
MINORS OF NON-COMMUTATIVE SCHEMES

IGOR BURBAN, YURIY DROZD, AND VOLODYMYR GAVRAN

Abstract. In this article, we develop the theory of minors of non-
commutative schemes. This study is motivated by applications in the
theory of non-commutative resolutions of singularities of commutative
schemes.
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1. Introduction

Let B be a ring and P be a finitely generated projective left B-module.
We call the ring A = AP =

(
EndBP

)op
a minor of B. It turns out that the

module categories of B and A are closely related.

(1) The functors F = P ⊗A and H = HomA(P∨, ) from A-Mod to
B-Mod are fully faithful, where P∨ = HomB(P,B). In other words,
A-Mod can be realized in two different ways as a full subcategory of
B-Mod, see Theorem 4.3.

(2) The functor G = HomB(P, ) : B-Mod −→ A-Mod is exact and
essentially surjective. Moreover, we have adjoint pairs (F,G) and
(G,H). In other words, G is a bilocalization functor. If

I = IP = Im
(
P ⊗A P∨ −→ B

)
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and B̄ = B/I then the category B̄-Mod is the kernel of G and A-Mod
is equivalent to the Serre quotient of B-Mod modulo B̄-Mod, see
Theorem 4.5.

(3) Under certain additional assumptions one can show that the global
dimension of B is finite provided the global dimensions of A and B̄
are finite, see Lemma 4.9.

The described picture becomes even better when we pass to the (unbounded)
derived categories D

(
A-Mod

)
, D
(
B-Mod

)
and D

(
B̄-Mod

)
of the rings A,B

and B̄ introduced above. Let DG be the derived functor of G, LF be the left
derived functor of F and RH be the right derived functor of H.

(1) Then we have adjoint pairs (LF,DG) and (DG,RH), the functors LF
and RH are fully faithful and the category D

(
A-Mod

)
is equivalent

to the Verdier localization of D
(
B-Mod

)
modulo its triangulated

subcategory DB̄

(
B-Mod

)
consisting of complexes with cohomologies

from B̄-Mod, see Theorem 4.6.
(2) Moreover, we have a semi-orthogonal decomposition

D
(
B-Mod

)
=
〈
DB̄

(
B-Mod

)
, D
(
A-Mod

)〉
,

see Theorem 2.5.

One motivation to deal with minors comes from the theory of non-commuta-
tive crepant resolutions. Let A be a commutative normal Gorenstein domain
and F be a reflexive A–module such that the ring

B = BF := EndA(A⊕ F )op =

(
A F
F∨ E

)
is maximal Cohen–Macaulay over A and of finite global dimension (here E =(
EndA F

)op
). Van den Bergh suggested to view B as a non-commutative

crepant resolution of A showing that under some additional assumptions,
the existence of a non-commutative crepant resolution implies the existence
of a commutative one [34]. If we take the idempotent e = ( 1 0

0 0 ) ∈ B and
pose P = Be then it is easy to see that A = BP . Thus, dealing with non-
commutative (crepant) resolutions of singularities, we naturally come into
the framework of the theory of minors.

In [15] it was observed that there is a close relation between coherent
sheaves over the nodal cubic C = V (zy2−x3−x2z) ⊂ P2 and representations
of the finite dimensional algebra Λ given by the quiver with relations

•
α1
((

α2

66 •
β1
((

β2

66 • β1α1 = β2α2 = 0.

An explanation of this fact was given in [8]. Let I be the ideal sheaf of the
singular point of C and A = EndC(O⊕I). Consider the ringed space (C,A)
and the category A-mod of coherent left A–modules on C. The the derived
category Db

(
A-mod

)
has a tilting complex, whose (opposite) endomorphism

algebra is isomorphic to Λ what implies that the categories Db
(
A-mod

)
and
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Db
(
Λ-mod) are equivalent. On the other hand, the triangulated category

Perf(C) of perfect complexes on C is equivalent to a full subcategory of
Db
(
A-mod

)
. In fact, we deal here with a sheaf-theoretic version of the

construction of minors: the commutative scheme (C,O) is a minor of the
non-commutative scheme (C,A). The goal of this article is to establish a
general framework for the theory of minors of non-commutative schemes.

In Section 2 we review some key results on localizations of abelian and
triangulated categories used in this article. In Section 3 we discuss the
theory of non-commutative schemes, elaborating in particular a proof of the
result characterizing the triangulated category Perf(A) of perfect complexes
over a non-commutative scheme (X,A) as the category of compact objects of
the unbounded derived category of quasi-coherent sheaves D(A) (Theorem
3.14). Section 4 is devoted to the definition of a minor (X,A) of a non-
commutative scheme (X,B) and the study of relations between (X,A) and
(X,B). In Section 5 we elaborate the theory of strongly Gorenstein non-
commutative schemes and the final Section 6 deals with various properties
of non-commutative curves.

2. Bilocalizations

Recall that a full subcategory C of an abelian category A is said to be
thick (or Serre subcategory) if, for any exact sequence 0→ C ′ → C → C ′′ →
0, the object C belongs to C if and only if both C ′ and C ′′ belong to C .
Then the quotient category A /C is defined and we denote by ΠC the natural
functor A → A /C . It is exact, essentially surjective and Ker ΠC = C . For
instance, if G : A → B is an exact functor among abelian categories, its
kernel KerG is a thick subcategory of A and G factors as Ḡ ◦ΠKerG, where
Ḡ : A /KerF→ B.

Analogously, if C is a full subcategory of a triangulated category A , it
is said to be thick if it is triangulated (i.e. closed under shifts and cones)
and closed under direct summands. Then the quotient triangulated cate-
gory A /C is defined and we denote by ΠC the natural functor A → A /C .
It is exact (triangulated), essentially surjective and Ker ΠC = C . For in-
stance, if G : A → B is an exact (triangulated) functor among triangulated
categories, its kernel KerG is a thick subcategory of A and G factors as
Ḡ ◦ΠKerG, where Ḡ : A /KerG→ B.

If F : A → B is a functor, we denote by ImF its essential image, i.e.
the full subcategory of B consisting of objects B such that there is an
isomorphism B ' FA for some A ∈ A . We usually use this term when F is
a full embedding (i.e. is fully faithful), so ImF ' A .

We use the following well-known facts related to these notions.

Theorem 2.1. (1) Let A ,B be abelian categories, G : A → B be an
exact functor and F : B → A be its left adjoint (right adjoint) such
that the natural morphism 1B → G ◦F (respectively, G ◦F → 1B) is
an isomorphism. Let C = KerG.

3



(a) G = Ḡ ◦ΠC , where Ḡ is an equivalence A /C
∼→ B and its quasi-

inverse functor is F̄ = ΠC ◦F.
(b) F is a full embedding and its essential image ImF coincides with

the left (respectively, right) orthogonal subcategory of C , i.e. the
full subcategory

⊥C =
{
A ∈ Ob A | Hom(A,C) = Ext1(A,C) = 0 for all C ∈ Ob C

}
(respectively,

C⊥ =
{
A ∈ Ob A | Hom(C,A) = Ext1(C,A) = 0 for all C ∈ Ob C

}
.)

(c) C = (⊥C )⊥ (respectively, C = ⊥(C⊥) ).
(d) The embedding functor C → A has a left (respectively, right)

adjoint.

(2) Let A ,B be triangulated categories, G : A → B be an exact (tri-
angulated) functor and F : B → A be its left adjoint (right ad-
joint) such that the natural morphism 1B → G ◦F (respectively,
G ◦F→ 1B) is an isomorphism. Let C = KerG.

(a) G = Ḡ ◦ΠC , where Ḡ is an equivalence A /C
∼→ B and its quasi-

inverse functor is F̄ = ΠC ◦F.
(b) F is a full embedding and its essential image ImF coincides with

the left (respectively, right) orthogonal subcategory of C , i.e. the
full subcategory1

⊥C = {A ∈ Ob A | Hom(A,C) = 0 for all C ∈ Ob C }
(respectively,

C⊥ = {A ∈ Ob A | Hom(C,A) = 0 for all C ∈ Ob C } .)
(c) C = (⊥C )⊥ (respectively, C = ⊥(C⊥) ).
(d) The embedding functor C → A has a left (respectively, right)

adjoint, which induces an equivalence A /⊥C
∼→ C (respectively,

A /C⊥
∼→ C ).

Proof. The statement (1a) is proved in [16, Ch. III, Proposition 5] if F is
right adjoint of G. The case of left adjoint is just a dualization. The proof
of the statement (2a) is quite analogous. Therefore, from now on we can
suppose that B = A /C . Then the statements (1b) and (2b) are just [16,
Ch. III, Lemma 2 et Corollaire] and [29, Theorem 9.1.16]. The statements
(1c) and (2c) are [18, Corollary 2.3] and [29, Corollary 9.1.14]. Thus the
statement (2d) also follows from [29, Theorem 9.1.16]. In the abelian case
the left (respectively, right) adjoint J to the embedding C → A is given
by the rule A 7→ Cok Ψ(A) (respectively, A 7→ Ker Ψ(A) ), where Ψ is the
natural morphism F ◦G→ 1A (respectively, 1A → F ◦G). �

1 Note that in the book [29] the notations for the orthogonal subcategories are opposite
to ours. The latter seems more usual, especially in the representation theory, see, for
instance, [2, 18]. In [16] the objects of the right orthogonal subcategory C⊥ are called
C -closed.
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Remark. Note that in the abelian case the composition Π⊥C
◦ J (respectively,

ΠC⊥
◦ J) need not be an equivalence. The reason is that the subcategory ⊥C

(C⊥) need not be thick (see [18]).

