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Abstract. These are notes by Kristian Brüning of a mini-course given
by Igor Burban at the summer school “Derived categories in representa-
tion theory” held at Tsinghua University, Beijing: 22-26 August, 2005.
The aim of this series of lectures is to give a classification of indecom-
posable coherent sheaves on an elliptic curve using a braid group action
on the derived category.
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1. Introduction

We want to study the category of coherent sheaves Coh(X) on an elliptic
curve X. By definition, an elliptic curve is a smooth plain curve in P2 of
degree three (e.g. zy2 = x3 − z2x), and in the affine chart z 6= 0 it looks
like:

This category Coh(X) has nice properties: it is an abelian, finite dimensional
hereditary category and is therefore Krull-Schmidt [Ste75, VIII,4.3]. We
shall classify the indecomposable coherent sheaves on X using a braid group
action on the derived category Db(Coh(X)). It yields a background for the
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study of the Hall algebra of the category Coh(X) [BS]. Before dealing with
coherent sheaves on projective curves we first take a look at the affine case.

Fix an algebraically closed field k. Unless otherwise stated, all rings which
we shall consider are commutative and are algebras over the field k.

Definition 1.1. Let I = (f1, ..., fs) be an ideal in k[X1, ...,Xn]. The corre-
sponding affine variety X = V (I) ⊂ kn = An

k is the set of solutions of the
system of equations {f1 = 0, ..., fs = 0}. Denote by k[X] := k[X1, ...,Xn]

/
I

the coordinate ring of X.

We have a contravariant functor

(affine varieties) → (noetherian k − algebras)

X 7→ k[X].

Principle 1.2. Everything we want to know about X is contained in its
coordinate ring k[X].

Definition 1.3. For a noetherian ring R we denote by

Max(R) = {maximal ideals in R}
the maximal spectrum of R.

As a first incarnation of our principle we have:

Theorem 1.4 (Hilbert Nullstellensatz). Let X be an affine variety. There

is a one to one correspondence

{points in X} oo 1:1 // Max(k[X]).

Given a point p ∈ X, the corresponding maximal ideal mp = {f ∈
k[X]|f(p) = 0} gives rise to the short exact sequence:

0 → mp → k[X] → k → 0

f 7→ f(p).

Let TpX := (mp

/
m2
p)

∗ denote the tangent space of X at the point p.

Definition 1.5. Let A be a noetherian domain, and let p ⊂ A be a prime
ideal. The ring

Ap :=
{a
b
| a ∈ A, b ∈ A\p

}

is called the localization of A at p.

Definition 1.6. An affine variety is a smooth curve if for all points p ∈ X
the tangent space TpX is 1-dimensional.

One can characterize smooth affine curves in the following way:

Lemma 1.7. For an affine variety X the following conditions are equivalent:

(i) X is a smooth curve

(ii) k[X] is a Dedekind domain

(iii) For all m ∈ Max(k[X]) the localization k[X]m is a principal ideal

domain.
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Proof. The equivalence (ii) ⇔ (iii) is just a characterization of a Dedekind
domain [AM69, Proposition 9.2, Theorem 9.3]. For the other equivalence,
since (TpX)∗ ∼= mp

/
m2
p is one dimensional, this vector space is generated

by the image of an element in mp, say a. By Nakayama’s Lemma [AM69,
Proposition 2.8], the ideal mp is generated by a in k[X]mp . �

Definition 1.8. Let X be an affine curve. The category of coherent sheaves

Coh(X) on X is the category k[X]-mod of noetherian k[X]-modules.

2. Modules over Dedekind domains

Let A be any Dedekind domain, for example the coordinate ring k[X] =
k[x, y]

/
(y2−x3 +x) of the curve X = V (y2−x3 +x) or the ring of Gaussian

integers Z[i]. We shall investigate the module category of A which in the
first example of a category of coherent sheaves.

Let M be a noetherian A-module.

Definition 2.1. The torsion part of M is defined as

T (M) = {m ∈M | ∃a ∈ A \ {0}| am = 0}.
There is a short exact sequence:

0 → T (M) →M →M
/
T (M) → 0 (∗)

where T (M) and hence M
/
T (M) are noetherian and M

/
T (M) is by con-

struction torsion free.

Proposition 2.2. Every noetherian module M over A splits into a torsion

part and a projective part:

M ∼= T (M) ⊕M
/
T (M).

Proof. Let m ∈ Max(A) be a maximal ideal. The module (M
/
T (M))m is

torsion free. By the classification of modules over principal ideal domains,
we know that (M

/
T (M))m is already free. Therefore

Ext1A(M
/
T (M), T (M))m = Ext1Am

((M
/
T (M))m, T (M)m) = 0.

Since Ext1A(M
/
T (M), T (M))m = 0 for all maximal ideals we conclude that

Ext1A(M
/
T (M), T (M)) = 0.

