# MAXIMAL COHEN-MACAULAY MODULES OVER QUOTIENT SURFACE SINGULARITIES 

IGOR BURBAN


#### Abstract

In this note I discuss a relationship between the McKay Correspondence for twodimensional quotient singularities and the theory of maximal Cohen-Macaulay modules.


## 1. McKay's observation

Let $G \subseteq \mathrm{SL}_{2}(\mathbb{C})$ be a finite group. Then one can attach to it the following pair of combinatorial objects.

First object. By Maschke's theorem, the category of finite dimensional representations of $G$ over the field $\mathbb{C}$ is semi-simple. Let $\left\{V_{0}, V_{1}, \ldots, V_{n}\right\}$ be the set of the isomorphy classes of the irreducible representations of $G$, where $V_{0}=\mathbb{C}$ is the trivial representation, and $W=\mathbb{C}^{2}$ be the fundamental representation of $G$ induced by the embedding $G \subseteq \mathrm{SL}_{2}(\mathbb{C})$. For any $0 \leq i \leq n$, we set $m_{i}=$ $\operatorname{dim}_{\mathbb{C}}\left(V_{i}\right)$. For any $0 \leq i \leq n$ we have decompositions

$$
V_{i} \otimes_{\mathbb{C}} W \cong \bigoplus_{j=0}^{n} V_{j}^{a_{i j}}
$$

One can show that $a_{i i}=0$ and $a_{i j}=a_{j i}$ for all $0 \leq i, j \leq n$.
Definition 1. The McKay graph $\operatorname{MK}(G)$ of a finite group $G \subseteq \mathrm{SL}_{2}(\mathbb{C})$ is defined as follows.
(1) The set of vertices of $\operatorname{MK}(G)$ is $\{0,1, \ldots, n\}$.
(2) For any $0 \leq i \neq j \leq n$ the vertex $i$ is connected with the vertex $j$ by $a_{i j}$ arrows.
(3) The vertex $i$ has "weight" $m_{i}$.

Second object. Let $A=\mathbb{C} \llbracket x, y \rrbracket^{G}$ be the quotient singularity defined by $G, X=\operatorname{Spec}(A)$, o $\in X$ the closed point of $X$ and $\widetilde{X} \xrightarrow{\pi} X$ a minimal resolution of singularities. Let $E=\pi^{-1}(o)$ be the exceptional divisor of the resolution. It is well-known that $E$ is a tree of projective lines.

In 1978 John McKay made [8] the following striking
Observation. Let $G \subset \mathrm{SL}_{2}(\mathbb{C})$ be a finite subgroup. Then we have:
(1) The number of the irreducible components of $E$ is equal to the number of non-trivial irreducible representations of $G$.
(2) Let $\operatorname{MK}(G)^{\prime}=\operatorname{MK}(G) \backslash\{0\}$ be the graph obtained from $\operatorname{MK}(G)$ by excluding the vertex 0 and all arrows connected with it. Then $\operatorname{MK}(G)^{\prime}$ is isomorphic to the dual intersection graph $\Gamma_{E}$ of the curve $E$. In other words, there exists a labeling of the irreducible components $E_{1}, \ldots, E_{n}$ such that for any $1 \leq i \neq j \leq n$ we have:

$$
a_{i j}=\#\left(E_{i} \cap E_{j}\right)=: c_{i j} .
$$

(3) The cycle $Z=\sum_{i=1}^{n} m_{i}\left[E_{i}\right] \in H_{2}(\tilde{X}, \mathbb{Z})$ is the fundamental cycle of the resolution $\tilde{X}$. This can be expressed in plain words as follows. For any $1 \leq i \leq n$ let $c_{i i}:=-2=E_{i}^{2}$ be the self-intersection index of $E_{i}$ and $C=\left(c_{i j}\right) \in \operatorname{Mat}_{n \times n}(\mathbb{Z})$ be the intersection matrix of $E$.

