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ABSTRACT. In this paper we introduce the notion of a geometric associative r-
matrix attached to a genus one fibration with a section and irreducible fibres. It
allows us to study degenerations of solutions of the classical Yang—Baxter equa-
tion using the approach of Polishchuk. We also calculate certain solutions of the
classical, quantum and associative Yang—Baxter equations obtained from moduli
spaces of (semi-)stable vector bundles on Weierstrafl cubic curves.

1. INTRODUCTION

There are many indications (for example from homological mirror symmetry) that
the formalism of derived categories provides a compact way to formulate and solve
complicated non-linear analytical problems. However, one would like to have more
concrete examples, in which one can follow the full path starting from a categorical
set-up and ending with an analytical output. In this article we study the interplay
between the theory of the associative, classical and quantum Yang—Baxter equa-
tions and properties of vector bundles on projective curves of arithmetic genus one,
following the approach of Polishchuk [56].

Let g be the Lie algebra sl,(C) and A = U(g) its universal enveloping algebra.
The classical Yang-Baxter equation (CYBE) is

(@), 7P (@ + )l + [P (@ + ), 7P ()] + [ (@), (y)] = 0,

where r(z) is the germ of a meromorphic function of one variable in a neighbourhood
of 0 taking values in g ® g. The upper indices in this equation indicate various
embeddings of g ® g into A ® A ® A. For example, the function '3 is defined as

M C S gRg S AQA® A,

where Ti3(r ® y) = * ® 1 ® y. Two other maps r'? and 7?* have a similar meaning.
In the physical literature, solutions of (CYBE) are frequently called r—matrices.
They play an important role in mathematical physics, representation theory, inte-
grable systems and statistical mechanics.
By a famous result of Belavin and Drinfeld [8], there exist exactly three types
of non-degenerate solutions of the classical Yang—Baxter equation: elliptic (two-

periodic), trigonometric (one-periodic) and rational. This trichotomy corresponds
1
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to three models in statistical mechanics: XYZ (elliptic), XXZ (trigonometric) and
XXX (rational), see [7].

Belavin and Drinfeld have also obtained a complete classification of elliptic and
trigonometric solutions, see [8, Proposition 5.1 and Theorem 6.1]. A certain classi-
fication of rational solutions was given by Stolin [62, Theorem 1.1].

This article is devoted to a study of degenerations of elliptic r-matrices into
trigonometric and then into rational ones. We hope that this sort of questions
will be interesting from the point of view of applications in mathematical physics.
In order to attack this problem we use a construction of Polishchuk [56]. After
certain modifications of his original presentation, the core of this method can be
described as follows.

Let E be a Weierstraf3 cubic curve, E C E the open subset of smooth points,

M =M ](En’d) the moduli space of stable bundles of rank n and degree d, assumed
to be coprime. Let P = P(n,d) € VB(E x M) be a universal family of the moduli

functor M(g’d). For a point v € M we denote by V = P| gy, the corresponding vector
bundle on E. Consider the following data:

e two distinct points vy, v9 € M in the moduli space;
e two distinct points 3y, yo € E such that Vi (y2) 2 Vo(y1).

Using Serre Duality, the triple Massey product
HomE(Vla (Cyl> ® EXt}E(CyNV?) ® HomE<V27 CZJZ) - HomE(Vh Cyz)a
induces a linear map

TVLVQ : HomE<V17 C?ﬂ) ® HomE(V2> (Cyz) - HomE(V27 (Cyl) ® HomE(Vlv Cy2>

Y1,Y2

and satisfying the so-called associative Yang—Bazter equation (AYBE)

12 .\ 13 23 12 13 23
(rys) ™ (rat) ™ = (o)™ () ™ ()™ ()™ =0

viewed as a map
HomE(Vl, Cy1) X HomE(VQ, (CyQ) & HOmE<V3, Cys) —
— Homg(V,, C,,) ® Homg(Vs,Cy,) ® Homg(Vy, Cy, ).

This map can be rewritten as the germ of a tensor-valued meromorphic function in
four variables, defined in a neighbourhood of a smooth point o of the moduli space
M x M x E x E (the choice of o will be explained in Corollary 6.13)

r(Vi, Vas g1, y2) : (CPxC?,0) = (M x M) x(EXE),0) — Matx,(C)®Mat,»,,(C).

)

Since the complex manifold M én’d is a homogeneous space over the algebraic

group J = Pic’(E), it turns out that

r(v1, v; y17y2) ~ 7"(?11 — V25 Y1,Y2) = T(U; Y1,Y2),
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with respect to a certain equivalence relation on the set of solutions. We show that
this equivalence relation corresponds to a change of a trivialization of the universal
family P.

Let e be the neutral element of J. It was shown by Polishchuk [56, Lemma 1.2]
that the function of two variables

T(y1,Y2) = %eré(pr ® pr)r(v; y1,y2) € sl,(C) @ sl,,(C)

is a non-degenerate unitary solution of the classical Yang—Baxter equation. More-
over, under certain restrictions (which are always fulfilled at least for elliptic curves
and Kodaira cycles of projective lines), for any fixed value g # e from a small
neighbourhood U, C J of e, the tensor-valued function

. ({g} x B X E, 6) B Matnxn((c) ® Matan(C>

satisfies the quantum Yang—Baxter equation, see [57, Theorem 1.4]. Hence, this
approach gives an explicit method to quantize some known solutions of the classical
Yang-Baxter equation.

Moreover, as was pointed out by Kirillov [38], a solution r(v; y1, y2) of the associa-
tive Yang—Baxter equation defines an interesting family of pairwise commuting first
order differential operators, generalizing Dunkl operators studied by Buchstaber,
Felder and Veselov [15], see Proposition 2.9.

The aim of our article is to study a relative version of Polishchuk’s construction.
Although most of the results can be generalized to the case of arbitrary reduced
projective curves of arithmetic genus one having trivial dualizing sheaf, in this article
we shall concentrate mainly on the case of irreducible curves.

Let E be a Weierstrall cubic curve, i.e. a plane projective curve given by the
equation 2y? = 42% — gox2? — g32%. Tt is singular if any only if A := g3 — 27g5 = 0.

Unless go = g3 = 0, the singularity is a node, whereas for g» = g3 = 0 it is a cusp.

A connection between the theory of vector bundles on cubic curves and exactly
solvable models of mathematical physics was observed a long time ago, see for ex-
ample [45, Chapter 13] and [48] for a link with KdV equation, [23] for applications
to integrable systems and [10] for an interplay with Calogero-Moser systems. In
particular, the correspondence
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elliptic elliptic
trigonometric || nodal
rational cuspidal

was discovered at the very beginning of the algebraic theory of completely integrable
systems.

In this article we follow another strategy. Instead of looking at each curve of
arithmetic genus one individually, we consider the relative case, so that all solutions
will be considered as specializations of one universal solution. Our main result can
be stated as follows.

Let E — T be a genus one fibration with a section having reduced and irreducible
fibres, M = Mg}’;) the moduli space of relatively stable vector bundles of rank n and
degree d. We construct a meromorphic function

r: (M xp XM X7 E X1 E,0) — Mat,»,,(C) ® Mat,,»,,(C)

in a neighbourhood of a smooth point o of M xp XM xp E Xp E, which satisfies
the associative Yang—Bazter equation for each fized value t € T and (vq,v2, Y1, Yy2) €
((MEt X Mg,) x (E; X Et),o). Moreover, ri(v1,v2,y1,y2) depends analytically on t,
15 compatible with base change of the given family E — T and the corresponding
solution of the classical Yang—Baxter equation 7(y) is

o clliptic if E; is smooth;
e trigonometric if Ey is nodal;
e rational if E; is cuspidal.

We also carry out explicit calculations for vector bundles of rank two and degree
one on irreducible Weierstraf3 cubic curves. In the case of an elliptic curve F = E.
the corresponding solution is

0,(0/7) [01(y + v7) Oa(y + v|7)

ren(v;y) = 11+ ——h®h+

w3 9) = G | 6l 0,(o]7)
03(y + v|7) 04(y + v|7)
— +———"7®7|,
bs(vlr) C 0T oy

where 1 = ey + €99, h = €11 — €99, 0 = i(e91 — €12) and v = e + €1.
In the case of a nodal cubic curve we get

sin(y + v)
sin(y) sin(v)

L
sin(y)

(611 X €11 + €929 X 622) +

Terg (V5 Y) = (€11 ® exn + €20 @ eq1)+

1
sin(v)

(€12 ® ea1 + €91 @ e12) + sin(y + v)e ® eg
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and in the case of a cuspidal cubic curve, the associative r—matrix is

1
Trat (V3 Y1, Yo2) = ;ﬂ @1+ (€11 @ €11 + €22 @ €22 + €12 @ €91 + €91 @ €12)+

Y2 — U1
+(v—y1)ea @h+ (V+y2)h @ e —v(v — y1)(V+ y2)ea1 R €.

Our results imply that up to a gauge transformation the trigonometric and rational
solutions 7 (v;y) and 7 (v; Y1, y2) are degenerations of 7ey(v;y), which seems to
be difficult to show by a direct computation.

Moreover, for a generic v the tensors rey(v;y), rug(v:y) and ryg(v;y1, y2) satisfy
the quantum Yang—Baxter equation and are quantizations of the following classical
r—matrices:

e Elliptic solution found and studied by Baxter, Belavin and Sklyanin:

= ) — B) L+dn(y) oo ooy L dn()
en(y) = sn(y)h®h+—sn(y) (e12®e21+6e91® 12)+—sn(y)

(612 ®612 —|-621 ®621).

e Trigonometric solution of Cherednik:

1 .
T (Y) = 3 cot(y)h @ h + (12 ® eg1 + €91 ® e12) + sin(y)es ® eo1.

sin(y)
e Rational solution

Trat(Y) = 5(%/1 @ h+e12® ez + ey @ 612) +y(ea1 @ h+ h @ ea1) — y’ea; ® ea,
which is gauge equivalent to a solution found by Stolin [62].

This paper is organized as follows. In Section 2 we collect some results about
the associative Yang—Baxter equation and its relations with Dunkl operators as
well as with the classical and quantum Yang—Baxter equations. Section 3 gives a
short introduction into a construction of Polishchuk which provides a method to
obtain solutions of Yang—Baxter equations from triple Massey products in a derived
category.

In order to be able to calculate solutions explicitly, this construction has to be
translated into another language, involving residue maps. In Section 4 we explain
the corresponding result of Polishchuk whereby we provide some details which are
only implicit in [56]. The understanding of these details is crucial for the study
of the relative case, which is carried out in Sections 5 and 6. Theorem 6.13 is
the main result of this article. It states that for any genus one fibration £ — T
satisfying certain restrictions and any pair of coprime integers 0 < d < r one can
attach a family of solutions of the associative Yang-Baxter equation r¢(vy, vo; y1, o)
depending analytically on the parameter of the basis and functorial with respect to
the base change. This solutions actually depend on the choice of a trivialization
¢ of the universal family P(n,d) of stable vector bundles of rank n and degree d.
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However, in Proposition 6.12 we show that a choice of another trivialization ( leads
to a gauge equivalent solution 7¢(vy, va; Y1, Y2)

In Section 7 we prove that in the case of a Weierstrafl cubic curve E there exists a
trivialization £ of the universal family P(n, d) such that the corresponding solution
7¢(v1, v2; Y1, y2) is invariant under simultaneous shifts v, — v + v, vy + vy +v. In
other words, the solution r¢(vy, va; 41, 92), also called geometric associative r-matriz,
depends on the difference vy — v; of the first pair of spectral parameters. Hence,
the obtained solution 7¢(v;y1,92) also satisfies the quantum Yang-Baxter equation
and defines an interesting quantum integrable system. The key point of the proof
is to show equivariance of triple Massey products with respect to the action of the
Jacobian J on the moduli space M ]g"’d).

