FROBENIUS MORPHISM AND VECTOR BUNDLES ON CYCLES OF PROJECTIVE LINES

IGOR BURBAN

Abstract

In this paper we describe the action of the Frobenius morphism on the indecomposable vector bundles on cycles of projective lines. This gives an answer on a question of Paul Monsky, which appeared in his study of the Hilbert-Kunz theory for plane cubic curves.

This note arose as a answer on a question posed by Paul Monsky in his study of the Hilbert-Kunz theory for plane cubic curves [5]. Let \boldsymbol{k} be a field of characteristic $p>0$ and E be a plane rational nodal curve or a cycle of projective lines over \boldsymbol{k}. Our goal is to describe the action of the Frobenius morphism on the set of indecomposable vector bundles on E.

We start with recalling the general technique used in a study of vector bundles on singular projective curves, see $[3,1,2]$. Let X be a reduced singular (projective) curve over $\boldsymbol{k}, \pi: \widetilde{X} \rightarrow X$ its normalization and $\mathcal{I}:=\mathcal{H o m}_{\mathcal{O}}\left(\pi_{*}\left(\mathcal{O}_{\tilde{X}}\right), \mathcal{O}\right)=$ $\mathcal{A} n n_{\mathcal{O}}\left(\pi_{*}\left(\mathcal{O}_{\tilde{X}}\right) / \mathcal{O}\right)$ the conductor ideal sheaf. Denote by $\eta: Z=V(\mathcal{I}) \longrightarrow X$ the closed artinian subspace defined by \mathcal{I} (its topological support is precisely the singular locus of X) and by $\tilde{\eta}: \widetilde{Z} \longrightarrow \widetilde{X}$ its preimage in \widetilde{X}, defined by the Cartesian diagram

Definition 1. The category of triples $\operatorname{Tri}(X)$ is defined as follows.

- Its objects are triples $(\widetilde{\mathcal{F}}, \mathcal{V}, \widetilde{\mathrm{m}})$, where $\widetilde{\mathcal{F}} \in \mathrm{VB}(\widetilde{X}), \mathcal{V} \in \mathrm{VB}(Z)$ and

$$
\mathrm{m}: \tilde{\pi}^{*} \mathcal{V} \longrightarrow \tilde{\eta}^{*} \tilde{\mathcal{F}}
$$

is an isomorphism of $\mathcal{O}_{\tilde{Z}}$-modules, called the gluing map.

- The set of morphisms $\operatorname{Hom}_{\operatorname{Tri}(X)}\left(\left(\widetilde{\mathcal{F}}_{1}, \mathcal{V}_{1}, \mathrm{~m}_{1}\right),\left(\widetilde{\mathcal{F}}_{2}, \mathcal{V}_{2}, \mathrm{~m}_{2}\right)\right)$ consists of all pairs (F, f), where $F: \widetilde{\mathcal{F}}_{1} \rightarrow \widetilde{\mathcal{F}}_{2}$ and $f: \mathcal{V}_{1} \rightarrow \mathcal{V}_{2}$ are morphisms of vector bundles

[^0]such that the following diagram is commutative

Theorem 2 (Lemma 2.4 in [3] and Theorem 1.3 in [2]). Let X be a reduced curve. Then the functor $\mathbb{F}: \mathrm{VB}(X) \longrightarrow \operatorname{Tri}(X)$ assigning to a vector bundle \mathcal{F} the triple $\left(\pi^{*} \mathcal{F}, \eta^{*} \mathcal{F}, \mathrm{~m}_{\mathcal{F}}\right)$, where $\mathrm{m}_{\mathcal{F}}: \tilde{\pi}^{*}\left(\eta^{*} \mathcal{F}\right) \longrightarrow \tilde{\eta}^{*}\left(\pi^{*} \mathcal{F}\right)$ is the canonical isomorphism, is an equivalence of categories.

Remark 3. In the case when X is a configuration of projective lines intersecting transversally, the above theorem also follows from a more general result of Lunts [4].

