @5 U(X)~ = DU(X)

respecting the triangular decompositions of DV (X) and DU (X). Here Q[K] = Q[0=, ¢
is the group algebra of the subgroup of Ky(X) generated by O = O and the class ¢ of a
simple torsion sheaf supported at a non-special k—point of X.

4. For any 7 € L(p) the element [O(%F)] belongs to U(X). Let U(X)yec be the subalgebra
of U(X) generated by the classes of line bundles and U (X)tor be the subalgebra generated
by T, [S(])] for r € Zsp and (7,5) : 1 <i <mn,1 <j < p;. Then the canonical morphism

(2

TT mul
U(X)vee ®g U(X)tor @ QK] ™ U(X)
is an isomorphism of vector spaces over @

5. Let U(X)tor = U(X)or ®@@[Kto,], where Ko is the subgroup of K((X) generated by the
classes of torsion sheaves. Then U (X)ior is a Hopf algebra. Moreover, it is a subbialgebra
of the composition algebra U(X). The algebra U(X)ior decays into a tensor product:

U(X)or = Z 05 UKo g -+~ 0 U (X)ar ™

Here Z = @[Zl, Zay ...y Zy,...] is the ring of symmetric functions. It is generated by the
elements Z, € U(X)or[rd], which are central in U(X)ior and primitive. The last condition
means that A(Z,) = Z, ® 1 + C" ® Z, for any r € Z~o. Moreover, the Picard group
Pic(X) = L(p) acts trivially on the algebra Z.

For any 1 < i < n, the algebra U (X), g generated by the exceptional simple modules
[Si(l)] Yy [Si(p i)] . It is isomorphic to the positive part of the quantized enveloping algebra

U+ (sl,,). The algebra U(X)Z%! generated by U(X)Z%? and the elements KY for 1 <
q Pi tor tor 7
j < pi, is a Hopf subalgebra of U(X)or. All these Hopf algebras U(X)&S " are embedded
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in the same Hopf algebra U(X)o, and “share” the “same” central part A = @[C*, cl.
The reduced Drinfeld double DU (X)o, decomposes into a tensor product of algebras:

DU (X)tor = H®24 Uq(;[pl) XA Ba Uq(;[pn)a
where H is the Heiseberg algebra.
6. More precisely, for any r € Zsg the difference Z, — 7). belongs to the subalgebra

U(X)ee .= U(X)Ze! Q5 ®p U(X)gor " Next, Green’s inner product takes the following

tor

2
values: B, := (Z;,T) = (Zr, Zy) = ar + 3 defy, where def, = a ( szl - T L )
TEA r q -1 q — 1

is the defect of a special point z of weight p, and v, := (Z,,0,) = (v™! —v)3,.. The
Heisenberg algebra H is generated over Q by the elements {ZT}T €7\ {0} and C*! subject
to the relations: [Z,, Z] = 6,410 8- (C7" — C") and [Z,,C*] = 0 for ,t € Z \ {0}.

7. For any r € Z~¢ and Z € L(p) we have the following equalities in DU (X):

[th, [O(f)ﬂ = [0@F+rd)] and [Z;, [O(f)]ﬂ = [0@F - re)|C.

8. Let Y be a weighted projective line of type (u, ¢). Assume that (A, p) dominates
(11, ¢). This means that s is a subset of A and for any i € y we have: ¢; < p;. Then the
composition algebra U (Yj is a topological subbialgebra of the composition algebra U (X).
Moreover, there exists an injective algebra homomorphism

T(Y)" ®g QlEK(Y)] @4 T(Y)™ - T(X)" g QlK(X)] 95 T(X)~

preserving the triangular decomposition. Consider the following basic cases.

Case 1. Let pp = A\ {A} = {X2,...,A\n} and ¢; = p; for all 2 < i < n. Then the

homomorphism U (Y) N (X) maps the generators O, C, L;, T}, [Si(j )] and Ki(j ) of the

algebra U(Y) to the generators of U(X) denoted by the same symbols for all | € Z, r € Z~¢
and all (7,7) such that 2 <i<nand1<j <p;.