Since it is indispensable for carrying out explicit calculations of r—matrices, in the
following sections we elaborate foundations of the theory of vector bundles on genus
one curves. In Section 8 we recall some classical results about holomorphic vector
bundles on a smooth elliptic curve. Using the methods described before, we explic-
itly compute the solution of the associative Yang—Baxter equation and the classical
r—matrix corresponding to a universal family of stable vector bundles of rank two
and degree one. These solutions were obtained by Polishchuk in [56, Section 2| us-
ing homological mirror symmetry and formulas for higher products in the Fukaya
category of an elliptic curve. Our direct computation, however, is independent of
homological mirror symmetry. We are lead directly to express the resulting associa-
tive r—matrix in terms of Jacobi’s theta-functions and the corresponding classical
r—matrix in terms of the elliptic functions sn(z), en(z) and dn(z).

Sections 9 and 10 are devoted to similar calculations for nodal and cuspidal Weier-
strafl curves. Our computations are based on the description of vector bundles on
singular genus one curves in terms of so-called matrix problems, which was given by
Drozd and Greuel [25] and Burban [16]. We show that their description of canonical
forms of matrix problems corresponds precisely to a very explicit presentation of uni-
versal families of stable vector bundles. We explicitly compute geometric r—matrices
coming from universal families of stable vector bundles of rank two and degree one
on a nodal and cuspidal cubic curves and the r—matrix coming from the universal
family of semi—stable vector bundles of rank two and degree zero on a nodal cubic
curve.

This article is concluded with a brief summary of analytical results in Section 11.

Notation. Throughout this paper we work in the category of analytic spaces over
the field of complex numbers C, see [54]. However, most of the results remain
valid in the category of algebraic varieties over an algebraically closed field k of
characteristic zero. If V,W are two complex vector spaces, Lin(V, W) denotes the
vector space of complex linear maps from V' to W. For an additive category C,

a pair of objects X,Y € C and a pair of isomorphisms X X andy Ly
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we denote cnj(f, g) the morphism of abelian groups Hom¢(X,Y) — Hom¢ (X', Y”)
mapping a morphism A to the composition go ho f=1.

If X is a complex projective variety, we denote by Coh(X) the category of coherent
Ox-modules and by VB(X) its full subcategory of locally free sheaves (holomorphic
vector bundles). The torsion sheaf of length one, supported at a closed point y €
X, is always denoted by C,. By D", (X) we denote the full subcategory of the
derived category of the abelian category of all Ox-modules whose objects are those
complexes which have bounded and coherent cohomology. The notation Perf(X) is

used for the full subcategory of DP, (X)) whose objects are isomorphic to bounded

coh
complexes of locally free sheaves. For a morphism of reduced complex spaces E ——
T we denote by E the regular locus of p.

A Weierstrafl curve is a plane cubic curve given in homogeneous coordinates by
an equation zy? = 4a® — gawz? — g323, where ¢, g, € C. Such a curve is always
irreducible. It is a smooth elliptic curve if and only if A(gs, g3) = g5 — 2792 # 0.
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at the Johannes-Gutenberg University of Mainz and Friedrich-Wilhelms University
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2. YANG-BAXTER EQUATIONS

In this section we are going to recall some standard results about Yang-Baxter
equations. Let g be a simple complex Lie algebra (throughout this paper g = sl,,(C)),
( , ):gxg— C the Killing form. The classical Yang-Baxter equation is

(1) [Py, 92), 7% (v, w3)] + [ 2 (e, 2), 72 (s ws)] + 172 (w1, ), 722 (2, w3)] = O,

where r(x,y) is the germ of a meromorphic function of two complex variables in a
neighbourhood of 0, taking values in g ® g. A solution of (1) is called unitary if

2y, y2) = =17 (Y2, 11)
and non-degenerate if r(y1,y2) € g g = g* ® g = End(g) is invertible for generic
(y1,92). On the set of solutions of (1) there exists a natural action of the group of
holomorphic function germs ¢ : (C,0) — Aut(g) given by the rule

(2) (Y1, y2) = (A(y1) @ d(y2)) (Y1, 42)-

Proposition 2.1 (see [9]). Modulo the equivalence relation (2) any non-degenerate
unitary solution of the equation (1) is equivalent to a solution r(u,v) = r(u — v)
depending on the difference (or the quotient) of spectral parameters only.

This means that equation (1) is essentially equivalent to the equation
(3) 2 (@), 7z + y)] + [P (@ + ), 7P (y)] + [ (@), 7 (y)] = 0.

Although the classical Yang-Baxter equation with one spectral parameter is better
adapted for applications in mathematical physics, it seems that from a geometric
point of view equation (1) is more natural.

Let m = dim(g), e1, s, ..., €, be a basis of g and e!,¢e?,...,e™ be the dual basis
of g with respect to the Killing form ( , ). Then Q = " ¢'®e¢; € gR g is
independent of the choice of a basis and is called the Casimir element.

Theorem 2.2 (see Proposition 2.1 and Proposition 4.1 in [8]). Let r(y) be a non-
constant non-degenerate solution of (3). Then the tensor r(y)
e has a simple pole at 0 and res,—g (r(y)) =afleg®g,acC

e is automatically unitary, i.e. r*2(y) = —r*(—y).

As it was already mentioned in the introduction, there is the following classifica-
tion of non-degenerate solutions of (CYBE) due to Belavin and Drinfeld.

Theorem 2.3 (see Proposition 4.5 and Proposition 4.7 in [8]). There are three
types of non-degenerate solutions of the classical Yang—Bazter equation (3): elliptic,
trigonometric and rational.

Let us now consider some examples. Fix the following basis

L (10 (01 /00
- 0 —1 ) €12 = 00 ) €21 = 1 0
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1
of the Lie algebra g = sl3(C). Note that = §h @ h 4+ e ® eg + e @ e is the
Casimir element of sly(C).

e Historically, the first solution ever found was the rational solution of Yang

1/1
Trat (Y) = ; (§h® h+e13® e + e ® 612) .

o A few years later, Baxter discovered the trigonometric solution

1 1
Terg(Y) = B cot(y)h @ h + m(ew ® e91 + €91 @ e12).

e The following solution of elliptic type was found and studied by Baxter, Belavin
and Sklyanin:

ol L) L duly)
ell(y)—sn(y>h®h+ (1) (e12®e21+e91 ®ern)+ s(y)

where cn(y), sn(y) and dn(y) are doubly periodic meromorphic functions on C with

periods 2 and 27. These functions also satisfy identities of the form f(y+1) = ef(y)
and f(y+7) =cef(y) with e = £1.

At first glance, all these solutions seem to be completely different. However, it is
easy to see that

(e12®e12+e€91 ®eay),

}l}rg) %rtrg (%) = 7’rat(y)>
hence the solution of Yang is a degeneration of Baxter’s solution. Moreover, there
exist degenerations dn(y) — 1, cn(y) — cos(y) and sn(y) — sin(y), when the
imaginary period 7 tends to infinity, see for example [42, Section 2.6]. Hence, both
solutions of Baxter and Yang are degenerations of the elliptic solution. However, as
we shall see later, the theory of degenerations of r—matrices is more complicated as

it might look like at first sight.

In this article we deal with a new type of Yang-Baxter equation, called associative
Yang-Baxter equation (AYBE). It appeared for the first time in a paper of Fomin
and Kirillov [28]. Later, it was studied by Aguiar [1] in the framework of the theory
of infinitesimal Hopf algebras. The following version of the associative Yang—Baxter
equation with spectral parameters is due to Polishchuk [56]. A special case of this
equation was also considered by Odesski and Sokolov [53].

Definition 2.4. An associative r-matrix is the germ of a meromorphic function in
four variables

T ((C‘(1 0) — Mat,x,(C) ® Mat,,,(C)

v1,V2591,Y2)"

holomorphic on <(C4 \ V((yl —y9) (v — vz)) , 0) and satisfying the equation
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(4) (1, v291,92) Pr(ve, 35 y2, y3)* = 1(vr, vss y1, y3) Pr(vs, vy L y) P+

+7(v2, U3 Y2, y3) (01, v 91, 3) '

Such a matrix is called unitary if

)12

(5) T(U1>U2;yljy2 = —r(vz,vl;y2,y1)21.

On the set of solutions of the equation (4) there exists a natural equivalence relation.

Definition 2.5 (see section 1.2 in [56]). Let ¢ : (C?,0) — GL,(C) be the germ of a
holomorphic function and r(v1,ve; y1,y2) be a solution of (AYBE) then

(6) 7' (vi,v2391,y2) = (D(v1;91) ®@B(v2; y2)) 7 (v1, v2; Y1, y2) (S(v23 91) T @ D013 92) )
is again a solution of (4). Two such tensors r and 7" are called gauge equivalent.
Note that if the matrix r is unitary then 7’ is unitary, too.

Example 2.6. Let r(vy, v2; 91, y2) € Mat,«,(C) ® Mat,,«,,(C) be a solution of (4),
c € C and ¢ = exp(cvy) - 1 : (C%0) — GL,(C) be a gauge transformation. Then
eXp(c(vg — 1) (Y2 — yl))r(vl, Vo; Y1, Y2) is a gauge equivalent solution of (AYBE).

Lemma 2.7. Let r(vy,v9;y1,y2) be a unitary solution of the associative Yang—Baxter
equation (4). Then r also satisfies the “dual” equation

(7)  r(v2, 0339, y3) (01, v3; 91, Y2) 2 = 1(v1, 2391, Y2) 21 (v, V35 Y1, y3) P+

+7 (v, v3; 91, y3) 1 (v2, v1; Y2, y3) 2.

Proof. Let T be the linear automorphism of Mat,y,(C) ® Mat, «,(C) defined by
7(a ®b) = b® a. Applying the operator 7 ® 1 to the equation (4), we obtain:

)13

(v, v2; yl7y2)2lr(vlavs; Yo, y3) ° = r(v1,vs; y1>y3)237“(v37 V9, yl7y2)21+
3

1 (v2, V33 Y2, Y3) (o1, va; 91, y3)
Using the unitarity condition (5) we get:
—7(vg, v1; y2>y1)127’(01703; Y2, 3/3)13 = —r(v1, vs; ylyy3)237“(?12>?13;3/2, y1)12+

+T(U27 U3; Y2, y3)13T(U1> V2; Y1, ?JS>23-
After the change of variables vy <= v, v3 <> v3 and y; <= Yo, Y3 <> y3, We obtain the
equation (7). O

Assume a unitary solution r(vy,ve;y1,y2) of the associative Yang—Baxter equation
(4) depends on the difference v = v; — vy of the first pair of spectral parameters
only. For the sake of simplicity, we shall use the notation: r(vy, ve;y1,y2) = r(vy —
Vo; Y1, Y2) = r(v;y1, y2). Then the equation (4) can be rewritten as
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(8) r(u;yn, y2) Pr(u 4 v;y2,y3)* = r(u+ v y1,y3) Pr(—vs yr, y0)

+7 (v Y, y3) P r(ws yr, ys) '™

Remark 2.8. It will be shown in Theorem 7.5 that any solution r of the associative
Yang-Baxter equation (4) obtained from a universal family of stable vector bundles
on an irreducible genus one curve, is gauge equivalent to a solution r’ depending on
the difference v; — vy only.