Therefore the short exact sequence (∗) splits. �

We collect some facts about the module category of A in the following:

Proposition 2.3. Let A be a Dedekind domain.

(i) The category A-mod is hereditary.

(ii) If an A-module M is torsion free then there are ideals I1, . . . , Is ⊂ A
such that

M ∼=
s⊕

i=1

Ii.

(iii) If I and J are ideals in A then

I ⊕ J ∼= IJ ⊕A.
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(iv) If M is a noetherian A-module then there exist ideals I ⊂ A, m1, . . . ,
ms ∈ Max(A) and integers m, p1, . . . , ps ∈ Z>0, such that

M ∼= I ⊕Am ⊕ (

s⊕

i=1

A
/
m
pi

i ).

Definition 2.4. A k-linear category is called finite dimensional if all the
Hom-spaces are finite dimensional as k-vector spaces.

Remark 2.5. Since End(A) = A the category of A-modules is infinite di-
mensional. The assertion (i) can be shown by a “ local-global” argument
similar to the proof of 2.2. The statement (ii) tells us that the indecom-
posable projective modules are ideals. The category A-mod is not a Krull-
Schmidt category due to (iii).

Exercise 2.6. Let X be the cuspidal curve, i.e. X = V (y2 − x3) and
A := k[x, y]

/
(y2 − x3).

• Show that the category A-mod is not hereditary. (Hint: find a mod-
ule M with Ext2(M,M) 6= 0)

• Construct an indecomposable A-module which is neither torsion nor
torsion free.

3. Coherent sheaves on projective varieties

In this section we shall introduce the category of coherent sheaves on a
projective variety X and define some basic functors like the internal tensor
product and the internal Hom-functor.

Definition 3.1. The n-dimensional projective space over the field k is de-
fined as

Pnk := kn+1 \ {0}
/
k∗,

where two points x and x′ in kn+1 \ {0} are identified if there is a λ ∈ k∗

such that x = λx′. For an x = (x0, . . . , xn) ∈ kn+1 \ {0} let (x0 : · · · : xn)
denote its equivalence class which is called homogeneous coordinates.

If f is a homogeneous polynomial of degree d, i.e. f(λ(x0, . . . , xn)) =
λdf(x0, . . . , xn) for all λ 6= 0, then f = 0 defines a subset of Pnk . Recall that

the radical
√
I of an ideal I is {f ∈ k[X] | ∃n ∈ N : fn ∈ I}.

Definition 3.2. Let I ⊂ k[X0, . . . ,Xn] be a homogeneous ideal, that is gen-

erated by homogeneous polynomials f0, . . . , fs such that
√
I 6= (X0, . . . ,Xn)

then the corresponding projective variety

X = PV (I) ⊂ Pnk
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is the set of solutions of the system of equations {f0 = 0, . . . , fn = 0}.
Remark 3.3. The ideal 〈X0, . . . ,Xn〉 does not define a projective variety
and therefore is called the irrelevant ideal.

Like in the affine case let k[X] = k[X0, . . . ,Xn]
/
I denote the coordinate

ring of the projective variety X = PV (I). Observe that R = k[X] is a
graded ring:

R =
∞⊕

i=0

Ri Ri · Rj ⊂ Ri+j,

where Ri is generated by the classes of homogeneous polynomials of degree
i.

Definition 3.4. Let grmod(R) be the category of finitely generated R-
modules M =

⊕∞
i=n0

Mi satisfying Ri ·Mj ⊂Mi+j .

Exercise 3.5. The category grmod(R) is finite dimensional.

For a graded ring R let grMax(R) = {homogeneous prime ideals of co-
height 1 in R} be its graded maximal spectrum. Here, a homogeneous prime
ideal p has coheight 1 if the only proper homogeneous prime ideal m con-
taining p is the irrelevant ideal. In analogy with the affine case we have a
projective Hilbert Nullstellensatz:

Theorem 3.6 (Hilbert Nullstellensatz). Let X be a projective variety. There

is a one to one correspondence

{points in X} oo 1:1 // grMax(k[X]).

The category grmod(k[X]) has less nice properties than its affine analogon
k[X]-mod. So what are the problems with grmod(k[X])?

• If two projective varieties are isomorphic X ∼= Y then k[X] 6∼= k[Y ]
in general.

Example 3.7. The conic X2
0 +X2

1 +X2
2 = 0 in P2

k is isomorphic to P1
k. But

k[X0,X1,X2]
/
(X2

0 +X2
1 +X2

2 ) 6∼= k[Y0, Y1].

• The category grmod(k[P1
k]) = grmod(k[X0,X1]) is not hereditary.

Definition 3.8. Let R be a graded ring. For M ∈ grmod(R), n ∈ Z define
the shift M(n) of M via M(n)i = M(n + i).