Case 2. Assume pu = A and ¢; = p; for all 2 <i < n whereas p; = ¢;+1 > 3. Then FF maps
the generators O, C, L; (Il € Z), T, (r € Z~o), [Si(j)] and Ki(‘j) (2<i<mn,1<j<p)of
U(Y) to the generators of U(X) denoted by the same symbols. Moreover, F([S{l)]i) =
v 8 o [8P]F — [8P)F o [S]F and F([SV]F) = [SYTV]T for all 2 < j < g1

7. COMPOSITION HALL ALGEBRA OF THE DOMESTIC AND TUBULAR WEIGHTED
PROJECTIVE LINES

In the previous section, we derived some general properties of the composition algebra
of a weighted projective line X. In this section, we deal with two most important cases:
domestic and tubular weighted projective lines. The composition algebra of a domestic
weighted projective line was also studied in a recent article of Duoe, Jiang and Xiao [9].

We start with a remainder of some results on the reflection functors and the Hall algebras
for quiver representations.
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7.1. Reflection functors and Hall algebras of quiver representations. Let A =
(Ag, A1, s,t) be a finite quiver without loops and oriented cycles. Here Aq is the set of
>

vertices of A, A is its set of arrows and s,t : Ay — Ag are the maps assigning to an
arrow its source and target respectively. In this section we consider the Hall algebra of

the category A = Rep(kz) of representations of A over a finite field k. If A is the path
-
algebra of A, then the categories A — mod and A are equivalent.

The following proposition is due to Happel, see [16, Section 4.6].

Proposition 7.1. Let D := Homy( —, k) be the duality over k. Then the derived functor
7p := L(DHomu(—,A))[-1] : D’(A) — D"(A)

satisfies the following property: for any X,Y € Ob(Db(A)) we have an isomorphism

Hom pya) (X, 70(Y)) — D Extpynay (Y; X),

functorial in both arguments. In other words, Tp[l] is the Serre functor of D*(A).

Remark 7.2. Let i € Ag be a vertex and P, = Ae; be the indecomposable projective
module, which is the projective cover of the simple module S;. Then 7p(F;) = I;[—1],
where I; is the injective envelope of S;.

Definition 7.3. The left exact functor 7 = 7+ := DExty(—,4) : A — A is called the
Auslander—Reiten translation.

Proposition 7.4. In the above notations we have:

(1) the functor T is isomorphic to the composition A =" DP(A) 225 DP(A) 2, A,

(2) Assume that there are no non-zero objects in A which are both projective and
injective. Then we have an isomorphism of triangle functors Tp = R,

(3) The functor % has a left adjoint functor = = Ext}y(D(A), —). Moreover, for
any objects X, Y € Ob(A) we have bi-functorial isomorphisms:

Homa (X, 71(Y)) 2 DExta(Y, X) = Homa (77 (X),Y).

Proof. The first part of this proposition is trivial. To show the second statement, consider
the right exact functor v = DHomy(—, A). Note that 7 =2 L;(v). Let I; be an indecom-
posable injective module and P; be an indecomposable projective module corresponding
to the vertices i,j € Ag respectively. Since I; is non-projective, by [16, Section 4.7] we
have: 7p(I;) = 7(1;) =: X € Ob(A). Hence, we have:

Hom a(Ii, Pj) 2 Hom pua) (7p(1i), 70 (P;)) = Hom pu(a) (X, I;[—1]) = 0.

Then by [17, Proposition 1.7.4] we have: Lv = R7[1].

Let Y be an object of A. Then 7p(Y) is a complex with at most two non-vanishing
cohomologies. Moreover, H%(7p(Y)) = 7(Y) and H' (7p(Y)) = v(Y). Using Proposition
7.1 we have:

D Exth(X,Y) & Hompua) (X, 70(Y)) 2 Homa (X, HO(TD(Y))> = Homa (X, 77 (Y)),

where all the isomorphisms are bi-functorial. The proof of the third part is similar. O
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Remark 7.5. Let A = (1 — 2) be a quiver of type Ay. Then the module I := (k BN k)
is both projective and injective. In particular, we have: R7(I) = 7(X) = DExtu (1, A) = 0.
Since 7p is an auto-equivalence of D?(A) and R7 is not, we have: 7p 2 Rr.