Let A be the algebra of germs of meromorphic functions f : ((C‘(lvhvz;whw), 0) — C
holomorphic on ((C4 \ V((v1 — v2)(wy — wg)),O). A solution of the equation (8)
defines an element

r € Mat,xn(A) ®4 Mat,»n(A) =2 A ®c Mat,, ., (C) @c Mat, «,,(C).

In a similar way, for any integer m > 3 denote by B the algebra of germs of mero-
morphic functions f : (C%ﬁ,.u,mm;yl,‘..,ym)’O) —— C holomorphic on ((CQm \ D,O),
where D is the divisor

D=V (H(fﬁz — ;) (Y — ?Jj)) :

i#]
Next, for any pair of indices 1 <1 # j < m we have

e a ring homomorphism % : A — B which sends a function f(vy, va; wy, ws)

to f(xi, 253 i, Ys); B
e a ring homomorphism k% : B — B defined as

fCozi s xy, sy o m, Ty Y);

e a morphism g;; : Mat,,,,,(C)®? — Mat,,»,,(C)®™ mapping a simple tensor
aRbtol®...10a®1®...10bRX1®---® 1, where a and b belong to
the 7-th and j-th components respectively.

In these notations, consider
\Ilij = 7~pz‘j X Qij - A Rc Matnxn((c>®2 — B K¢ Matnxn<(c)®m-

For example \1113(f(1)1, Vg; Wi, W) ® a & b) = f(z1,23;91,y3) ® a ®1®b. Next, we
set 77 := W (r) € B @c Mat,x,(C)®™ and

K7=k7'®1 : B®cMat,un(C)®" — B ®@¢ Mat, ., (C)®".
Consider the linear operator

79 =r9oKY . B K¢ Matnxn(c)®m — B®c Matan(C)®m,
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which is the composition of K% and the multiplication with the element r%. For
any 1 < i < m consider the differential operator

0
8%

Next, for any xk € C let

@:

@1 : B ®c Mat,x,(C)®™ — B ®¢ Mat,,«,(C)®™.

0; == k0;+ > i 1 B ®c Matyy, (C)¥" — B ®c Mat, (C)*"
J#i
be the Dunkl operator of level k. The following result was explained to the first-
named author by Anatoly Kirillov, see also [38].

Proposition 2.9. Let r(v;y1,y2) € Mat,«n(A) ®4 Mat, ., (A) be a unitary solution
of the equation (8), k € C be a scalar and 0; be the Dunkl operator of level k defined
above. Then for all 1 < i,7 < m we have: [91-,9]} =0.

Proof. First note that we have:

0 0

which implies the equality [0; + 9;,77] = 0. Next, the Yang-Baxter relations (4)
and (7) yield that for any triple of mutually different indices 1 <i < j <k < m we
have:

Fiiik = pibpik g pikEid - and R = FkEk g

From the unitarity of r it follows that 7 = —#/* for all 1 < ¢ # j < m. Finally, the
following two equalities are obvious:

(77, 7] =0, [0;,™] =0

where 1 < 4,7, k,l < m are mutually distinct. Combining these equalities together,
we obtain the claim. O

Remark 2.10. The above proposition means that to any unitary solution of the
associative Yang—Baxter equation (8) one can attach a very interesting second order
differential operator

H=074+0;+---+02: B®cMat,,,(C)®" — B ®¢c Mat,,,,,(C)*™.
These operators are “matrix versions” of the Hamiltonians considered in the work

of Buchstaber, Felder and Veselov [15].

Another motivation to study solutions of the equation (8) is provided by their close
connection with the theory of the classical Yang—Baxter equation.
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Lemma 2.11 (see Lemma 1.2 in [56]). Let 7(v;y1,y2) be a unitary solution of the
associative Yang—Baxter equation (8) and pr : Mat, »,,(C) — sl,,(C) be the projection

along the scalar matrices, i.e. pr(A) = A—#-ﬂ. Assume that (prpr)r(v;y1, y2)
has a limit as v — 0. Then

7(y1,92) := lim(pr @ pr)r(v; y1, y2)
is a unitary solution of the classical Yang—Baxter equation (1).
Proof. First note that (7) implies the equality
r (032, y3) P r(u + vy, ) = r(us g, ye) (v vs) P
+r(u vy ys) Pr(—usye, vs) .
Using the change of variables v +— —v and v — u + v, we obtain the relation
P+ v ya, ys) P (wyn, y2) = r(—vs g ye) Pr(u+ vy, ys) P

+r(u; Y1, y3) P (vi yo, y3)*.
Subtracting this equation from (8) we get

9)  [r(=vsy,y2) % r(u+ vy, u3) ] + (s yr, y2) 2 r(u + v yo, y3) P+

Hr(u;y1,y3) 7 (0392, 3) %] = 0.
By definition, the function r(v;y1, y2) is meromorphic, hence we can write its Laurent
expansion: 7(v;y1,y2) = Y nez Ta(1,y2)v®, where 74(y1,2) are meromorphic and
ro = 0 for @ < 0. Since we have assumed that (pr ® pr)r(v;y;,y2) is regular with
respect to v in a neighbourhood of v = 0, we have: (pr ® pr)r,(yi,y2) = 0 for all
a < —1. This implies, if @ < —1, that

Ta(Y1,12) = Sa(Y1,42) @ 1 + 1 ® to(y1,92)

for some matrix-valued functions s, (y1,y2) and t,(y1,y2). Hence,
(pr@preopr)[rd,ry] =0

for arbitrary permutations (ij) # (lk) and all indices & < —1 and 8 € Z. The claim
of Lemma 2.11 follows by applying pr ® pr @ pr to the equation (9) and taking the
limit u,v — 0. 0]

The statement of Lemma 2.11 leads to the following question. Let r = r(v;y1, y2)
be a unitary solution of the associative Yang-Baxter equation (8) satisfying the
conditions of Lemma 2.11 and s = s(v;y;,y2) be an equivalent solution in the
sense of Definition 2.5. Are the corresponding solutions 7(y;,y2) and $(y1, y2) of the
classical Yang—Baxter equation also gauge equivalent?

The answer on this question is affirmative, if one imposes an additional restriction
on the function . Namely, we assume that the Laurent expansion of r has the form:

I1®1
(10) r(viyr, yo) = B +7o(y1,y2) +vri(y, y2) + 027"2(3/1,92) + ...
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Then the following proposition is true.

Proposition 2.12. Let 7 : (C{,,, ,.),0) — Mat,x,,(C) ® Mat,x,,(C) be a unitary
solution of the associative Yang—Bazter equation (8) having a Laurent expansion
of the form (10) and To(y1,y2) be the corresponding solution of the classical Yang—
Baaxter equation. If ¢ : ((C%v;y), 0) — GL,(C) is the germ of a holomorphic function
such that

(11) s(vi,v2391,92) := (¢(Ul; Y1) ® (v y2)>7“(U; yla?/?)(Cb(UQ; yl)_l ® d(v1; yz)_l)

1S again a function of v = vy — vy, then we have

1
s(v;y1,92) = —T @ T+ (Y1, 40) + vs1(y1,42) +0"52(y1,92) + .-
and moreover, To(y1,y2) and So(y1,y2) are equivalent in the sense of the relation (2).

Proof. We denote v = v; — v9 and h = vy. Then v; = v + h and using the Taylor
expansion of ¢ with respect to v, we may rewrite (11) in the form

2
(¢(h; y1) +v¢' (h;y1) + %¢//(h; Y1)+ - ) ® ¢ (h; ya)-

1®1
"\ +ro(y1, y2) +vri(yn, y2) + - -

i v?

= (Z si(y1, y2)v ) : <¢>(h; Y1) ® (cb(h; y2) Hod (hiys) + 5" (i) + . >) :
1€EZ

where ¢'(v;y) and ¢”(v;y) are the partial derivatives of ¢(v;y) of the first and the

second order with respect to v. This equality implies that s;(y;,y2) = 0 for i < —2

and s_1(y1,y2) = 1 ® 1. Moreover, we have:

(o(h; 1) @ d(hiya)) - ro(yr, 1) - (SR 1) ™" @ p(hsya) ") =

) = so(y1, v2) + 1@ ¢'(h; y2)d(h; y2) ™" — &' (B 1) p(hs 1) ™' © 1.
Let ¢(y) := ¢(0;y). Applying the operator pr @ pr to the last equality and putting
h = 0 we obtain:

So(y1.y2) = (6(11) @ O(12)) - To(yr, y2) - (1) " @ d(y2) ).
This implies the claim. U

Remark 2.13. It was proven by Polishchuk [56, Theorem 2] that all solutions of
the associative Yang-Baxter equation (8) arising from a universal family of stable
vector bundles on an (irreducible) projective cubic curve satisfy the conditions of
Lemma 2.11. However, we do not know a conceptual explanation of the fact that
all these solutions have a Laurent expansion of the form (10), although in turns out
to be so in all the examples known so far. Later, we shall see that the equation (8)
has many solutions r(v; y;,y2) with higher order poles with respect to v. Some of
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them can be obtained by the same geometric method, applied to certain families of
semi-stable vector bundles, see Subsection 10.4. However, they do not project to a
solution of the classical Yang—Baxter equation.

Finally, assume that a solution of (4) has the form r(vy, vo; Y1, y2) = 7(va—v1; Y2 —141)-
Then the associative Yang—Baxter equation can be rewritten as

(12)  r(u;2)2r(u+v;y)* =r(u+ v +y)r(—v;2)2 +r(v;y)Pr(u; 2 + y) ',

This is the form of the associative Yang—Baxter equation introduced and studied by
Polishchuk in [56] and [57].

Definition 2.14. A solution 7(y) of the classical Yang-Baxter equation (3) has an
infinitesimal symmetry, if there exists an element a € g such that

[7(y),a®1+1®a] =0.
For example, let 7(y) = ru(y) = %Q be Yang’s solution for sly(C), then

r(y),a®@1+1®a]=0

for any a € g.
An important reason to study unitary solutions of the equation (12) satisfying
(10) is explained by the following theorem.

Theorem 2.15 (see Theorem 1.4 of [57] and Theorem 6 of [56]). Let r(v;y) be a
non-degenerate unitary solution of the associative Yang—Baxter equation (12) with
Laurent expansion of the form (10). Then we have:

e The function 7o(y) := (pr & pr) (To(y)) is a non-degenerate unitary solution of the
classical Yang-Baxter equation (3).

o If7o(y) is either periodic (elliptic or trigonometric), or without infinitesimal sym-
metries, then for a fivzed v = vy the tensor r(vo;y) satisfies the quantum Yang—
Baxter equation:

(13) (v ) ?r(ve; x + 4)Pr(ve; y)® = r(ve; y)r(vo; « + y) Pr(ve; )"

o [f7o(y) does not have infinitesimal symmetries and if s(v;y) is another solution
of (12) of the form (10) and such that 7o(y) = (pr ® pr)(sg(y)), then there exist
a; € C* and ay € C such that s(v;y) = ag exp(aguy)r(v;y). In other words,
under these conditions, a solution of the associative Yang—Baxter equation r(v;y)
is uniquely determined by the corresponding solution of the classical Yang—Baxter
equation 7o(y) up a gauge transformation described in Example 2.6 and rescaling.

