MINORS OF NON-COMMUTATIVE SCHEMES

IGOR BURBAN, YURIY DROZD, AND VOLODYMYR GAVRAN

ABSTRACT. In this article, we develop the theory of minors of non-
commutative schemes. This study is motivated by applications in the
theory of non-commutative resolutions of singularities of commutative

schemes.
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1. INTRODUCTION

Let B be a ring and P be a finitely generated projective left B-module.
We call the ring A = Ap = (EndBP)Op a minor of B. It turns out that the
module categories of B and A are closely related.

(1) The functors F = P ®4 - and H = Homyu(PV,_) from A-Mod to
B-Mod are fully faithful, where P = Hompg(P, B). In other words,
A-Mod can be realized in two different ways as a full subcategory of
B-Mod, see Theorem

(2) The functor G = Homp(P,_) : B-Mod — A-Mod is exact and
essentially surjective. Moreover, we have adjoint pairs (F,G) and
(G,H). In other words, G is a bilocalization functor. If

I=Ip=Im(P®y P — B)
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and B = B/I then the category B-Mod is the kernel of G and A-Mod
is equivalent to the Serre quotient of B-Mod modulo B-Mod, see
Theorem

(3) Under certain additional assumptions one can show that the global
dimension of B is finite provided the global dimensions of A and B
are finite, see Lemma [4.9

The described picture becomes even better when we pass to the (unbounded)
derived categories .@(A—Mod), .@(B—Mod) and Q(B—Mod) of the rings A, B
and B introduced above. Let DG be the derived functor of G, LF be the left
derived functor of F and RH be the right derived functor of H.

(1) Then we have adjoint pairs (LF,DG) and (DG, RH), the functors LF
and RH are fully faithful and the category Q(A—Mod) is equivalent
to the Verdier localization of & (B—Mod) modulo its triangulated
subcategory Zg5 (B—I\/Iod) consisting of complexes with cohomologies
from B-Mod, see Theorem

(2) Moreover, we have a semi-orthogonal decomposition

2 (B-Mod) = (2(B-Mod), 2(A-Mod)),
see Theorem [2.5]

One motivation to deal with minors comes from the theory of non-commuta-
tive crepant resolutions. Let A be a commutative normal Gorenstein domain
and F' be a reflexive A—module such that the ring

A F
B =Bp:=Endg(A® F)®? = ( i E)

is maximal Cohen—Macaulay over A and of finite global dimension (here ' =
(End A F )Op). Van den Bergh suggested to view B as a non-commutative
crepant resolution of A showing that under some additional assumptions,
the existence of a non-commutative crepant resolution implies the existence
of a commutative one [34]. If we take the idempotent e = ({J) € B and
pose P = Be then it is easy to see that A = Bp. Thus, dealing with non-
commutative (crepant) resolutions of singularities, we naturally come into
the framework of the theory of minors.

In [I5] it was observed that there is a close relation between coherent
sheaves over the nodal cubic C' = V (zy? —2®—2%2) C P? and representations
of the finite dimensional algebra A given by the quiver with relations

a1 B1
‘3'3' pran = Baag = 0.

a2 B2
An explanation of this fact was given in [8]. Let Z be the ideal sheaf of the
singular point of C' and A = Endc(O®Z). Consider the ringed space (C,.A)
and the category .A-mod of coherent left . 4A-modules on C. The the derived
category 2° (.A—mod) has a tilting complex, whose (opposite) endomorphism
algebra is isomorphic to A what implies that the categories 2° (A—mod) and

2



17K (A—mod) are equivalent. On the other hand, the triangulated category
Perf(C) of perfect complexes on C' is equivalent to a full subcategory of
.@b(A—mod). In fact, we deal here with a sheaf-theoretic version of the
construction of minors: the commutative scheme (C, Q) is a minor of the
non-commutative scheme (C,.A4). The goal of this article is to establish a
general framework for the theory of minors of non-commutative schemes.

In Section [2| we review some key results on localizations of abelian and
triangulated categories used in this article. In Section [3| we discuss the
theory of non-commutative schemes, elaborating in particular a proof of the
result characterizing the triangulated category Perf(A) of perfect complexes
over a non-commutative scheme (X, A) as the category of compact objects of
the unbounded derived category of quasi-coherent sheaves Z(A) (Theorem
[3.14). Section [4] is devoted to the definition of a minor (X,.4) of a non-
commutative scheme (X, B) and the study of relations between (X, .4) and
(X,B). In Section [5| we elaborate the theory of strongly Gorenstein non-
commutative schemes and the final Section [6] deals with various properties
of non-commutative curves.

2. BILOCALIZATIONS

Recall that a full subcategory % of an abelian category &7 is said to be
thick (or Serre subcategory) if, for any exact sequence 0 — C' — C — C" —
0, the object C belongs to ¢ if and only if both C’ and C” belong to ¥.
Then the quotient category < /¢ is defined and we denote by Il the natural
functor o — &7 /€. Tt is exact, essentially surjective and KerIly = €. For
instance, if G : & — % is an exact functor among abelian categories, its
kernel Ker G is a thick subcategory of &/ and G factors as G°Ilke g, where
G:.9//KerF — B.

Analogously, if € is a full subcategory of a triangulated category <7, it
is said to be thick if it is triangulated (i.e. closed under shifts and cones)
and closed under direct summands. Then the quotient triangulated cate-
gory < /€ is defined and we denote by Iy the natural functor & — o7 /%.
It is exact (triangulated), essentially surjective and KerIly = €. For in-
stance, if G : &/ — 2 is an exact (triangulated) functor among triangulated
categories, its kernel Ker G is a thick subcategory of & and G factors as
G ke G, where G : 7/ Ker G — B.

If F: o — A is a functor, we denote by ImF its essential image, i.e.
the full subcategory of % consisting of objects B such that there is an
isomorphism B ~ FA for some A € &/. We usually use this term when F is
a full embedding (i.e. is fully faithful), so ImF ~ /.

We use the following well-known facts related to these notions.

Theorem 2.1. (1) Let o, A be abelian categories, G : o/ — A be an
exact functor and F : B — < be its left adjoint (right adjoint) such
that the natural morphism 1g — GeoF (respectively, GoF — 14) is
an isomorphism. Let € = Ker G.
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(a) G = Gelly, where G is an equivalence < /€ — % and its quasi-
inverse functor is F = Iy o F.

(b) F is a full embedding and its essential image ImF coincides with
the left (respectively, right) orthogonal subcategory of €, i.e. the
full subcategory

14 ={A€Obs |Hom(A,C)=Ext'(4,C) =0 for all C € Ob¥ }
(respectively,
¢+ ={A€Obe |Hom(C,A) = Ext'(C,A) =0 for all C € Ob¥% }.)

(c) € = (+€)* (respectively, € = +(€1)).
(d) The embedding functor € — </ has a left (respectively, right)
adjoint.

(2) Let o7, A be triangulated categories, G : &/ — A be an exact (tri-
angulated) functor and F : B — o be its left adjoint (right ad-
joint) such that the natural morphism 1lgz — GeoF (respectively,
GoF — 1) is an isomorphism. Let € = Ker G.

(a) G = Gelly, where G is an equivalence < /€ = % and its quasi-
inverse functor is F = Iy o F.

(b) F is a full embedding and its essential image ImF coincides with
the left (respectively, right) orthogonal subcategory of €, i.e. the
full subcategor

1¢ ={AcObg | Hom(A,C) =0 for all C € Ob¥}
(respectively,
¢+ ={AcOba |Hom(C,A) =0 forall C € Ob¥}.)

(c) € = (+%)* (respectively, € = +(€1)).

(d) The embedding functor € — < has a left (respectively, right)
adjoint, which induces an equivalence < |~€ = € (respectively,
A|Ct S E).

Proof. The statement (la) is proved in [I6, Ch. III, Proposition 5] if F is
right adjoint of G. The case of left adjoint is just a dualization. The proof
of the statement (2a) is quite analogous. Therefore, from now on we can
suppose that 8 = &7/ /%. Then the statements (1b) and (2b) are just [16]
Ch. III, Lemma 2 et Corollaire] and [29] Theorem 9.1.16]. The statements
(1c) and (2c) are [I8, Corollary 2.3] and [29, Corollary 9.1.14]. Thus the
statement (2d) also follows from [29, Theorem 9.1.16]. In the abelian case
the left (respectively, right) adjoint J to the embedding 4 — < is given
by the rule A — Cok W(A) (respectively, A — Ker ¥(A) ), where VU is the
natural morphism F°G — 1, (respectively, 1, — F°G). O

I'Note that in the book [29] the notations for the orthogonal subcategories are opposite
to ours. The latter seems more usual, especially in the representation theory, see, for
instance, [2, [18]. In [I6] the objects of the right orthogonal subcategory €+ are called
€ -closed.
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Remark. Note that in the abelian case the composition IT. ¢ ° J (respectively,
II;1 °J) need not be an equivalence. The reason is that the subcategory L¢
(¢+) need not be thick (see [18]).