Definition 7.6. Let A be a finite quiver without loops and oriented cycles and * € Ay be
—
a sink (i.e. there is no arrow o € A; such that s(a) = x). Let A be the quiver obtained

from A by inverting all the arrows ending at *. Recall, that we have an adjoint pair of
the so-called reflection functors of Bernstein, Gelfand and Ponomarev [4]

Sf : Rep(Z) — Rep(Z) and S} : Rep(Z) — Rep(Z)
defined as follows. For any object X = ((V;)icqy, (Aa)acq,) € Ob(Rep(K)) consider the

exact sequence of vector spaces

@a (o :*BOé @a (o :*Aa
0 — W, —10= 7, P Viw L
a€Qq:t(a)=x
Then the representation Y = S§(X) = ((Us)icy, (Ca)acq,) € Ob(Rep(Z)) is defined by:
B O 7 A ] Ay i s(a) # =
Ul_{W* if == and Co‘_{Ba if  s(a) = .
The definition of the adjoint reflection functor S; is dual, see [4].

The following result is well-known, see for example [1, Section VIL.5].

+ —
Theorem 7.7. The derived functors Db(Rep(Z)) ES., Db(Rep(Z)) and Db(Rep(Z)) LS.,

Db(Rep(Z)) are mutually inverse equivalences of triangulated categories. Moreover, for
an indecomposable object X € Ob(Rep(Z)) we have:

0 if X%,
lg+ —

and for an indecomposable object Y & Ob(Rep(Z)) we have:

o= {0 4 VS

In particular, the reflection functors S} and S, yield mutually inverse equivalences between
7\ 0 T\©0 . . -~
the categories Rep(A) and Rep(A) , which are the full subcategories of Rep(A) and

«—
Rep(A) consisting of objects without direct summands isomorphic to S.

The following fundamental result gives a link between reflection functors and Auslander—
Reiten translations.

Theorem 7.8. Let A be a finite quiver without loops and oriented cycles with a prescribed
labeling Ao = {1,2,...,n}. Assume that for any 1 < i < j < n there is no oriented path
starting at j and ending at i (such a labeling is called admissible). Then there is an
isomorphism of functors T = T o Sf o---0S*F A A

-+ where T : Rep(A) — Rep(A) is defined
N
by the following rule. For X = ((Vi)ieay, (Aa)aca,) € Ob(Rep A) we set: T(X) =

~
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((Ui)iGQoa(Ba)ate)y where U; = V; and By = —Aq. In a similar way, we have an
isomorphism of functors: 7= = T oS, o---0S]. In particular, the Cozeter functors
At =Sfo---0S and A= =S, 0---0S] do not depend on the choice of an admissible
labeling of vertices.

For a proof of this result, we refer to [12, Section 5.3] and [43, Proposition II.3.2].

The following important statement seems to be well-known. Nevertheless, we have not
succeeded to find its proof in the literature and therefore give it here.

Theorem 7.9. Let A be a finite quiver without loops and oriented cycles and Ay =

é
{1,2,...,n} be an admissible labeling of its vertices. Assume A is not a Dynkin quiver of
type A, with linear ordering. Then we have an isomorphism of triangle functors

TD%TORSTO---ORS;—.

Proof. By Proposition 7.4 and Theorem 7.8 we know that 7p =2 Rt = TO]R(S;r 0---0 S,J{)
Using the universal property of the right derived functor of a left exact functor, we obtain
a sequence of natural transformation of triangle functors

R(Si"on-oSZ)LRSTOR(S;on-OSZ)Ln-i)RSi"oRS;o---oRS:.

Let us show that the first natural transformation & is an isomorphism (the proof for the re-
maining ones is the same). By Theorem 7.7, for a non-zero indecomposable representation
X we have: if S} (X) is non-zero, then it is indecomposable and RS} (X) = 0. Next, by
Theorem 7.8 we have: ToS] o---0S}(X) = 7(X). Hence, if X is a non-projective object
of Rep(z) then S{ o---0S;}(X) # 0. In particular, for any injective module I € Rep(z)
(which is automatically not projective) we get: R'ST (S5 o--- oS} (I)) = 0. Hence, the
functor S;‘ o---0S! maps injective modules into Sffacyclic modules. This shows that
the natural transformation £ is an isomorphism of functors. O

Definition 7.10. Let C' € Mat,x,(Z) be a symmetric matrix such that ¢; = 2 for all
1 <i<mnandc;<0forall l<i#j<n. Consider the @—algebra U,(C) generated by
the elements Fi, ..., E,; Fi,...,F, and Kfc, e Kf subject to the following relations:

e KFKF=1=KFK 1<i<mn;

° KZ‘K]' = KjKZ‘, 1 < i,j < n;