Remark 2.16. Theorem 2.15 gives an explicit recipe to lift a non-degenerate solu-
tion of the classical Yang—Baxter equation to a solution of the quantum Yang—Baxter
equation. Existence of such quantization is known due to a result of Etingof and
Kazhdan [27]. Moreover, it was proven by Polishchuk in [56] that any elliptic so-
lution of the classical Yang—Baxter equation (3) can be lifted to a solution of (12)
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having a Laurent expansion of the form (10). However, Schedler showed in [59] that
there exist trigonometric solutions of (CYBE), which can not be lifted to a solution
of the associative Yang-Baxter equation (12) of the form (10).

3. POLISHCHUK’S CONSTRUCTION

Let X be a connected projective Gorenstein variety of dimension n over a field k
and Perf(X) be the triangulated category of perfect complexes, i.e. a full subcategory
of the derived category D(X) = D®  (X) consisting of complexes quasi-isomorphic
to bounded complexes of locally free Ox—modules.

We denote by wyx the dualizing sheaf on X. This means (see for example [34,
Section II1.7]) that we have an isomorphism ¢ : H"(wx) — k, also called a trace

map, such that for any coherent sheaf F € Coh(X) the pairing
H"(F) x Homx (F,wx) — H"(wx) = k
is non-degenerate.

Remark 3.1. Such a map t is defined only up to a non-zero constant. However,
it will be explained later that in the case of reduced projective Gorenstein curves
with trivial canonical sheaf there exists a “canonical” choice for ¢, see subsection
4.3, directly after Theorem 4.16.

L
ooh 2 1(X) be the functor given by the rule S(F) = F ® wx|n].
For a perfect complex F, let trz : Homp(x) (}", S(f)) — k be the morphism

Let S: D, (X) — DP

L ~ L L
Hompx) (F, F @ wx[n]) — Hompx) (O, F¥ & F @ wx[n]) — H"(wx) —— k,
where the first arrow is a canonical isomorphism and the second is induced by the

L
canonical evaluation morphism 7" @ F — O.

The following theorem seems to be well-known, however we were not able to find
its proof in the literature and therefore sketch it here.

Theorem 3.2. Let p : X — Y = Spec(k) be a connected projective Gorenstein
variety of dimension n over a field k. Then for any F € Perf(X) and G € D, (X)
the pairing

(,)r,g:Hompx)(F,G) x Hompx) (gaS(}—)) — k,

given by the formula (f,9)r.¢ = trz(gf), is non-degenerate.® Moreover, if the
complex G is also perfect, we have: trz(gf) = trg (S(f)g).

Proof. Recall that by the Grothendieck duality the functor Rp, : D2, (X) — DP

coh coh()/>
has a right adjoint p' : D2, (Y) — Db, (X), see [33, 51, 24]. Moreover, p'(k) = wx|[n]

We thank Amnon Neeman for helping us at this place.
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and the adjunction morphism ¢ : Rp,p'(k) — k coincides up to a non-zero constant
with the morphism

Rp.p'(k) = H'(Rp.p'(k)) = H"(wx) — k,
see the proof of [24, Theorem 5.12]). Next, we have the following canonical isomor-
phisms:
Lo ~ v koL ~
=~ Homp(x)(RHomx(F,G),p'(k)) = Hompw) (Rp.(RHomx(F,G)), k) =

>~ Homy (HO(Rp*(RHomX(J:, Q))),k:) = Hompx)(F,G)".

One can check that the image of a morphism g € Homp(x)(G,S(F)) under this
chain of isomorphisms is the functional trz(g o —) : Hompx) (.7:, g) — k up to a
constant not depending on f. This implies that the bilinear form ( , ) g is non-
degenerate. In particular, S is a Serre functor of the category Perf(X) and the
equality tre(gf) = trg (S(f)g) is automatically true, see [58, Lemma I.1.1]. O

Corollary 3.3. Let X be a connected projective Gorenstein variety over k of di-
mension n such that its dualizing sheaf is trivial. Let w € H%wx) be a non-
zero global section of wx. Then for any pair of perfect complexes F,G on X the
pairing ( , )%.¢ + Homp(x)(F,G) x Homp(x)(G, F[n]) — Hompx)(F,F[n]) —
Hompx) (F, S(F)) 27, k is non-degenerate.

Let X be a reduced Gorenstein curve over the field C. By [3, Chapter VIII] or
by [24, Appendix B] the dualising sheaf wx is isomorphic to the sheaf of regular or

Rosenlicht’s differential 1-forms Qx = QQR. If X is smooth, then 2x coincides with
the sheaf of holomorphic 1-forms. For X singular the definition is as follows.

Definition 3.4. Let X be a reduced projective Gorenstein curve, n : X — X its
normalization. Denote by Q% and Qg the sheaves of meromorphic differential 1-
forms on X and X respectively. Observe that QY = n*(QAX~4 ). Then Qx is defined

to be the subsheaf of Q! such that for any open subset U C X one has

Qx(U) = {w € Q%(n‘l(U)) Vpe UVfeOx(U): Zrespi((fon)w) = O},

i=1

where {p1,p2,...,pt} = n_l(]?)-

A reduced projective curve F whose dualizing sheaf wg is isomorphic to the struc-
ture sheaf is Gorenstein and has arithmetic genus one. For example, reduced plane
cubics, Kodaira cycles and generic configurations of n+1 lines in P” passing through
a given point are of this type. In what follows, for such a curve E, we identify wg
wiht Qg and fix a global section w € H°(Qg) giving an isomorphism w : O — Qp

and a trace map t : H(0) <5 HY(Qp) & C.
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A characteristic property of reduced projective curves with trivial dualizing sheaf
is a very special form of the Serre duality. By Theorem 3.2 we have the following
result.

Proposition 3.5. Let E be a reduced projective curve with trivial dualizing sheaf
and £, F € Perf(E). Then the map

(,)2 £ : Hom(&, F) @ Hom(F, £[1]) % Hom(E, E[1]) =5 HY(0) & C

~ L
where Trg : Hom(&,E[1]) — Hom(O, &Y @ £[1]) — Hom(O,O[1]) = HY(O), is a
non-degenerate pairing. This pairing coincides with the composition

()% ¢ : Hom(E, F) ® Hom(F, E[1]) = Hom(F, £[1]) ® Hom(&[1], F[1]) =

— Hom(F, F[1]) =& HY(0) & C.

Remark 3.6. The choice of non-degenerate pairings ( , )¢ # is actually not unique,
see the proof of Proposition 1.2.3 in [58]. In particular, (, )¢ » depends on the
choice of a global section of the dualizing sheaf wg. If w. : Hom(F,&[1]) —
Hom(F, & ® wg[1]) denotes the isomorphism induced by w : O = wg, we obtain

(g r=(w()eF

In [55] Polishchuk showed how a construction of Merkulov [46], which fairly ex-
plicitly provides an A.-structure, applied to the category of Hermitian vector bun-
dles on a complex manifold with a hermitian metric, gives an A..-structure on the
bounded derived category of this manifold. He shows that this construction pro-
vides a cyclic Ax-structure [55, Theorem 1.1], which is crucial for the proof of the
Yang-Baxter equations in the situation considered here. Therefore, we formulate his
result explicitly in the following proposition.

Proposition 3.7. If E is a smooth elliptic curve, there exits an A -structure on the
category DP , (E), which is cyclic with respect to the pairing described in Proposition
3.5. In particular, this means

<m3(f1,91,f2)>92> = —<f1,m3(91,f2>92)> = —<m3(f27927f1)791>
for any objects &, &y and Fy, F» € D° (E), and any morphisms

coh

fi € Hom(&;, F;) and g; € Hom(F;, E;[1]),i =1, 2.

Because the proof of Polishchuk uses harmonic forms and Hodge theory, it heavily
depends on the smoothness assumption for E. If F is singular, the same result
can be derived with some effort using more recent methods from non-commutative
symplectic geometry [40, Theorem 10.2.2].

Now we recall the main construction of [56]. Take a reduced projective curve E
with trivial dualising sheaf and fix the following data:
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e Two vector bundles V; and V, on E having the same rank n and such that
HomE(Vl, VQ) =0= EXt}E(Vl, VQ)

e Two distinct smooth points y1,y, € E lying on the same irreducible compo-
nent of E and such that Homg (Vi (y2), Va(y1)) = 0 = Extp (Vi(y2), Va(y1)).

Remark 3.8. This “orthogonality” assumption on vector bundles V; and V5 might
seem to be quite artificial. The natural example of such data is the following. Let
(n,d) € NxZ be a pair of coprime integers, Mén’d) the moduli space of stable vector
bundles of rank n and degree d on a Weierstrafl curve E. Let P(n,d) be a universal
family on £ x M ](,Jn’d). For a point v; € M ]g"’d) denote by V; the corresponding
stable vector bundle P(n,d)|gxy, on the curve E. Then for any two distinct points
vy, Vg € Mgl’d) we have Homp(Vy, V) = 0 = Ext(V1, Vs).

Actually, one can also consider a more general situation. Namely, for any pair
(n,d) € N x Z, not necessarily coprime, one can take indecomposable semi-stable
vector bundles of rank n and degree d having locally free Jordan-Holder factors. The
orthogonality condition between non-isomorphic bundles of this type follows from
the following lemma.

Lemma 3.9 (see [20]). Let (n,d) € N x Z, m = ged(n,d) and n = mn',d = md'.
Let V be an indecomposable semi-stable vector bundle of rank n and degree d on a
Weierstrafs curve E with locally free Jordan-Holder factors. Then all these factors

are isomorphic to a single stable vector bundle V' € M](;"’d’). Moreover, we have
V=2V ® A,, where A, is the indecomposable vector bundle of rank m and degree
0 defined recursively by the non-split extension sequences

0— A, — A1 — 0 —0 m2>1,
where A; = O.
Let us return to Polishchuk’s construction. Since Homg(Vy, Vo) = 0 = ExtL(Vy, Vs),
we have a linear map
ms : Homg(V1,C,,) ® Exty(C,,, Vo) ® Homp(Vy, C,y,) — Homp(Vi, C,,)

called the triple Massey product and defined as follows. Let a € Extp(C,,, V),
g € Homgp(V1,C,,), h € Homg(V,,C,,) and let

O—>V2i>¢4i>@y1—>0

be an exact sequence representing the element a. The vanishing of Hompg(V;, V,) and
ExtlE(Vl, V) implies that we can uniquely lift the morphisms g and h to morphisms
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g:Vy— Aand h: A— C,,. So, we obtained a diagram

Vi

a:0 Vo —— A Cy, 0

Y2

and the triple Massey product is defined as m3(g ® a ® h) = hg. Note that a
determines an extension only up to an automorphism of the middle term, but the
action of Aut(A) leads to the same answer for ms(g ® a ® h) = mY1Y2(g @ a @ h).

: Y1,Y2

Now one can use a sequence of canonical isomorphisms in order to rewrite m‘y’f ;’2 2
in another form:

Lin(Homg(Vi, Cy,) ® Ext(C,,, Vo) ® Homp(V2, C,y, ), Homg(V1, Cy,)) =

12

Lin(Homg(V1, Cy,) @ Homg(Vs, €y, ), Exty(Cyy, Va)* ® Homp(Vy, Cy,))

Lin(Homg(V1, Cy,) ® Homg(Vs, Cy, ), Homg(Vs, C,, ) @ Homg(V1, Cy,)),

where we use the Serre duality formula Extp(C,,, Vs)* = Homg(Vy, C,,) given by
the bilinear form (, ), ¢, from Proposition 3.5. Let my!,2 be the image of mjy! )
under this chain of isomorphisms.