A thick subcategory C of an abelian or triangulated category A is said
to be localizing (colocalizing) if the canonical functor G : A → A /C has
a right (respectively, left) adjoint F. Neeman [29] calls F a Bousfield lo-
calization (respectively, a Bousfield colocalization).2 In this case the natural
morphism G ◦F→ 1A /C (respectively, 1A /C → G ◦F) is an isomorphism [16,
Ch.III,Proposition 3], [29, Lemma 9.1.7]. If C is both localizing and colo-
calizing, we call it bilocalizing and call the category A /C (or any equivalent
one) a bilocalization of A . We also say in this case that G is a bilocalization
functor. In other words, an exact functor G : A → B is a bilocalization
functor if it has both left adjoint F and right adjoint H and the natural
morphisms 1B → GF and GH→ 1B are isomorphisms.

Corollary 2.2. Let G : A → B be an exact functor between abelian or
triangulated categories which has both left adjoint F and right adjoint H. In
order that G will be a bilocalization functor it is necessary and sufficient that
one of the natural morphisms 1B → GF or GH→ 1B be an isomorphism.

Proof. Let, for instance, the first of these morphisms be an isomorphism.
Then there is an equivalence of categories Ḡ : A /KerG

∼→ B such that
G = ḠΠC , where C = KerG. So we can suppose that B = A /C and
G = ΠC . Thus the morphism GH→ 1B is an isomorphism, since H is right
adjoint to G. �

Corollary 2.3. Let C be a localizing (colocalizing) thick subcategory of an
abelian category A , DC (A ) be the full subcategory of D(A ) consisting of
all complexes C• such that all cohomologies H i(C•) are in C . Suppose that
the Bousfield localization (respectively, colocalization) functor F has right
(respectively, left) derived functor. Then DC (A ) is also a localizing (colo-
calizing) subcategory of A and D(A )/DC (A ) ' D(A /C ).

Proof. We consider the case of a localizing subcategory C , denote by G
the canonical functor A → A /C and by F its right adjoint. As G is ex-
act, it induces an exact functor D(A ) → D(A /C ) acting on complexes
componentwise. We denote it by DG; it is both right and left derived of
G. Obviously, KerDG = DC (A ). Since G ◦F → 1A /C is an isomorphism,
the morphism DG ◦RF → 1D(A /C ) is also an isomorphism, so we can apply
Theorem2.1 (2). �

Remark 2.4. (1) If C is localizing and A is a Grothendieck category,
the right derived functor RF exists [2], so D(A /C ) ' DC (A ). We
do not know general conditions which ensure the existence of the left
derived functor LF in the case of colocalizing categories, though it

2 Actually, Neeman uses this term for triangulated categories, but we will use it for
abelian categories too.
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exists when A is a category of quasi-coherent modules over a quasi-
compact separated non-commutative scheme and F is tensor product
or inverse image, see Proposition 3.12.

(2) Miyatchi [27] proved that always Dσ(A /C ) ' Dσ
C (A ), where σ ∈

{+,−, b }.

We recall that a sequence (A1,A2, . . . ,Am) of triangulated subcategories
of a triangulated category A is said to be a semi-orthogonal decomposition
of A if A (A,A′) = 0 for A ∈ Ai, A

′ ∈ Aj and i > j, and for every object
A ∈ A there is a chain of morphisms

0 = Am
fm−−→ Am−1

fm−1−−−→ . . . A2
f2−→ A1

f1−→ A0 = A

such that Cone fi ∈ Ai [24].

Theorem 2.5. Let G : A → B be an exact functor among triangulated
categories, F : B → A be its right (left) adjoint such that the natural mor-
phism φ : 1B → GF (respectively, ψ : GF → 1B) is an isomorphism. Then
(ImF,KerG) (respectively, (KerG, ImF)) is a semi-orthogonal decomposi-
tion of A .

Proof. We consider the case of left adjoint. If A = FB and A′ ∈ KerG,
then A (A,A′) ' B(GA,B) = 0. On the other hand, consider the natural
morphism f : FGA → A. Then Gf is an isomorhism, whence Cone f ∈
KerG. So we can set A1 = FGA, f1 = f . �

3. Non-commutative schemes

Definition 3.1. (1) A non-commutative scheme is a pair (X,A), where
X is a scheme (called the commutative background of the non-com-
mutative scheme) and A is a sheaf of OX -algebras, which is quasi-
coherent as a sheaf of OX -modules. Sometimes we say “non-com-
mutative scheme A” not mentioning its commutative background X.
We denote by Xcl the set of closed points of X.

(2) A non-commutative scheme (X,A) is said to be affine (separated,
quasi-compact) if so is its commutative background X. It is said to
be reduced if A has no nilpotent ideals.

(3) A morphism of non-commutative schemes f : (Y,B) → (X,A) is a
pair (fX , f

#), where fX : Y → X is a morphism of schemes and f#

is a morphism of f−1
X OX -algebras f−1

X A → B. In what follows we
usually write f instead of fX .

(4) Given a non-commutative scheme (X,A), we denote by A-Mod (re-
spectively, by A-mod) the category of quasi-coherent (respectively,
coherent) sheaves of A-modules. We call objects of this category
just A-modules (respectively, coherent A-modules).

(5) If f : (Y,B) → (X,A) is a morphism of non-commutative schemes,
we denote by f∗ : A-Mod → B-Mod the functor of inverse image
which maps an A-moduleM to the B-module B⊗f−1Af

−1M. If the
6



map fX is separated and quasi-compact, we denote by f∗ : B-Mod→
A-Mod the functor of direct image. It follows from [19, § 0.1 and
§ 1.9.2] that these functors are well-defined. Moreover, f∗ maps co-
herent modules to coherent ones.

In this paper we always suppose non-commutative schemes separated and
quasi-compact.

Remark 3.2. (1) If (X,A) is affine, i.e. X = SpecR for some com-
mutative ring R, then A = A∼ is a sheafification of an R-algebra
A. A quasi-coherent A-module is just a sheafification M∼ of an A-
module M , so A-Mod ' A-Mod and we identify these categories. If,
moreover, A is noetherian, then A-mod coincides with the category
A-mod of finitely generated A-modules.

(2) If X is separated and quasi-compact, A-Mod is a Grothendieck cate-
gory. In particular, every quasi-coherent A-module has an injective
envelope. We denote by A-Inj the full subcategory of A-Mod con-
sisting of injective modules.

(3) The inverse image functor f∗ for a morphism of non-commutative
schemes usually does not coincide with the inverse image functor f∗X
with respect to the morphism of their commutative backgrounds.
We can guarantee it if B = f∗XA, for instance, if Y is an open subset
of X and B = A|Y .

Definition 3.3. (1) The center of A is the subsheaf cenA ⊆ A such
that (cenA)(U) = {α ∈ A(U) | α|V ∈ cenA(V ) for all V ⊆ U }, where
cenA denotes the center of a ring A.

(2) We say that a non-commutative scheme (X,A) is central, if the nat-
ural homomorphism OX → A maps OX bijectively onto the center
cen(A) of A.

Note that if (X,A) is affine, X = SpecR and A = A∼, then cenA =
(cenA)∼.

Proposition 3.4. End1A-Mod ' End1A-Inj ' Γ(X, cenA).

Proof. Let α ∈ Γ(X, cenA). Given any M ∈ A-Mod, define α(M) : M→
M by the rule: α(M)(U) :M(U)→M(U) is the multiplication by α|U for
every open U ⊆ X. Obviously, it is a morphism of A-modules. Moreover,
if f ∈ HomA(M,N ), one easily sees that fα(M) = α(N)f , so α defines an
element from End1A-Mod.

Conversely, let λ ∈ End1A-Mod. Let U ⊆ X be an open subset, j :
U → X be the embedding. Then λ(U) = λ(j∗j

∗A) is an element from
EndA(j∗j

∗A) = A(U). Evidently, it is in cenA(U). Moreover, if V ⊆
U is another open subset, j′ : V → X is the embedding, the restriction
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homomorphism r : j∗j
∗A → j′∗j

′∗A gives the commutative diagram

j∗j
∗A

λ(U) //

r
��

j∗j
∗A

r
��

j′∗j
′∗A

λ(V ) // j′∗j
′∗A

It implies that λ(V ) = λ(U)|V . In particular, λ(X) = α is an element from
Γ(X, cenA) and λ(U) coincides with the multiplication by α|U . Thus we
obtain an isomorphism End1A-Mod ' Γ(X, cenA).