. KZ‘E]' = UfcijEjKi and KZ‘FJ‘ = UciijKZ', 1 <45 <m;

gl
o [B:iFj] = ijv%7 1<, <n;
b llg:(:)ij(—1)kEi(k)EjE,-(1_cij_k) =0for1 <i#j<m;

o i (1 FFFEN TN —0for 1< i j <.
The following result is due to Ringel [33] and Green [15].
Theorem 7.11. Let A be a quiver without loops and oriented cycles, |Ag| = n and and
— _ _
C = C(A) € Mat,xn(Z) be the Cartan matriz of Rep(A), i.e. c;j = (S, 5;5) = (S;, ;) +

(5;,8:), 1 <i,j < n. Then there exists an isomorphism of algebras U,(C) ‘3, DC(Z)
mapping E; to [S;]T, F; to [S;]” and Kf to K g forl<i<n.
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By Theorem 2.7, the reflection functors RS} and LS, induce mutually inverse algebra

isomorphisms of DH (Z) and DH (Z) The following result was first time proven by
Sevenhant and van den Bergh [42].

Theorem 7.12. Let K be a finite quiver without loops and oriented cycles, x € Ag be
— —

a sink and A be the quiver obtained from A by inverting all the arrows ending at *.
Then the derived reflection functor RS} induces an algebra isomorphism of the Drinfeld
+
doubles of the composition algebras DC(K) 5, DC(Z), whose inverse is the isomorphism
induced by the reflection functor LS, . Moreover, they induce a pair of mutually inverse

automorphisms ST of the quantized enveloping algebra U,(C) determined by the quiver A

Uqg(C) Uq(C) Uq(C) Uq(C)
. s g
DC(A) DC(A) DC(A) DC(A)
which are given by the following formulae:
st st . s7 5
Ei — By, Fi— F if ¢x=0|E —E;, F—F
T T - -
B, 2o\ KOUR, B YL 0B K. |if =2 | B 2 0T BK,,  F. s oKC'E,
+ -
B2 Y ()t EYEEY i oo <0 B2 S (1)@ tEYE,EY
a+b=—c;4 a+b=—c;.
+ —
2 Y ()@ FORFY i e, <0 | B2 (—1)F Y,
a+b=—c;x a+b=—c;4
+ -
KE 25 K if ¢, =0| KF 2 KF
+ -
KE 2 gFom g if o #£0| KE 2 KT RE

As it was explained in [42, Section 13], up to a certain twist these automorphisms coincide
with the symmetries discovered by Lusztig [27].

In the next subsection, the following notion will be important.

Definition 7.13. Let Z be a quiver without loops and oriented cycles and Ay =
{1,2,...,n} be an admissible labeling of vertices. Then A := S o--- oS} : DC(K) —
DC’(Z) is the Cozxeter automorphism of DC’(K). Using Corollary 7.12, we also obtain the
corresponding automorphism of the algebra U,(C'), given by the commutative diagram

U,(C) A U,(C)

5| |s

— St — st
DCO(A) —"= DC(A") —= - —= DC(A") ——= DC(R).

K

The inverse automorphism U, (C) A, Uy(C) is defined in a similar way.
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7.2. Composition algebra of a domestic weighted projective line. Let X = X(p)
be a weighted projective line of domestic type p = (p1,...,pn). The weight sequence p

determines the affine Dynkin diagram A= ﬁ(g) by the following table.

weight sequence p | affine Dynkin diagram A
(P, q) : min(p, q) > 2 Aptq-1
(2,2,n): (n>2) Dy o
(2,3,3) Eg
(2,3,4) E-
(27 37 5) E8

The following theorem follows from a result of Geigle and Lenzing [13, Proposition 4.1].

Theorem 7.14. Let X = X(p) be a weighted projective line of domestic type and A be

N
the corresponding affine Dynkin diagram. For a sake of simplicity assume that A has
the “star-shaped” orientation in the case of Dypio (n > 2), Eg, Ey and Es and it has
p subsequent arrows going clockwise and q subsequent arrows going anti-clockwise in the

case p = (p,q). Then there erists a derived equivalence Db(Rep(Z)) &, Db(Rep(Z)).

Applying Cramer’s Theorem 2.7, we immediately obtain the following corollary.

Corollary 7.15. The equivalence Db(Rep(Z)) R Db(Coh(X)) induces an algebra iso-
morphism of the reduced Drinfeld doubles of the Hall algebras DH(Z) S, DH(X).