Theorem 3.10 (see Theorem 1 in [56]). If E is smooth, then mY»Y2 satisfies the

Y1,Y2
following “triangle equation” (associative Yang—Bazter equation)
() () — AT P + () P = o

The left-hand side of this equation is a linear map
Homg(V1,Cy, ) ® Homg(Vs, Cy,) ® Homg(Vs,C,,) —

— Homg(V,, C,,) ® Homg(Vs,Cy,) @ Homg(Vy, Cy, ).

Moreover, the tensor 771511;)22 s non-degenerate and skew-symmetric:
~V1,V2\ _ _ ~V2 V1
T( y1,y2) = "My

where T 15 the isomorphism

Homg(Vy,Cy,) ® Homg(Vs, Cy,) — Hompg(Vs, C,y,) ® Homg(Vy, Cy,)
given by 7(f ®g) =g® f.
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Idea of the proof. This equality is a consequence of the A, - constraint

mzo(m3®1@1+1mz®1+1®1®m;) =0,

Vl’

and skew-symmetry of m, V2 follows from the cyclicity of the A, -structure. 0J

Note that for a vector bundle VY and a smooth point y € E we have canonical
isomorphisms
HomE(V C ) = HomE(V X Cy,(Cy) = HomC(V|y,C) = V|Z

Vl’VQ is a linear map

Vl’VQ V1| ® VQ’ZQ — VQlZl ® Vl‘;

yl Y2

In these terms, m,

Now we use the canonical isomorphism

Qo Hom(c(V2|y1, Vl‘m) ® HomC(Vl‘yzv V2’y2) - Hom@(Vll ® v2’ VQ‘; ® Vl‘;)

y2?
mapping a simple tensor f; ® fo to ff ® fi. Then the tensor

V1,V = afl(mvhvg) € Hom(C(VQIyl,Vl‘yl) & Hom(CO)l‘yQ? V2|y2)

ryl Y2 Y1,y2

satisfies the equation

(15) R = (RO + (e =0

and the unitarity condition

(16) T(ryiuz) = =2yt

Remark 3.11. Since the functorial isomorphism of vector spaces Homc¢ (U, V) —
Hom¢(V*, U*) is contravariant, the tensors rvl’VQ and mvl’v2 appear in inverse order
in Equations (14) and (15).

Note that the bilinear map
tr : Hom¢ (U, V) x Home(V,U) — C,  (f,g) — tr(fog)

is non-degenerate and induces an isomorphism Hom¢ (U, V)* = Hom¢(V, U). Using
this, we get a chain of canonical isomorphisms

HomﬁC(V2’y1aVl‘y1)®H0mC<V1‘yzaV2|y2> = HomC(V1’y1aV2‘y1)*®HomC(V1|yzaV2’y2) =
= Lin(HomC(Vﬂyl , VQlyl), Hom@(Vl\yZ, Vg‘w)) .
We let 717> € Lin(Homg (Vily,, Valy, ), Home (Vily,, Valy,)) be the image of r)iY2.

91,92

Remark 3.12. Note that the triple Massey product mgs is canonical, however the

tensor T;f,’;}f and the linear map ri“f depend on the choice of a global section

w € H°(Qg). Indeed, passing from mg to 7";’,}11’;}22 and r;jll’;b we use the bilinear form

(', )%, c,,» which depends on the choice of w.

Our next aim is to answer the following questions:
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Q1 What is a geometrical interpretation of the equivalence relation given in
Definition 2.57
Q2 How can we view V; and V, as variables?

Q3 Is there a practical way to compute r)1:v2?

4. GEOMETRIC DESCRIPTION OF TRIPLE MASSEY PRODUCTS

Let E be a reduced projective curve with trivial dualizing sheaf and E be the open
subset of the smooth points of E. As in the previous section, we fix the following
data:

e two vector bundles V; and V, on E of rank n such that Homg(V;,V,) = 0
and Extp(V;, V,) = 0.

e two distinct points y1,ys € E lying on the same irreducible component of E
such that Hompg (V1 (y2), Va(y1)) = Extiy (Vi (y2), Va(y1)) = 0.

e A non-zero global regular differential one-form w € H°(Qg).

The main goal of this section is to get an alternative description of the linear map
fVLVQ(w) : HomC(V1|y17V2|y1) - HomC(V1|y27V2|y2)

Y1,Y2
introduced in Section 3. To do this, we first elaborate the theory of residues and
evaluation morphisms on reduced complex Gorenstein curves.

4.1. Residue map for vector bundles. In this subsection, our set-up is rather
general. We fix the following data:

e a reduced Gorenstein analytlc curve X (not necessarily compact);

e a subset D C X, where X denotes the open subset of smooth points of X,
such that D C X is locally finite?;

e a point = € D; the set D' = D\ {x} may be empty;

e a pair of vector bundles V and W on X;

e a germ of a differential 1-form w € Q,, not vanishing at = (i.e. w & Q(—x).),
where ) = Qx is the sheaf of regular differential 1-forms on X.

The only application of this general set-up with D’ # () occurs in Section 8, where

Y =C 5 C/A = X (cf. Prop. 4.8, Prop. 4.12 and Thm. 4.23) is the universal cover

of an elliptic curve and D = y + A is an infinite A-invariant subset of C. Therefore,

we resist the temptation to include D or D’ into the decorations of the residue maps

below. In all other applictions of Theorem 4 23, m : Y — X is the normalisation,

hence restricts to an isomorphism 7 : Y — X and D consists of a single point.
Consider the canonical short exact sequence

res

(17) 0— Qx — Qx(x) — C, — 0.

2This means that for any p € X, there exists an open neighbourhood of p in X which contains
only a finite number of points from D. According to [30, Ch. 1.1], D defines a divisor and a
corresponding line bundle Ox (D) on X.
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Proposition 4.1. The following diagram is commutative:

Homx (V@ QW ® QD)) ———— Homx (VO QW ® O(D') @ C,)

- ®QT T(TD’)*

HomX(V,W®O(D)) HomX(V®Q,W®Cm)
Homx(V,W) ® O(D) ——= Homx (V® Q® Co, W C,).

The map (rp:), is induced by the inclusion rp : O — O(D') of subsheaves of the
sheaf of meromorphic functions on X and res, is determined by the following mor-
phism of presheaves. Let v € U C X be an open subset, s € Homo( (V(U), W(U)),
feT(U,0(D)),veVU),seQU). Then

res! (s ® ) [0 ® 6] = res, (f8)[s(v)],

where [P @ 0] :=vRIR 1. If v ¢ U, res! |y is the zero map. The upper horizontal
morphism is induced by the short exact sequence (17) and all other morphisms are
standard canonical isomorphisms.

Proof. After observing that rp is the identity map over any open set U which does
not intersect D', the proof is an easy diagram chase. 0]

Note that a germ w € ,, which is not in Q(—x),, i.e. not equal to zero in Q ® C,,
induces an isomorphism of sheaves

Homx (V®@ Q© C,,W @ C,) > Homyx (V® Co, W @ C,).
Definition 4.2. Consider the morphism of sheaves of Ox—modules
res,”V(w) : Homx (V,W ® O(D)) — Homx (V ® C,, W ® C,)
defined as the composition of morphisms
Homx (V,W @ O(D)) =2 Homx (V © QW @ Q(D))

(1®res, )«

Homx (V@ QW@ O(D')®C,)

(o2 o (Vo Q2®C, WeC,) <> Homx (V®C,, W C,),
coinciding with the composition Homx (V, W ® O(D)) == Homx(V, W) @ O(D)

res’.

= Homx (V@ Q@ C,, W C,) <5 Homx (V@ C,, W C,).
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Remark 4.3. The fact that the composition
Hom(V,W(D)) =22 Hom(V @ QW @ Q(D)) > Hom(V, W ® Q(D))

coincides with the map w, implies that there is a third description for res¥""V(w) as:

(1®res, ) ((rps),ocan) ™"
_

Hom (Y, W(D)) 2> Hom(V, W ® Q(D)) Hom(V, W @ C,)
Hom(V @ C,, W ® C,). This will be used in the proof of Proposition 4.22.

Definition 4.4. In the above notation we define:
res, " (w) := H°(res)"(w)) : Homy (V,W(D)) — Homx(V ® C,, W ® C,).

Proposition 4.1 yields an explicit formula for the morphisms res’""V(w) in the fol-
lowing simple situation.

Lemma 4.5. Let U C C be open, O = H°(U,O¢), D C U a locally finite subset,
O(D) = H°(U,0¢(D)) and z € D. Let V = Op, W = O} and w = f(z)dz be a
meromorphic one-form on U, holomorphic at x with f(x) # 0. Then the morphism
res,, which is defined as the composition of canonical morphisms

resy ™V (w)

Homy (V, W(D)) Homy(V @ C,, W ® C,)

CanT Jcan

Mat,, i (O(D)) Mat,,xn (C)

is given by the formula res,(F') = res,(F - w).

Proof. Let F(z) = (fi;(2)) € Matyx,(O(D)) be a matrix whose entries are mero-
morphic functions on U having at most simple poles along D. Then we can write
_ G(2)
F(Z) e
which are holomorphic at x. Using the definition of res, in terms of res/ we obtain

res,(F)(a) = (res:c
for all a € C™. O

where the entries of the matrix G(z) are meromorphic functions

Z—XT

) G(r)a = res,(Fw)a

In general, the morphism res?””(w) is neither surjective nor injective. However,

there is an important special case where it is an isomorphism.

Proposition 4.6. Let E be a reduced projective curve with trivial dualizing sheaf.
Let V and W be a pair of vector bundles on E such that Homg(V, W) = 0 and
Homp(W,V) =0 and let x € E, w € Q, be as above. Then, the morphism

res’"(w) : HomE(V, W(x)) — Homp(V @ C,, W ® C,),

defined with D = {z}, is an isomorphism.
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Proof. First note that by Serre duality we have: Extp(V, W) = Homgp(W,V)* =
Hence, then short exact sequence 0 — W@ — WQ(z) — WRC, — 0 induces an

isomorphism H°((1®1es,).) : Homg(V®Q, W®Q( ) =, Homp(V@Q,W®C,).

As a result, the morphism Homg(V, W(z)) rese () Homg(V @ C,, W ® C,) is an
isomorphism, too. 0]

Remark 4.7. The vanishing conditions of Proposition 4.6 are satisfied if F is an
irreducible projective Weierstral curve and ¥V and W are two stable vector bundles
of the same rank and degree and such that ¥V 2 W.

The next goal is to show that the morphism res?"”Y (w) has nice functorial properties.
Proposition 4.8. Let Y — X be a morphism of reduced Gorenstein curves, y € Y
and x = n(y) € X be such that [ is unramified over x. Let D = ~x) and V, W be

a pair of vector bundles on X, V=V and W = m*W. Finally, let w € Qx , be the
germ of a reqular dzﬁerentml one-form, not vanishing at x, and & = 7 (w) € Qy,,
be the corresponding germ on Y . Then the following diagram is commutative:

resy"V (w)

Homy (V, W(x)) Homy (V ®C,, W® (Cw)

- - o |-
D

Homy (]7 &® Cy, W@ (Cy)

Proof. Let i : U — X be an open embedding containing the point x, V' = V|y and
W' = W)|y. Then the diagram

resy " (w)

Hom (V, W(a:)) Hom (V ®C,, W® (Cx)

i* i*
Vv ow!