For S = k[Y0, Y1] the sequence

0 → S(−2)

“
−Y1

Y0

”

−−−−−→ S(−1)2
(Y0 Y1 )−−−−−→ S → k → 0

is a minimal projective resolution of k. Hence, gl.dim(grmod(S)) ≥ 2.
It is actually equal to 2 due to Hilbert’s Syzygy Theorem. Even worse:
gl.dim(grmod(k[X0,X1,X2]

/
(X2

0 +X2
1 +X2

2 ))) = ∞. So we need to modify
grmod(k[X]) to get a nice category worth to call Coh(X).

Let X ⊆ Pnk be a projective variety with coordinate ring R = k[X] which
is graded. Let A := grmod(R) denote the category of finitely generated
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graded R-modules and B := grmod0(R) the category of finite dimensional
graded R-modules. In order to construct the quotient A

/
B the following is

fact useful:

Observation 3.9. Let

0 →M → N → K → 0

be exact in A. Then N ∈ B if and only if M and K are in B.

Definition 3.10. Let SB := {f ∈ Mor(A)| ker(f), coker(f) ∈ B}.

Exercise 3.11. The set SB is multiplicatively closed (i.e. if f, g ∈ SB are
composable morphisms then the composition f ◦ g is in SB and SB contains
the identity morphisms).

Having a multiplicatively closed set, we can form the localization with
respect to that set: define the Serre quotient

A
/
B := A[S−1

B ].

We shall give a second definition of the category A
/
B which has the

advantage of a more concrete description of its morphisms. Let A and B be
as above. The objects of the Serre quotient A

/
B are just the objects of A.

For M,N ∈ A introduce the set:

IM,N := {((X,ϕ), (Y, ψ))| X � � ϕ
//M , N

ψ
// //Y , coker(ϕ), ker(ψ) ∈ B},

and notice that, given ϕ and ψ, there is a map

HomA(M,N) → HomA(X,Y ).

We endow the set IM,N with an ordering ≤:

((X,ϕ), (Y, ψ))) ≤ ((X ′, ϕ′), (Y ′, ψ′)))

if there are maps f and g in A such that the following diagrams commute:

X ′
f

//
� p

ϕ′

  
B

B

B

B

B

B

B

B

X� _

ϕ

��

N

ψ′

����

ψ

    
A

A

A

A

A

A

A

A

M Y ′
g

// Y.

Exercise 3.12. Show that the partially ordered set IM,N is directed, that
is for all a, b ∈ IM,N there is a c ∈ IM,N such that a ≤ c and b ≤ c.

Now we can define the morphisms in our category A
/
B as the direct limit

of the inductive system {HomA(X,Y )}((X,ϕ),(Y,ψ))∈IM,N
[AM69, 2, Exercise

14]:

Hom
A
/
B
(M,N) := lim

IM,N

HomA(X,Y ).
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The effect of this definition is that a morphism M → N in A
/
B is repre-

sented by a map X → Y with smaller source and target. In a picture:

X ′
� _

��

// Y ′

X� _

��

Y

OOOO

making source and target smaller

M // N

OOOO

OO

With this definition we have [Gab62]:

Theorem 3.13 (Gabriel). The category A
/
B is abelian and the canonical

functor

A → A
/
B

is exact.

For M ∈ A let M̃ denote its image in the Serre quotient. Now we can
give the definition of coherent sheaves in the projective setup:

Definition 3.14. The category of coherent sheaves on a projective variety
X ⊆ Pnk is defined as the Serre quotient:

Coh(X) := grmod(k[X])
/

grmod0(k[X]).

Remark 3.15. The definition 3.14 of the category of coherent sheaves on a
projective variety X is due to Serre [Ser55] and is different from the standard
one, see e.g. [Har77]. This way to define Coh(X) via quotient categories
does not require any special knowledges of the sheaf theory and plays a key
role in the computer algebra approach to the study of coherent sheaves on
projective varieties. This category has nice properties like in the affine case

Theorem 3.16 (Serre). [Ser55] Let X ⊆ Pnk be a projective variety. The

category Coh(X) is a finite dimensional, abelian, noetherian category. If X
is smooth of dimension n then

gl.dim(Coh(X)) = n.

Note that if X is a smooth projective curve then Coh(X) is hereditary.
The category Coh(X) is Krull-Schmidt, because it is finite dimensional and
abelian.

Remark 3.17. This theorem shows an important difference between pro-
jective and affine varieties: the category of coherent sheaves is always finite
dimensional if the variety is projective but for an affine variety this is the
case if and only if it has Krull dimension 0.

In the case X = P1
k we can classify the indecomposable objects.

Example 3.18. Let S = k[Y0, Y1] with k algebraically closed. Then the
indecomposable objects of Coh(P1

k) are

• OP1

k
(n) := S̃(n), n ∈ Z
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• S̃
/
ps, where p = λY0 − µY1, (λ : µ) ∈ P1 and s ∈ Z>0.