There is the restriction map End1A-Mod → End1A-Inj. On the other
hand, consider an injective copresentation of an A-moduleM, i.e. an exact

sequence 0 →M αM−−→ IM → I ′M with injective modules IM and I ′M. Let
λ ∈ End1A-Inj. Then there is a unique homomorphism λ(M) : M → M
such that λ(IM)αM = αMλ(M). Let 0→ N αN−−→ IN → I ′N be an injective
copresentation of another A-module N and f ∈ HomA(M,N ). Extending
f to injective copresentations, we obtain a commutative diagram

0 //M αM //

f

��

IM //

f0
��

I ′M
f1
��

0 // N αN // IN // I ′N

It implies that

αNλ(N )f = λ(IN )αN f = λ(IN )f0αM =

= f0λ(IM)αM = f0αMλ(M) = αN fλ(M),

whence λ(N )f = fλ(M), so we have extended λ to a unique endomorphism
of 1A-Mod. �

Proposition 3.5. Let C = cen(A), X ′ = Spec C be the spectrum of the
(commutative) OX-algebra C, φ : X ′ → X be the structural morphism, and
A′ = φ−1A.

(1) A′ is an OX′-algebra, so (X ′,A′) is a central non-commutative scheme.
(2) For any F ∈ A-Mod the natural map F → φ∗φ

∗F is an isomor-
phism.3

(3) For any F ′ ∈ A′-Mod the natural map φ∗φ∗F ′ → F ′ is an isomor-
phism.

(4) The functors φ∗ and φ∗ establish an equivalence of the categories
A-Mod and A-Mod′ as well as of A-mod and A′-mod.

Thus, when necessary, we can suppose, without loss of generality, that our
non-commutative schemes are central.

3 Note that in this situation φ∗ = φ−1.
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Proof. All claims are obviously local, so we can suppose that X = SpecR
and X ′ = SpecR′, where R′ is the center of the R-algebra A = Γ(X,A).
Then all claims are trivial. �

We call a non-commutative scheme (X,A) noetherian if the scheme X is
noetherian and A is coherent as a sheaf of OX -modules. Note that if (X,A)
is noetherian, the central non-commutative scheme (X ′,A′) constructed in
Proposition 3.5 is also noetherian. In particular, if an affine non-commuta-
tive scheme (SpecR,A˜) is noetherian, then A is a noetherian algebra, i.e.
C = cenA is noetherian and A is a finitely generated C-module.

Definition 3.6. Let (X,A) be noetherian.

(1) We denote by lpA the full subcategory of A-mod consisting of locally
projective modules P, i.e. such that Px is a projective Ax-module
for every x ∈ X.

(2) We say that A has enough locally projective modules if for every
coherent A-module M there is an epimorphism P → M, where
P ∈ lpA. Since every quasi-coherent module is a sum of its coherent
submodules, then for every quasi-coherent A-module M there is an
epmorphism P →M, where P is a coproduct of modules from lpA.

An important example arises as follows. We say that a noetherian non-
commutative scheme (X,A) is quasi-projective if there is an ample OX -
module L [20, Section 4.5]. Note that in this case X is indeed a quasi-
projective scheme over the ring R =

⊕∞
n=0Γ(X,L⊗n).

Proposition 3.7. Every quasi-projective non-commutative scheme (X,A)
has enough locally projective modules.

Proof. Let L be an ample OX -module,M be any coherent A-module. There
is an epimorphism of OX -modules nOX →M⊗OX

L⊗m for some m, hence

also an epimorphism F = nL⊗(−m) → M. Since HomA(A ⊗OX
F ,M) '

HomOX
(F ,M), it gives an epimorphism of A-modules A ⊗OX

F → M,
where A⊗OX

F ∈ lpA. �

We define an invertible A-module as an A-module I such that EndA I '
Aop and the natural map HomA(I,A) ⊗A I → (EndA I)op ' A is an iso-
morphism. For instance, the modules constructed in the preceding proof are
invertible. On the contrary, one easily proves that, if A is noetherian and
cenA = OX , any invertible A-module I is isomorphic to A ⊗OX

L, where
L = HomA-A(I, I) and L is an invertible OX -module. (We will not use this
fact.)

We denote by CA the category of complexes of A-modules, by K A the
category of complexes modulo homotopy and by DA the derived category
D(A-Mod). We also use the conventional notations C σA K σA and DσA,
where σ ∈ {+,−, b }. We denote by DcA the full subcategory of compact
objects C• from DA, i.e. such that the natural morphism∐

i HomDA(C•,F•i )→ HomDA(C•,
∐
iF•i )
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is bijective for any coproduct
∐
iF•i .

Recall that a complex I• is said to be K-injective [33] if for every acyclic
complex C• the complex Hom•(C•, I•) is acyclic too. We denote by K-injA
the full subcategory of K A consisting of K-injective complexes and by
K-inj0A its full subcategory consisting of acyclic K-injective complexes.

Proposition 3.8. Let (X,A) be a non-commutative scheme (separated and
quasi-compact).

(1) For every complex C• in CA there is a K-injective resolution, i.e.
a K-injective complex I• ∈ CA together with a quasi-isomorphism
C• → I•.

(2) DA ' K-injA/K-inj0A.

Proof. As the category A-Mod is a Grothendieck category, (1) follows im-
mediately from [2, Theorem 5.4] (see also [33, Lemma 3.7 and Proposition
3.13]). Then (2) follows from [33, Proposition 1.5]. �

A complex F• is said to be K-flat [33] if for every acyclic complex S• of
right A-modules the complex F• ⊗A S• is acyclic. The next result is quite
analogous to [1, Proposition 1.1] and the proof just repeats that of the cited
paper with no changes.

Proposition 3.9. Let (X,A) be a non-commutative scheme. Then for every
complex C• in CA there is a K-flat replica, i.e. a K-flat complex F• quasi-
isomorphic to C•.
Remark 3.10. If (X,A) is noetherian and has enough locally projective mod-
ules, every complex from C−A has a locally projective (hence flat) resolu-
tion. Then [33, Theorem 3.4] implies that for every complex C from CA
there is an Lp-resolution, i.e. a K-flat complex F• consisting of locally pro-
jective modules together with a quasi-isomorphism F• → C•. For instance,
it is the case if (X,A) is quasi-projective (Proposition 3.7).

A complex I• is said to be weakly K-injective if for every acyclic K-flat
complex F• the complex Hom•(F•, I•) is exact.

Proposition 3.11 ([33, Propositions 5.4 and 5.15]). Let f : (X,A)→ (Y,B)
be a morphism of non-commutative scheme.

(1) If F• ∈ CB is K-flat, then so is also f∗F•. If, moreover, F• is
K-flat and acyclic, then f∗F• is acyclic too.

(2) If I ∈ CA is weakly K-injective, then f∗I is weakly K-injective. If,
moreover, I is weakly K-injective and acyclic, then f∗I is acyclic
too.

Proposition 3.12 (cf. [33, Section 6]). Let (X,A) be a non-commutative
scheme.

(1) The derived functors RHom•A(F•,G•) and RHom•A(F•,G•) exist and
can be calculated using a K-injective resolution of G• or a weakly
K-injective resolution of G• and a K-flat replica of F•.
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(2) The derived functor F•
L
⊗A G•, where G• ∈ DAop, exists and can

be calculated using a K-flat replica either of F or of G. Moreover,
if Gop is a complex of A-B-bimodules, where B is another sheaf of
OX-algebras, there are isomorphisms of functors

RHomB(F•
L
⊗A G•,M•) ' RHomA(F ,RHomB(G•,M•))

RHomB(F•
L
⊗A G•,M•) ' RHomA(F ,RHomB(G•,M•)).

(3) For every morphism f : (X,A) → (Y,B) the derived functors Lf∗ :
DB → DA and Rf∗ : DA → DB exist. They can be calculated using,
respectively, K-flat replicas in CB and weakly K-injective resolutions
in CA. Moreover, there are isomorphisms of functors

RHom•B(F•,Rf∗G•) ' RHom•A(Lf∗F•,G•)
RHom•B(F•,Rf∗G•) ' Rf∗RHom•A(Lf∗F•,G•).

(4) If g : (Y,B) → (Z, C) is another morphism of non-commutative
schemes, then L(g ◦ f)∗ ' Lf∗ ◦Lg∗ and R(g ◦ f)∗ ' Rg∗ ◦Rf∗.

If the considered non-commutative schemes have enough locally projective
modules (for instance, are quasi-projective), one can replace in these state-
ments K-flat replicas by Lp-resolutions.

In particular, let f : A→ B be a homomorphism of rings. We consider B
as an algebra over a subring S (an arbitrary one) of its center and A as an
algebra over a subring R ⊆ cenA∩f−1(S). Then we can identify f with its
sheafification f˜ : (SpecS,B˜)→ (SpecR,A˜). In this context the functors
(f˜)∗ and (f˜)∗ are just sheafifications, respectively, of the “back-up” functor

BM 7→ AM and the “change-of-scalars” functor AN 7→ BB ⊗A N .

Definition 3.13. A complex C• in CA is said to be perfect if for every
point x ∈ X there is an open neighbourhood U of x such that C|U is quasi-
isomorphic to a finite complex of locally projective coherent modules. We
denote by PerfA the full subcategory of DA consisting of perfect complexes.

The following result is well-known in commutative and affine cases [28, 32].
Though the proof in non-commutative situation is almost the same, we
include it for the sake of completeness. Actually, we reproduce the proof of
Rouquier with slight changes.

Theorem 3.14. Let (X,A) be a non-commutative scheme (quasi-compact
and separated). Then DA is compactly generated and DcA = PerfA.