The next result is a refinement of this statement.

. b -~ G b -~ . .
Theorem 7.16. The equivalence D°(Rep(A)) — DP(Rep(A)) induces an algebra iso-
— G

morphism of the reduced Drinfeld doubles of the composition Hall algebras DC(A) ——
DU (X). Moreover, the following diagram of algebra homomorphisms is commutative:

DO(R) ——— DU(X)
(25) Az’i Ax
DC(A) DU(X).

Here A— is the Coxeter transformation introduced in Definition 7.13 and Ax is the auto-
morphism of DU(X) induced by the Auslander-Reiten translation F — F(&).

Proof. First recall that the equivalence G induces an isomorphism of the K-—groups
KO(Z) R Ky (X). By [38, Proposition 7.4], the composition algebra U (X) contains classes
of all indecomposable locally free sheaves on X. Next, by [19, Theorem 3] it is known that
for any indecomposable preprojective or preinjective object X € Ob(Rep(Z)), the element
[X] belongs to the composition algebra C (K) Moreover, G(X) = F[i], where F is some
indecomposable vector bundle and ¢ is some integer. Hence, the algebra homomorphism
DH(A) % DH(X) restricts to an injective homomorphism DC(A) -2 DU(X). By
Corollary 5.19, the reduced Drinfeld double DU (X) is generated by the elements [O(Z)] =
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for © € L(p) and the Cartan part @[KO(X)]. Hence, the map DC(Z) &, DU(X) is
surjective, hence an isomorphism. The commutativity of the diagram (25) follows from

the general fact that an equivalence of categories Db(Rep(Z)) R Db(Rep(Z)) commutes
with Serre functors: Ax o G = G o A%, see for example [31]. O

Remark 7.17. The automorphism A = Ax preserves the triangular decomposition DU (X)
=U(X)* ®pQ [Ko(X)] ®g U(X)*. Moreover, it maps the algebra DU (X) to itself. This
action is given by the following formulae:

AZEY =75, AC) =0, A([SP]7) =[89"]" and A(KY)) =KUY

for all 7 € Z~¢ and (¢, j) such that 1 <i <n,1 < j < p; (as usual, we set (i, p;+1) = (i,1)).
The explicit action of the Coxeter automorphism A~ is given by Theorem 7.9 and Theorem
7.12. The commutative diagram (25) yields a practical rule to compute the images of

elements of the algebra DU (X) in the algebra DC’(K) under the map G~

Recall that for any object F of the category Coh(X) such that Hom(F,F) = k and
Ext!(F,F) = 0 we have the following equality in the Hall algebra H(X):

[f-@n] _ ,Un(n—l) [537 _ Un(n—l)[f-](n)

Definition 7.18. Let P := {a € Ko(X)|(o, @) =1 and rk(a) > 0}.

It is well-known that an indecomposable vector bundle F on a domestic projective line
X is determined by its class in the K-group a = F € P C Ky(X). On the other hand,
any real root o € P corresponds to some indecomposable vector bundle F = F,. It is
also known that for any pair of indecomposable vector bundles F; and F> on X we have:
either Ext!(Fy, F2) = 0 or Ext!(F», F1) = 0. Define an ordering on the set P of real roots
of positive rank: for a # [ we say that a > g if (o, ) > 0. Note that this condition
implies that (6, «) < 0. If a # § and («, ) = 0 than we can define the ordering between
« and [ in an arbitrary way.

Let F be an arbitrary vector bundle on X. Then it splits into a direct sum of indecom-
posable ones: F = FM @ --- @ Ft for some uniquely determined aq,...,a; € P such
that a; > -+ > a¢ and my,...,my € Z~o. Then we have the following equality in the
Hall algebra H(X): [F] = o™ []_-m}(mﬂ o0---0 [fat](mt), where m = my(m; — 1) +--- +
my(my — 1) + 32, mimj{a;, o). This implies the following corollary on the structure of
the composition algebra U (X).