Compare the indecomposable objects of Coh(P1
k) and k[T ]-mod.

Functors on Coh(X). In the following we shall introduce the internal Hom-
functor and the internal tensor product on the category of Coh(X), that is

for M̃ ∈ Coh(X) we shall define the functors

M̃ ⊗OX
− : Coh(X) → Coh(X) and Hom(M̃ ,−) : Coh(X) → Coh(X)

which will be induced by the tensor product and Hom-functor on the cate-
gory of graded modules over the coordinate ring k[X].

So let R = k[X], A = grmod(R) the category of finitely generated graded
R-modules and B = grmod0(R) the category of finite dimensional graded
R-modules. If M is in A then there is a functor

M ⊗R − : A → A.
Lemma 3.19. The tensor functor M ⊗R − maps the set SB of morphisms

in A whose kernel and cokernel belong to B into itself.

Proof. Let f : N → K be a morphism of graded modules such that ker(f)
and coker(f) are finite dimensional. We shall show that then for every
finitely generated module M the modules ker(1M ⊗ f) and coker(1M ⊗ f)
are finite dimensional.

The functorM⊗− is right exact, so coker(1M⊗f) ∼= M⊗coker(f) is finite
dimensional since the tensor product of a finite-dimensional module with
a noetherian module is always finite dimensional. Consider the following
commutative diagram with exact rows

ker(a) // M ⊗ ker(f)
a //

t

��

M ⊗N
1M⊗f

//

=

��

M ⊗ im(f) //

s

��

0

0 // ker(1M ⊗ f) // M ⊗N
1M⊗f

// M ⊗K // M ⊗ coker(f).

Since M ⊗ ker(f) is finite dimensional, the submodule ker(a) is finite di-
mensional, too. The map s enters in the short exact sequence:

Tor1(M, coker(f)) →M ⊗ im(f)
s−→M ⊗K →M ⊗ coker(f) → 0.

Note that a graded noetherian R-module L is finite dimensional if and only
if for all m ∈ grMax(R) it holds Lm = 0. Since the localization functor is
exact and commutes with tensor products, it also commutes with Tori and
we may conclude that Tor1(M, coker(f)) is finite dimensional. The canonical
functor

grmod(R) → grmod(R)
/

grmod0(R)

is exact by 3.13 , so we know that s : M⊗im(f) →M⊗K is an isomorphism
in grmod(R)

/
grmod0(R). Projecting the commutative diagram above to

grmod(R)
/

grmod0(R) and using the 5-lemma, we conclude that t is an
isomorphism in the Serre quotient. By [Gab62] it means that ker(t) and
coker(t) are finite dimensional and hence ker(1M ⊗ f) is finite dimensional,
too. �
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Using the universal property of the Serre quotient A
/
B = A[S−1

B ] we
obtain:

Corollary 3.20. There is a unique endofunctor M̃⊗OX
− on Coh(X) mak-

ing the following diagram commutative

grmod(R) //

M⊗R−
��

Coh(X)

fM⊗OX
−

��

grmod(R) // Coh(X).

In a similar way, for M ∈ A the functor

gr Hom(−,M) : Aop → A
N 7→

⊕

n∈Z

Hom(N,M(n))

induces Hom(−, M̃) : Coh(X)op → Coh(X). Analogously one can construct

Hom(M̃,−).

Remark 3.21. The functor Hom(M̃,−) : Coh(X)op → Coh(X) should not

be mixed with the categorical Hom-functor HomCoh(X)(M̃ ,−) : Coh(X) →
Vectk.

At the end of this section on coherent sheaves on projective varieties, we
take a closer look at localization and an important class of coherent sheaves,
namely the locally free ones and discuss some examples.

Definition 3.22. Let R be a graded domain and m ∈ grMax(R) a maximal
ideal. Define the localization

Rm :=

{
f

g
|f ∈ R, g ∈ R \ m, deg(f) = deg(g)

}
.

The localization Rm is a local non-graded ring. We have a functor

grmod(R) → mod(Rm)

which induces a functor

Coh(X) → mod(Rm) F 7→ Fm.

Let mx ∈ grMax(R) be the maximal ideal corresponding to the point x ∈ X
according to the Hilbert Nullstellensatz 3.6.

Definition 3.23. Let F be a coherent sheaf over a projective variety X.

• If x ∈ X then the localized sheaf Fmx =: Fx is called the stalk of F
at x.

• The sheaf F is called locally free if for all x ∈ X the stalk Fx is a
free Rmx-module.
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Examples of coherent sheaves. Let X be a projective curve, X ⊂ Pnk
and R = RX = k[X] its coordinate ring. Remember, that for an R-module
M the image under

grmod(k[X]) → grmod(k[X])
/

grmod0(k[X]) = Coh(X)

is denoted by M̃ . There are examples of coherent sheaves:

• The structure sheaf OX = O = R̃
• Let x ∈ X and mx be the corresponding maximal ideal in R. The

structure sheaf at a point x is k(x) := R̃
/
mx. The ideal sheaf of x

is defined as Jx := m̃x. We have a short exact sequence in Coh(X)

0 → Jx → OX → k(x) → 0.