Then $Z$ is the smallest vector $\underline{l}=\left(l_{1}, l_{2}, \ldots, l_{n}\right)$ with non-negative integral entries such that

$$
\left\langle\underline{e}_{i}, \underline{l}\right\rangle_{C}:=\left\langle\underline{e}_{i}^{t} C \underline{l}\right\rangle \leq 0
$$

for all $1 \leq i \leq n$, where $e_{i}=(0, \ldots, 0,1,0, \ldots 0)$ is the $i$-th basic vector of $\mathbb{Z}^{n}$.
Example 2. Let $\mathbb{Z} /(n+1) \mathbb{Z} \cong G=\langle g\rangle \subset \mathrm{SL}_{2}(\mathbb{C})$ be a cyclic subgroup of order $n+1$ generated by the element

$$
g=\left(\begin{array}{cc}
\xi & 0 \\
0 & \xi^{-1}
\end{array}\right)
$$

where $\xi$ is a primitive $(n+1)$-st root of 1 . Then we have:

- $G$ has $n+1$ irreducible representations $\left\{V_{0}, V_{1}, \ldots, V_{n}\right\}$, where all $V_{i}=\mathbb{C}$ and the action of $g$ is given by the multiplication with $\xi^{i}$. It is easy to see that $W=V_{1} \oplus V_{n}$ and the McKay's graph $\mathrm{MK}(G)$ is a cycle

- Next, we have:

$$
A:=\mathbb{C} \llbracket x, y \rrbracket^{G}=\mathbb{C} \llbracket x^{n+1}, x y, y^{n+1} \rrbracket \cong \mathbb{C} \llbracket u, v, w \rrbracket /\left(u w-v^{n+1}\right)
$$

is a simple surface singularity of type $A_{n}$. It is well-known that the exceptional divisor of a minimal resolution of singularities of $\operatorname{Spec}(A)$ is a chain of $n$ projective lines. Hence, the intersection matrix of the exceptional divisor is just

$$
C=\left(\begin{array}{rrrrr}
-2 & 1 & 0 & \ldots & 0 \\
1 & -2 & 1 & \ldots & 0 \\
0 & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 1 & -2 & 1 \\
0 & \ldots & 0 & 1 & -2
\end{array}\right)
$$

It is easy to show that in this case the fundamental cycle $Z$ is equal to $\sum_{i=1}^{n}\left[E_{i}\right]=(1,1, \ldots, 1)$, in a full accordance with McKay's observation.

Explanation. McKay himself has verified his observation using Klein's classification of finite subgroups in $\mathrm{SL}_{2}(\mathbb{C})$ by a tedious case-by-case analysis [8]. It turns out, however, that the McKay correspondence can be explained in a more conceptual way by introducing the third intermediate object: the stable category of the maximal Cohen-Macaulay $A$-modules $\mathrm{CM}(A)$. Namely, there exist natural bijections

$$
\operatorname{MK}(G)^{\prime} \stackrel{\operatorname{ind}(\underline{\mathrm{CM}}(A)) \xrightarrow{\sim} \Gamma_{E}, ~}{\text {, }}
$$

where $\operatorname{ind}(\underline{\mathrm{CM}}(A))$ is the set of the isomorphy classes of indecomposable objects in $\underline{\mathrm{CM}}(A)$. The statement about the fundamental cycle and the dimensions of irreducible representations of $G$ can be derived using the Auslander-Reiten theory of the category $\mathrm{CM}(A)$.

## 2. Algebraic McKay Correspondence

Let $G \subset \mathrm{SL}_{2}(\mathbb{C})$ be a finite subgroup. Then the ring of invariants $A=\mathbb{C} \llbracket x, y \rrbracket^{G}$ is a normal surface singularity. Recall the following standard facts about Cohen-Macaulay modules over surface singularities.

Theorem 3. Let $(A, \mathfrak{m})$ be a local Noetherian ring of Krull dimension two.