Corollary 7.19. Let X = X(p) be a weighted projective line of a domestic type p =
(p1,.-.,0n). Then the composition algebra U(X) decomposes into a tensor product of
vector space;s\U(X) = U(X)Vec%@ U(X)tor®@Q[K]. Moreover, U(X)tor = Z®g Ut (5[p1)®@
- ®p Uqu (5[pn), where Z2 = Q[Z1,...,Zy,...] is the ring of symmetric functions. The

subalgebra U(X)vec has a monomial basis []_—al}(m) 0---0 [.’Fat](nt) parameterized by the

sequences ((ozl, mi)y ..., (at,mt)), where ay > -+ > ay are from P and mq, ..., my € Z~y.
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7.3. Composition algebra of a tubular weighted projective line. The most beau-
tiful applications of our approach concern the case of a weighted projective line X of a
tubular type (), p). There are actually only four cases of such curves:

(1) A=(0,00,1,A) and p = (2,2,2,2) (type Dy).
(2) A= (0,00,1) and p = (3,3,3) (type Eg), (2,4,4) (type E7) or (2,3,6) (type Es).
As it was already observed by Geigle and Lenzing in [13, Example 5.8], in the case of the
base field k = C, the category Coh(X) is equivalent to the category of equivariant coherent
sheaves on an elliptic curve E with respect to an appropriate finite group action. For
example, if E is the elliptic curve defined by the cubic equation zy? = z(x — 2)(z — Az) in
P2 for some A € k\{0, 1} and Zs is a cyclic group acting by the rule (z : y : 2) > (z: —y : 2)
then Coh(X((2,2,2,2),\)) is equivalent to Coh%2 ().
Below we give a list of the most important properties of the category of coherent sheaves

on a tubular weighted projective line X, which are due to Geigle and Lenzing [13], Lenzing
and Meltzer [24, 25|, and Meltzer [29].

1. Let p = (p1,...,pn) be the weight type of X and p be the least common multiple

of p1,...,pn. Then there exists an isomorphism of functors 77 — 1, where Coh(X) —
Coh(X) is the Auslander—Reiten translation in Coh(X). In particular, all Auslander—Reiten
components of Coh(X) are the so-called tubes, hence the name “tubular”.

2. Let Z = (rk, — deg) be the standard stability condition on Coh(X). Then any indecom-
posable coherent sheaf is automatically semi-stable with respect to Z. For any p € QU{oco}
let SS# = SS#(X) be the abelian category of semi-stable coherent sheaves of slope p (in
these notations, SS°° = Tor(X)). Then the Auslander-Reiten functor 7 maps SS* to itself.

3. The derived category Db(Coh(X)) has a rich group of exact auto-equivalences. Let F
be an arbitrary coherent sheaf such that End(F) = k and p(F) be the smallest positive
integer such that 7°7)(F) = F. Then F induces the following auto-equivalence T’ of the
derived category D°(Coh(X)): for any object H of D°(Coh(X)) we have

p(F)
Tr(H) = cone( D) @D Hom pu ) (7 (FI=il), 1) @5 7 (F[—i]) = 1).

i€Z 1=1
Moreover, T'r induces an isometry of the K—group Ky(X) given by the formula

. p(F)

Ko(X) = Ko(X), ama~ Y (r'(F),a)[7'(F)].
1=1

This auto-equivalence T'r is called tubular mutation or twist functor.
4. Let R := {a € Ko(X)|(a, —) = 0} be the left radical of K¢(X). Then R = (§,w) =
72, where § is ‘the class of a simple torsion sheaf supported at a non-special point of
X(k) and w = O 4 7(O) + --- + PO)~1(D). Moreover, the canonical group homomor-
phism Aut (Db(Coh(X))) > lsom (KO(X)) restricts to a surjective group homomorphism
Aut(D*(Coh(X))) — SL(2,Z) C Aut(R). Here, Isom(K((X)) is the group of isometries of
Ky(X), i.e. the group of linear automorphisms of K(X) respecting the Euler form (—, —).
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5. Let S be the simple torsion sheaf supported at a non-special point of X(k). Then the
tubular mutations F := Ty and G := Tg satisfy the braid group relation: FGF =2 GFG,
see also [41] for a discussion of twist functors and the induced braid group actions in more
general situations. If the field k is algebraically closed then there exists an exact sequence

1 — Pic” x Aut(X) — Aut(D"(Coh(X))) — Bs — 1

where Bs is the braid group on three strands and Pic’(X) is the group of line bundles on
X of degree zero. Moreover, Pic’ x Aut(X) consists of all elements of Aut(D?(Coh(X)))
having finite order.