For a ringed space $\left(Y, \mathcal{O}_{Y}\right)$ over the field \boldsymbol{k} we denote by φ_{Y} the Frobenius mor$\operatorname{phism}\left(Y, \mathcal{O}_{Y}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$. Then for an open set $U \subset Y$ the algebra homomorphism $\varphi_{Y}(U): \mathcal{O}_{Y}(U) \rightarrow \mathcal{O}_{Y}(U)$ is given by the formula $\varphi_{Y}(f)=f^{p}, f \in \mathcal{O}_{Y}(U)$. For a sake of simplicity, we shall omit the subscript in the notation of the Frobenius map.

Definition 4. The endofunctor $\mathbb{P}: \operatorname{Tri}(X) \longrightarrow \operatorname{Tri}(X)$ is defined as follows. Let $\mathcal{T}=(\widetilde{\mathcal{F}}, \mathcal{V}, \mathrm{m})$ be an object of the category $\operatorname{Tri}(X) . \operatorname{Then} \mathbb{P}(\mathcal{T}):=\left(\varphi^{*} \widetilde{\mathcal{F}}, \varphi^{*} \mathcal{V}, \mathrm{~m}^{\varphi}\right)$, where the gluing map m^{φ} is determined via the commutative diagram

where the vertical maps are canonical isomorphisms.
Lemma 5. Consider the following diagram of categories and functors:

where for a vector bundle \mathcal{F} on X we set: $\mathbb{T}(\mathcal{F})=\varphi_{X}^{*}(\mathcal{F})$. Then there exists an isomorphism of functors $\mathbb{P} \circ \mathbb{F} \rightarrow \mathbb{F} \circ \mathbb{T}$.

Proof. Let \mathcal{F} be a vector bundle on X. Then the canonical isomorphisms $\varphi^{*} \tilde{\eta}^{*} \mathcal{F} \rightarrow$ $\tilde{\eta}^{*} \varphi^{*} \mathcal{F}$ and $\varphi^{*} \pi^{*} \mathcal{F} \rightarrow \pi^{*} \varphi^{*} \mathcal{F}$ induce the commutative diagram

which yields the desired isomorphism of functors.
Next, we need a description of the action of the Frobenius map on the vector bundles on a projective line. Let $\left(z_{0}, z_{1}\right)$ be coordinates on $V=\mathbb{C}^{2}$. They induce homogeneous coordinates $\left(z_{0}: z_{1}\right)$ on $\mathbb{P}^{1}=\mathbb{P}^{1}(V)=(V \backslash\{0\}) / \sim$, where $v \sim \lambda v$ for all $v \in V$ and $\lambda \in \mathbb{C}^{*}$.

We set $U_{0}=\left\{\left(z_{0}: z_{1}\right) \mid z_{0} \neq 0\right\}$ and $U_{\infty}=\left\{\left(z_{0}: z_{1}\right) \mid z_{1} \neq 0\right\}$ and put $0:=(1: 0)$, $\infty:=(0: 1), z=z_{1} / z_{0}$ and $w=z_{0} / z_{1}$. So, z is a coordinate in a neighbourhood of 0 . If $U=U_{0} \cap U_{\infty}$ and $w=1 / z$ is used as a coordinate on U_{∞}, then the transition function of the line bundle $\mathcal{O}_{\mathbb{P}^{1}}(n)$ is

$$
\begin{equation*}
U_{0} \times \mathbb{C} \supset U \times \mathbb{C} \xrightarrow{(z, v) \mapsto\left(\frac{1}{z}, \frac{v}{z^{n}}\right)} U \times \mathbb{C} \subset U_{\infty} \times \mathbb{C} \tag{2}
\end{equation*}
$$

Using the formula (2), the proof of the following lemma is straightforward.
Lemma 6. For any $n \in \mathbb{Z}$ we have: $\varphi^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(n)\right) \cong \mathcal{O}_{\mathbb{P}^{1}}(n p)$.
Next, recall the following classical result on vector bundles on a projective line.
Theorem 7 (Birkhoff-Grothendieck). Any vector bundle $\widetilde{\mathcal{F}}$ on \mathbb{P}^{1} splits into a direct sum of line bundles:

$$
\begin{equation*}
\widetilde{\mathcal{F}} \cong \bigoplus_{l \in \mathbb{Z}} \mathcal{O}_{\mathbb{P}^{1}}(l)^{m_{l}} . \tag{3}
\end{equation*}
$$