- $A$ is normal if and only if it is Cohen-Macaulay and regular in codimension one.
- Assume $A$ to be Cohen-Macaulay. Then for any maximal Cohen-Macaulay module $M$ and any Noetherian module $N$ the module $\operatorname{Hom}_{A}(N, M)$ is maximal Cohen-Macaulay.
- Assume additionally that $A$ is Gorenstein in codimension one (for instance, $A$ is a normal singularity). Then a Noetherian module $M$ is maximal Cohen-Macaulay if and only if it is reflexive. Moreover, the functor $M \mapsto M^{\vee \vee}$ is left adjoint to the forgetful functor $\mathrm{CM}(A) \longrightarrow A-\bmod$.
- Let $(A, \mathfrak{m}) \subseteq(B, \mathfrak{n})$ be a finite extension of Cohen-Macaulay surface singularities, which are Gorenstein in codimension one. Then for any Noetherian B-module $M$ we have an isomorphism of A-modules $M^{\vee \vee_{A}} \cong M^{\vee \vee_{B}}$.
- Let $A$ be regular. Then any maximal Cohen-Macaulay module over $A$ is free.

For a proof one may consult $[3$, Section 3] and references therein.
The following theorem of Herzog [7] was the starting point of an extensive study of maximal Cohen-Macaulay modules over surface singularities.
Theorem 4. Let $k$ be an algebraically closed field, $G \subset \mathrm{GL}_{2}(k)$ be a finite subgroup such that $\operatorname{gcd}(|G|, \operatorname{char}(k))=1, R=k \llbracket x, y \rrbracket$ and $A=R^{G}$. Then we have: $\mathrm{CM}(A)=\operatorname{add}_{A}(R)$. In other words, any maximal Cohen-Macaulay module over $A$ is isomorphic to a direct sum of direct summands of $R$ viewed as an $A$-module.

Proof. The embedding $i: A \rightarrow R$ has a left inverse $p: R \rightarrow A$ given by the Reinold's operator

$$
p(r)=\frac{1}{|G|} \sum_{g \in G} g(r)
$$

It is easy to see that the map $p$ is $A$-linear. Hence, we have an isomorphism $R \cong A \oplus A^{\prime}$ in the category of $A$-modules. Next, for any Noetherian $A$-module $M$ we have:

$$
R \otimes_{A} M \cong M \oplus\left(A^{\prime} \otimes_{A} M\right)
$$

If $M$ is maximal Cohen-Macaulay over $A$ then there exists a positive integer $t$ such that

$$
R^{t} \cong\left(R \otimes_{A} M\right)^{\vee \vee_{R}} \cong\left(R \otimes_{A} M\right)^{\vee \vee_{A}} \cong M \oplus\left(A^{\prime} \otimes_{A} M\right)^{\vee \vee_{A}}
$$

Hence, $M$ is a direct summand of $R^{t}$ as stated.
From Herzog's result we get the following corollary.
Corollary 5. Let $\Lambda=\operatorname{End}_{A}(R)$. Then the functor

$$
\operatorname{Hom}_{A}(R,-): \mathrm{CM}(A)=\operatorname{add}_{A}(R) \longrightarrow \operatorname{pro}(\Lambda)
$$

is an equivalence of categories, where $\operatorname{pro}(\Lambda)$ is the category of the finitely generated projective right $\Lambda$-modules.

The following result is due to Auslander [2].
Theorem 6. Let $k$ be an algebraically closed field and $G \subset \mathrm{GL}_{2}(k)$ be a small finite subgroup such that $\operatorname{gcd}(|G|, \operatorname{char}(k))=1$ (note that any subgroup in $\mathrm{SL}_{2}(k)$ is automatically small). Let $R=k \llbracket x, y \rrbracket$ and $A=R^{G}$. Then the algebra homomorphism

$$
\theta: R * G \longrightarrow \operatorname{End}_{A}(R), \quad t[g] \stackrel{\theta}{\mapsto}(r \mapsto t g(r))
$$

is an isomorphism of algebras.
As a corollary, we obtain the following "algebraic" version of the McKay Correspondence, which is due to Auslander [2], see also [10].