Proof. Let U ⊆ X be an open affine subset of X, AU be the restriction
of A onto U , {U = X \ U , j = jU : U → X be the embedding. Then
the inverse image functor j∗ : A-Mod → AU -Mod is exact and the natural
morphism j∗j∗ → 1AU -Mod is an isomorphism (actually, identity). Therefore
Ker j∗ is a localizing subcategory and A-Mod/Ker j∗ ' AU -Mod. Note that
Ker j∗U consists of the A-modulesM such that suppM⊆ {U . Then Ker Lj∗
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is a localizing subcategory of DA and DA/Ker Lj∗ ' DAU . This kernel
coincide with the full subcategory D{UA of DA consisting of complexes
whose cohomologies are supported on {U .

If W ⊆ X is another open affine subset, then the subcategories D{UA
and D{WA intersect properly in the sense of [32, 5.2.3]. Recall that it means
that j∗W jU ∗j

∗
UF = 0 as soon as j∗WF = 0, what follows, for instance, from

[20, Corollaire (1.5.2)] applied to the cartesian diagram of affine morphisms
(open embeddings)

U ∩W
j′W−−−−→ U

j′U

y yjU
W −−−−→

jW
X

Therefore, if X =
⋃m
i=1 Ui is an open affine covering of X, then

{
D{Ui

A
}

is
a cocovering of the triangulated category DA as defined in [32, 5.3.3]. If S ⊂
{ 1, 2, . . . ,m } does not contain i, US =

⋃
j∈S Uj , then

⋂
j∈S D{Uj

A = D{US
A

and the image of D{US
A in DAUi coincides with DUi\US

AUi . There are
sections f1, f2, . . . , fk ∈ A = Γ(Ui,OX) such that Ui \US = V (f1, f2, . . . , fk)
as a closed subset of Ui. The following lemma shows that the subcategory
DUi\US

AUi is compactly generated in DAUi .

Lemma 3.15. Let A be an algebra over a commutative ring O and I =
(f1, f2, . . . , fk) be a finitely generated ideal in O. Let K•(I) be the corre-
sponding Koszul complex. Denote by A-ModI the full subcategory of A-Mod
consisting of all modules M such that for every element a ∈ M there is m
such that Ima = 0. Denote by DIA the full subcategory of DA consisting
of all complexes such that their cohomologies belong to A-ModI . Then DIA
is generated by the complex K•A(I) = A⊗O K•(I).

Proof. Note that HomDA(K•A(I), C•) ' HomDO(K•(I), C•) for every C• ∈
DA. If C• ∈ DIA is non-exact, then HomDO(K•(I), C•[n]) 6= 0 for some n
by [32, Proposition 6.6]. It proves the claim. �

Evidently, K•A(I) is compact in DA. So we can now use [32, Theo-
rem 5.15]. It implies that DA is compactly generated and a complex C• in
DA is compact if and only if j∗Ui

C• is compact in DAUi for every 1 ≤ i ≤ m.
As Ui is affine, compact complexes in DAUi are just perfect complexes.
Therefore, it is true for DA too. �

4. Minors

Definition 4.1. Let (X,B) be a non-commutative scheme, P be a locally
projective and locally finitely generated B-module, A = (EndB P)op. The
non-commutative scheme (X,A) is called a minor of the non-commutative
scheme (X,B).4

4 In the affine case this notion was introduced in [13]. Actually, the main results of this
section are just global analogues of those from [13].
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In this situation we consider P as B-A-bimodule (left over B, right over
A). Let P∨ = HomB(P,B). It is an A-B-bimodule, locally projective and
locally finitely generated over B. The following statements are evidently
local, then they are well-known.

Proposition 4.2. The natural homomorphism P → HomB(P∨,B) is an
isomorphism. Moreover, A ' EndB P∨ ' P∨ ⊗B P.

We consider the following functors:

F = P ⊗A : A-Mod→ B-Mod,

G = HomB(P, ) : B-Mod→ A-Mod,

H = HomA(P∨, ) : A-Mod→ B-Mod.

(4.0.1)

Note that G is exact and G ' P∨⊗B , so both (F,G) and (G,H) are adjoint
pairs of functors. If the non-commutative scheme (X,B) is noetherian, so is
also (X,A) and these functors map coherent sheaves to coherent ones.

Theorem 4.3. (1) A-Mod ' B-Mod/C , where C = KerG = P⊥ is a
bilocalizing subcategory of B-Mod. Thus A-Mod is a bilocalization of
B-Mod and G is a bilocalization functor.

(2) The natural morphism φ : 1A-Mod → G ◦F is an isomorphism.
(2′) The natural morphism φ′ : G ◦H→ 1A-Mod is an isomorphism.
(3) The functor F is a full embedding and its essential image is ⊥C . So

the pair (F,G) induces an equivalence between A-Mod and ⊥C .
(3′) The functor H is a full embedding and its essential image is C⊥. So

the pair (H,G) induces an equivalence between A-Mod and C⊥.
(4) ⊥C coincides with the full subcategory of B-Mod consisting of all

modules M such that for every point x ∈ X there is an exact se-
quence P1 → P0 →Mx → 0, where P0, P1 are multiples of Px (i.e.
direct sums, maybe infinite, of its copies). We denote this subcate-
gory by P-Mod.

(4′) C⊥ consists with the full subcategory of B-Mod consisting of all mod-
ules M such that there is an exact sequence 0 → M → I0 → I1,
where Ii ∈ H(A-Inj).5 We denote this subcategory by P Inj-Mod.

Proof. Theorem 2.1 and Corollary 2.3 show that it is enough to prove the
following statements.

Proposition 4.4. (1) The natural morphism φ : 1A-Mod → G ◦F is an
isomorphism.

(2) ImF = P-Mod.
(2′) ImH = P Inj-Mod

As the claims (1) and (2) are local, we can suppose that the non-com-
mutative scheme (X,B) is affine, so replace B-Mod by B-Mod, where B =
Γ(X,B). Then P = P˜ for some finitely generated projective B-module

5 Note that all B-modules from H(A-Inj) are injective.

13



and A = A˜, where A = (EndB P )op. Hence we can also replace A-Mod
by A-Mod and P-Mod by P -Mod, the full subcategory of B-Mod consisting
of all modules N such that there is an exact sequence P1 → P0 → N → 0,
where Pi are multiples of P .

Obviously, φ(A) is an isomorphism. Since F and G preserve arbitrary
coproducts, φ(F ) is an isomorphism for any free A-module F . Let M ∈
A-Mod. There is an exact sequence F1 → F0 → M → 0, where F0, F1 are
free modules, which gives rise to a commutative diagram with exact rows

F1
//

φ(F1)
��

F0
//

φ(F0)
��

M //

φ(M)
��

0

G ◦F(F1) // G ◦F(F0) // G ◦F(M) // 0

As the first two vertical arrows are isomorphisms, so is φ(M), which proves
claim (1). Moreover, we get an exact sequence F(F1)→ F(F0)→ F(M)→ 0,
where F(Fi) are multiples of F(A) = P . Therefore, F(M) ∈ P -Mod.

Consider now the natural morphism ψ : F ◦G→ 1B-Mod. This time ψ(P )
is an isomorphism. Let now N be a B-module such that there is an exact
sequence P1 → P0 → N → 0, where Pi are multiples of P . Then there is a
commutative diagram with exact rows

F ◦G(P1) //

ψ(P1)

��

F ◦G(P0) //

ψ(P0)

��

F ◦G(N) //

ψ(N)

��

0

P1
// P0

// N // 0

The first two vertical arrows are isomorphisms, so ψ(N) is also an isomor-
phism. It proves claim (2).

The proof of (2′) is quite analogous to that of (2), so we omit it.
Note that the conditionM∈ P Inj-Mod also turns out to be local, since it

means that the natural map M→ H ◦G(M) is an isomorphism. �

Actually, we can describe the kernel of this bilocalization explicitly.

Theorem 4.5. Let IP = Im{µP : P ⊗A P∨ → B}, where µ(p ⊗ γ) = γ(p).
Then KerG = {M ∈ B-Mod | IPM = 0 } ' (B/IP)-Mod.

Proof. Again the statement is local, so we only have to prove it for a ring
B, a finitely generated projective B-module P and the ideal IP = ImµP . It
follows from [9, Proposition VII.3.1] that IPP = P . Therefore, if f : P →M
is non-zero, then IP Im f = Im f 6= 0, hence IPM 6= 0. On the contrary, if
IPM 6= 0, there is an element u ∈M , elements pi ∈ P and homomorphisms
γi : P → B such that

∑
i γi(pi)u 6= 0. Let β : B → M maps 1 to u and

γui = βγi. Then at least one of the homomorpisms γui is non-zero. �

The functor G is exact, so it induces a functor DG : DB → DA mapping
a complex F• to GF•. It is both left and right derived functor of G. We can
also consider the left derived functor LF of F and the right derived functor
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RH of H, both being functors DA → DB. Obviously, DG maps DσB to
DσA, where σ ∈ {+,−, b }, LF maps D−A to D−B and RH maps D+A to
D+B.

Theorem 4.6. (1) The functors (LF,DG) and (DG,RH) form adjoint
pairs.