If X is a smooth curve then O(−x) := Jx is locally free.
• The sheaf O(x) = Hom(O(−x),OX) occurs as the middle term in a

short exact sequence

0 → O → O(x) → k(x) → 0.

4. Coherent sheaves on an elliptic curve

In this section we shall restrict ourselves to a special class of projec-
tive varieties called elliptic curves, and describe all indecomposable coherent
sheaves on them. So let X ⊆ Pnk be a projective variety, R = k[X] its coor-
dinate ring and Coh(X) the category of coherent sheaves over X. We know
that Coh(X) is abelian, noetherian, finite dimensional Krull-Schmidt cate-
gory. So in order to classify the coherent sheaves we can confine ourselves
to a description of the indecomposable ones. If X is in addition a smooth
curve we know by 3.16 that Coh(X) is hereditary. The Calabi-Yau property
of Coh(X), if X is an elliptic curve will be essential for the classification of
indecomposable objects.

Definition 4.1. An elliptic curve over a field k is a smooth plain projective
curve of degree 3 given by a homogeneous polynomial

P3(x, y, z) = 0 ⊂ P2
k

and having a solution over k.

We have seen examples of elliptic curves given by the equation zy2 =
4x3 − axz2 − bz3, where ∆ := a3 − 27b2 6= 0, which looks in the affine chart
z 6= 0 like:
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Calabi-Yau property. If X is an elliptic curve, then there is an impor-
tant isomorphism between the Hom and the Ext functors: let F and G be
coherent sheaves over X, then there is a bifunctorial isomorphism

Hom(F ,G) ∼= Ext1(G,F)∗.

A hereditary abelian category A satisfying the property above is sometimes
called Calabi-Yau category of dimension 1.

There is a classification result by Reiten and van den Bergh [RVdB02,
Theorem C] that characterizes hereditary finite dimensional noetherian abelian
categories with Serre-duality. In our situation it reduces to:

Theorem 4.2 (Reiten, van den Bergh). Let k be an algebraically closed

field and A an abelian, noetherian, hereditary, indecomposable Calabi-Yau

category with finite dimensional Hom-spaces. Then A is equivalent to the

category of nilpotent representations of the quiver with one vertex and one

loop:

A ' Nil(• || )

or A is equivalent to the category of coherent sheaves on an elliptic curve

X:

A ' Coh(X).

Let us now introduce some invariants of coherent sheaves on an elliptic
curve that play a key role in the classification.

Definition 4.3. For E and F in Coh(X) the Euler form of E and F is
defined as

〈E ,F〉 := dimk Hom(E ,F) − dimk Ext1(E ,F).

The Euler characteristic of F is by the definition χ(F) := 〈O,F〉.

We have the following properties:

• The Euler characteristic is additive in the following sense: if 0 →
F ′ → F → F ′′ → 0 is exact then:

χ(F) = χ(F ′) + χ(F ′′).

• Let F ∈ Coh(X), x ∈ X and mx ∈ grMax(R) then the following
functors are exact

Coh(X) →Rmx-mod →VectQuot(Rmx )

F 7→ Fx 7→Fx ⊗Rmx
Quot(Rmx).

Definition 4.4. The rank of a coherent sheaf F is defined as

rk(F) := dimQuot(Rmx )(Fx ⊗Rmx
Quot(Rmx)).

The following lemma assures that the rank is well-defined.

Lemma 4.5. The rank of a coherent sheaf does not depend on the choice of

the point x ∈ X.
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The rank is also additive with respect to short exact sequences (compare
with the Euler characteristic). In fact we get

(χ, rk) : K0(Coh(X)) → Z2,

where K0 denotes the Grothendieck group. The quotient of the Euler char-
acteristic by the rank will be useful in the classification of the coherent
sheaves.

Definition 4.6. The slope of a coherent sheaf F is an element in Q ∪ ∞
defined as

µ(F) =
χ(F)

rk(F)
.

Lemma 4.7. If 0 → F ′ → F → F ′′ → 0 is exact then exactly one of the

following assertions is true:

• µ(F ′) < µ(F) < µ(F ′′)
• µ(F ′) > µ(F) > µ(F ′′)
• µ(F ′) = µ(F) = µ(F ′′).

Definition 4.8. A coherent sheaf F is called stable (or semi-stable) if for
any non-trivial exact sequence 0 → F ′ → F → F ′′ → 0 holds µ(F ′) < µ(F)
(µ(F ′) ≤ µ(F)).

Proposition 4.9. Let X be a smooth projective curve over a field k.

• If two semi-stable coherent sheaves E ,F ∈ Coh(X) satisfy µ(E) >
µ(F) then Hom(E ,F) = 0.