Theorem 7. Let $k$ be an algebraically closed field and $G \subset \mathrm{GL}_{2}(k)$ be a small finite subgroup such that $\operatorname{gcd}(|G|, \operatorname{char}(k))=1, R=k \llbracket x, y \rrbracket$ and $A=R^{G}$.
(1) The functor $\operatorname{pro}(R * G) \rightarrow \mathrm{CM}(A)$ assigning to a projective module $P$ its $A$-submodule of invariants $P^{G}$, is an equivalence of categories quasi-inverse to the functor

$$
\operatorname{Hom}_{A}(R,-): \mathrm{CM}(A) \longrightarrow \operatorname{pro}(R * G)
$$

(2) Since we have an isomorphism $R * G / \operatorname{rad}(R * G) \cong k[G]$, a bijection between the projective and the semi-simple right $R * G$-modules $P \mapsto P / \operatorname{rad}(P)$ yields a bijection between the isomorphy classes of irreducible representations of the group $G$ and indecomposable projective right modules over $R * G$. If $V$ is an irreducible representation of $G$, then the corresponding projective $R * G$-module is just $R \otimes_{k} V$, where the action of an element $t[g] \in R * G$ on a simple tensor $r \otimes h \in R \otimes_{k} V$ is given by:

$$
t[g] \circ(r \otimes h)=t g(r) \otimes g h
$$

(3) The correspondence between the irreducible representations of $G$ and the indecomposable maximal Cohen-Macaulay modules over $A$ is given by the functor

$$
\operatorname{Rep}(G) \ni V \mapsto\left(R \otimes_{k} V\right)^{G} \in \mathrm{CM}(A)
$$

In the notations of the above theorem, consider the Koszul resolution of the trivial representation $V_{0}=k$ of the group $G$, viewed as an $R * G$-module:

$$
0 \rightarrow R \otimes_{k} \wedge^{2}(W) \xrightarrow{\alpha} R \otimes_{k} W \xrightarrow{\beta} R \xrightarrow{\phi} k \rightarrow 0
$$

where $\alpha\left(p \otimes\left(f_{1} \otimes f_{2}-f_{2} \otimes f_{1}\right)\right)=p \tilde{f}_{1} \otimes f_{2}-p \tilde{f}_{2} \otimes f_{1}, \quad \beta(q \otimes f)=q \tilde{f}$ and $\phi(t)=t(0,0)$.
Remark 8. Let $V$ be a non-trivial irreducible $k[G]$-module. Then its minimal free projective resolution in the category of $R * G$-modules is

$$
\begin{equation*}
0 \rightarrow R \otimes_{k}\left(\wedge^{2}(W) \otimes_{k} V\right) \longrightarrow R \otimes_{k}\left(W \otimes_{k} V\right) \longrightarrow R \otimes_{k} V \longrightarrow V \rightarrow 0 \tag{1}
\end{equation*}
$$

Since the functor of taking $G$-invariants is exact, we obtain a short exact sequence of CohenMacaulay $A$-modules

$$
\begin{equation*}
0 \rightarrow\left(R \otimes_{k}\left(\wedge^{2}(W) \otimes_{k} V\right)\right)^{G} \longrightarrow\left(R \otimes_{k}\left(W \otimes_{k} V\right)\right)^{G} \longrightarrow\left(R \otimes_{k} V\right)^{G} \rightarrow 0 \tag{2}
\end{equation*}
$$

which is precisely the Auslander-Reiten sequence sequence ending at the indecomposable CohenMacaulay module $\left(R \otimes_{k} V\right)^{G}$, see [2] and [10].
Corollary 9. If $G$ is a finite subgroup of $\mathrm{SL}_{2}(k)$ then we have: $\wedge^{2} W \cong V_{0}=k$. Hence, the Auslander-Reiten quiver of the category $\mathrm{CM}(A)$ is obtained from the McKay' graph $\mathrm{MK}(G)$ by "doubling" all the arrows.