A thick subcategory % of an abelian or triangulated category . is said
to be localizing (colocalizing) if the canonical functor G : & — &/ /% has
a right (respectively, left) adjoint F. Neeman [29] calls F a Bousfield lo-
calization (respectively, a Bousfield colocalization)E{ In this case the natural
morphism G°F — 1, /¢ (respectively, 1, /¢ — G°F) is an isomorphism [16)
Ch.IIT,Proposition 3], [29, Lemma 9.1.7]. If ¥ is both localizing and colo-
calizing, we call it bilocalizing and call the category o/ /€ (or any equivalent
one) a bilocalization of o/. We also say in this case that G is a bilocalization
functor. In other words, an exact functor G : & — £ is a bilocalization
functor if it has both left adjoint F and right adjoint H and the natural
morphisms 14 — GF and GH — 14 are isomorphisms.

Corollary 2.2. Let G : o — % be an exact functor between abelian or
triangulated categories which has both left adjoint F and right adjoint H. In
order that G will be a bilocalization functor it is necessary and sufficient that
one of the natural morphisms 14 — GF or GH — 14 be an isomorphism.

Proof. Let, for instance, the first of these morphisms be an isomorphism.
Then there is an equivalence of categories G : &//KerG = B such that
G = GIlg, where ¥ = KerG. So we can suppose that % = &/ /% and
G = Ily. Thus the morphism GH — 14 is an isomorphism, since H is right
adjoint to G. O

Corollary 2.3. Let € be a localizing (colocalizing) thick subcategory of an
abelian category <, Dg (/) be the full subcategory of P(<f) consisting of
all complezes C* such that all cohomologies H'(C*) are in €. Suppose that
the Bousfield localization (respectively, colocalization) functor F has right
(respectively, left) derived functor. Then P4 (/) is also a localizing (colo-
calizing) subcategory of &7 and D(H )] Dg () ~ D (A |EC).

Proof. We consider the case of a localizing subcategory %, denote by G
the canonical functor &/ — &/ /% and by F its right adjoint. As G is ex-
act, it induces an exact functor (&) — 2(</ /%) acting on complexes
componentwise. We denote it by DG; it is both right and left derived of
G. Obviously, KerDG = Z¢(«/). Since G°F — 1, /¢ is an isomorphism,
the morphism DG°RF — 14, /%) is also an isomorphism, so we can apply

Theorem2.1(2). O

Remark 2.4. (1) If ¥ is localizing and <7 is a Grothendieck category,
the right derived functor RF exists [2], so Z(&/€) ~ D¢ (o). We
do not know general conditions which ensure the existence of the left
derived functor LF in the case of colocalizing categories, though it

2Actually, Neeman uses this term for triangulated categories, but we will use it for
abelian categories too.
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exists when &7 is a category of quasi-coherent modules over a quasi-
compact separated non-commutative scheme and F is tensor product
or inverse image, see Proposition |3.12

(2) Miyatchi [27] proved that always 2°(&/ /€) ~ 23(</), where o €
{ +, R b }

We recall that a sequence (&7, 9%, ..., oy,) of triangulated subcategories
of a triangulated category & is said to be a semi-orthogonal decomposition
of o if &/ (A, A") =0for A€ o, A’ € o/; and i > j, and for every object
A € of there is a chain of morphisms

S R L L N W N WL R JA

such that Cone f; € o [24].

Theorem 2.5. Let G : &f — % be an exact functor among triangulated
categories, F : BB — o be its right (left) adjoint such that the natural mor-
phism ¢ : 14 — GF (respectively, 1 : GF — 14) is an isomorphism. Then
(ImF,Ker G) (respectively, (KerG,ImF)) is a semi-orthogonal decomposi-
tion of .

Proof. We consider the case of left adjoint. If A = FB and A’ € KerG,
then o7 (A, A") ~ B(GA, B) = 0. On the other hand, consider the natural
morphism f : FGA — A. Then Gf is an isomorhism, whence Cone f €
Ker G. So we can set Ay = FGA, f1 = f. O

3. NON-COMMUTATIVE SCHEMES

Definition 3.1. (1) A non-commutative scheme is a pair (X,.A), where
X is a scheme (called the commutative background of the non-com-
mutative scheme) and A is a sheaf of Ox-algebras, which is quasi-
coherent as a sheaf of Ox-modules. Sometimes we say “non-com-
mutative scheme 4” not mentioning its commutative background X.
We denote by X the set of closed points of X.

(2) A non-commutative scheme (X,.A) is said to be affine (separated,
quasi-compact) if so is its commutative background X. It is said to
be reduced if A has no nilpotent ideals.

(3) A morphism of non-commutative schemes f : (Y,B) — (X, A) is a
pair (fx, f7), where fx : Y — X is a morphism of schemes and f7#
is a morphism of f)}lo x-algebras f)}l.A — B. In what follows we
usually write f instead of fx.

(4) Given a non-commutative scheme (X, .A), we denote by .A-Mod (re-
spectively, by A-mod) the category of quasi-coherent (respectively,
coherent) sheaves of A-modules. We call objects of this category
just A-modules (respectively, coherent A-modules).

(5) If f:(Y,B) = (X,.A) is a morphism of non-commutative schemes,
we denote by f* : A-Mod — B-Mod the functor of inverse image

which maps an A-module M to the B-module B& -1 4 f~IM. If the
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map fx is separated and quasi-compact, we denote by f, : B-Mod —
A-Mod the functor of direct image. It follows from [19, §0.1 and
§1.9.2] that these functors are well-defined. Moreover, f* maps co-
herent modules to coherent ones.
In this paper we always suppose non-commutative schemes separated and
quasi-compact.

Remark 3.2. (1) If (X,A) is affine, i.e. X = Spec R for some com-
mutative ring R, then A = A" is a sheafification of an R-algebra
A. A quasi-coherent A-module is just a sheafification M~ of an A-
module M, so A-Mod ~ A-Mod and we identify these categories. If,
moreover, A is noetherian, then A-mod coincides with the category
A-mod of finitely generated A-modules.

(2) If X is separated and quasi-compact, A-Mod is a Grothendieck cate-
gory. In particular, every quasi-coherent A-module has an injective
envelope. We denote by A-Inj the full subcategory of A-Mod con-
sisting of injective modules.

(3) The inverse image functor f* for a morphism of non-commutative
schemes usually does not coincide with the inverse image functor f%
with respect to the morphism of their commutative backgrounds.

We can guarantee it if B = f A, for instance, if Y is an open subset
of X and B = Aly.

Definition 3.3. (1) The center of A is the subsheaf cen. A C A such
that (cen A)(U) ={a € AU) | o|V € cen A(V) for all V' C U }, where
cen A denotes the center of a ring A.
(2) We say that a non-commutative scheme (X, .A) is central, if the nat-
ural homomorphism Ox — A maps Ox bijectively onto the center

cen(A) of A.

Note that if (X,.A) is affine, X = Spec R and A = A~ then cen A =
(cen A)™.

Proposition 3.4. End 1 4-mod ~ End 1 4-nj ~ I'(X, cen A).

Proof. Let o € T'(X,cen A). Given any M € A-Mod, define (M) : M —
M by the rule: a(M)(U) : M(U) — M(U) is the multiplication by «|U for
every open U C X. Obviously, it is a morphism of A-modules. Moreover,
if f € Hom4(M,N), one easily sees that fa(M) = a(N)f, so a defines an
element from End 1 4-pmod-

Conversely, let A € End 1 4-pmod- Let U C X be an open subset, j :
U — X be the embedding. Then A(U) = A(j.j*A) is an element from
Endg(j.j*A) = A(U). Evidently, it is in cen A(U). Moreover, if V C
U is another open subset, 7/ : V — X is the embedding, the restriction
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homomorphism 7 : j,j*A — j.j'* A gives the commutative diagram

o MO
JxJ A —juj* A

o T
g AL A
It implies that A(V) = A(U)|V. In particular, A(X) = « is an element from
I'(X,cenA) and A(U) coincides with the multiplication by «|U. Thus we
obtain an isomorphism End 1 4-mod =~ I'(X, cen A).

There is the restriction map End 1 4-moq — End 1 4-n;. On the other
hand, consider an injective copresentation of an A-module M, i.e. an exact
sequence 0 — M~ T — 7!, with injective modules Zp( and T/y,. Let
A € End 1 4nj;. Then there is a unique homomorphism A(M) : M — M
such that A(Zy)am = apA(M). Let 0 = N =5 Ty — T} be an injective
copresentation of another A-module N and f € Homy(M,N). Extending
f to injective copresentations, we obtain a commutative diagram

0 M 2L Ty T\,
if lfo f1J/
0 N Y, j\/

It implies that

an AN f = MZn)an f = MZn) foam =
= foA(Zm)oanm = foapmA(M) = an fA(M),

whence A(N) f = fA(M), so we have extended A to a unique endomorphism
of 1 4-Mod- U

Proposition 3.5. Let C = cen(A), X' = SpecC be the spectrum of the
(commutative) Ox-algebra C, ¢ : X' — X be the structural morphism, and
A =¢ 1A
(1) A" is an Oxs-algebra, so (X', A') is a central non-commutative scheme.
(2) For any F € A-Mod the natural map F — ¢«¢*F is an isomor-
phism,
(3) For any F' € A'-Mod the natural map ¢*¢F' — F' is an isomor-
phism.
(4) The functors ¢* and ¢, establish an equivalence of the categories
A-Mod and A-Mod’ as well as of A-mod and A’-mod.

Thus, when necessary, we can suppose, without loss of generality, that our
non-commutative schemes are central.