(2) DA ' DB/DCB, where C = KerG = P⊥ ' (B/IP)-Mod. More-
over, DCB = KerG is a bilocalizing subcategory of DB, so DA is a
bilocalization of DB and DG is a bilocalizing functor.

(3) The natural map 1DA → DG ◦ LF is an isomorphism.
(3′) The natural map DG ◦RH→ 1DA is an isomorphism.
(4) The functor LF is a full embedding and its essential image is ⊥(DCB).

So the pair (LF,DG) defines an equivalence DA ' ⊥(DCB).
(4′) The functor RH is a full embedding and its essential image is (DCB)⊥.

So the pair (RH,DG) defines an equivalence DA ' (DCB)⊥.
(5) The functor LF maps DcA to DcB.
(6) (KerDG, Im LF) as well as (ImRH,KerDG) are semi-orthogonal de-

compositions of DB.
Note that Im LF ' ImRH, though these two subcategories usually
do not coincide. Both of them are equivalent to DA.

(7) Im LF coincides with the full subcategory DP−→ of DB consisting of

complexes quasi-isomorphic to K-flat complexes F• such that for ev-
ery x ∈ X and every component F i the localization F ix is a direct
limit of modules from addPx. The same is true if we replace D by
D−.

(7p) If A and B have enough locally projective modules (for instance, if
X is quasi-projective), Im LF coincides with the full subcategory DP
of DB consisting of complexes quasi-isomorphic to K-flat complexes
F• such that F ix ∈ AddPx for every i ∈ Z and every point x ∈ X.
The same is true if we replace D by D−.

(7′) ImRH coincides with the full subcategory DP Inj of DB consisting of
complexes quasi-isomorphic to K-injective complexes consisting of
modules from H(A-Inj). The same is true if we replace D by D+.

Note that the condition in (7′) can also be verified locally at every point
x ∈ X.

Proof. (1) Let F• be a K-flat replica of M• ∈ DA and I• be an injective
resolution of N • ∈ DB. Then LFM• = FF• and DGN • = GI•. As P ∈
lpB, the complex FF• is K-flat and the complex GI• is K-injective. By
Proposition 3.12 (2),

RHomB(FF•, I•) = Hom•B(FF•, I•) '
Hom•A(F•,GI•) = RHomA(F•,GI•).

Taking zero cohomologies, we obtain that

HomB(FF•, I•) ' HomA(F•,GI•).
15



Choose now a K-flat replica G• of N • and a K-injective resolution J • ofM•.
Then DGN • = GG• and RHM• = HJ •. By [33, Proposition 5.14], HJ • is
weakly K-injective. By Proposition 3.12 (2) and [33, Proposition 6.1],

RHomA(GG•,J •) = Hom•A(GG•,J •) '
Hom•B(G•,HJ •) = RHomB(G•,HJ •).

Taking zero cohomologies, we obtain that

HomA(GG•,J •) ' HomB(G•,HJ •)

The statements (3) and (3′) follow from the statements (2) and (2′) of
Theorem 4.3. Then the statements (2),(4) and (4′) follow from Theorem 2.1
and Corollary 2.3.

(5) As the right adjoint DG of LF preserves arbitrary coproducts, LF maps
compact objects to compact ones.

(6) follows from Theorem 2.5.

(7) The construction of [1, Proposition 1.1] gives for any complex M• ∈
DA a quasi-isomorphic K-flat complex F• such that all its components F i
are flat. Moreover, F• is left bounded if so isM•. By [6, Ch. X, § 1, Théorème 1],
F ix ' lim−→L

i
n, where Lin are projective finitely generated Ax-modules, hence

belong to addAx. Then LFM• ' FF•. As F preserves direct limits and
FA ' P, FF ix ' lim−→FLin and FLin ∈ addPx. Hence M• ∈ DP−→.

On the contrary, let N • ∈ DP−→. We can suppose that it is K-flat and

for every i ∈ Z and every x ∈ X we can present N i
x as lim−→N

i
n, where

N i
n ∈ addPx. Then the complex GN • is also K-flat [33, Proposition 5.4], so

LF ◦DG(N •) ' FG(N •). As the natural map FG(P)→ P is an isomorphism,
the same is true for all modules N i

n, hence also for N i
x. Therefore, the

natural map LF ◦DG(N )→ N is an isomorphism.
The proof of (7p) is quite analogous to the proof of (7), taking into account

that in this situation every complex is quasi-isomorphic to a K-flat complex
of locally projective modules. The proof of (7′) is also analogous to that of
(7). �

There is one special case when the category KerDG can be described more
precisely.

Theorem 4.7. Suppose that the ideal IP is flat as a right B-module. Then
KerDG ' D(B/IP).

Proof. Let I = IP , Q = B/I. One easily sees that I2 = I. We identify
DQ with the full triangulated subcategory of DB, obviously contained in
KerDG. Let F• ∈ KerDG, i.e. its cohomologies are indeed Q-modules.
We can suppose that F• is K-flat. Tensoring it with the exact sequence
0 → I → B → Q → 0, we obtain an exact sequence of complexes 0 →
I⊗BF• → F• → Q⊗BF• → 0. Since I is flat, H•(I ⊗BF) ' I⊗BH•(F•).
Note that I ⊗B Q ' I/I2 = 0, whence I ⊗BM = 0 for any Q-module.
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Therefore, H•(I ⊗B F•) = 0, hence F• is quasi-isomorphic to Q ⊗B F•,
which is in DQ. �

Example 4.8. An important special case of minors appears as the endomor-
phism construction. Let A be a non-commutative scheme, F be a coherent
A-module and AF = EndA(A⊕F)op. Then AF is identified with the algebra
of matrices

AF =

(
A F
F ′ E

)
where F ′ = HomA(F ,A) and E = (EndAF)op. If PF =

( A
F ′
)

considered
as AF -module, then A ' (EndAF PF )op, so A is a minor of AF and the
categories A-Mod and DA are bilocalizations, respectively, of AF -Mod and
DAF . The corresponding functors are

FF = PF ⊗A ,

GF = HomAF (PF , ),

HF = HomAF (PF , ).

Note that P∨F '
(
A F

)
as right AF -module and, by the construction,

PF ' HomA(P∨F ,A). Theorem 4.5 then implies that the kernel C of the
functor GF : AF -Mod→ A-Mod is equivalent to E/IF -Mod, where IF is the
image of the natural map F ′ ⊗A F → E .

We consider an application of minors to global dimensions and semi-
orthogonal decompositions. Let (X,B) be a non-commutative scheme,M be
a B-module. We call sup

{
i | Ext iB(M, ) 6= 0

}
the local projective dimension

of the B-moduleM and denote it by lp.dimBM. If (X,B) is noetherian and
M is coherent, then lp.dimBM = sup

{
pr.dimBxMx | x ∈ X

}
.

Lemma 4.9. Let (X,B) be a non-commutative scheme, P be a locally projec-
tive and locally finitely generated B-module, A = (EndB P)op and B̄ = B/IP .
Suppose that P is flat as right A-module,

lp.dimB IP = d,

gl.dimA = n,

gl.dim B̄ = m.

Then gl.dimB ≤ max {m+ d+ 2, n }.

Proof. Let B̄ = B/IP . Then lp.dimB B̄ = d + 1. From the spectral se-

quence ExtpB̄(M, ExtqB(B̄, )) ⇒ Extp+qB (M, ) it follows that pr.dimBM ≤
m + d + 1 for every B̄-module M. Consider the functors G = HomB(P, )
and F = P ⊗A . Since the morphism GFG → G, arising from the adjunc-
tion, is an isomorphism, the kernel and the cokernel of the natural map
α : FGM→M are annihilated by G, so are actually B̄-modules. It implies
that ExtiB(M,N ) ' ExtiB(FGM,N ) if i > m + d + 2, so pr.dimBM ≤
max {m+ d+ 2, pr.dimB FGM}. As both functors F and G are exact,
ExtiB(F , ) ' ExtiA( ,G ), so pr.dimB FGM≤ n. �
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Definition 4.10. (1) Let (X,B) and (X,A) be two non-commutative
schemes. A relating chain between B and A is a sequence (B1,P1,
B2,P2,. . . ,Pr,Br+1), where B1 = B, Br+1 = A, every Pi (1 ≤ i ≤ r)
is a locally projective and locally finitely generated Bi-module which
is also flat as right Ai-module, where Ai = (EndBi Pi)op, and Bi+1 =
Bi/IPi for 1 ≤ i ≤ r.

(2) The relating chain is said to be flat if, for every 1 ≤ i ≤ r, IPi is
flat as right Bi-module. Note that it is the case if the natural map
Pi ⊗Ai P∨i → Bi is a monomorphism.

(3) The relating chain is said to be pre-heredity if, for every 1 ≤ i ≤ r,
IPi is locally projective as left B-module. If it is both pre-heredity
and flat, it is said to be heredity.

(4) If the relating chain is heredity and all non-commutative schemes Ai
are hereditary, i.e. gl.dimAi ≤ 1, we say that the non-commutative
scheme B is quasi-hereditary of level r. (Thus quasi-hereditary of
level 0 means hereditary).

We fix a relating chain (B1,P1, B2,P2,. . . ,Pr,Br+1) between B and A and
keep the notations of Definition 4.10 (1).