Example 10. Let $\mathbb{Z} /(n+1) \mathbb{Z} \cong G \subset \mathrm{SL}_{2}(\mathbb{C})$ be as in Example $2, A=\mathbb{C} \llbracket x, y \rrbracket^{G}$ and $\left\{V_{0}, V_{1}, \ldots, V_{n}\right\}$ be the set of the isomorphy classes of irreducible representations of $G$, where $V_{i}=\mathbb{C}$ and $g \cdot 1=\xi^{i}$ for $0 \leq i \leq n$. Then the corresponding indecomposable Cohen-Macaulay $A$-modules are

$$
\mathbb{C} \llbracket x, y \rrbracket \supseteq I_{l}:=\left(\mathbb{C} \llbracket x, y \rrbracket \otimes_{k} V_{l}\right)^{G}=\left\{\sum_{i, j=0}^{\infty} a_{i j} x^{i} y^{j} \mid a_{i j} \in \mathbb{C}, i-j \equiv l \bmod n\right\}, \quad 0 \leq l \leq n .
$$

The following result is due to Auslander [2].
Theorem 11. Let $(A, \mathfrak{m})$ be a normal surface singularity with a canonical module $K$.

- Let $\omega \in \operatorname{Ext}_{A}^{2}(k, K) \cong k$ be a generator and

$$
\begin{equation*}
0 \longrightarrow K \longrightarrow D \longrightarrow A \longrightarrow k \longrightarrow 0 \tag{3}
\end{equation*}
$$

be the corresponding extension class. Then the module $D$ is maximal Cohen-Macaulay.

- Let $G \subset \mathrm{GL}_{2}(k)$ be a finite subgroup, $R=k \llbracket x, y \rrbracket$ and $A=R^{G}$ be the corresponding quotient singularity. Then the sequence (3) is obtained from the sequence (1) by taking $G$-invariants. In particular, we have: $K \cong\left(R \otimes_{k} \wedge^{2} W\right)^{G}$ (see [9]) and $D \cong\left(R \otimes_{k} W\right)^{G}$.
- For a non-regular indecomposable Cohen-Macaulay module $M$, the complex

$$
\begin{equation*}
0 \longrightarrow\left(K \otimes_{A} M\right)^{\vee \vee} \longrightarrow\left(D \otimes_{A} M\right)^{\vee \vee} \longrightarrow M \longrightarrow 0 \tag{4}
\end{equation*}
$$

induced by the short exact sequence (3), is exact. Moreover, it is an Auslander-Reiten sequence, ending at $M$.

- For $G \subset \mathrm{SL}_{2}(k)$ holds: $D \cong\left(\Omega_{A}^{1}\right)^{\vee \vee}$, where $\Omega_{A}^{1}$ is the module of Kähler differentials of $A$.


## 3. Geometric McKay Correspondence

Let $G \subset \mathrm{SL}_{2}(\mathbb{C})$ be a finite subgroup, $A=\mathbb{C} \llbracket x, y \rrbracket^{G}, X=\operatorname{Spec}(A)$ and $\widetilde{X} \xrightarrow{\pi} X$ be a minimal resolution of singularities. Let $E=\pi^{-1}(o)$ be the exceptional divisor of $\pi$. The following facts are well-known.
(1) $E=E_{1} \cup \cdots \cup E_{n}$ is a tree of projective lines.
(2) We have: $H_{2}(\widetilde{X}, \mathbb{Z})=\cup_{i=1}^{n} \mathbb{Z}\left[E_{i}\right] \cong \mathbb{Z}^{n}$.
(3) For any $1 \leq i \leq n$ there exists a unique element $E_{i}^{*} \in H_{2}(\widetilde{X}, \mathbb{Z})$ such that $E_{i}^{*} \cdot E_{j}=\delta_{i j}$ for all $1 \leq j \leq n$.

The following result is due to Artin and Verdier [1], see also [6] and [4].
Theorem 12. Let $M$ be a maximal Cohen-Macaulay module over $A$ and $\widetilde{M}=\pi^{*}(M) /$ tor be the corresponding torsion free sheaf on $\widetilde{X}$. Then we have:
(1) The torsion free coherent sheaf $\widetilde{M}$ is locally free.
(2) The isomorphy class of $M$ is uniquely determined by the pair

$$
\left(\operatorname{rk}(\widetilde{M}), c_{1}(\widetilde{M})\right) \in \mathbb{Z}_{+} \times H^{2}(\widetilde{X}, \mathbb{Z})
$$

(3) If $M$ is indecomposable than either $M \cong A$ or there exists $1 \leq i \leq n$ such that $c_{1}(\widetilde{M})=E_{i}^{*}$. In that case we have: $\operatorname{rk}(\widetilde{M})=c_{1}(\widetilde{M}) \cdot Z$, where $Z$ is the fundamental cycle of $\widetilde{X}$.