HomU(V’, WI(I)) resy 0 (w) HOmU(V, ®C,, W' ® (C:):)

is commutative: this is a consequence of the “local” definition of the morphism
res)”" (w) as HO(res?"(w)).

In order to pass to the general case, recall that any unramified morphism of smooth
Riemann surfaces is locally biholomorphic. The assumptions imply 7*O(z) = O(D).
Since both points © € X and y € Y are smooth, there exist open neighbourhoods

z €U < X and yeV <&, Y such that 7 : V — U is an isomorphism. In particular,
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V' N D = {y} and we have a diagram

res}f’w(w)

Homx (V, W(z)) Homyx (V ® C,, W & C,)

/ i i*
y

Viow' o
Homy (V! W/ (2)) —==—“L Homy (V' @ Co, W' @ C,)
2 resy V' (@)

Homy (V' W/(y)) Homv(ﬁ’ ® C,, W ® C,)

\\ j* ]*
VW

Homy (U, W(D)) — ' Homy (V& C,, W © C,),

in which all three cental squares and both exterior squares are commutative. To
conclude the claim, it remains to note that all vertical morphisms on the right hand
side are isomorphisms. 0

Note that the constructed morphism res¥”"V(w) is functorial in ¥ and W. In what

follows, we shall use the following bifunctoriality.

Definition 4.9. Let V;, Vs and W, W5 be coherent sheaves on X, f:V; — Vs and
g : Wi — W, be isomorphisms in Coh(X). Then we have an morphism

cnj(f, g) : Homyx (Vi, Wh) — Homx (Vz, Wh)
given by the rule Homx(Vi,W;) 2 h— goho f~t € Homx (Vy, W).
Having this notation, the proof of the following lemma is straightforward.

Lemma 4.10. Let X be a reduced Gorenstein curve, D C X, €D andw € Q, as
before. Let f : V1 — Vy and g : Wi — Wsy be isomorphisms of vector bundles on X .
Then the following diagram, in which g(D) denotes g ® 1, is commutative:

resy1"V1 (w)

HomX (Vl, Wi (D))
cnj(f,g(D))l
HomX (Vg, WQ(D))

Homy (V1 @ C,,W; ® C,)

lcnj(f,g)
ORI
> Anomgy (VQ X (Cm’ W2 ® C:r) .

\Z
resy

4.2. Evaluation map for vector bundles. As in the previous subsection, we fix
the following notation:
e a reduced Gorenstein analytic curve X (not necessarily compact);

e a subset D C X, locally finite in X, and a smooth point y € X, y & D;
e a pair of vector bundles V and W on X.
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Consider the short exact sequence
(18) 0— O(—y) — 0 =% C, — 0.

It induces a short exact sequence of coherent sheaves

0 — W(D) @ O(—y) — W(D) —— W(D) ® C, — 0

W(D)

and a morphism of sheaves e_vglj’ making the following diagram commutative

(1®ﬂy)*

Homx (V,W(D)) Homx (V,W(D) ® C,)

Homx (V ®C,,W® (Cy) L Homx (V ® C,,W(D) ® (Cy)

where the lower horizontal morphism (rp). is induced by the canonical inclusion rp, :
O — O(D) (here we view both sheaves as subsheaves of the sheaf of meromorphic
functions on X). Note that (rp). is an isomorphism because y ¢ D by assumption.

Definition 4.11. In the notation as above, we set:
evZ’W(D = H° (eVVW D)) Homx (V, W(D)) — Homx (Y ® C,, W @ C,).
Similar to the case of the residue map, the following statements are true.

Proposﬂzlon 4.12. Let 7 : Y — X be a morphism of reduced Gorenstein curves,
e X a point over which 7 is unramified, D1 = 7' (xy) and yy € Y a smooth
point, such that 1 # xo = w(ys) € X. For a pair of vector bundles V and W on X
we denote V =V and W = #*W. Then the following diagram is commutative:

V,W(z1)
ev. xo 1

Homx (V, W(z1)) Homx (V ® C,,, W ® C,,)

W*J/ lﬂ_*
ev W (P1)

Homy (]N}’W(Dl)) = Homy (i} ®Cy2,W®Cy2)~

VW(D1) - 5
Moreover the constructed morphzsm of vector spaces evy, BV s natural in V and

W. In particular, if f : Vi — Vs and g: W1 — Wy are isomorphisms of vector
bundles on Y then the following diagram is commutative:

o evgzlvwl(Dl) _ .
Homy (V1, Wi(Dy)) Homy (V1 ® Cy,, W1 ® Cy,)
an(fvg(Dl))J J{cnj(ﬁ 9)
evgz«WQ(Dﬂ

Homy (172, W2(D1)) = Homy (172 ® C,,, W @ Cy,)-
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The proof of the following formula for the evaluation morphism ev, is straightfor-
ward.

Lemma 4.13. Let U C C be open, D C U locally finite and y € U \ D. Define
O(D) = H°(U,O¢(D)) and let V = O, W = OfF. The formula evy(F) = F(y)
defines a morphism ev, : I\/latan(O(D)) — Mat,, ., (C) which fits into the following
commutative diagram

V,W(D)
evy

HomU(V, W(D)) Homy (V@ C,, W ® C,)

canT J{C&H

Mat,,n (O(D)) Mat,,xn (C).

. . VALY . . . N
In general, the evaluation morphism ev,, (1) is neither injective nor surjective.
However, there is one particular case, when it is an isomorphism.

Proposition 4.14. Let E be a reduced projective curve with trivial dualizing sheaf.
Let V, W be vector bundles on E and x,y € E be such that x # y and

Homp(V, W(z — y)) = 0 = Ext; (V,W(z — y)).

Then the morphism ev, "™ : Homg (Y, W(z)) — Homg(V ® C,, W ® C,) is an
1somorphism of vector spaces.

Proof. Applying the functor Homg(V, —) to the short exact sequence

1gev,

0—-W(x—-y) = W) —> W(x)eC, — 0

we see that the morphism defined as the composition

(1®ely)* (7‘1:):1
Homg (V, W(x)) Homg (V@ Cy, W(z) @ Cy) —— Homp (V@ C,,W®C,)
coincides with evzj’w(x) and is an isomorphism of vector spaces. O

Remark 4.15. The vanishing conditions of Proposition 4.14 are satisfied if E' is an
irreducible Weierstrafl projective curve and 1V and W are two stable vector bundles
of the same rank and degree and such that V 2 W(zx — y).

4.3. Geometric description of triple Massey products on genus one curves.
In this subsection, E is a reduced projective Gorenstein curve with trivial dualizing
sheaf. In particular, the sheaf 2z of regular differential 1-forms on F is trivial. For
any smooth point z € F consider the coboundary map 4, : H°(C,) — H*(Qg) of the
short exact sequence (17). This is an isomorphism. Define w, := d,(1,) € H'(Qg).
By a result of Kunz, which is also true without the assumption Qg = Og, we get:

Theorem 4.16 (see Satz 4.1 in [41]). The element w, does not depend on x.



30 IGOR BURBAN AND BERND KREUSSLER

Let w = w, and t : H'(Qg) — C be the isomorphism which maps w to 1. We
fix a global regular differential form w : Op — Qg. For any two perfect complexes
E,F € Perf(FE), w induces a non-degenerate pairing (see Proposition 3.5)

())& 7 Hompg) (€, F) @ Hompg) (F,E[1]) — C.

Vi.V2 ¢ the tensor m)YhY2

Recall that, when passing from the triple Massey product m, !> s

we have already used these bilinear forms.

The alternative description of 7V1:V2

7
Y1,Y2
evg‘j;’v"’(yl) constructed in Subsections 4.1 and 4.2 respectively. The following theorem

(see also [56, Theorem 4]) is the key statement to explicitly compute the tensor 71>
describing triple Massey products.

involves the two isomorphisms res)?(w) and

Theorem 4.17. Let E be a reduced projective curve with trivial dualizing sheaf,
Vi,Vo € VB(E), y1,y2 € E and w € H°(Qg) be as at the beginning of Section 4. By
wy, we denote the germ of w at y, € E. Then the diagram

HomE(Vb V2(?/1))

Vi,V Vi,V
resyy w‘)
V1,Vo (w)

HomC(V1|y1aV2|y1) — HomC(V1|yzvV2|y2)

15 commutative.

An important message from this theorem is: only if w,, is the germ of a global
holomorphic 1-form w € H%(Qg), we can guarantee that 7 = ev,, o (res,, (wy, )
Since this result plays a crucial role in our approach to degeneration problems,
we decided to give a detailed proof of this statement, stressing those points which
are implicit in [56]. As a preparation, several technical lemmas have to be proven.

Lemma 4.18. Let E be a reduced projective curve with trivial dualizing sheaf and
x € E. Then we have an isomorphism of functors VB(E) — Vectc:

T, : Exty(C,, —) — Homg(C,, — ® C,)

Proof. Let V be a vector bundle on E of rank n. The short exact sequence (17) and
the isomorphism w : O¢ — Qp yield the short exact sequence 0 — V — V(z) —
Y ® C, — 0, which induces the long exact sequence

0 — Homp(Cy, VRCy) 2 Extl(C,, V) — Exth(C,, V(z)) — Exth(Cy, VRC,) — 0.

Because Exty(C,,V(z)) = H(Ext'(C,, V(2))) and Exty(C,,V ® C,) are both of
dimension n = rank(}), we conclude that J, is an isomorphism. Moreover, this map
is functorial and we can put T, = §, L. O
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Remark 4.19. Due to the construction of the functor 7T, we have a commutative
diagram

0 1% A C, 0

| o e
1%

0—>V—>V(z)&]}®©m%0,

where the upper exact sequence corresponds to the element a € Ext}f((Cm, V).

In order to justify our calculations in Sections 8 and 10 we need to establish an
explicit link between the “categorical trace map” of Proposition 3.5 and the usual
trace from linear algebra.

Let X be a reduced projective Gorenstein curve, x € X a smooth point, V a
vector bundle on X. From the exact sequence (17) we get a commutative diagram

Extl (V. V® Qy) —2 s HY(Qy) s C

HomX(V V@C ) ((Cz>

T I>

Home(Vl,, Vo) ——

Here t is the trace map from Theorem 4.16 and tr is the ordinary trace of an
endomorphism of the vector space V|,. The morphism Tr?, is the composition
Homx(V,V ® C,) — H°(VW ® V ® C,) — H°(C,) and Try, is defined in a sim-
ilar way, so that to Tr)l, = try, see Theorem 3.2. The commutativity of this diagram
gives us the following result.

Lemma 4.20. For an element f € Homx(V,V ® C,) we have:

{1y (0:)) ) = (),

which is the required link between the categorical trace and the usual trace for vector
spaces.

Lemma 4.21. Let E be a reduced projective curve with trivial dualizing sheaf, v € E
a smooth point, V € VB(E) a vector bundle and S : Ext(C,,V) — Homp(V,C,)*
the isomorphism induced by the bilinear form ( >‘{’, c,» defined in Proposition 3.5.
Then the following diagram is commutative:

ExtL(C,, V) > Homp(V, C,)*

| J

Homp(C,,V @ C,) u Homp(V ® C,, C,)*,
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where tr is induced by the canonical isomorphism of vector spaces Home (U, V)* =
Homc(V,U), which is given by the usual trace of endomorphisms.