3 Note that in this situation oF=o¢ L.



Proof. All claims are obviously local, so we can suppose that X = Spec R
and X’ = Spec R/, where R’ is the center of the R-algebra A = I'(X, A).
Then all claims are trivial. ([l

We call a non-commutative scheme (X, .A) noetherian if the scheme X is
noetherian and A is coherent as a sheaf of Ox-modules. Note that if (X,.A)
is noetherian, the central non-commutative scheme (X', A") constructed in
Proposition is also noetherian. In particular, if an affine non-commuta-
tive scheme (Spec R, A7) is noetherian, then A is a noetherian algebra, i.e.
C = cen A is noetherian and A is a finitely generated C-module.

Definition 3.6. Let (X,.A) be noetherian.

(1) We denote by Ip A the full subcategory of .A-mod consisting of locally
projective modules P, i.e. such that P, is a projective A,-module
for every z € X.

(2) We say that A has enough locally projective modules if for every
coherent A-module M there is an epimorphism P — M, where
P € Ip A. Since every quasi-coherent module is a sum of its coherent
submodules, then for every quasi-coherent A-module M there is an
epmorphism P — M, where P is a coproduct of modules from Ip A.

An important example arises as follows. We say that a noetherian non-
commutative scheme (X,.A) is quasi-projective if there is an ample Ox-
module £ [20, Section 4.5]. Note that in this case X is indeed a quasi-
projective scheme over the ring R = @, ,I'(X, L®").

Proposition 3.7. Every quasi-projective non-commutative scheme (X,.A)
has enough locally projective modules.

Proof. Let L be an ample O x-module, M be any coherent .4-module. There
is an epimorphism of Ox-modules nOx — M ®p, L™ for some m, hence
also an epimorphism F = nL®") — M. Since Hom4(A ®oyx F,M)
Homp, (F, M), it gives an epimorphism of A-modules A ®o, F — M,
where A ®o, F € Ip A. O

We define an invertible A-module as an A-module Z such that End 4 Z ~
A°P and the natural map Hom(Z, A) @4 Z — (End4 Z)°? ~ A is an iso-
morphism. For instance, the modules constructed in the preceding proof are
invertible. On the contrary, one easily proves that, if A is noetherian and
cen A = Ox, any invertible A-module Z is isomorphic to A ®p, L, where
L =Homa-4(Z,T) and L is an invertible Ox-module. (We will not use this
fact.)

We denote by €A the category of complexes of A-modules, by % A the
category of complexes modulo homotopy and by Z.A the derived category
Z(A-Mod). We also use the conventional notations °.A #7A and 2° A,
where o0 € {+,—,b}. We denote by Z°A the full subcategory of compact
objects C* from Z.A, i.e. such that the natural morphism

[[, Homg4(C*, F?) — Homga(C*, [ [, F;)
9



is bijective for any coproduct [ [, F;.

Recall that a complex Z* is said to be K-injective [33] if for every acyclic
complex C* the complex Hom*®(C®,Z*) is acyclic too. We denote by K-inj.4
the full subcategory of J# A consisting of K-injective complexes and by
K-inj, A its full subcategory consisting of acyclic K-injective complexes.

Proposition 3.8. Let (X, .A) be a non-commutative scheme (separated and
quasi-compact).
(1) For every complex C* in €A there is a K-injective resolution, i.e.
a K-injective complex I* € €A together with a quasi-isomorphism
C* — 1.
(2) 9A ~ K-inj A/ K-inj, A.

Proof. As the category A-Mod is a Grothendieck category, (1) follows im-
mediately from [2 Theorem 5.4] (see also [33] Lemma 3.7 and Proposition
3.13]). Then (2) follows from [33] Proposition 1.5]. O

A complex F* is said to be K-flat [33] if for every acyclic complex S* of
right A-modules the complex F* ® 4 S* is acyclic. The next result is quite
analogous to [I, Proposition 1.1] and the proof just repeats that of the cited
paper with no changes.

Proposition 3.9. Let (X, A) be a non-commutative scheme. Then for every
complex C* in €A there is a K-flat replica, i.e. a K-flat complex F* quasi-
isomorphic to C*.

Remark 3.10. If (X, A) is noetherian and has enough locally projective mod-
ules, every complex from ¢~ A has a locally projective (hence flat) resolu-
tion. Then [33, Theorem 3.4] implies that for every complex C from %A
there is an Lp-resolution, i.e. a K-flat complex F* consisting of locally pro-
jective modules together with a quasi-isomorphism F* — C*. For instance,
it is the case if (X, A) is quasi-projective (Proposition [3.7)).

A complex Z* is said to be weakly K-injective if for every acyclic K-flat
complex F* the complex Hom®(F*,Z*) is exact.

Proposition 3.11 ([33], Propositions 5.4 and 5.15]). Let f : (X, A) — (Y, B)
be a morphism of non-commutative scheme.
(1) If F* € €B is K-flat, then so is also f*F*. If, moreover, F* is
K-flat and acyclic, then f*F* is acyclic too.
(2) If T € €A is weakly K-injective, then f.Z is weakly K-injective. If,
moreover, T is weakly K-injective and acyclic, then fiZ is acyclic
too.

Proposition 3.12 (cf. [33, Section 6]). Let (X,.A) be a non-commutative
scheme.

(1) The derived functors RHom% (F*,G*) and RHom*(F*,G*) exist and
can be calculated using a K-injective resolution of G* or a weakly
K-injective resolution of G* and a K-flat replica of F*.
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(2) The derived functor F* éA G*, where G* € YA, exists and can
be calculated using a K-flat replica either of F or of G. Moreover,
if G°P is a complex of A-B-bimodules, where B is another sheaf of
Ox -algebras, there are isomorphisms of functors

L
RHomp(F* ®4 G*, M*) ~ RHom 4 (F, RHomp(G*, M*))

RHoms(F* © 4 G*, M*) ~ RHom a(F, RHoms(G*, M*)).

(3) For every morphism f : (X, A) — (Y,B) the derived functors Lf* :
DB — DA and Rfy : DA — DB exist. They can be calculated using,
respectively, K-flat replicas in €B and weakly K-injective resolutions
in € A. Moreover, there are isomorphisms of functors

RHomp(F*,Rf.G*) ~ RHom? (Lf*F*,G*)
RHomyz(F*, RfG®) ~ Rf. RHom®% (Lf*F*,G*).

(4) If g - (Y,B) — (Z,C) is another morphism of non-commutative
schemes, then L(ge f)* ~ Lf*°Lg* and R(g° f)« ~ Rgs°Rfs.
If the considered non-commutative schemes have enough locally projective
modules (for instance, are quasi-projective), one can replace in these state-
ments K-flat replicas by Lp-resolutions.

In particular, let f : A — B be a homomorphism of rings. We consider B
as an algebra over a subring S (an arbitrary one) of its center and A as an
algebra over a subring R C cen AN f~1(S). Then we can identify f with its
sheafification f~ : (Spec S, B”) — (Spec R, A”). In this context the functors
(f7)* and (f7)« are just sheafifications, respectively, of the “back-up” functor
BM +— oM and the “change-of-scalars” functor 4N — B ®4 N.

Definition 3.13. A complex C* in ¥ A is said to be perfect if for every
point x € X there is an open neighbourhood U of = such that C|y is quasi-
isomorphic to a finite complex of locally projective coherent modules. We
denote by PerfA the full subcategory of Z.A consisting of perfect complexes.

The following result is well-known in commutative and affine cases [28, [32].
Though the proof in non-commutative situation is almost the same, we
include it for the sake of completeness. Actually, we reproduce the proof of
Rouquier with slight changes.

Theorem 3.14. Let (X,.A) be a non-commutative scheme (quasi-compact
and separated). Then P.A is compactly generated and 2°A = Perf A.

Proof. Let U C X be an open affine subset of X, Ay be the restriction

of Aonto U, (U = X\ U, j = ju : U = X be the embedding. Then

the inverse image functor j* : A-Mod — Ay-Mod is exact and the natural

morphism j*j, — 1 4,-Mod is an isomorphism (actually, identity). Therefore

Ker j* is a localizing subcategory and .A-Mod/ Ker j* ~ Ay-Mod. Note that

Ker j;; consists of the A-modules M such that supp M C CU. Then Ker Lj,
11



is a localizing subcategory of A and A/ KerLj, ~ P Ay. This kernel
coincide with the full subcategory Zp;A of ZA consisting of complexes
whose cohomologies are supported on CU.

If W C X is another open affine subset, then the subcategories ;A
and 2y A intersect properly in the sense of [32, 5.2.3]. Recall that it means
that jiju.jirF = 0 as soon as jy, F = 0, what follows, for instance, from
[20, Corollaire (1.5.2)] applied to the cartesian diagram of affine morphisms
(open embeddings)

vnw -V,

ijl ljU
w — X
Jw
Therefore, if X = J, U; is an open affine covering of X, then { -@CUiA} is
a cocovering of the triangulated category Z.A as defined in [32] 5.3.3]. If S C
{1,2,...,m} does not contain i, Us = U;cg Uj, then ;e g Zoy, A = Dy A
and the image of 7y A in YAy, coincides with Py, Au,. There are
sections fi, fa, ..., fr € A =T(U;, Ox) such that U;\Us = V(f1, fo, ..., fx)
as a closed subset of U;. The following lemma shows that the subcategory
Du\vsAu, is compactly generated in ZAy;.