Hence, combining the Theorem 11 and Theorem 12, we get a bijection between the set of the isomorphy classes of non-trivial irreducible representations of $G$, the set of indecomposable objects of the stable category of the maximal Cohen-Macaulay modules $\underline{\mathrm{CM}}(A)$ and the set of the irreducible components of the exceptional divisor $E$.

If $V$ is a representation of $G$ and $M=(\mathbb{C} \llbracket x, y \rrbracket \otimes V)^{G}$ is the corresponding Cohen-Macaulay module, then $\operatorname{rk}(\widetilde{M})=\operatorname{dim}_{\mathbb{C}}(V)$. Thus, the last part of Theorem 12 implies that the fundamental cycle $Z$ is equal to $\sum_{i=1}^{n} m_{i}\left[E_{i}\right]$, where $m_{i}=\operatorname{dim}_{\mathbb{C}}\left(V_{i}\right)$ for $1 \leq i \leq n$.
The following result is due to Esnault and Knörrer [5].
Theorem 13. Let $V$ be a non-trivial irreducible representation of $G, M=\left(\mathbb{C} \llbracket x, y \rrbracket \otimes_{\mathbb{C}} V\right)^{G}$ be the corresponding indecomposable Cohen-Macaulay module, $\widetilde{M}=\pi^{*}(M) /$ tor the corresponding vector bundle on $\widetilde{X}$ and $F$ the irreducible component of $E$ such that $c_{1}(\widetilde{M})=F^{*}$. Let $N=\left(M \otimes_{A} \Omega_{A}^{1}\right)^{\vee \vee}$ and $\widetilde{N}$ be the corresponding vector bundle on $\widetilde{X}$. Then we have:

$$
\operatorname{det}(\widetilde{N}) \cong \operatorname{det}(\widetilde{M})^{\otimes 2} \otimes \mathcal{O}_{\tilde{X}}(F)
$$

Using this result, the isomorphism of the McKay graph $\operatorname{MK}(G)^{\prime}$ and the dual intersection graph $\Gamma_{E}$ follows from Theorem 11 and Theorem 12.

## References

[1] M. Artin and J.-L. Verdier, Reflexive modules over rational double points, Math. Ann. 270 (1985), no. 1, 79-82.
[2] M. Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986), no. 2, 511-531.
[3] I. Burban and Yu. Drozd, Maximal Cohen-Macaulay modules over surface singularities, Trends in representation theory of algebras and related topics, 101-166, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, (2008).
[4] H. Esnault, Reflexive modules on quotient surface singularities J. Reine Angew. Math. 362 (1985), 63-71.
[5] H. Esnault and H. Knörrer, Reflexive modules over rational double points, Math. Ann. 272 (1985), no. 4, 545-548.
[6] G. Gonzalez-Sprinberg and J.-L. Verdier, Construction géométrique de la correspondance de McKay, Ann. Sci. École Norm. Sup. (4) 16, no. 3, 409-449 (1984).
[7] J. Herzog, Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-MacaulayModuln, Math. Ann. 233 (1978), no. 1, 21-34.
[8] J. McKay, Graphs, singularities, and finite groups, The Santa Cruz Conference on Finite Groups, 183-186, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980.
[9] K. Watanabe, Certain invariant subrings are Gorenstein. I, II, Osaka J. Math. 11 (1974), 1-8; ibid. 11 (1974), 379-388.
[10] Y. Yoshino, Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Mathematical Society Lecture Note Series 146, Cambridge Univ. Press, 1990.

Mathematisches Institut, Universität Bonn, Endenicher Alee 60, D-53115 Bonn, Germany
E-mail address: burban@math.uni-bonn.de