Proof. Let € € Homg(V,C,) and a € Ext}(C,,V). Then T,(a): C, — V ® C, and
&V C, — C, satisty:

tr(& o Tu(a)) = tr(Tu(a) 0 &) = t(Try, (04(Tu(a) 0 €))) = t(Try, (wi(a 0 §)))
= t(we(Trv(a 0 §))) = S(a)(€),

where the second equality holds by Lemma 4.20 and the others come from straight-
forward commutative diagrams. O

Now, after proving these preliminary statements we are ready to prove Theorem
4.17. Let (V1,Va,y1,Y2,w) be the data fixed at the beginning of Section 4. Recall
that we have to compare the triple Massey product

mytoz : Homg(V1, Cy,) @ Extp(Cyy, Vo) @ Homp(V2, Cy,) — Homp(V1, C,,)

Y1,Y2
with the map

- ~1
T;/f;f = eV;;’VQ(yl) (resv1 VQ(wyl)) : Homc(Vi |y, s Valy, ) — Home(Vily,, Valys)-

Proposition 4.22. If g €Homg(V1,C,,), h €Homg(Vy, C,,) and a € Exty(C,,, Va),
then

hyz oYY (Ty1 (a>gy1) = ( v (g ®a® h))

Y1,Yy2 '!/1 »Y2
Proof. Let us first explain our notation. We have a composition map

9y1 Tyl
Vl ’yl

VZ |y1 )
hence we may consider

;;1 yv22 (Ty1 (a)gy1)

Vl‘w V2|y2'

Let0 — Vy — A 2, C,, — 0 be an exact sequence representing a € Extj(C,,, Vs).
Then we have a commutative diagram

0 0
VQ VZ
V1 d A 3 Va(y1)

Vi ® (Cy1 (Cy1
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where ¢ is the unique lift of g and the two columns on the right form a transposed
version of the diagram from Remark 4.19. Since

resy Y (wy, ) : Homp (V1, Va(y1)) — Hompg(V1 @ Cy,,V, © Cy,)

is an isomorphism, by definition we have (see Remark 4.3)

V1,V -1 L
(resyll 2<wy1)) (Tyl (a>gy1) = £&g.
Moreover, tensoring the whole diagram with C,, we obtain a new commutative
diagram

»RC, — = 3 V»®C,

Qyo l erz
Gua

Vi ® (Cy2 —A® Cy2 L) V2(y1) ® (Cyza

from which the identity evie "> (7) = o, gy, follows. By the definition of Massey

products we have a commutative diagram

0 V) - A Cy, 0

which finally implies

(2% (g a @ b))

Y192 = hy, o 053721 0 Gy, = hy, © oLy (T, (a)gy,)-

Y2 Y1,Y2

O

Now we are ready to finish the proof of Theorem 4.17. Our goal is to keep track

of the linear map mz‘jll ’;/22 under a long chain of canonical isomorphisms. Let us do it

step by step. Each linear map
m € Lin(Homg(V1, Cy,) ® Ext(C,,, Vo) @ Homg(V2, €y, ), Homp(Vi, Cy,))
corresponds to an element
n € Lin(Homg(V1,Cy,) ® Homg(V2, C,,)*, Lin(Homg(V2, Cy,), Home(V1, Cy,)))
which is related to m by the formula
n(g® S(a))(h) =m(g®@a® h),

where S : Ext(C,,, Va) — Homg(Vy, C,,)* is given by the bilinear form ( )Va.Cy,
from Proposition 3.5. By Lemma 4.21, the element S(a) € Homg(V,,C, )* is
mapped to T, (a) € Hom¢(C, Vs|,,) under the chain of isomorphisms

Homg(V,,C,, )" — Homp(V2.®C,,,C,,)* — Homc(Vsly,, C)* — Homc(C, Vs, ).
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This implies that the linear map n corresponds to
[ € Lin(Homc(V1y,, C) @ Home(C, Valy, ), Lin(Homg (Valy,, C), Home (Vi ],,, €)))
given by I(g,, ® Ty, (a))(hy,) = m(g ® a ® h),,. But since

HomC(V1|y17(C) ® Hom(C((Ca VQ‘yl) - Hom(CO)l‘yl? V2|y1>

is an isomorphism and

Lin(Hom(;(Vg|y27 C), Homc (V1 ]y, C)) = Home(Vily,, Valys )

we obtain a linear map
ke Lin(HomC(V1|y17 V2|y1)’ HomC<V1|y2’ V2|y2))

such that for any elements g, a and h the following diagram commutes

k (Ty1 (a)gy, )
Vily, ————Valy,

h92
m(g@a@h)y2

C.

Using Proposition 4.22, we obtain with m = m;’f;’; the identity

_ Vi,V -1
k= Tyl = €Vy, OTES,

A tedious diagram chase shows that k is equal to fi{;f, which was defined directly

after Remark 3.11. This completes the proof. [l

The following Theorem explains how triple Massey products on a genus one curve
can be computed in a practical way.

Theorem 4.23. Let E be a reduced projective curve with trivial dualizing sheaf,
1, T € E bea pair of distinct smooth points lying on the same irreducible component
of E. Let Vi and Vs be a pair of vector bundles on E satisfying both vanishing
conditions from the beginning of Section 4. Let m :' Y — FE be the normalization
morphism if E is singular or the universal covering C — E = C/{(1,7) if E is
smooth. Take a point yo on Y such that ©(yz) = xo, let y1 € D1 = 7 (z1) and
denote 17@ =7*V; fori=1,2. Let w € H°(Qg) be a global reqular differential form
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on E and & be its (possibly meromorphic) lift on'Y. Then the diagram

*

Homp(V1 @ Cyy, Vo ® Cy,) u Homy (Vi ® C,,, Vs ® C,,)
fxll,’:;(w) HomE(Vl, VQ(JJl)) T Homy(Vl’ VQ(DI))
y l B 7(01)
evyy 2L

HOmE(Vl ® Cyy, V2 ® CIQ) * > Homy (]71 ® Cy,, ]72 & (Cyz)

1s commutative. This shows in particular that the computation of triple Massey
products on elliptic curves (resp. on singular genus one curves) can be expressed by
computations on the universal covering (resp. on the normalization).

Proof. The left triangle is commutative by Theorem 4.17. The two squares are
commutative by Propositions 4.8 and 4.12. U

5. A RELATIVE CONSTRUCTION OF GEOMETRIC TRIPLE MASSEY PRODUCTS

Our next goal is to extend the definition of the morphism r;’l 17’;;2 (w), constructed

in the previous section, to genus one fibrations. We achieve this by generalizing the
construction of Theorem 4.17 to the relative case. Throughout this section we work
either in the category of locally Noetherian algebraic schemes over an algebraically
closed field k of characteristic zero or in the category of complex analytic spaces.

5.1. The relative residue map. Let p : X — S be a smooth map of complex
analytic spaces or of algebraic schemes. Assume p has a section v : S — X, let D
be the image of » equipped with the ringed space structure induced from S. Recall
that the sheaf of relative differentials Q% /s is defined via the exact sequence

see [3, Chapter 7], [34, Section I1.8 and Section II1.10] and [54] for definitions and
basic properties of smooth morphisms and Kahler differential forms. In particular,
for any closed point s € S we have: Qy ¢[x, = Q and Qg is locally free.

Assume additionally that p has relative dimension one and X itself is smooth.
Our aim is to define a canonical epimorphism of Ox—modules

resp - Q&/S(D) — Op,

later called the residue map. We shall explain our construction in the case of alge-
braic schemes, whereas its generalisation on the case of complex analytic spaces is
straightforward.
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Let x € D C X be a closed point, then we can find affine neighbourhoods U =
Spec(B) of € X and V = Spec(A) of f(z) € S such that the map p|y : U — V is
induced by a ring homomorphism p* : A — B:

U = Spec(B)—— X

o]

V = Spec(A)—— S.

Then the sheaf Q% /slv 1s isomorphic to the sheafification of the B-module of Kéhler
differentials Qp /4.
Let +* : B — A be the ring homomorphism corresponding to the section ¢ and

I = ker(:*). Then the map C := B/I . A is an isomorphism and I is the ideal,
locally defining the subscheme D. By Krull’s Hauptidealsatz, since U is smooth and
V(I) C U has codimension one, shrinking the open sets U and V' if necessary, we
can achieve that I is generated by a single element a € B. From the exact sequence

I/ 25 Qpa @5 C — Qoa — 0

where 6([b]) = d(b) ® 1 and the fact that Q¢ 4 = 0 it follows that the C~module
Qp/a ®p C is generated by a single element, namely d(a) ® 1. The smoothness of p
implies that Qp/4 ®p C is a free C-module with this generator.

Definition 5.1. Let p : X — S be a smooth map of relative dimension one,
18 — X asection of p and D = (S). We define the sheaf homomorphism
resp - Qﬁc/s(D) — Op
to be the composition of the canonical map QY (D) — QX g/p ® O(D)|p and the
morphism QY |p ® O(D)|p — Op locally defined as follows. In the above notation
let M = {E ’ u € B} =TI'(U,Ox(D)) C Q(B), where Q(B) is the field of fractions
a
of the integral domain B. The map

p:(Qpa®pC)@(MepC)—C
is given by the formula (d(a) ®1) ® (*®1) —u®1=u:=u mod I.

It is easy to see that the morphism p is C-linear, surjective and does not depend
on the choice of a generator of the ideal I.

Remark 5.2. If S is a point and X a smooth complex curve, the residue map in
Definition 5.1 coincides with the classical residue map, which was used in sequence
(17) at the beginning of subsection 4.1. To see this, we let D = {z} and U a
neighbourhood of x in X with a coordinate z centred at x. Then, in the notation
of Definition 5.1, a = 2z and @dz € Q% (z) is first sent to (dz®1) ® (@ ®1) and

then to f mod I, = f(0), which is equal to the ordinary residue of @dz.
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Proposition 5.3. Let p: X — S be a smooth map as above, 1 : S — X a section
of pand g : S — S any morphism. Let X' = X xg 5" and : S" — X' be the
section defined by the universal property of pull-backs:

N

S'—5
and D' =4/(S"). Then the following diagram is commutative:

f*(resp)

fr(Qk/s(D)) ——— [*(Op)

%J/ J{E
res s

Q_lx//s/(D,) _— OD’

where the vertical arrows are canonical isomorphisms.