6. For any slope p € Q, the category of semi-stable sheaves SS#(X) is equivalent to the
category of torsion sheaves Tor(X) = SS*°(X). Any element F € Aut(D’(Coh(X)) establish
an equivalence between the category SS* and SS”[i] for some v € QU {oo} and i € Z.

Lemma 7.20. Let X be a weighted projective line of tubular type. Then there is a canonical
isomorphism of vector spaces over Q:

(26) Bucguioo) H(SS") ™5 H(X),

where H(SS*) is the non-extended Hall algebra of the abelian category SS* of semi-stable

sheaves of slope p and é 18 the restricted directed tensor product. This means that a simple
tensor in the left-hand side of (26) has all but finitely many entries equal to 1.

Proof. Since any indecomposable sheaf on X is automatically semi-stable, for any F €
Ob(Coh(X)) there exist a unique decomposition F = F1 @ --- @ F;, where all sheaves
Fi,...,F are semi-stable and p(F;) < --- < p(F;). Then we have: Ext!(F;, F) =0 =
Hom(F;, F;) for any 1 < i < < t. Hence, there is the following equality in the Hall algebra
H(X): [F] =v™[F1]o---o[F], where m =Y, _(Fi, Fi). It shows that the map mult is
surjective. It is also not difficult to see that mult is injective, hence isomorphism. O

Theorem 7.21. Let X be a tubular weighted projective line. Then the group of exact
auto-equivalences Aut(D®(Coh(X)) acts on the reduced Drinfeld double DH(X) by algebra
automorphisms. For anyF € Aut(D?(Coh(X)) its action on DH (X) is uniquely determined
by the following rules: for a € Ko(X) we have F(K,) = Kg(q) and for any semi-stable
sheaf F such that F(F) = F|—np(F)] with F € Coh(X) and np(X) € Z we have:
+\ _ . np(F)F.F) 1 1w(F) p-np(F)
F([F]*) = o= O{EF) (7)™ =,
where np(F) = + if np(F) is even and — if ng(F) is odd. Moreover, any element F &
Aut(DP(Coh(X))) maps the reduced Drinfeld double DU (X) to itself. In other words, the

group of exact auto-equivalences of the derived category Db(Coh(X)) acts on the reduced
Drinfeld double of the composition algebra U(X) by algebra automorphisms.

Proof. The fact that F is an algebra automorphism of DH(X) can be proven along the
same lines as [5, Theorem 3.8]. It is also a special case of a general Theorem 2.7 proven
by Cramer [8].

Let F be an exceptional coherent sheaf on X, i.e. End(F) = k and Ext!(F,F) = 0. By
[38, Proposition 8.7] it is known that the element [F] belongs to the composition algebra
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U (X). By Corollary 5.19, the reduced Drinfeld double DU (X) is generated by the Cartan
part Q[K] and classes of certain exceptional objects (e.g. by the line bundles). But this
implies that the algebra DU (X) is invariant under the action of Aut(Db(Coh(X))). |

Remark 7.22. In a work of Lin and Peng [26], the Hall-Lie algebra g(A) of the root
category D°(A —mod)/[2] of a tubular algebra A was studied. They have shown that g(A)
is isomorphic to the toroidal Lie algebra of the corresponding Dynkin type.

Lemma 7.23. For any a € Ky(X), let 1% := > [F] € HX)[a], where SS, is the
[FleJ: FESSa

category of semi-stable objects of Coh(X) of class o with respect to the standard stability

condition Z = (rk,—deg). Then 1% belongs to the composition algebra U(X) (note that

the category SS,, can be empty).

Proof. By Proposition 5.11 for any o € Ky(X) such that rk(«) = 0, the element 1, =
1% belongs to the algebra U(X)ior. Moreover, there exists an auto-equivalence F €
Aut(D*(Coh(X))) such that rk(F(a)) = 0. Moreover, up to a shift F maps the cate-
gory SS* to Tor(X), where p is the slope corresponding to the class a. Let v := F(a),
then by Theorem 7.21 the element 130 = F_l(]lis) belongs to the algebra DU (X) =

UX)* ®p Q[K] ®p U(X)™. Since 1% lies in H(X)™T, it is an element of U(X)", too. [

Theorem 7.24. Let X be a weighted projective line of tubular type p = (p1,...,pn). For
any slope 1 € QU{oc}, let UF = U(X)* be the subalgebra of the composition algebra U (X)

generated by the set {]IZ[S}%KO(X):M(Q):“. Then we have:

(1) U* is isomorphic to the algebra U(X)ior = Z ®p U;'(f/a\[pl) ®g - Vg Ut (g[pn)'

(2) The canonical map é),uEQU{OO} §QELN U(X) is an isomorphism of vector spaces.