Corollary 4.11. Let gl.dimAi ≤ n and lp.dimBi IPi ≤ d for all 1 ≤ i ≤ r.
Then gl.dimB ≤ r(d+2)+max { gl.dimA, n− d− 2 }. If this relating chain
is pre-heredity, then gl.dimB ≤ gl.dimA+ 2r.

Using Theorem 4.6 (6), Theorem 4.7 and induction, we also get the fol-
lowing result.

Corollary 4.12. If this relating chain is flat, there are semi-orthogonal
decompositions (T ,Tr, . . . ,T1) and (T ′1 ,T

′
2 , . . . ,T

′
r ,T ) of DB such that

Ti ' T ′i ' DAi (1 ≤ i ≤ r) and T ' DA.

Note that, as a rule, Ti 6= T ′i .

Corollary 4.13. If a non-commutative scheme B is quasi-hereditary of level
r, then gl.dimB ≤ 2r + 1 and there are semi-orthogonal decompositions
(T ,Tr, . . . ,T1) and (T ′1 ,T

′
2 , . . . ,T

′
r ,T ) of DB such that Ti ' T ′i (1 ≤

i ≤ r), as well as T , is equivalent to the derived category of a hereditary
non-commutative scheme.

Remark 4.14. Suppose that (X,B) is affine: X = SpecR and B = B∼.

(1) If B is semiprimary, then B is quasi-hereditary with respect to our
definition if and only if B is quasi-hereditary in the classical sense
of [10, 12].

(2) If R is a discrete valuation ring and B is an R-order in a separable
algebra, then B is quasi-hereditary with respect to our definition if
and only if B is quasi-hereditary in the sense of [23].

Example 4.15. Consider the endomorphism construction of Example 4.8.
Suppose that F is flat as right E-module, F ′ is locally projective as left
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E-module and the natural map µF : F ⊗E F ′ → A is a monomorphism. Let
P̃ =

( F
E
)

and Ā = A/ ImµF . Then one can easily verify that (AF , P̃, Ā) is

a heredity relating chain. Therefore, if both E and Ā are quasi-hereditary,
so is AF .

5. Strongly Gorenstein schemes

In this section we only consider noetherian non-commutative schemes.

Definition 5.1. Let (X,A) be a noetherian non-commutative scheme. We
call it strongly Gorenstein if X is equidimensional, A is Cohen-Macaulay as
OX -module and inj.dimAA = dimX.6

Recall that an A-module M is injective if and only if Ax-modules Mx

are injective for all x ∈ Xcl (the proof from [21, Proposition 7.17] remains
valid in non-commutative situation too). We need some basic facts about
injective dimension for non-commutative rings. NowR denotes a noetherian
commutative local ring with the maximal ideal m and the residue field k =
R/m, A denotes an R-algebra finitely generated as R-module. Let also
r = radA and Ā = A/r. As usually, for every ideal I ⊆ R we denote by
V (I) the set of prime ideals containing I.

Theorem 5.2. inj.dimM = sup
{
i | ExtiA(Ā,M) 6= 0

}
.

Just as in [7, Proposition 3.1.14], this theorem is an immediate conse-
quence of the following lemma.

Lemma 5.3. Let p 6= m be a prime ideal of R, M be a noetherian R-
module. Suppose that ExtiA(N,M) = 0 for any noetherian A-module N
such that V (annRN) ⊂ V (p) and i > m. Then also ExtiA(N,M) = 0 for
any noetherian A-module N such that V (annRN) ⊆ V (p) and i > m.

Proof. Suppose that the condition is satisfied and let V (annRN) ⊆ V (p).
If q ∈ AssN and q 6= p, there is a submodule N ′ ⊆ N such that qN ′ = 0.
Therefore, ExtiA(N ′,M) = 0 for i > m and we only have to prove that
ExtiA(N/N ′,M) = 0 for i > m. Thus we can suppose that AssN = {p}.
Let a ∈ m \ p. Then a is non-zero-divisor on N , i.e. we have the exact

sequence 0→ N
a−→ N → N/aN → 0. It gives and exact sequence

ExtiA(N,M)
a−→ ExtiA(N,M)→ Exti+1

A (N/aN,M).

Obviously, annRN/aN ⊃ p, so the last term is 0 if i > m. Therefore,
aExtiA(N,M) = ExtiA(N,M) and ExtiA(N,M) = 0 by Nakayama’s Lemma.

�

6 We do not know whether the last condition implies the Cohen-Macaulay property, as
it is in the commutative case.
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Corollary 5.4. Let M be a coherent A-module. Then

inj.dimAM = sup
{
i | ExtiA(A(x),M) 6= 0 for some x ∈ Xcl

}
=

= sup
{

inj.dimAx
Mx | x ∈ Xcl

}
.

Here A(x) denotes A⊗OX
k(x).

Corollary 5.5.

gl.dimA = sup { pr.dimAA(x) | x ∈ Xcl } =

= sup
{
i | ExtiA(A(x),A(x)) 6= 0 for some x ∈ Xcl

}
=

= sup { gl.dimAx | x ∈ Xcl } .

Lemma 5.6. Let M be a noetherian A-module. If an element a ∈ R is non-
zero-divisor both on A and on M , then inj.dimAM = inj.dimA/aAM/aM .

Proof. It just repeats that of [7, Corollary 3.1.15]. �

Corollary 5.7. Let a = (a1, a2, . . . , am) be an A-sequence in m. Then A
is strongly Gorenstein if and only if so is A/aA.

Corollary 5.8. A is strongly Gorenstein if and only if so is Aop.

Proof. The claim is local, so we can replace A by A. Corollary 5.7 reduces
the proof to the case when Kr.dimR = 0, i.e. A is just an artinian algebra.
Then it is well-known [4, Proposition IV.3.1]. �

For a noetherian non-commutative scheme (X,A) we denote by CMA
the full subcategory of A-mod consisting of such modules M that Mx is a
maximal Cohen-Macaulay module over OX,x for every point x ∈ X. The
following results can be proved just as in the commutative case (see [7,
Section 3.3]).

Theorem 5.9. Let (X,A) be a strongly Gorenstein non-commutative scheme,
M∈ CMA.

(1) Ext iA(M,A) = 0 for i 6= 0.
(2) The natural mapM→HomA(HomA(M,A),A) is an isomorphism.

Thus the functor ∗ : M 7→ M∗ = HomA(M,A) gives an exact duality
between the categories CMA and CMAop.

Let now (X,A) be a strongly Gorenstein non-commutative scheme, F ∈
CMA. Consider the endomorphism construction described in Example 4.8.
Theorem 5.9 implies that the natural map φ(M) : FFM → HFM is an
isomorphism for M = A, hence an isomorphism for any M∈ lpA.

Theorem 5.10. Let (X,A) be strongly Gorenstein and contain enough lo-
cally projective modules, F ∈ CMA. Then the restrictions of the functors
LFF and RHF onto the subcategory DcA are isomorphic. Thus the restric-
tion of LFF onto DcA is both left and right adjoint to the bilocalization
functor DGF .
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Proof. As A has enough locally projective modules, any complex from DcA
is quasi-isomorphic to a finite complex C• such that all Ci are from lpA.
Then LFFC• = FFC•. On the other hand, by Theorem 5.9, RkHFCi =
ExtkA(PF , Ci) = 0 for k 6= 0. Therefore, RHFC• = HFC• ' FFC•. �

6. Non-commutative curves

6.1. Generalities.

Definition 6.1. A non-commutative curve is a reduced non-commutative
scheme (X,A) such that X is an excellent curve (equidimensional reduced
noetherian scheme of dimension 1) and A is coherent and torsion free as
OX -module.

As X is excellent, then Âx, the mx-adic completion of Ax, is also reduced
(has no nilpotent ideals). Therefore, for the local study of non-commu-
tative curves we can use the usual results from the books [11, 30]. We
denote by K = K(X) the sheaf of full rings of fractions of OX and write
KM instead of K ⊗OX

M for any OX -module M. In particular, KA is
a K-algebra. The sheaves KM are locally constant; the stalks of K and
KA are semi-simple rings. The torsion part torsM of M is defined as the
kernel of the natural map M → KM. We say that a coherent A-module
M is torsion free if torsM = 0, and we say that M is torsion if KM = 0.
Note that torsM is torsion and M/ torsM is torsion free. We denote
by torsA and tfA respectively the full subcategories of A-mod consisting
of torsion and of torsion free modules. We always consider a torsion free
module M as a submodule of KM. In particular, we identify Mx with its
natural image in KMx. Note that for every submodule N ⊆ KM there is a
natural embedding KN → KM and we identify KN with the image of this
embedding. A non-commutative curve (X,A′) is said to be an over-ring of
a non-commutative curve (X,A) if A ⊆ A′ ⊂ KA. Then A′ is naturally
considered as a coherent A-module. The non-commutative curve (X,A) is
said to be normal if it has no proper over-rings. Since X is excellent and
A is reduced, the set {x ∈ X | Ax is not normal } is finite. Then it follows
from [14] that the set of over-rings of A satisfies the maximality condition:
there are no infinite strictly ascending chains of over-rings of A.

Coherent torsion free A-modules, in particular, over-rings of A can be
constructed locally.

Lemma 6.2. Let M be a torsion free coherent A-module.