• If F is stable then End(F) = K for a finite field extension k ⊂ K.
• Let µ ∈ Q ∪∞ then the full subcategory

SSµX = {semi-stable coherent sheaves of slope µ}
is abelian and artinian.

Proof. We only show the first assertion: let E and F be coherent sheaves
such that µ(E) > µ(F). Let f : E → F be a morphism which is not zero.
There are exact sequences

E → im(f) → 0 0 → im(f) → F .
By 4.7 we have

µ(E) ≤ µ(im(f)) ≤ µ(F)

which contradicts the assumption. �

The following theorem will be used to derive that all indecomposable
coherent sheaves on an elliptic curve are semi-stable.

Theorem 4.10 (Harder-Narasimhan, Rudakov). [HN75] Let X be a pro-

jective curve, then for a given F ∈ Coh(X) there is a unique filtration:

F = F0 ⊃ F1 ⊃ · · · ⊃ Fn ⊃ Fn+1 = 0

such that

• Ai := Fi
/
Fi+1 for 0 ≤ i ≤ n are semi-stable and

• µ(A0) < µ(A1) < · · · < µ(An).
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In the sequel, we shall abbreviate the filtration of this theorem by HNF
(Harder-Narasimhan-filtration) and call n the length of the filtration.

Corollary 4.11. Let X be an elliptic curve and F ∈ Coh(X) indecompos-

able. Then F is semi-stable.

Proof. Assume F is indecomposable but not semi-stable. If the HNF has
length 1 we get a short exact sequence

0 → F1 → F → A0 → 0

such that F1 and A0 are semi-stable. By the second property of the HNF
we know that µ(A0) < µ(F1). The Calabi-Yau property of Coh(X) yields
that Ext1(A0,F1) ∼= Hom(F1,A0)

∗. By 4.9 we know that Hom(F1,A0) = 0.
Hence Ext1(A0,F1) = 0 and the short exact sequence above splits. So,
F ∼= F1⊕A0 which is a contradiction. The general argument is an induction
on the length of the HNF. �

Corollary 4.12. If X is an elliptic curve then

Coh(X) =
⋃

µ∈Q∪∞

SSµX .

SS

SS

rk

χ

µ<µ’
Hom

Ext

µ

µ’

To sum up, we can decompose every coherent sheaf on an elliptic curve
into a direct sum of semi-stable ones. So the classification boils down to a
description of semi-stable sheaves.

We shall see that

SSµX
∼= SSµ

′

X
∼= SS∞

X ∀µ, µ′ ∈ Q,

where SS∞
X is the category of torsion sheaves. In order to prove this fact we

have to introduce some preliminaries.

Theorem 4.13 (Riemann-Roch formula). Let X be an elliptic curve and E
and F coherent sheaves over X. Then

〈E ,F〉 = χ(F) rk(E) − χ(E) rk(F).

Remark 4.14. By the Calabi-Yau property we have

〈E ,F〉 = −〈F , E〉.
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Recall that the left radical (respectively right radical) is the set

l. rad〈−,−〉 = {F ∈ K0(Coh(X))|〈F ,−〉 = 0}
(respectively r. rad〈−,−〉 = {F ∈ K0(Coh(X))|〈−,F〉 = 0}).

Corollary 4.15. From the Riemann-Roch formula it follows that the right

and the left radical coincide and are both equal to:

l. rad〈−,−〉 = r. rad〈−,−〉 = {F ∈ K0(Coh(X))| rk(F) = χ(F) = 0}.

Example 4.16. Let x1, x2 ∈ X. Then

0 6= [k(x1)] − [k(x2)] ∈ l. rad〈−,−〉.

If the left and the right radical of a bilinear form coincide we shall call it
just the radical. As a consequence of the Corollary 4.15 we get an isomor-
phism

Z :=
(

rk
χ

)
: K0(Coh(X))

/
rad〈−,−〉

→ Z2.

The charge of a sheaf E is defined to be Z(E).

Remark 4.17. The map Z is surjective since

Z(OX) = ( 1
0 ) , Z(k(x)) = ( 0

1 ) .

The group of exact auto-equivalences Aut(Db(Coh(X))) of the bounded
derived category of coherent sheaves on X acts on K0(Coh(X)) by auto-
morphisms, since K0 is actually an invariant of the derived category. This
action preserves the Euler form and its radical. Hence, we get a group
homomorphism

π : Aut(Db(Coh(X))) → SL2(Z)

which sends an auto-equivalence f to the upper map in the following com-
mutative diagram:

Z2 //

∼=Z−1

��

Z2

K0(Coh(X))
/

rad〈−,−〉

f∗

∼=
// K0(Coh(X))

/
rad〈−,−〉

∼= Z

OO

which is in SL2(Z). In the sequel we show that π is surjective by defining
two derived equivalences A and B which are mapped under π to the matrices
A :=

(
1 −1
0 1

)
respectively B := ( 1 0

1 1 ).