Proof. We know that there exists an equivalence of categories SS#(X) =, Tor(X). Hence,

F induces an isomorphism of non-extended Hall algebras H (SS*(X)) N H (Tor(X)).
Moreover, F induces a bijection between the sets {1,|rk(y) = 0} and {1%|u(e) = p}.
Hence, the algebras U* and U™ = U (X)e are isomorphic. By Proposition 6.9 we know
that U(X)ior = Z ®g U (;[pl) By ®g Uf (i?[pn)- This implies the first part of the claim.

Since the map éue@u{w} g it U(X) is a restriction of the isomorphism (26), it is

at least injective. Hence, we only have to prove the surjectivity of mult. For any slope
v denote HY = H(SSY). It is sufficient to show that for any p € QU {oo} the algebra

mult

U(X) is contained in the image of the map (éy@ H") @ Ut ® (éwu H") = H(X).
By Proposition 6.11, it is true for u = oco. Let F be an auto-equivalence of Db(Coh(X))
mapping the given slope p € Q to co. If k is the image of the slope co under F then we
have a commutative diagram

F(U(X)+)C U(X)* ®5 Q[K]

|

B
(§V>—H HU’JF) ®@ @[K} ®@ (éugfi Hy’i)%F(X)JF ®@ Q[K] ®@ F(X)i

U(X)~
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Let a € U(X) = U(X)" be an arbitrary element. Since its image b := F(a) belongs both to
DU(X) = U(X)* @5 QK]2gU(X)~ and to (@vs_n H"T) 25 QK] 2 (Sv<r H""), it can
be written as a sum of monomials of the form c; ... cides . . . €., where ¢; € H'o " d € Q[K]
and d; € H">~ are such that —k < g < -+ < g, 1 < -+ < v < k and ¢ € U™ (it is
also possible that ¢; = 1). Hence, a = F~1(b) € (éKM H")@U"® (éwu H"). O

Corollary 7.25. Taking some basis in the algebra U(X)&S = U;r(;[pl)®@~ - ®g U;(;[pn),
which is orthonormal with respect to the Green’s form, Theorem 7.2/ gives a construction
of a PBW-type basis of the algebra U(X), which is orthonormal with respect to the Green’s
form. In a similar way, we get a PBW-type basis of the reduced Drinfeld double DU (X).

Remark 7.26. Let X be a weighted projective line of tubular type 3, where A €
{D4,E6,E7,E8} and g be the simple Lie algebra of the Dynkin type A. In a work of
the second-named author [38] it was shown that the composition algebra U(X) can be
identified with a certain (quite non-standard) Borel subalgebra U,(b) of the quantized
double loop algebra U, (Sga), where g3 is the affine Lie algebra of type A (see the survey
article [18] for a definition and applications of quantized double loop algebras). In [39] it
was shown how a Lusztig-type approach [27] leads to a construction of a canonical basis
of Uy(b). Therefore, it is natural to conjecture that the reduced Drinfeld double DU (X)
is isomorphic to the whole quantized double loop algebra U, (£gﬁ).

Remark 7.27. The general results on the structure of the reduced Drinfeld double of a
weighted projective line X listed in Subsection 6.3, lead to very interesting consequences

for the theory of the quantized toroidal (or double loop) enveloping algebras of types ﬁ4,
Eg, E7 and Eg. For example, let p = (2,3,6) and X = X(p) be the corresponding tubular

weighted projective line of type Eg. Then we know that
(1) The algebra DU (X) contains a subalgebra isomorphic to

H @A Uy (sla) @4 Uy (sl3) @4 Uy (sls),

where H is the Heisenberg algebra and A is the ring of Laurent polynomials in the
“common” central element C.

(2) The algebra DU (X) contains a subalgebra isomorphic to DU (P') = U, (Lsl,).

(3) More generally, let ¢ = (2,3,5) and Y = Y(q) be the corresponding weighted pro-
jective line of domestic type. Then there exists an embedding DU(Y) — DU (X).
This should correspond to some rather non-trivial embedding of the quantized

enveloping algebra U, (Eg) into the algebra U, (Eg).
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