(1) If N is a coherent A-submodule of KM such that KN = KM, then
Nx =Mx for almost all x ∈ X.

(2) Let S ⊂ Xcl be a finite set and for every x ∈ S a finitely generated
Ax-submodule Nx ⊂ KMx is given such that KNx = KMx. Then
there is a unique A-submodule N ⊂ KM such that Nx = Nx for
every x ∈ S and Nx =Mx for all x /∈ S.
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(3) If M = A and all Nx in the preceding item are rings, then N is a
subalgebra of KA, so (X,N ) is also a non-commutative curve and if
Nx ⊇ Ax for all x ∈ S, (X,N ) is an over-ring of (X,A).

Proof. We can suppose that X is affine. Then the proof just repeats that of
[5, Ch. VII, § 3, Theorem 3] with slight and obvious changes. �

Lemma 6.3. Any non-commutative curve (X,A) has enough invertible
modules. Namely, the set

LA = {A ⊗OX
L | L is an invertible OX -module }

generates QcohA (hence, generates DA).

Proof. We must show that if M′ ⊂ M is a proper submodule, there is
a homomorphism f : L → M such that Im f 6⊆ M′. As HomA(A ⊗OX

L,M) ' HomOX
(L,M), we can suppose that A = OX . Moreover, as

every A-module is a direct limit of its coherent submodules, we can suppose
that M is coherent. Let first M′ 6⊇ torsM. Choose x ∈ Xcl such that
torsMx 6⊆ M′x and let ux ∈ torsMx \ M′x. There is a global section
u ∈ Γ(X, torsM) ⊆ Γ(X,M) such that ux is its image in Mx. Then there
is a homomorphism f : OX →M such that f(1) = u, so Im f 6⊆ M′.

Let now M′ ⊇ torsM. Since Ext1
OX

(L, torsM) = 0 for any locally
projective module L, the map HomOX

(L,M) → HomOX
(L,M/ torsM) is

surjective. Hence, we can suppose thatM is torsion free. LetMy 6=M′y for
some y ∈ Xcl and uy ∈ My \M′y. There is a homomorphism ϕ : K → KM
such that ϕ(1) = uy. Let N = ϕ(OX). The set S = {x ∈ Xcl | Nx 6⊆ Mx }
is finite; moreover, y /∈ S. For every x ∈ S there is an ideal Lx ⊆ OX,x
such that Lx ' OX,x and ϕ(Lx) ⊆Mx. Now choose an ideal L ⊆ OX such
that Lx = Lx for x ∈ S and Lx = OX,x otherwise. It is an invertible ideal,
ϕ(L) ⊆M and ϕ(L) 6⊆ M′. �

We will use the duality for left and right coherent torsion free A-modules
established in the following theorem.

Theorem 6.4. (1) There is a canonical A-module, i.e. such a module
ωA ∈ tfA that inj.dimA ωA = 1 and EndA ωA ' Aop (so ωA can
be considered as an A-bimodule). Moreover, ωA is isomorphic as a
bimodule to an ideal of A.

We denote by M∗, where M ∈ QcohA (or M ∈ QcohAop) the
Aop-module (respectively, A-module) HomA(M, ωA) (respectively,
HomAop(M, ωA)).

(2) The natural map M→M∗∗ is an isomorphism for every M∈ tfA
(or M ∈ tfAop) and the functors M 7→ M∗ establish an exact
duality of the categories tfA and tfAop. Moreover, if M ∈ CohA,
then M∗∗ 'M/ torsM.

Proof. Each local ring Ox = OX,x is excellent, so its integral closure in Kx
is finitely generated and its completion Ôx is reduced. Therefore Ox has a
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canonical module ωx which can be considered as an ideal in Ox [22, Korol-
lar 2.12]. Moreover, Ox is normal for almost all x ∈ Xcl and in this case we
can take ωx = OX,x. By Lemma 6.2, there is an ideal ωX ⊆ OX such that

ωX,x = ωx for each x ∈ X. Then inj.dimOX
ωX = sup

{
inj.dimOX,x

ωx

}
=

1. As the natural map OX,x → EndOX,x
ωx is an isomorphism for each

x ∈ X, the natural map OX → EndOX
ωX is an isomorphism too. There-

fore, ωX is a canonical OX -module. Then it is known that the functor
M 7→M∗ = HomOX

(M, ωX) is an exact self-duality of tfOX and the nat-
ural map M → M∗∗ is an isomorphism. Set now ωA = HomOX

(A, ωX).
Then HomA(M, ωA) ' HomOX

(M, ωX) for any A-module M, whence all
statements of the theorem follow. �

As usually, we say that two non-commutative schemes (X,A) and (Y,B)
are Morita equivalent if their categories of quasi-coherent modules are equiv-
alent. A coherent locally projective A-module P is said to be a local pro-
generator if Px is a progenerator for Ax for all x ∈ X. It follows from
Theorem 4.3 that then (X,A) is Morita equivalent to (X, E), where E =
(EndA P)op.

Theorem 6.5. (1) Let (X,A) and (X,B) are two non-commutative curves
such that Ax is Morita equivalent to Bx for every x ∈ Xcl. Then
(X,A) and (X,B) are Morita equivalent.

(2) Let now (X,A) and (Y,B) be two central non-commutative curves
finite over a field. If they are Morita equivalent, there is an isomor-
pism τ : X

∼→ Y such that, for every points x ∈ X and y = τ(x),
the rings (τ∗B)x and Ax are Morita equivalent.

Proof. (1) If Ax and Bx are Morita equivalent, there is a progenerator Px
for Ax such that Bx ' (EndAx Px)op. There is a KA-module V such that
V ' KPx for all x ∈ Xcl. Choose a normal over-ring A′ of A and a coherent
A′-submoduleM⊂ V such that KM = V. ThenM is a local progenerator
for A′. Set B′ = (EndA′M)op and S = {x ∈ Xcl | Ax 6= A′x or Bx 6= B′x }.
The set S is finite, so there is an A-submodule P ⊂ V such that Px = Px
for x ∈ S and Px = Mx for x /∈ S. Then P is a local progenerator for A
and B ' (EndA P)op.

(2) follows from [3, Section 6]. �

6.2. Hereditary non-commutative curves. We call a noetherian non-
commutative scheme (X,A) hereditary if all localizations Ax are hereditary
rings, i.e. gl.dimAx = 1. Then gl.dimA = 1 too, so Ext2

A(M,N ) = 0 for
all A-modulesM,N . Suppose that (X,A) is a hereditary non-commutative
curve. Then any torsion free coherent A-module M is locally projective,
so Ext1

A(M,N ) = 0 for any A-module N . If N is coherent and torsion,
it implies that Ext1

A(M,N ) = 0. Therefore, every coherent A-modules
M splits as M = torsM ⊕M′, where M′ is torsion free, hence locally
projective. If a central non-commutative curve (X,H) is hereditary, then X
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is smooth. There is an effective description of hereditary non-commutative
curves up to Morita equivalence.

First consider the case when X = SpecO, where O is a complete discrete
valuation ring with the field of fractions K, the maximal ideal m and the
residue field k = O/m. Let H be a hereditary reduced O-algebra which
is torsion free as O-module. Then KH ' Mat(n,D), where D is a finite
dimensional division algebra over K. There is a unique maximal O-order
∆ ⊂ D [30, Theorem 12.8]. It contains a unique maximal ideal M, which

is both left and right principal ideal. Let n =
∑k

i=1 ni for some positive
integers ni, n = (n1, n2, . . . , nk) and H(n,D) be the subring of Mat(n,∆)
consisting of k × k block matrices (Aij) such that Aij is of size ni × nj and
if j > i all coefficients of Aij are from M. Let also L = ∆n considered as
H(n,D)-module and Li be the submodule in L consisting of such vectors

(α1, α2, . . . , αn) that αi ∈ M for i >
∑i

j=1 ni. In particular, L0 = L and

Lk = Mn ' L. If necessary, we denote Li = Li(H).

Theorem 6.6 ([30, Theorem 39.14]). Let O be a complete discrete valuation
ring.

(1) Every connected hereditary O-order is isomorphic to H(n,D) for
some tuple n = (n1, n2, . . . , nk), which is uniquely determined up to
a cyclic permutation.

(2) Hereditary orders H(n,D) and H(n′,D′) are Morita equivalent if
and only if D 'D′ and n and n′ are of the same length.

(3) Li (0 ≤ i < k) are all indecomposable projective H-modules and
Ui = Li/Li+1 are all simple H(n,D)-modules (up to isomorphism).

Let now (X,H) be a connected central hereditary non-commutative curve.
Then KH is a central simple K-algebra: KA = Mat(n,D), where D is a

central division algebra. For every closed point x ∈ X the completion D̂x
is isomorphic to Mat(mx,Dx) for some central division algebra Dx over K̂x
and some integer mx = mx(D). Therefore, for every closed point x ∈ X, Ĥx
is isomorphic to H(n,Dx) for some n = (n1, n2, . . . , nk), where

∑k
i=1 ni =

mxn. Thus Theorems 6.5 and 6.6 give the following result.

Theorem 6.7. A central hereditary non-commutative curve (X,H) is de-
termined up to Morita equivalence by a central division K-algebra D and a
function κ : Xcl → N such that κ(x) = 1 for almost all x ∈ Xcl.