Lemma 3.15. Let A be an algebra over a commutative ring O and I =
(f1, fa,.--, fx) be a finitely generated ideal in O. Let K*(I) be the corre-
sponding Koszul complex. Denote by A-Mody the full subcategory of A-Mod
consisting of all modules M such that for every element a € M there is m
such that I"a = 0. Denote by P1A the full subcategory of 2.A consisting
of all complexes such that their cohomologies belong to A-Mody. Then P71 A
is generated by the complex K4(I) = A®o K*(I).

Proof. Note that Homga (K% (I),C*) ~ Homgo(K*(I),C*) for every C* €
ZA. If C* € Z1A is non-exact, then Homgo(K*(I),C*[n]) # 0 for some n
by [32, Proposition 6.6]. It proves the claim. O

Evidently, K% (I) is compact in ZA. So we can now use [32, Theo-
rem 5.15]. It implies that 2.4 is compactly generated and a complex C*® in
2. A'is compact if and only if j7; C* is compact in ZAy, for every 1 <i <m.
As U; is affine, compact complexes in Z Ay, are just perfect complexes.
Therefore, it is true for 2.A too. O

4. MINORS

Definition 4.1. Let (X, B) be a non-commutative scheme, P be a locally
projective and locally finitely generated B-module, A = (EndgP)°P. The
non-commutative scheme (X, .A) is called a minor of the non-commutative
scheme (X, B)ﬂ

4In the affine case this notion was introduced in [13]. Actually, the main results of this

section are just global analogues of those from [13].
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In this situation we consider P as B-A-bimodule (left over B, right over
A). Let PV = Hompg(P,B). It is an A-B-bimodule, locally projective and
locally finitely generated over B. The following statements are evidently
local, then they are well-known.

Proposition 4.2. The natural homomorphism P — Homg(P,B) is an
isomorphism. Moreover, A ~ Endg P ~ PY @pP.

We consider the following functors:
F=P®4-: A-Mod — B-Mod,
(4.0.1) G = Homp(P,-) : B-Mod — A-Mod,
H = Hom4(P",-) : A-Mod — B-Mod.

Note that G is exact and G ~ P ®p _, so both (F,G) and (G, H) are adjoint
pairs of functors. If the non-commutative scheme (X, B) is noetherian, so is
also (X, .A) and these functors map coherent sheaves to coherent ones.

Theorem 4.3. (1) A-Mod ~ B-Mod/%, where € = KerG = Pt is a
bilocalizing subcategory of B-Mod. Thus A-Mod is a bilocalization of
B-Mod and G is a bilocalization functor.

(2) The natural morphism ¢ : 1 g-mod — G°F is an isomorphism.

(2") The natural morphism ¢' : GoH — 1 g-Moq @s an isomorphism.

(3) The functor F is a full embedding and its essential image is ~€. So
the pair (F,G) induces an equivalence between A-Mod and +% .

(3') The functor H is a full embedding and its essential image is €+. So
the pair (H,G) induces an equivalence between A-Mod and €.

(4) +F coincides with the full subcategory of B-Mod consisting of all
modules M such that for every point x € X there is an exact se-
quence P — Py — M, — 0, where Py, P1 are multiples of P, (i.e.
direct sums, maybe infinite, of its copies). We denote this subcate-
gory by P-Mod.

(4') €+ consists with the full subcategory of B-Mod consisting of all mod-
ules M such that there is an exact sequence 0 — M — Iy — 14,
where T; € H(A—Inj)ﬁ We denote this subcategory by P™-Mod.

Proof. Theorem [2.1] and Corollary [2.3] show that it is enough to prove the
following statements.

Proposition 4.4. (1) The natural morphism ¢ : 1 4-Mod — G°F is an
isomorphism.
(2) ImF = P-Mod.
(2') ImH = P"M-Mod

As the claims (1) and (2) are local, we can suppose that the non-com-
mutative scheme (X, B) is affine, so replace B-Mod by B-Mod, where B =
I'(X,B). Then P = P~ for some finitely generated projective B-module

5Note that all B-modules from H(A-Inj) are injective.
13



and A = A", where A = (Endp P)°P. Hence we can also replace .A-Mod
by A-Mod and P-Mod by P-Mod, the full subcategory of B-Mod consisting
of all modules N such that there is an exact sequence P, — Py — N — 0,
where P; are multiples of P.

Obviously, ¢(A) is an isomorphism. Since F and G preserve arbitrary
coproducts, ¢(F') is an isomorphism for any free A-module F. Let M €
A-Mod. There is an exact sequence F; — Fy — M — 0, where Fy, F} are
free modules, which gives rise to a commutative diagram with exact rows

I Ey M 0
¢(F1)i ¢(F0)J/ ¢(M)l
GoF(Fy) — GoF(Fy) — G°F(M) —0

As the first two vertical arrows are isomorphisms, so is ¢(M ), which proves
claim (1). Moreover, we get an exact sequence F(F}) — F(Fy) — F(M) — 0,
where F(F;) are multiples of F(A) = P. Therefore, F(M) € P-Mod.

Consider now the natural morphism ¢ : FoG — 1 5-moq- This time ) (P)
is an isomorphism. Let now N be a B-module such that there is an exact
sequence Py — Py — N — 0, where P; are multiples of P. Then there is a
commutative diagram with exact rows

FoG(P) —> FoG(Py) —= FoG(N) —= 0
w(Pl)l zﬁ(Po)l w(N)l
Py P N 0

The first two vertical arrows are isomorphisms, so ¥ (N) is also an isomor-
phism. It proves claim (2).

The proof of (2') is quite analogous to that of (2), so we omit it.

Note that the condition M € PM-Mod also turns out to be local, since it
means that the natural map M — H°G(M) is an isomorphism. O

Actually, we can describe the kernel of this bilocalization explicitly.

Theorem 4.5. Let Ip = Im{up : P ®4 P — B}, where p(p @ v) = v(p).
Then Ker G = { M € B-Mod | ZpM =0} ~ (B/Zp)-Mod.

Proof. Again the statement is local, so we only have to prove it for a ring
B, a finitely generated projective B-module P and the ideal Ip = Im pp. It
follows from [9, Proposition VII.3.1] that Ip P = P. Therefore, if f : P — M
is non-zero, then IpIm f = Im f £ 0, hence IpM # 0. On the contrary, if
IpM # 0, there is an element u € M, elements p; € P and homomorphisms
v : P — B such that ), vi(pi)u # 0. Let 8 : B — M maps 1 to v and
vt = B7i.- Then at least one of the homomorpisms 7;* is non-zero. O

The functor G is exact, so it induces a functor DG : 2B — Z.A mapping

a complex F* to GF*. It is both left and right derived functor of G. We can

also consider the left derived functor LF of F and the right derived functor
14



RH of H, both being functors A — ZB. Obviously, DG maps 2?8 to
9° A, where o € {+,—,b}, LF maps 2~ A to 2B and RH maps 2" A to

97B.

Theorem 4.6. (1) The functors (LF,DG) and (DG,RH) form adjoint

(2)
(3)
(3)
(4)
(4)

(7p)

(7)

pairs.

DA ~ DB)D4B, where € = KerG = P+ ~ (B/Ip)-Mod. More-
over, Y¢BB = Ker G is a bilocalizing subcategory of B, so DA is a
bilocalization of 2B and DG is a bilocalizing functor.

The natural map 1494 — DGeLF is an isomorphism.

The natural map DGeRH — 144 is an isomorphism.

The functor LF is a full embedding and its essential image is + (P4 B).
So the pair (LF,DG) defines an equivalence DA ~ +(24B).

The functor RH is a full embedding and its essential image is (Z¢B)*.
So the pair (RH,DG) defines an equivalence 2.A ~ (ZxB)* .

The functor LF maps 2°A to 2°B.

(Ker DG, Im LF) as well as (ImRH, Ker DG) are semi-orthogonal de-
compositions of ZB.

Note that Im LF ~ Im RH, though these two subcategories usually
do not coincide. Both of them are equivalent to Z.A.

ImLF coincides with the full subcategory _@7_7> of 9B consisting of
complexes quasi-isomorphic to K-flat complexes F* such that for ev-
ery x € X and every component F' the localization Fi is a direct
limit of modules from addP,. The same is true if we replace I by
78

If A and B have enough locally projective modules (for instance, if
X is quasi-projective), Im LF coincides with the full subcategory P
of 9B consisting of complexes quasi-isomorphic to K-flat complexes
F* such that F. € Add P, for every i € Z and every point x € X.
The same is true if we replace 9 by P~ .

Im RH coincides with the full subcategory 2P of DB consisting of
complexes quasi-isomorphic to K-injective complexes consisting of
modules from H(A-Inj). The same is true if we replace 9 by 2.

Note that the condition in (7’) can also be verified locally at every point

zeX.

Proof. (1) Let F* be a K-flat replica of M* € A and Z* be an injective
resolution of N* € Z2B. Then LFM* = FF* and DGN* = GZ*. As P €
Ip B, the complex FF* is K-flat and the complex GZ*® is K-injective. By

Proposition (2),
RHomg(FF*,Z%) = Homy(FF*,T°) ~

Hom®(F*, GZ*) = RHom4(F*, GI*).