Now assume that E is an irreducible plane nodal cubic curve. Theorem 7 implies that for an object $(\widetilde{\mathcal{F}}, \mathcal{V}, \widetilde{\mathbf{m}})$ of the category of triples $\operatorname{Tri}(E)$ with $\operatorname{rk}(\widetilde{\mathcal{F}})=n$, we have

$$
\widetilde{\mathcal{F}}=\bigoplus_{l \in \mathbb{Z}} \mathcal{O}_{\mathbb{P}^{1}}(l)^{m_{l}} \quad \text { and } \quad \mathcal{V} \cong \mathcal{O}_{Z}^{n}, \quad \text { where } \sum_{l \in \mathbb{Z}} m_{l}=n
$$

Note that \mathcal{V} is in fact free, because Z is artinian. From now on we shall always fix a decomposition of $\widetilde{\mathcal{F}}$ as above. In order to describe the morphism $\widetilde{\mathrm{m}}$ in the terms of matrices, some additional choices have to be done.

Recall that the vector bundle $\mathcal{O}_{\mathbb{P}^{1}}(-1)$ is isomorphic to the sheaf of sections of the so-called tautological line bundle

$$
\{(l, v) \mid v \in l\} \subset \mathbb{P}^{1}(V) \times V=\mathcal{O}_{\mathbb{P}^{1}}^{2} .
$$

The choice of coordinates on \mathbb{P}^{1} fixes two distinguished elements, z_{0} and z_{1}, in the space $\operatorname{Hom}_{\mathbb{P}^{1}}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1), \mathcal{O}_{\mathbb{P}^{1}}\right)$:

where z_{i} maps $\left(l,\left(v_{0}, v_{1}\right)\right)$ to $\left(l, v_{i}\right)$ for $i=0,1$. It is clear that the section z_{0} vanishes at ∞ and z_{1} vanishes at 0 . After having made this choice, we may write

$$
\operatorname{Hom}_{\mathbb{P}^{1}}\left(\mathcal{O}_{\mathbb{P}^{1}}(n), \mathcal{O}_{\mathbb{P}^{1}}(m)\right)=\mathbb{C}\left[z_{0}, z_{1}\right]_{m-n}:=\left\langle z_{0}^{m-n}, z_{0}^{m-n-1} z_{1}, \ldots, z_{1}^{m-n}\right\rangle_{\mathbb{C}} .
$$

In what follows we shall assume that the coordinates on the normalization \widetilde{E} are chosen in such a way that $\operatorname{Spec}(\boldsymbol{k} \times \boldsymbol{k}) \cong \widetilde{Z}=\pi^{-1}(Z)=\{0, \infty\}$.
Definition 8. For any $l \in \mathbb{Z}$ we define the isomorphism $\xi_{l}: \tilde{\eta}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(l)\right) \rightarrow \mathcal{O}_{\tilde{Z}}$ by the formula $\xi_{l}(p)=\left(\frac{p}{z_{0}^{l}}(0), \frac{p}{z_{1}^{l}}(\infty)\right)$, where p is an arbitrary local section of the line bundle $\mathcal{O}_{\mathbb{P}^{1}}(l)$. Hence, for any vector bundle $\widetilde{\mathcal{F}}$ of rank n on \mathbb{P}^{1} given by the formula (3), we have the induced isomorphism $\xi_{\widetilde{\mathcal{F}}}: \tilde{\eta}^{*} \widetilde{\mathcal{F}} \rightarrow \mathcal{O}_{\widetilde{Z}}^{n}$.

Let $\left(\widetilde{\mathcal{F}}, \mathcal{O}_{Z}^{n}, \mathrm{~m}\right)$ be a object of the category of triples $\operatorname{Tri}(E)$. Then the morphism m can be presented by a matrix $M(\mathrm{~m})$ via the following commutative diagram

where the first vertical map is the canonical isomorphism. Hence, the morphism $M(\mathrm{~m})$ is given by a pair of invertible $(n \times n)$ matrices $M(0)$ and $M(\infty)$ over the field \boldsymbol{k}. Applying to (4) the functor φ^{*}, we get the following commutative diagram:

Corollary 9. Let E be an irreducible nodal cubic curve over a field \boldsymbol{k} of characteristic $p>0$ and \mathcal{F} be a vector bundle corresponding to the triple $\left(\widetilde{\mathcal{F}}, \mathcal{O}_{Z}^{n}\right.$, m$)$, where $\widetilde{\mathcal{F}} \cong \oplus_{l \in \mathbb{Z}} \mathcal{O}_{\mathbb{P}^{1}}(l)^{m_{l}}$ and m is given by a pair of matrices

$$
M(0)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right) \quad \text { and } \quad M(\infty)=\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n n}
\end{array}\right) .
$$

Then the vector bundle $\varphi^{*} \mathcal{F}$ is given by the triple $\left(\varphi^{*} \widetilde{\mathcal{F}}, \mathcal{O}_{Z}^{n}, \mathrm{~m}^{\varphi}\right)$, where $\varphi^{*} \widetilde{\mathcal{F}} \cong$ $\oplus_{l \in \mathbb{Z}} \mathcal{O}_{\mathbb{P}^{1}}(l p)^{m_{l}}$ and m^{φ} corresponds to the pair of matrices

$$
\left(\begin{array}{cccc}
a_{11}^{p} & a_{12}^{p} & \ldots & a_{1 n}^{p} \\
a_{21}^{p} & a_{22}^{p} & \ldots & a_{2 n}^{p} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1}^{p} & a_{n 2}^{p} & \ldots & a_{n n}^{p}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cccc}
b_{11}^{p} & b_{12}^{p} & \ldots & b_{1 n}^{p} \\
b_{21}^{p} & b_{22}^{p} & \ldots & b_{2 n}^{p} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1}^{p} & b_{n 2}^{p} & \ldots & b_{n n}^{p}
\end{array}\right) .
$$

Corollary 10. Indecomposable vector bundles on an irreducible nodal cubic curve E over an algebraically closed field \boldsymbol{k} are described by a non-periodic sequence of integers $\left(d_{1}, \ldots, d_{l}\right)$, a positive integer m and a continuous parameter $\lambda \in \boldsymbol{k}^{*}$, see $[3$, $1,2]$. The normalization of the corresponding vector bundle $\mathcal{B}\left(\left(d_{1}, d_{2}, \ldots, d_{l}\right), m, \lambda\right)$ is $\oplus_{i=1}^{l} \mathcal{O}_{\mathbb{P}^{1}}\left(d_{i}\right)^{m}$. The gluing map m is described by a pair of matrices $M(0)$ and $M(\infty)$, which are given by the explicit formulae written in [1, Section 3.1].
In these notations, the action of φ^{*} on the indecomposable vector bundles on E takes the following form:

$$
\begin{equation*}
\varphi^{*} \mathcal{B}\left(\left(d_{1}, d_{2}, \ldots, d_{l}\right), m, \lambda\right) \cong \mathcal{B}\left(\left(p d_{1}, p d_{2}, \ldots, p d_{l}\right), m, \lambda^{p}\right) \tag{6}
\end{equation*}
$$

Remark 11. The same argument applies literally to the case, when E is a cycle of projective lines. In particular, the formula (6) holds in that case, too. However, we have to stress that the parameter $\lambda \in \boldsymbol{k}^{*}$ arising in the formula (6) has no intrinsic meaning as an invariant of a vector bundle and its value actually depends on the choice of the trivializations $\left\{\xi_{l}\right\}_{l \in \mathbb{Z}}$, fixed in Definition 8 .

References

[1] L. Bodnarchuk, I. Burban, Yu. Drozd and G.-M. Greuel, Vector bundles and torsion free sheaves on degenerations of elliptic curves, Global Aspects of Complex Geometry, 83-129, Springer (2006).
[2] I. Burban, Abgeleitete Kategorien und Matrixprobleme, PhD Thesis, Kaiserslautern 2003, available at http://deposit.ddb.de/cgi-bin/dokserv?idn=968798276.
[3] Yu. Drozd, G.-M. Greuel, Tame and wild projective curves and classification of vector bundles, J. Algebra 246 (2001), no. 1, 1-54.
[4] V. Lunts, Coherent sheaves on configuration schemes, J. Algebra 244 (2001), no. 2, 379-406.
[5] P. Monsky, Hilbert-Kunz theory for nodal cubics, via sheaves, preprint.

Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

E-mail address: burban@math.uni-bonn.de

[^0]: 2000 Mathematics Subject Classification. Primary 14H60, 14G17.