Remark 6.8. Representatives of a class given by D and κ can be obtained
as follows. Choose an integer n such that κ(x) ≤ nmx(D) for all x ∈ Xcl.

There is an Ox-order Hx in Mat(n,D) such that Ĥx = H(nx,Dx) for some
nx = (n1,x, n2,x, . . . , nκ(x),x). Fix a normal non-commutative curve (X,∆)
such that K∆ = D. Then we can define H = H(n,D) as the non-commu-
tative curve such that KH = Mat(n,D), Hx = Mat(n,∆x) if κ(x) = 1 and
Hx = Hx if κ(x) > 1.
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Let S = {x ∈ X | κ(x) > 1 }, L = ∆n considered as H-module. Con-

sider the submodules Lx,i (0 ≤ i ≤ κ(x)) such that (L̂x,i)x = Li(Ĥx) and
(Lx,i)y = Ly if y 6= x. Let also Ux,i = Lx,i/Lx,i+1 (0 ≤ i < κ(x)). Then
Ux,i are all simple H-modules (up to isomorphism). Note that Lx,0 = L for
every point x.

Theorem 6.9. Let H = H(n,D).

(1) The set

LH = {L} ∪ {Lx,i | x ∈ S, 1 ≤ k ≤ κ(x) }
classically generates DcH, hence generates DH (see [26, Theorem 2.2]).

(2) DA ' DA, where A denotes the DG-category with the set of objects
LA and A(L′,L′′) = RHomA(L′,L′′).

Proof. (1) Obviously, 〈LH 〉∞ contains all simple H-modules. Therefore, it
contains all torsion coherentH-modules, as well as all coherentH-submodules
of KL. If M is a coherent torsion free H-module, it contains a submodule
N isomorphic to a submodule of KL such thatM/N is also torsion free. It
implies that 〈LH 〉∞ contains all coherent H-modules, hence coincides with
DcH.

(2) follows now from [26, Proposition 2.6]. �

Corollary 6.10. Let k be an algebraically closed field.

(1) A connected hereditary algebraic non-commutative curve over k is
defined up to Morita equivalence by a pair (X,κ), where X is a
smooth connected algebraic curve over k and κ : Xcl → N is a func-
tion such that κ(x) = 1 for almost all x. Representatives of the
Morita class given by such a pair are H(n,K) as described in Re-
mark 6.8.

(2) Two connected hereditary non-commutative curves given by the pairs
(X,κ) and (X ′, κ′) are Morita equivalent if and only if there is an
isomorphism τ : X → X ′ such that κ′(τ(x)) = κ(x) for all x ∈ Xcl.

In this case we write H(n, X) instead of H(n,K).

Proof. The Brauer group of K is trivial [25, Theorem 17]. Therefore, the
algebra D in Theorem 6.7 coincides with K. �

We say that a central non-commutative curve (X,A) is rational (over
a field k) if all simple components of the algebra KA are of the form
Mat(n,k(x)). Then the curve X is also rational over k.

Theorem 6.11. Let (X,H) be a connected rational hereditary non-commu-
tative curve over a field k and κ : Xcl → N be the corresponding function.
Let S = {x ∈ Xcl | κ(x) > 1 }, o ∈ Xcl be an arbitrary point.

(1) The set

LH = {L,L(−o) } ∪ {Lx,i | x ∈ S, 1 ≤ i < κ(x) }
classically generates DcH, hence generates DH.
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(2) If L′,L′′ ∈ LH, then ExtkH(L′,L′′) = 0 for all k > 0, while

dim HomH(L′,L′′) =



1 if L′ = L′′,
or L′ = L(−o), L′′ = Lx,i,
or L′ = Lx,i, L′′ = L,
or L′ = Lx,j , L′′ = Lx,i, j > i,

2 if L′ = L(−o), L′′ = L,
0 in all other cases.

In particular, LH is a tilting set for the category DH.
(3) If θx,i are generators of the spaces HomH(Lx,i,Lx,i−1) (1 ≤ i ≤

κ(x)), then the products θx = θx,1θx,2 . . . θx,κ(x) are non-zero and
any two of them generate HomH(L(−o),L).

Proof. (1) If X ' P1, then all sheaves O(−x), hence all sheaves L(−x) are
isomorphic. Moreover, in this case Lx,κ(x) ' L(−x) for any x ∈ Xcl, so we
can apply Theorem 6.9.

(2) From the definition of L and Lx,i it immediately follows that

HomH(L′,L′′) '



O if L′ = L′′,
or L′ = Lx,i, L′′ = L,
or L′ = Lx,j , L′′ = Lx,i, j > i,

O(o− x) if L′ = L(−o), L′′ = Lx,i,
O(o) if L′ = L(−o), L′′ = L,
O(−o) in all other cases.

Since ExtiH(L′,L′′) = H i(HomH(L′,L′′)), it implies the statement.
(3) One easily sees that, if x = (1 : ξ) as the point of P1, then θx, up to a

scalar, is the multiplication by t− ξ, where t is the affine coordinate on the
affine chart A1

0. Now the statement is obvious. �

Recall that a canonical algebra by Ringel [31, 3.7] is given by a se-
quence of integers (k1, k2, . . . , kr), where r ≥ 2 and all ki ≥ 2 if r > 2,
and a sequence (λ3, λ4, . . . , λr) of different non-zero elements from k (if
r = 2, this sequence is empty). Namely, this algebra, which we denote by
R(k1, k2, . . . , kr;λ3, . . . , λr), is given by the quiver

(6.2.1) •
α21 // • . . . •

αk1−1,1 // • αk11

**
•

α11 44

α12

//

α1r

  

• α22

// • . . . •αk2−1,2

// • αk22

// •
...

• α2r

// • . . . •αkr−1,r

// •

αkrr

>>

with relations αj = α1 + λjα2 for 3 ≤ j ≤ r, where αj = αkjj . . . α2jα1j .

Certainly, if r = 2, it is the path algebra of a quiver of type Ãk1+k2 . In
particular, if r = 2, k1 = k2 = 1, it is the Kronecker algebra.
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Corollary 6.12. Let (X,H) be a rational projective hereditary non-commu-
tative curve, κ : Xcl → N be the corresponding function. Let T =

⊕
F∈LHF

and Λ = (EndH T )op. If S = {x1, x2, . . . , xr } with r ≥ 2, we set ki = κ(xi).
If S = {x }, we set r = 2, k2 = 1 and k1 = κ(x). If S = ∅, we set
r = 2, k1 = k2 = 1.

(1) Λ ' R(k1, k2, . . . , kr;λ3, . . . , λr) for some λ3, . . . , λr.
(2) The functor HomH(T , ) induces an equivalence DH ' DΛ.

Actually, the preceding considerations also show that a rational projec-
tive hereditary non-commutative curve is Morita equivalent to a weighted
projective line by Geigle–Lenzing [17]. It can also be deduced from the de-
scription of hereditary non-commutative curves and the remark on page 271
of [17].

6.3. Subhereditary non-commutative curves.

Definition 6.13. A non-commutative curve (X,A) is said to be subheredi-
tary if there is a hereditary over-ring H of A and an ideal I ⊂ A such that
A/I is semi-simple and HI = I.

Obviously, we can suppose that I is the conductor of H in A, i.e. I =
{ a ∈ KA | Ha ⊆ A} ' HomA(H,A). Note that the non-commutative curve
H need not be connected. If H1,H2, . . . ,Hs are its connected components,
we set LH =

⋃s
i=1 LHi .

Corollary 6.14. Let A be a subhereditary non-commutative curve, H be
its hereditary over-ring such that Q = A/I is semi-simple, where I is the
conductor of H in A. Let AH = EndA(A⊕H) (see Example 4.8).

(1) gl.dimAH ≤ 2.
(2) There are semi-orthogonal decompositions (T ,T1) and (T ′1 ,T ) of

DAH such that T = DQ and T1 ' T ′1 ' DH.
Note that T1 6= T ′1 .

(3) The set {Q} ∪ LH (see Theorem 6.9) generates DA.

This corollary generalizes some results of [8].

Proof. Note that

AH =

(
A H
I H

)
.

Let P =
(H
H
)

considered as AH-module. Then EndAH P ' H and

IP =

(
I H
I H

)
,

so AH/IP ' Q and we identify them. Then (AH,P,Q) is a heredity re-
lating chain berween AH and Q (see Definition 4.10). Hence (1) and (2)
follow from Corollary 4.11 and Corollary 4.12. Moreover, the set {Q} ∪
{P ⊗H L | L ∈ LH } generates DAH. As GHQ = Q and GH(P ⊗H L) ' L,
we obtain the claim (3). �
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Corollary 6.15. Suppose that the subhereditary non-commutative curve A
is rational and keep the notations of Corollary 6.14. Let Λ = (EndH T )op,
where T =

⊕
F∈LHF , Q = Γ(X,Q), E = Ext1

A(Q, T ) and A be the algebra
of triangular matrices

A =

(
Q E
0 Λ

)
.

Then {Q[−1]}∪FHLH is a tilting set in DcAH and DAH ' DA. Therefore,
the category DA is a bilocalization of DA.

Note that the algebra Λ is isomorphic to a product of canonical algebras,
so A is directed, hence quasi-hereditary.
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