Taking zero cohomologies, we obtain that

Homg(FF*,T*) ~ Hom4(F*, GI*).
15



Choose now a K-flat replica G* of N'* and a K-injective resolution J* of M?.
Then DGN* = GG* and RHM* = H7*. By [33, Proposition 5.14], H7* is
weakly K-injective. By Proposition (2) and [33, Proposition 6.1],

RHom 4(GG*, J*) = Hom%(GG*, J*) ~
Homp(G*, HT*) = RHomp(G*,HT*).
Taking zero cohomologies, we obtain that
Hom 4(GG*, J°) ~ Homp(G*,HT*)

The statements (3) and (3') follow from the statements (2) and (2') of
Theorem [4.3] Then the statements (2),(4) and (4') follow from Theorem [2.1]

and Corollary

(5) As the right adjoint DG of LF preserves arbitrary coproducts, LF maps
compact objects to compact ones.
(6) follows from Theorem

(7) The construction of [I, Proposition 1.1] gives for any complex M* €
9.4 a quasi-isomorphic K-flat complex F* such that all its components F*
are flat. Moreover, F* is left bounded if so is M*. By [6, Ch. X, § 1, Théoreme 1],
Fi ~lim L, where £} are projective finitely generated A,-modules, hence
belong to add A;. Then LFM® ~ FF°*. As F preserves direct limits and
FA~P, FFl ~ lim FL! and FL! € add P,. Hence M* € IP.

On the contrary, let N* € @7_%. We can suppose that it is K-flat and
for every i € Z and every * € X we can present N as hgl/\/fl, where
Ni € add P,. Then the complex GN* is also K-flat [33, Proposition 5.4], so
LFeDG(N*®) ~ FG(N*). As the natural map FG(P) — P is an isomorphism,
the same is true for all modules N}, hence also for N:. Therefore, the
natural map LF°DG(N) — N is an isomorphism.

The proof of (7p) is quite analogous to the proof of (7), taking into account
that in this situation every complex is quasi-isomorphic to a K-flat complex

of locally projective modules. The proof of (7') is also analogous to that of
(7). O

There is one special case when the category Ker DG can be described more
precisely.

Theorem 4.7. Suppose that the ideal Ip is flat as a right B-module. Then
KerDG ~ 2(B/Ip).

Proof. Let T = Ip, Q = B/Z. One easily sees that 72> = Z. We identify
20 with the full triangulated subcategory of ZB, obviously contained in
Ker DG. Let F* € KerDG, i.e. its cohomologies are indeed Q-modules.
We can suppose that F* is K-flat. Tensoring it with the exact sequence
0 -7Z — B — Q — 0, we obtain an exact sequence of complexes 0 —
I®pF* — F* — Q®pF* — 0. Since Z is flat, H*(Z®p F) ~ TR H*(F*).
Note that Z ®5 Q ~ Z/I? = 0, whence Z ®5 M = 0 for any Q-module.
16



Therefore, H*(Z ®p F*) = 0, hence F* is quasi-isomorphic to Q ®p F*,
which is in 0. O

Example 4.8. An important special case of minors appears as the endomor-
phism construction. Let A be a non-commutative scheme, F be a coherent
A-module and Ar = End 4(ADF)°P. Then A is identified with the algebra

of matrices 4
f
AF = (f’ 5>

where F' = Hom4(F, A) and € = (End o F)°P. If Pr = (]“_f‘,) considered
as Ar-module, then A ~ (&nd 4, Pr)°?, so A is a minor of Ar and the
categories A-Mod and Z.A are bilocalizations, respectively, of Ax-Mod and
2Ax. The corresponding functors are

Fr=Pr®a -,
Gr = Homa,(Pr,-),
Hr = Hom 4, (Pr,-).

Note that Py ~ (.A }') as right Ar-module and, by the construction,
Pr ~ Hom4(P¥%, A). Theorem then implies that the kernel € of the
functor Gr : Ar-Mod — A-Mod is equivalent to £/Zr-Mod, where Zr is the
image of the natural map 7/ @ 4 F — £.

We consider an application of minors to global dimensions and semi-
orthogonal decompositions. Let (X, B) be a non-commutative scheme, M be
a B-module. We call sup { il Sxt%(/\/l, )#0 } the local projective dimension
of the B-module M and denote it by Ip.dimg M. If (X, B) is noetherian and
M is coherent, then lp.dimzg M = sup { pr.dimg M, |z € X }

Lemma 4.9. Let (X, B) be a non-commutative scheme, P be a locally projec-
tive and locally finitely generated B-module, A = (Endg P)°P and B = B/Zp.
Suppose that P is flat as right A-module,

Ip.dimg Zp = d,
gl.dim A = n,
gl.dim B = m.

Then gl.dim B <max{m+d+2,n}.

Proof. Let B = B/Zp. Then Ip.dimgB = d + 1. From the spectral se-
quence Ext%(/\/l,gxt%_(g, ) = Extf;rq(/\/l, _) it follows that pr.dimg M <
m+ d+ 1 for every B-module M. Consider the functors G = Homp(P, -)
and F = P ®4_. Since the morphism GFG — G, arising from the adjunc-
tion, is an isomorphism, the kernel and the cokernel of the natural map
a: FGM — M are annihilated by G, so are actually B-modules. It implies
that Extz(M,N) =~ Extg(FGM,N) if ¢ > m + d + 2, so pr.dimzg M <
max {m +d + 2, pr.dimg FGM }. As both functors F and G are exact,
Exty(F-,-) ~ Ext’%(-,G-), so pr.dimg FGM < n. O
17



Definition 4.10. (1) Let (X,B) and (X,.A) be two non-commutative
schemes. A relating chain between B and A is a sequence (By, P1,
B, Pa,..., Pr,Bry1), where By = B, By11 = A, every P; (1 <i<r)
is a locally projective and locally finitely generated B;-module which
is also flat as right A;-module, where A; = (Endp, P;)°P, and Bt =
Bi/Zp, for 1 <i<r.

(2) The relating chain is said to be flat if, for every 1 < i < r, Ip, is
flat as right B;-module. Note that it is the case if the natural map
Pi @4, P, — B; is a monomorphism.

(3) The relating chain is said to be pre-heredity if, for every 1 < i <r,
Ip, is locally projective as left B-module. If it is both pre-heredity
and flat, it is said to be heredity.

(4) If the relating chain is heredity and all non-commutative schemes A;
are hereditary, i.e. gl.dim 4; < 1, we say that the non-commutative
scheme B is quasi-hereditary of level r. (Thus quasi-hereditary of
level 0 means hereditary).

We fix a relating chain (By, P1, Ba, Pa,. .., Pr, Br+1) between B and A and
keep the notations of Definition (1).

Corollary 4.11. Let gl.dim A; < n and Ip.dimg, Zp, < d for all 1 < i <.
Then gl.dim B < r(d+2)+max { gl.dim A, n — d — 2 }. If this relating chain
is pre-heredity, then gl.dim B < gl.dim A + 2r.

Using Theorem (6), Theorem and induction, we also get the fol-

lowing result.

Corollary 4.12. If this relating chain is flat, there are semi-orthogonal
decompositions (T, Tyy..., ) and (T, Ty,..., T, T) of B such that
T T ~PA (1<i<r)and T ~ DA

Note that, as a rule, 7; # T,

Corollary 4.13. If a non-commutative scheme B is quasi-hereditary of level
r, then gl.dimB < 2r + 1 and there are semi-orthogonal decompositions
(7,9, .... A7) and (7, 5,.... 7, T) of DB such that F; ~ T’ (1 <
i <), as well as T, is equivalent to the derived category of a hereditary
non-commutative scheme.

Remark 4.14. Suppose that (X, B) is affine: X = Spec R and B = B".

(1) If B is semiprimary, then B is quasi-hereditary with respect to our
definition if and only if B is quasi-hereditary in the classical sense
of [10] 12].

(2) If R is a discrete valuation ring and B is an R-order in a separable
algebra, then B is quasi-hereditary with respect to our definition if
and only if B is quasi-hereditary in the sense of [23].

Example 4.15. Consider the endomorphism construction of Example
Suppose that F is flat as right £-module, F’ is locally projective as left
18



&-module and the natural map pr : F ®g F "5 Aisa monomorphism. Let
P = (%) and A= A/Impr. Then one can easily verify that (Ar, P, A) is
a heredity relating chain. Therefore, if both £ and A are quasi-hereditary,
so is Ar.

5. STRONGLY GORENSTEIN SCHEMES

In this section we only consider noetherian non-commutative schemes.

Definition 5.1. Let (X, A) be a noetherian non-commutative scheme. We
call it strongly Gorenstein if X is equidimensional, A is Cohen-Macaulay as
Ox-module and inj.dim 4 A = dim Xﬁ

Recall that an A-module M is injective if and only if A,-modules M,
are injective for all x € X (the proof from [2I, Proposition 7.17] remains
valid in non-commutative situation too). We need some basic facts about
injective dimension for non-commutative rings. Now R denotes a noetherian
commutative local ring with the maximal ideal m and the residue field k =
R/m, A denotes an R-algebra finitely generated as R-module. Let also
t =rad A and A = A/t. As usually, for every ideal I C R we denote by
V(I) the set of prime ideals containing I.

Theorem 5.2. inj.dim M = sup {i | Exty (A, M) #0}.

Just as in [7, Proposition 3.1.14], this theorem is an immediate conse-
quence of the following lemma.

Lemma 5.3. Let p # m be a prime ideal of R, M be a noetherian R-
module. Suppose that Extfél(N, M) = 0 for any noetherian A-module N
such that V(anng N) C V(p) and i > m. Then also Exty (N, M) = 0 for
any noetherian A-module N such that V(anng N) C V(p) and i > m.