There is an evaluation map in Db(Coh(X))

evF : RHom(E ,F) ⊗L E → F .

Definition 4.18. For a coherent sheaf E on a projective variety X the twist

functor is defined as

TE : Db(Coh(X)) → Db(Coh(X))

F 7→ cone(evF )
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Remark 4.19. If E and F are coherent sheaves on a projective curve X
such that Ext1(E ,F) = 0 then TE(F) is isomorphic to the complex

0 → Hom(E ,F)
k
⊗ E evF→ F → 0.

In particular, if evF is injective then TE(F) ∼= coker(evF ) and if evF is
surjective then TE (F) ∼= ker(evF )[1]

The following theorem shows that this notion is useful:

Theorem 4.20 (Seidel-Thomas). [ST01, 2b] The assignment TE is a trian-

gle functor.

By definition there is a triangle

RHom(E ,F) ⊗L E ev−→ F → TE (F) → Σ(RHom(E ,F) ⊗L E).

Hence in K0(Coh(X)) it holds:

TE : [F ] 7→ [F ] − 〈E ,F〉[E ].

The following theorem says when a twist functor is an equivalence.

Theorem 4.21 (Seidel-Thomas, Lenzing-Meltzer). [ST01, Proposition 2.10]
[LM00] Let X be an elliptic curve. If a coherent sheaf E is endo-simple,

i.e. End(E) = k, then the twist functor TE is an exact equivalence of

Db(Coh(X)).

Example 4.22. The sheaves OX and k(x) for a k-point x ∈ X are endo-
simple.

Lemma 4.23. [ST01, formula 3.11] There is an isomorphism of functors:

Tk(x) ∼= O(x) ⊗−.

So by the Theorem 4.21 we know that A := TO and B := Tk(x) are auto-
equivalences. Let A := π(A) and B := π(B) be the images in SL2(Z). Now
we shall determine the matrices A and B by looking at the action of maps
A and B in the Grothendieck group:

TO : [O] 7→ [O] − 〈O,O〉[O] = [O]

and

TO : [k(x)] 7→ [k(x)] − 〈O, k(x)〉[O] = [k(x)] − [O].

On the other hand

Tk(x) : [k(x)] 7→ [k(x)] − 〈k(x), k(x)〉[k(x)] = [k(x)]

and

Tk(x) : [O] 7→ [O] − 〈k(x),O〉[k(x)] = [O] + [k(x)].

Since Z(OX) = ( 1
0 ) and Z(k(x)) = ( 0

1 ), it follows that A =
(

1 −1
0 1

)
and

B = ( 1 0
1 1 ). Since A and B generate SL2(Z), we conclude that

π : Aut(Db(Coh(X))) → SL2(Z)

is surjective.
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Classification of the indecomposable coherent sheaves. Now we are
able to classify the indecomposables in Coh(X).

Let F be indecomposable in Coh(X) of charge Z(F) = ( rd ) ∈ Z2 and
if d 6= 0 let n = gcd(r, d) be the greatest common divisor. If d 6= 0
then there is a matrix F ∈ SL2(Z) with F ( rd ) = ( 0

n ). If d = 0 let F
be the matrix

(
0 −1
1 0

)
in SL2(Z) which flips the coordinate axes. Since

π : Aut(Db(Coh(X))) → SL2(Z) is surjective we can lift F to an auto-
equivalence F ∈ Aut(Db(Coh(X))). Since F is an equivalence of categories
the image F(F) is indecomposable again. The object F(F) is then a shift
of a coherent sheaf of rank 0 because Coh(X) is hereditary. Therefore F(F)
is a torsion sheaf T and F = F−1(T ). It means that any indecomposable
coherent sheaf can be obtained from a torsion sheaf by applying an exact
auto-equivalence of the derived category Db(Coh(X)).

The indecomposable torsion sheaves are known: if m ∈ grMax(R) and
s > 0 then

F = F−1(R̃X
/

ms).

So we have:

Theorem 4.24 (Atiyah). [Ati57, Theorem 7] If X ⊂ P2
k is an elliptic curve

then an indecomposable coherent sheaf on X is uniquely determined by its

charge in Z2 and one continuous parameter m ∈ grMax(R).

Corollary 4.25. The category Coh(X) is tame.

Summary. Let X be an elliptic curve.

• The indecomposable objects of Coh(X) are semi-stable:

Coh(X) =
⋃
SSµX

where SSµX = {semi-stable sheaves of slope µ}.
• For µ, µ′ ∈ Q ∪ {∞} there is an equivalence of abelian categories

SSµX
∼= SSµ

′

X induced by an auto-equivalence of Db(Coh(X)).
• An indecomposable object in Coh(X) is determined by its charge

and a maximal ideal m ∈ grMax(R).
• Let F and F ′ be indecomposable such that Z(F) = (r, χ) and

Z(F ′) = (r′, χ′). If χ
r
> χ′

r′
then Hom(F ,F ′) = 0 and dim Ext1(F ,F ′) =

χr′ − χ′r.