Proof. Suppose that the condition is satisfied and let V(anng N) C V(p).
If ¢ € Ass N and q # p, there is a submodule N’ C N such that qN’ = 0.
Therefore, EXtiA(N/,M) = 0 for ¢ > m and we only have to prove that
Exty (N/N’,M) = 0 for i > m. Thus we can suppose that Ass N = {p}.
Let @ € m\ p. Then a is non-zero-divisor on N, i.e. we have the exact
sequence 0 = N % N — N/aN — 0. It gives and exact sequence

Ext’y (N, M) % Ext’y (N, M) — Ext'*(N/aN, M).

Obviously, anng NV, /qN D p, so the last term is 0 if ¢ > m. Therefore,
a Ext'y (N, M) = Ext'y (N, M) and Ext’4 (N, M) = 0 by Nakayama’s Lemma.
O

6We do not know whether the last condition implies the Cohen-Macaulay property, as
it is in the commutative case.
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Corollary 5.4. Let M be a coherent A-module. Then
inj.dim 4 M = sup { i | Ext’y(A(z), M) # 0 for some = € X } =
= sup { inj.dimy M, |z € Xg } .
Here A(x) denotes A®o, k(z).
Corollary 5.5.
gl.dim A =sup{pr.dim  A(z) |z € Xq} =
=sup { i | Ext)y(A(z), A(z)) # 0 for some z € X } =
=sup{gldimA, |z € X}.

Lemma 5.6. Let M be a noetherian A-module. If an element a € R is non-
zero-divisor both on A and on M, then inj.dim 4 M = inj.dim 4 /o4 M/aM.

Proof. 1t just repeats that of [7, Corollary 3.1.15]. O

Corollary 5.7. Let a = (a1,az2,...,ay) be an A-sequence in m. Then A
is strongly Gorenstein if and only if so is A/aA.

Corollary 5.8. A is strongly Gorenstein if and only if so is A°P.

Proof. The claim is local, so we can replace A by A. Corollary reduces
the proof to the case when Kr.dim R = 0, i.e. A is just an artinian algebra.
Then it is well-known [4, Proposition IV.3.1]. O

For a noetherian non-commutative scheme (X,.A) we denote by CM.A
the full subcategory of A-mod consisting of such modules M that M, is a
maximal Cohen-Macaulay module over Ox , for every point x € X. The
following results can be proved just as in the commutative case (see [7,
Section 3.3]).

Theorem 5.9. Let (X, A) be a strongly Gorenstein non-commutative scheme,

M e CMA.
(1) Ext'y(M,A) =0 fori 0.
(2) The natural map M — Hom 4(Hom 4(M, A), A) is an isomorphism.

Thus the functor * : M +— M* = Hom (M, A) gives an exact duality
between the categories CM A and CM A°P.

Let now (X, .A) be a strongly Gorenstein non-commutative scheme, F &
CM A. Consider the endomorphism construction described in Example
Theorem implies that the natural map ¢(M) : FFM — HrM is an
isomorphism for M = A, hence an isomorphism for any M € Ip A.

Theorem 5.10. Let (X, A) be strongly Gorenstein and contain enough lo-
cally projective modules, F € CMA. Then the restrictions of the functors
LFr and RHx onto the subcategory Y°A are isomorphic. Thus the restric-
tion of LFx onto 2°A is both left and right adjoint to the bilocalization
functor DGr.
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Proof. As A has enough locally projective modules, any complex from 2°¢A
is quasi-isomorphic to a finite complex C* such that all C* are from Ip A.
Then LFxC* = FxC*. On the other hand, by Theorem RFHAC! =
Ext (Px,C") = 0 for k # 0. Therefore, RHzC* = HxC* ~ F£C*. O

6. NON-COMMUTATIVE CURVES

6.1. Generalities.

Definition 6.1. A non-commutative curve is a reduced non-commutative
scheme (X, .A) such that X is an excellent curve (equidimensional reduced
noetherian scheme of dimension 1) and A is coherent and torsion free as
Ox-module.

As X is excellent, then A, the my-adic completion of A,, is also reduced
(has no nilpotent ideals). Therefore, for the local study of non-commu-
tative curves we can use the usual results from the books [II], 30]. We
denote by K = K(X) the sheaf of full rings of fractions of Ox and write
KM instead of K ®p, M for any Ox-module M. In particular, KA is
a K-algebra. The sheaves KM are locally constant; the stalks of X and
KA are semi-simple rings. The torsion part tors M of M is defined as the
kernel of the natural map M — KM. We say that a coherent A-module
M is torsion free if tors M = 0, and we say that M is torsion if KM = 0.
Note that tors M is torsion and M/ tors M is torsion free. We denote
by tors A and tf A respectively the full subcategories of .A-mod consisting
of torsion and of torsion free modules. We always consider a torsion free
module M as a submodule of M. In particular, we identify M, with its
natural image in KX M,. Note that for every submodule N' C KM there is a
natural embedding KA — KM and we identify KN with the image of this
embedding. A non-commutative curve (X, A’) is said to be an over-ring of
a non-commutative curve (X, A) if A C A" ¢ KA. Then A’ is naturally
considered as a coherent A-module. The non-commutative curve (X,.A) is
said to be normal if it has no proper over-rings. Since X is excellent and
A is reduced, the set {x € X | A, is not normal } is finite. Then it follows
from [14] that the set of over-rings of A satisfies the maximality condition:
there are no infinite strictly ascending chains of over-rings of A.

Coherent torsion free A-modules, in particular, over-rings of A can be
constructed locally.

Lemma 6.2. Let M be a torsion free coherent A-module.

(1) If N is a coherent A-submodule of KM such that KN = KM, then
Ny = M, for almost all x € X.

(2) Let S C X be a finite set and for every x € S a finitely generated
Az-submodule N, C KM, is given such that KN, = KM,. Then
there is a unique A-submodule N C KM such that N, = N, for

every x € S and Ny, = My, for all x ¢ S.
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(3) If M = A and all N, in the preceding item are rings, then N is a
subalgebra of KA, so (X, N) is also a non-commutative curve and if
N, D A, forallz €S, (X,N) is an over-ring of (X, A).

Proof. We can suppose that X is affine. Then the proof just repeats that of
[0, Ch. VIL, § 3, Theorem 3] with slight and obvious changes. O

Lemma 6.3. Any non-commutative curve (X, A) has enough invertible
modules. Namely, the set

Li={A®o, L] L is an invertible Ox-module }
generates Qcoh A (hence, generates Z.A).

Proof. We must show that if M’ C M is a proper submodule, there is
a homomorphism f : £ — M such that Im f ¢ M’'. As Homa(A ®0p,
L, M) ~ Homp, (£, M), we can suppose that A = Ox. Moreover, as
every A-module is a direct limit of its coherent submodules, we can suppose
that M is coherent. Let first M’ 2 tors M. Choose x € X such that
tors M, € M’ and let u, € torsM, \ M. There is a global section
u € (X, tors M) C I'(X, M) such that u, is its image in M. Then there
is a homomorphism f : Ox — M such that f(1) =u, so Im f € M.

Let now M’ D tors M. Since Ext%gx (L,tors M) = 0 for any locally
projective module £, the map Homo, (£, M) — Homop, (£, M/ tors M) is
surjective. Hence, we can suppose that M is torsion free. Let M, # ./\/l; for
some y € Xq and u, € M, \ /\/lg/ There is a homomorphism ¢ : K — KM
such that ¢(1) = uy. Let N = p(Ox). Theset S ={z € X | N; € M, }
is finite; moreover, y ¢ S. For every x € S there is an ideal L, C Ox,
such that L, ~ Ox, and ¢(L;) € M,. Now choose an ideal £ C Ox such
that £, = L, for x € S and £, = Ox, otherwise. It is an invertible ideal,
o(L) C M and (L) £ M. O

We will use the duality for left and right coherent torsion free A-modules
established in the following theorem.

Theorem 6.4. (1) There is a canonical A-module, i.e. such a module
wa € tf A that inj.dimyws =1 and Endgwa ~ A% (so wa can
be considered as an A-bimodule). Moreover, w4 is isomorphic as a
bimodule to an ideal of A.
We denote by M*, where M € Qcoh A (or M € Qcoh A°P) the
A°P-module (respectively, A-module) Hom 4(M,w4) (respectively,
Hom gop (M, w4)).

(2) The natural map M — M** is an isomorphism for every M € tf A
(or M € tf A°P) and the functors M — M* establish an exact
duality of the categories tf A and tf A°P. Moreover, if M € Coh A,
then M** ~ M/ tors M.

Proof. Each local ring O, = Ox , is excellent, so its integral closure in K,

is finitely generated and its completion O, is reduced. Therefore O, has a
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canonical module w, which can be considered as an ideal in O, [22], Korol-
lar 2.12]. Moreover, O, is normal for almost all z € X and in this case we
can take w, = Ox,. By Lemma there is an ideal wx C Ox such that
wx,z = wg for each x € X. Then inj.dimy, wx = sup { inj.dimox’x wx} =
1. As the natural map Ox, — Endop, , w, is an isomorphism for each
x € X, the natural map Ox — &ndp, wx is an isomorphism too. There-
fore, wx is a canonical Ox-module. Then it is known that the functor
M = M* = Homop, (M,wx) is an exact self-duality of tf Ox and the nat-
ural map M — M* is an isomorphism. Set now w4 = Homo, (A, wx).
Then Hom4(M,wa) ~ Homo, (M,wx) for any A-module M, whence all

statements of the theorem follow. O

As usually, we say that two non-commutative schemes (X,.4) and (Y, B)
are Morita equivalent if their categories of quasi-coherent modules are equiv-
alent. A coherent locally projective .A-module P is said to be a local pro-
generator if P, is a progenerator for A, for all z € X. It follows from
Theorem that then (X,.A) is Morita equivalent to (X, &), where £ =
(End 4 P)°P.

Theorem 6.5. (1) Let (X,.A) and (X, B) are two non-commutative curves
such that A, is Morita equivalent to B, for every x € Xq. Then
(X, A) and (X, B) are Morita equivalent.
(2) Let now (X, A) and (Y,B) be two central non-commutative curves
finite over a field. If they are Morita equivalent, there is an isomor-
pism 7 : X =Y such that, for every points x € X and y = 7(x),
the rings (7*B), and Ay are Morita equivalent.

Proof. (1) If A, and B, are Morita equivalent, there is a progenerator P,
for A, such that B, ~ (End4, P,)°?. There is a KA-module V such that
VY ~ KP, for all z € X. Choose a normal over-ring A" of A and a coherent
A’-submodule M C V such that KM = V. Then M is a local progenerator
for A'. Set B’ = (End g M)°P and S = {z € X | Ay # A, or B, # B. }.
The set S is finite, so there is an A-submodule P C V such that P, = P,
for x € S and P, = M, for x ¢ S. Then P is a local progenerator for A
and B ~ (End 4 P)°P.

(2) follows from [3], Section 6]. O

6.2. Hereditary non-commutative curves. We call a noetherian non-
commutative scheme (X, .A) hereditary if all localizations A, are hereditary
rings, i.e. gldimA, = 1. Then gl.dim A = 1 too, so Ext% (M, N) = 0 for
all A-modules M, N. Suppose that (X, .A) is a hereditary non-commutative
curve. Then any torsion free coherent .4-module M is locally projective,
so &xtyy(M,N) = 0 for any A-module N. If A is coherent and torsion,
it implies that ExtY(M,N) = 0. Therefore, every coherent .A-modules
M splits as M = tors M & M’ where M’ is torsion free, hence locally
projective. If a central non-commutative curve (X, H) is hereditary, then X
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is smooth. There is an effective description of hereditary non-commutative
curves up to Morita equivalence.

First consider the case when X = Spec O, where O is a complete discrete
valuation ring with the field of fractions K, the maximal ideal m and the
residue field k = O/m. Let H be a hereditary reduced O-algebra which
is torsion free as O-module. Then K H ~ Mat(n, D), where D is a finite
dimensional division algebra over K. There is a unique maximal O-order
A C D [30, Theorem 12.8]. It contains a unique maximal ideal 9, which
is both left and right principal ideal. Let n = Zle n; for some positive
integers n;, n = (n1,ng,...,ng) and H(n, D) be the subring of Mat(n,A)
consisting of k x k block matrices (A;;) such that A;; is of size n; x n; and
if j > i all coefficients of A;; are from 9. Let also L = A" considered as
H (n, D)-module and L; be the submodule in L consisting of such vectors
(a1, q9,...,ay) that a; € 9 for ¢ > 23':1 n;. In particular, Ly = L and
Ly = 9™ ~ L. If necessary, we denote L; = L;(H).

Theorem 6.6 ([30, Theorem 39.14]). Let O be a complete discrete valuation
Ting.

(1) Ewvery connected hereditary O-order is isomorphic to H(n, D) for
some tuple n = (ni,ng,...,nk), which is uniquely determined up to
a cyclic permutation.

(2) Hereditary orders H(n, D) and H(n', D) are Morita equivalent if
and only if D ~ D’ and n and n’ are of the same length.

(3) L; (0 < i < k) are all indecomposable projective H -modules and
Ui = L;/L;y1 are all simple H (n, D)-modules (up to isomorphism).

Let now (X, H) be a connected central hereditary non-commutative curve.
Then KH is a central simple K-algebra: KA = Mat(n,D), where D is a
central division algebra. For every closed point x € X the completion D,
is isomorphic to Mat(m,, D) for some central division algebra D, over I@x
and some integer m, = m, (D). Therefore, for every closed point x € X, He
is isomorphic to H (n, D) for some n = (ny,ng,...,nk), where Zle n; =
mgn. Thus Theorems [6.5] and [6.6] give the following result.

Theorem 6.7. A central hereditary non-commutative curve (X, H) is de-
termined up to Morita equivalence by a central division K-algebra D and a
function K : Xq — N such that k(x) =1 for almost all x € X.

Remark 6.8. Representatives of a class given by D and k can be obtained
as follows. Choose an integer n such that x(z) < nmg(D) for all z € X.
There is an O,-order H, in Mat(n, D) such that H, = H(n,, D,) for some
n, = N1z, N2, ... ,nﬁ(m)7x). Fix a normal non-commutative curve (X, A)
such that KA = D. Then we can define H = H(n, D) as the non-commu-
tative curve such that KH = Mat(n, D), H, = Mat(n, A,) if k(z) =1 and
Hy = Hy if k(z) > 1.
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Let S = {z e X |k(x)>1}, L = A" considered as H-module. Con-
sider the submodules £, ; (0 < i < k(z)) such that (Z;)m = L;(H,) and
(Lyi)y = Ly ify # x. Let also Uy = L4i/Leit1 (0 < i < k(x)). Then
Uy, are all simple H-modules (up to isomorphism). Note that £, = L for

every point .

Theorem 6.9. Let H = H(n, D).
(1) The set

Ly = {L}U{Lo; |z €S, 1<k<r(z)}

classically generates Z°H, hence generates ZH (see [26, Theorem 2.2]).
(2) 9A ~ DA, where A denotes the DG-category with the set of objects
L4 and A(L', L") = RHom4 (L', L").

Proof. (1) Obviously, (Ly )oo contains all simple H-modules. Therefore, it
contains all torsion coherent H-modules, as well as all coherent H-submodules
of L. If M is a coherent torsion free H-module, it contains a submodule
N isomorphic to a submodule of KL such that M /N is also torsion free. It
implies that (LLy )oo contains all coherent H-modules, hence coincides with
DH.

(2) follows now from [26], Proposition 2.6]. O

Corollary 6.10. Let k be an algebraically closed field.

(1) A connected hereditary algebraic non-commutative curve over k is
defined up to Morita equivalence by a pair (X,k), where X is a
smooth connected algebraic curve over k and k : X — N is a func-

tion such that k(x) = 1 for almost all x. Representatives of the
Morita class given by such a pair are H(n,K) as described in Re-
mark [6.8.

(2) Two connected hereditary non-commutative curves given by the pairs
(X, k) and (X', k") are Morita equivalent if and only if there is an
isomorphism 7 : X — X' such that k' (7(x)) = k(z) for all z € Xq.

In this case we write H(n, X) instead of H(n, K).

Proof. The Brauer group of K is trivial [25, Theorem 17]. Therefore, the
algebra D in Theorem coincides with . O

We say that a central non-commutative curve (X,.A) is rational (over
a field k) if all simple components of the algebra KA are of the form
Mat(n, k(x)). Then the curve X is also rational over k.

Theorem 6.11. Let (X,H) be a connected rational hereditary non-commu-
tative curve over a field k and k : X, — N be the corresponding function.
Let S ={x € Xq | k(z) > 1}, 0 € X be an arbitrary point.

(1) The set
EH:{,C,E(—O)}U{EQ;JL'EGS, 1§i<l€(l‘)}

classically generates Z°H, hence generates IH.
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(2) If £, L" € Ly, then Ext}, (L', L") =0 for all k > 0, while
(1 if ' =L,

or L' = L(—o), L" = L,

or L' =L, L' =L,

or L' =Ly, L= Lo, ] > 1,
2 if L =L(—0), L' =L,

0 in all other cases.

dim Homy (L', L") =

In particular, Ly is a tilting set for the category ZH.

(3) If 0, are generators of the spaces Homy (Ly 4, Lyi—1) (1 < i <
K(x)), then the products 0 = 051022 ...0, () are non-zero and
any two of them generate Homy (L(—o0), L).

Proof. (1) If X ~ P!, then all sheaves O(—x), hence all sheaves £(—x) are
isomorphic. Moreover, in this case L, ;) =~ L£(—=) for any x € X, so we

can apply Theorem
(2) From the definition of £ and £, ; it immediately follows that
(O if £/ =",
or L'=Ly;, L' =L,

! __ i /i — . . .
HomH(ﬁ’, E”) ~ or L' = EIJ? L Lo, j > 1,

Olo—=z) i L' =L(-0), L =Ly,
O(o) if £''=L(-o0), L" =L,
O(—o) in all other cases.

Since Ext?, (£, L") = Hi(Homy (L', L"), it implies the statement.