If χ
r
< χ′

r′
then dim Hom(F ,F ′) = χ′r − χr′ and Ext1(F ,F ′) = 0.

In the rest of these notes we shall investigate the group Aut(Db(Coh(X)))
and indicate that it is closely related to the braid group B3 acting on 3
strands. At the end we shall cite Burban’s and Schiffmann’s theorem on the
structure of the Hall algebra of Coh(X) which uses the braid group action
on Db(Coh(X))).

Recall that A := TO and B = Tk(x) and their images under π are A :=(
1 −1
0 1

)
respectively B := ( 1 0

1 1 ). Note the following equalities:

• ABA = BAB;
• (AB)3 =

(
−1 0
0 −1

)
.
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It turns out that these relations can be lifted to the group Aut(Db(Coh(X))):

Theorem 4.26 (Mukai, Seidel-Thomas). [ST01, Proposition 2.13]

• ABA ∼= BAB
• (AB)3 ∼= i∗[1] for an involution i : X → X.

This theorem implies that the group 〈A,B〉 generated by A and B is

isomorphic to S̃L2(Z) which is a central extension of SL2(Z):

0 → Z → S̃L2(Z) → SL2(Z) → 1.

We shall illustrate Theorem 4.26 by showing ABA(O) ∼= BAB(O). Recall
that the twist functor TE fits by definition in the triangle:

RHom(E ,F) ⊗L E ev−→ F → TE(F) → Σ(RHom(E ,F) ⊗L E). (∗)
To compute the action of ABA on O we have to compute the triangle (∗).
The functor A maps O to itself since the triangle (∗) for E = F = O is
isomorphic to

O ⊕O[−1]
( id
w )

−−−→ O → O +−→
where w ∈ Ext1(O,O). The functor B is given by tensoring with the sheaf
O(x) by 4.23. Hence, B(O) = O(x). Since there is a short exact sequence

0 → O → O(x) → k(x) → 0

and Ext1(O,O(x)) = 0 we find that A(O(x)) ∼= k(x). So we have shown:

O �

A // O �

B // O(x) �

A // k(x).

Similar computations show that

O �

B // O(x) �

A // k(x) �

B // k(x).

Hence ABA(O) ∼= BAB(O).

Remark 4.27. Some versions of twist functors appeared in the literature
under different names:

name appearance
shrinking functors Ringel, tubular algebras [Rin84]
reflection functors Mukai, K3-surfaces
tubular mutations Lenzing-Meltzer [LM00]

monodromy transformations mirror symmetry
Fourier-Mukai transformations algebraic geometry

Let X be an elliptic curve over a finite field k = Fq. As we have seen, the
category of coherent sheaves Coh(X) is a finite dimensional abelian hered-
itary category over k. By a general construction of Ringel [Rin90] one can
attach to X an associative algebra H(Coh(X)) over the field K = Q(

√
q).

As a K- vector space

H(Coh(X)) =
⊕

F∈Iso(Coh(X))

K[F ].
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and for F,G ∈ Iso(Coh(X)) the product ∗ is defined as

[F ] ∗ [G] =

√
|Hom(F,G)|
|Ext1(F,G)|

∑

H∈Iso(ρA)

PHF,G [H],

where PHF,G = 1
aF ·aG

|{0 → G → H → F → 0}| is the ”orbifold” number of

short exact sequences with end terms F and G and the middle term H, and
aX denotes the order of the automorphism ring of the object X.

However, for applications it is more convenient to consider the extended
Hall algebra

H̃(Coh(X) := H(Coh(X)) ⊗K[Z2]

where Z2 = K(X)/ rad〈−,−〉. The main reason to enlarge the Hall algebra

H(Coh(X)) to H̃(Coh(X)) is that due to a work of Green [Gre94] the algebra

H̃(Coh(X)) carries a natural bialgebra structure.
It turns out that our approach to coherent sheaves on elliptic curves via

derived categories gives a proper tool to study properties of the extended

Hall algebra H̃(Coh(X)).

Theorem 4.28 (Burban-Schiffmann). [BS] Let X be an elliptic curve over

the field k = Fq. Then the group Aut(Db(Coh(X))) acts on the reduced

Drinfeld double of the extended Hall algebra H̃(Coh(X)) by algebra homo-

morphisms.

This symmetry allows to construct a certain natural subalgebra U(X) ⊂
DH̃(Coh(X)) and show that U(X) is a flat deformation of the ring

Q(
√
q)[s±1, t±1][x±1

1 , . . . , x±1
n , . . . , y±1

1 , . . . , y±1
m , . . . ]Sym∞

of symmetric Laurent series.
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