(3) One easily sees that, if x = (1 : £) as the point of P, then 6,, up to a
scalar, is the multiplication by ¢ — &, where t is the affine coordinate on the
affine chart A(l). Now the statement is obvious. ([

Recall that a canonical algebra by Ringel [31, 3.7] is given by a se-
quence of integers (ki,ko,..., k), where r > 2 and all k; > 2 if r > 2,
and a sequence (A, Ag,...,A,) of different non-zero elements from k (if
r = 2, this sequence is empty). Namely, this algebra, which we denote by
R(ky, ko, ... kr;A3,..., ), is given by the quiver

Qg1 Xk —1,1
(621) y.%o...o%o%
L] L] L] “ e L} L] L]
a2 a2 Oky—1,2 Qo2
Qlr ’ %’r
L] —— L] .« .. L} EE—— L]
a2y Ay —1,7

with relations a; = a1 + Ajag for 3 < j < r, where a; = Qfjj - - 205
Certainly, if » = 2, it is the path algebra of a quiver of type Ak1+k2. In
particular, if r = 2, k1 = k9 = 1, it is the Kronecker algebra.
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Corollary 6.12. Let (X, H) be a rational projective hereditary non-commu-
tative curve, k : X — N be the corresponding function. Let T = @FEEHI
and A = (Endy T)P. If S = {x1,x2,...,2, } withr > 2, we set k; = k(x;).
IfS ={xz}, wesetr =2, kg =1and k1 = k(z). If S =0, we set
7":2, kl:k2:1.

(1) A~ R(k1,ka, ..., kr;A3,..., Ap) for some A3, ..., Ay

(2) The functor Homy (T, ) induces an equivalence IH ~ P A.

Actually, the preceding considerations also show that a rational projec-
tive hereditary non-commutative curve is Morita equivalent to a weighted
projective line by Geigle-Lenzing [17]. It can also be deduced from the de-
scription of hereditary non-commutative curves and the remark on page 271
of [17].

6.3. Subhereditary non-commutative curves.

Definition 6.13. A non-commutative curve (X, .A) is said to be subheredi-
tary if there is a hereditary over-ring ‘H of A and an ideal Z C A such that
A/T is semi-simple and HZ = T.

Obviously, we can suppose that Z is the conductor of H in A, i.e. Z =
{ae KA|Ha C A} ~Homa(H,A). Note that the non-commutative curve
‘H need not be connected. If Hi,Ho,...,Hs are its connected components,
we set Ly = J;_; Ly, -

Corollary 6.14. Let A be a subhereditary non-commutative curve, H be
its hereditary over-ring such that Q = A/Z is semi-simple, where I is the
conductor of H in A. Let Ay = End 4(A ® H) (see Example [4.8).
(1) gldim Ay < 2.
(2) There are semi-orthogonal decompositions (7, 7) and (7, T) of
DAy such that T = PQ and S ~ T ~ IH.
Note that 7 # 7.
(3) The set {Q} ULy (see Theorem [6.9) generates 2.A.

This corollary generalizes some results of [8].

Proof. Note that

A H
Ay = <I H) .
Let P = (%) considered as Az-module. Then &nd 4,, P ~ H and
(T H
-’2"77 = (I H) )

so Ay /Zp ~ Q and we identify them. Then (Ay,P, Q) is a heredity re-

lating chain berween Ay and Q (see Definition [4.10). Hence (1) and (2)

follow from Corollary and Corollary Moreover, the set {Q} U

{P®y L| L €Ly} generates ZAy. As Gy Q = Q and Gy (P @y L) ~ L,

we obtain the claim (3). O
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Corollary 6.15. Suppose that the subhereditary non-commutative curve A
is rational and keep the notations of Corollary(6.14. Let A = (Endy T)P,
where T = @z, 7, Q =T(X,Q), E = Ext4(Q,T) and A be the algebra

of triangular matrices
_(Q FE
(2 5)

Then {Q[—1]}UFxILy is a tilting set in 2°Ay and DAy ~ DA. Therefore,
the category YA is a bilocalization of ZA.

Note that the algebra A is isomorphic to a product of canonical algebras,
so A is directed, hence quasi-hereditary.

REFERENCES

[1] Alonso Tarrfo L., Jeremias Lépez A., Lipman J. Local homology and cohomology on
schemes. Ann. Sci. Ecole Norm. Sup. 30 (1997) 1-39.
[2] Alonso Tarrio L., Jeremias Lépez A., Souto Salorio M. J. Localization in categories
of complexes and unbounded resolutions. Canadian Math. J. 52 (2000 225-247.
[3] Artin M, Zhang J. J. Noncommutative projective schemes. Adv. Math. 109 (1994)
228-287.
[4] Auslander M., Reiten 1., Smalg S. Representation Theory of Artin Algebras. Cam-
bridge Univ. Press, 1997.
[5] Bourbaki N. Algebre commutatif. Chapitres 5 & 7. Hermann, Paris, 1975.
[6] Bourbaki N. Algebre. Chapitre X. Algebre homologique. Springer-Verlag, 1980.
[7] Bruns W., Herzog J. Cohen-Macaulay Rings. Cambridge University Press, 1993.
[8] Burban I., Drozd Y. Tilting on non-commutative rational projective curves. Math.
Ann. 351 (2011) 665-709.
[9] Cartan H., Eilenberg S. Homological Algebra. Princeton University Press, 1956.
[10] Cline E., Parshall B., Scott L. Finite dimensional algebras and highest weight cate-
gories. J. reine angew. Math. 391 (1988) 85-99.
[11] Curtis C. W., Reiner I. Methods of Representation Theory. Vol. I. Wiley-Interscience,
1981.
[12] Dlab V., Ringel C. M. Quasi-hereditary algebras. Illinois J. Math., 33 (1989) 280-291.
[13] Drozd Y. A. Minors and theorems of reduction. Coll. Math. Soc. J. Bolyai, 6 (1973)
173-176.
[14] Drozd Y. A. On existence of maximal orders. Mat. Zametki, 37 (1985) 313-315.
[15] Drozd Y. A, Greuel G.-M. Tame and wild projective curves and classification of vector
bundles. J. Algebra 246 (2001), no. 1, 1-54.
[16] Gabriel P. Des catégories abéliennes. Bull. Soc. Math. France, 90 (1962) 323-448.
[17] Geigle W., Lenzing H. A class of weighted projective curves arising in representation
theory of finite dimensional algebras. Singularities, Representation of Algebras, and
Vector Bundles. Lecture Notes Math. 1273, Springer-Verlag, 1987, 265-297.
[18] Geigle W., Lenzing H. Perpendicular categories with applications to representations
and sheaves. J. Algebra 14 (1991) 273-343.
[19] Grothendieck A. Eléments de géométrie algébrique: 1. Publ. Math. LH.E.S. 4 (1960).
[20] Grothendieck A. Eléments de géométrie algébrique: I1. Publ. Math. LH.E.S. 8 (1961).
[21] Hartshorne R. Resudues and Duality. Lecture Notes in Math. 20. Springer-Verlag,
1966.
[22] Herzog J., Kunz E. (ed.) Der kanonische Modul eines Cohen-Macaulay-Rings. Lecture
Notes Math. 238. Springer-Verlag, 1971.
[23] Konig S. Quasi-hereditary orders. Manus. Math. 68 (1990) 417-433.
28



[24]
[25]
126]
[27]
28]
[29]
30
31]

32]
33]

34]

Kuznetsov A., Lunts V. A. Categorical resolutions of irrational singularities.
arXiv:1212.6170 [math.AG].

Lang S. On quasi-algebraic closure. Ann. Math. 55 (1952) 373-390.

Lunts V. A. Categorical resolution of singularities. J. Algebra, 323 (2010) 2977-3003.
Miyachi J. Localization of triangulated categories and derived categories. J. Algebra
141 (1991) 463-483

Neeman A. The Grothendieck duality theorem via Bousfield’s techniques and Brown
representability. J. Amer. Math. Soc. 9 (1996) 205-236

Neeman A. Triangulated categories. Princeton University Press, 2001.

Reiner 1. Maximal Orders. Clarendon Press, 2003.

Ringel C. M. Tame Algebras and Integral Quadratic Forms. Lecture Notes in Math.
1099, Springer-Verlag, 1984.

Rouquier R. Dimensions of triangulated categories. J. K-Theory 1 (2008) 193-256.
Spaltenstein N. Resolutions of unbounded complexes. Compositio Math. 65 (1988)
121-154.

Van den Bergh M. Non-commutative crepant resolutions. The legacy of Niels Henrik
Abel, 749770, Springer, 2004.

UNIVERSITAT zZU KOLN, MATHEMATISCHES INSTITUT, WEYERTAL 86-90, D-50931

KO

LN, GERMANY

FE-mail address: burban@math.uni-koeln.de

INSTITUTE OF MATHEMATICS, NATIONAL ACADEMY OF SCIENCES OF UKRAINE, TERESCHENKIVSKA

STR. 3, 01004 Ky1v, UKRAINE
E-mail address: drozd@imath.kiev.ua, y.a.drozd@gmail.com

INSTITUTE OF MATHEMATICS, NATIONAL ACADEMY OF SCIENCES OF UKRAINE, TERESCHENKIVSKA

URL: www.imath.kiev.ua/~drozd

STR. 3, 01004 Kyrv, UKRAINE
E-mail address: vlgvrn@gmail.com

29



	1. Introduction
	2. Bilocalizations
	3. Non-commutative schemes
	4. Minors
	5. Strongly Gorenstein schemes
	6. Non-commutative curves
	6.1. Generalities
	6.2. Hereditary non-commutative curves
	6.3. Subhereditary non-commutative curves

	References