Proof. The problem is local, so we can assume, without loss of generality, X =
Spec(B), X" = Spec(B’), S = Spec(A) and S” = Spec(A’). Then, we have a Cartesian
diagram of rings and ring homomorphisms

B

)

A’ e A
where B’ = B4 A, p*(d') =1®d" and f*(b) = b® 1. Denote C := B/ker(:*) and
C" := B'/ker(+*) then we have an isomorphism of C’"-modules C ®p B' — C".
Let d : B — Qpya and d' : B’ — Qp 4 be the universal derivations from the
definition of Kahler differentials. By the universal property we obtain a uniquely
determined B-module homomorphism 2p/4 — §2p//4 and an induced B’~module

isomorphism f* : Qp/a ®p B — Qp/a making the following diagram

B—25Qpu—— Qpa@p B’

O

B~ Qg
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commutative, in particular f* (d(b)®1) = d'(f*(b)). Moreover, we have a canonical

homomorphism f3,: M ®p B' — M’ given by f;, (E ® 1) = fc*Eui, where
a a
u v
M={2uen B) and M’ = B B).
{aue }CQ()an {f*(a)ve }CQ( )

We know that the C-module Qp/4 ® C' is generated by the single element d(a) ® 1.
Hence the commutativity of the diagram

f*(xesp)

(Qpja®p B') @ (M @5 B) C®p DB
f*®fj;{ J
Qprja @ M’ = '

can be checked on elements of the following form:

[ (res
(dayo1) e (Let)— " 5e1
f*®f;;l w
f(u) Lespr
d(f*(a)) ® | *
( ( )) F*(a) f*(u)
and the proposition is proven. 0]

5.2. On the sheaf of relative differential forms of a Gorenstein fibration.
Let p: X — S be a proper and flat morphism of relative dimension one, either in
the category of complex analytic spaces or of algebraic schemes over an algebraically
closed field k of characteristic zero. Assume additionally that for all closed points
s € S the fibres X, are reduced and we have an embedding

Xe——Y
N
S

where ¢ : Y — S is a proper and smooth morphism of the relative dimension two.

Remark 5.4. Since for any s € S the surface Y; is smooth and X, C Y, has
codimension one, the curve X, has hypersurface singularities and is in particular
Gorenstein.

Recall that for any morphism ¢ we have an exact sequence

q*Q}g —s Q) — Q%,/S — 0
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and that Q%//s is a locally free Oy—module of rank two, because ¢ is a smooth
morphism.

Definition 5.5. The relative dualizing sheaf is defined by the formula
(.L)X/S = (/\2 Q%//S X Oy(X)) ’X .

Proposition 5.6 (see Chapter II in [6]). For any s € S the sheaf wx/s
dualising sheaf of the projective curve Xj.

x. s the

Remark 5.7. It can be shown that up to the pull-back of a line bundle on S this
definition of wy,s does not depend on the embedding X «— Y.

Let X be the regular locus of p, then j : X — X is an open embedding and the
morphism X —— S is flat but in general not proper. Our aim is to define an injective

map of Ox—modules clg : wx/g — ]*(Qﬁ?/s)'

For a closed point x € X let U CY be an open neighbourhood of x and S; an
open neighbourhood of f(x) in S. Choose local coordinates (u, v, s) on U such that
we have a commutative diagram

(CxS)=U— >y

So S

where pr(u,v,s) = s and du| ¢ # 0, dv|y # 0. Assume that the closed subset X N U
is given in U by an equation f(u,v,s) = 0. Then

(gdu + gdv)

ou ov =0

X

where the left-hand side of this equality is viewed as a local section of Q; /s

Consider the composition map ¢ : XX —vY.

Definition 5.8 (see Section II.1 in [6]). The Poincaré residue map is the morphism
of Oy—modules

res” : APy (X)) — £.Q4 "

locally defined as follows. Let U C Y be an open neighbourhood of x € X as above
and V := U N X, then the map

rest F(U, /\2Q%//S(X)) — F(V, Q;(/s) = F(U7 K*Q}(/S)
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is given by the formula

hdu of

hdu A dv Of |y if 5, (W s) #0,
) hde of

- if —- .

ot i au(u,'u,s);éo

Remark 5.9. Since for any point s € S the fibre XS is a smooth curve, the set
V(f,0uf,0sf) C X, is empty and the map res” is well-defined. Moreover, res” is
independent of the choice of a local equation f € Oy (U) for X C Y and also of the
choice of local coordinates (u,v,s) on Y, see for example [6, Section II.1].

From what was said above it follows:

Corollary 5.10. The commutative diagram of Oy —modules

0 —— N*Qy g —— N2Qy o (X) — A2Q) g(X)| ——0
X

res? o ‘
e

1
g*Q)“(/S

induces an injective morphism of Ox-modules

— 0L

C—IS SWx/s = /\QQ%//S(XH X/s"

X

Remark 5.11. In what follows the morphism clg will be called the class map.
For a Gorenstein projective variety X of dimension n let M x denote the sheaf of
meromorphic functions on X. Angéniol and Lejeune-Jalabert construct a morphism

(% — wx which induces an isomorphism Q% ® Mx =, wy ® Mx, also called
“class map”, see [4]. The relationship between this class map and the class map
from Corollary 5.10 will be discussed elsewhere.

The following proposition can be shown on the lines of [6, Section II.1].

Proposition 5.12. Let p: X — S be a Gorenstein fibration of relative dimension
one satisfying the conditions from the beginning of this subsection. If g : 8" — S
is any base change, we obtain the Cartesian diagram

X/L)X

g2
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Then, the following diagram is commutative
£ (A205(0)| ) s 220 (X))

f*(cls)l st,

* 1 1
f (j*Q)V(/S) ji"QX’/S/

Xl

1%

where the upper horizontal isomorphism is canonical and the lower one is induced
by the base-change property.

The reason to introduce the map clg is explained by the following proposition.

Proposition 5.13 (see Proposition 6.2 in [6]). Let p : X — S be as in Proposition
5.12, t € S a closed point and cl, : wx, — Jt*th the class map constructed in
Corollary 5.10. Then we have:
(1) If the fibre X, is smooth, then the image of cl, is the sheaf th of holomorphic
differential one-forms on X;.
(2) In the case X, is singular, the image of cl, is the sheaf of Rosenlicht’s dif-
ferential forms, see Definition 3.4. In particular, im(cl,) is a subsheaf of the

sheaf of meromorphic differential one-forms on X; reqular at smooth points
Of Xt.

The following definition is central for our construction of associative geometric
r—matrices. Let p: X — S be flat and proper morphism such that
e All fibres X;, t € S are reduced projective Gorenstein curves.

e There exists an embedding
Xc———Y
N
S

where ¢ : Y — S is a proper and smooth morphism of relative dimension two.

Definition 5.14. Let 5 : X — X be the inclusion of the smooth locus of P,
18 — X asection of p and D = 4(S). Then the residue map

cl
resp, : wy/s(D) = 2. (Q 4(D)) — Op

is defined as the composition of the class map clg from Corollary 5.10 and the residue
map for smooth morphisms of relative dimension one from Definition 5.1.

Remark 5.15. If S is a point, X a complex curve and D = {z}, the residue map
in Definition 5.14 fits as the top horizontal arrow into the following commutative
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diagram

in which the lower horizontal map is the classical residue map used in the sequence
(17) at the beginning of subsection 4.1. This follows from Remark 5.2 and Proposi-
tion 5.13.

Propositions 5.3 and 5.12 imply the following corollary.

Proposition 5.16. Letp: X — S and 1 : S — X be as in Definition 5.14 and
g: S — S be any base change. Denote X' = X xg8', f: X' — X, 7/ : 5 — X'
the pull-back of » and D' =4/(S"). Then the following diagram is commutative

F* (wyys(D)) —E=2L s (o)

NJ JN
resps

WX’/S’(D/) - OD’
where the vertical maps are canonical isomorphisms.

5.3. Geometric triple Massey products. Let E - S be a genus one fibration
embedded into a smooth fibration of surfaces, i.e we have a commutative diagram

EC Yy
x %
IS

where p is a proper and flat map, for all ¢ € S the fibre E; is a reduced projective
curve with trivial dualizing sheaf and ¢ is a smooth and proper map of relative
dimension two.

Let E be the regular locus of p. Assume S is chosen sufficiently small, so that
wg/s = Op. Fix the following data:

e A nowhere vanishing global section w € H(wg/s).
e Two holomorphic vector bundles V and W on the total space E having the
same rank and such that for all ¢ € S we have:

Homg, (V;, W,) = 0 = Exty, (Vi, Wi).

Here and in the sequel we denote F; = F|g, for any vector bundle F on E.
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e Two sections hy, hy : S — F of p such that for all ¢ € S we have: hy(t) #
ho(t) and hi(t), ha(t) belong to the same irreducible component of E;. We
additionally assume that

Homp, (Vi(ha(t)), We(ha (1)) = 0 = Extp, (Vi(ha(t)), Wi(ha(t)))-
The main result of this section is the following theorem.
Theorem 5.17. There exists an isomorphism of vector bundles on S
f,]jl’}/,;; (w) = 77:1’?2}2 . hiHomg(V, W) — hiHomg(V, W)

such that for any base-change diagram

EIL)E

dr

S/L)S

the following diagram is commutative:

o (W)
g hiHomg(V, W) g hiHomg(V, W)

l ;I{/ i’/f W(W/) J

WiHomp (fV, F W) —2 Wi Homp (£V, f*W)

where Wy, hYy + S — E' are sections of p' obtained as pull-backs of hy and hs.
The vertical arrows are canonical isomorphisms and the section ' € H*(wp/g/) is
defined via the commutative diagram

FO0p —— O

f*(w)l Jw’

f*wE/S ; (.UE//S/.

Moreover, for any s € S the morphism fhfigju(s) coincides with the morphism de-

scribing triple Massey products constructed in Section 3.

Proof. The construction of the morphism f)jl’m is the following. Let D; = h;(S) and
D! = h}(S), then the exact sequence

(19) 0— wE/g — wE/S(Dl) ﬂ OD1 — 0

induces an exact sequence 0 — W ®wg/g — W Qwg/s(D1) — W@ Op, — 0.
Since Ext(V, W) = 0 and wg/s = O, applying the functor Homp(V, — ) we obtain
the exact sequence

(20) 0 — Homp(V, W) — Homp(V,W @ wg/s(D1)) — Homg(V,W® Op,) — 0.
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Lemma 5.18. In the notations of the theorem we have:
p« (Homgp(V,W)) = R'p.(Homg(V,W)) = 0.

Proof of the lemma. It suffices to show that Rp,(Homg(V,W)) = 0 viewed as an
object of the derived category of coherent sheaves D, (S). Note that a complex

coh

L
F € DP,,(S) is zero if and only if for all points ¢t € S we have: F @ C; = 0. Since

coh
the morphism p is flat, from a base-change isomorphism it follows that

L
Rp. (Homgp(V,W)) ® C; = RHomg, (V;, W;) =0,

where the last equality follows from the assumption Extht(Vt, W,)=0foralli e Z
and t € S. O

Hence, applying the left-exact functor p, to the exact Sequence (20) we obtain an

isomorphism p, Hompg (V, W® wE/S(Dl)) =, p,Homp (V, W® ODl)- Combining it
with the canonical isomorphisms

Homp(V,W & Op,) — hy,Homs (hiV, ;W) — by, hiHomg(V, W)
we obtain an isomorphism
ves; ™ pHome (V,2W @ wiys(D1)) — hiHomg(V,W).
Moreover, the choice of a global section Op —— wg /s induces an isomorphism
resy™ (w) © p.Homp(V,W(Dy)) — hiHomg(V, W),
which we shall frequently denote by @Z{W

Remark 5.19. If S is a point, E a curve and D; = {z}, this isomorphism coincides
with the map resy"(w) from Definition 4.4, if we identify Homg(V @ C,, W ® C,)
with the vector space Homg(V, W)|,. This follows from Remarks 4.3, 5.2 and 5.15
by comparing the two constructions.

The construction of another isomorphism
ey P0 p Homp (V, W(Dy)) = hyHome(V, W)
is similar. We start with the exact sequence
(21) 0 — Og(D; — Dy) — Og(D;) — Og(D;) ® Op, — 0.

For any Weil divisor D C E we view the line bundle Og(D) as a subsheaf of the
sheaf of meromorphic functions Mpg. There exists a canonical exact sequence

0— OE — OE(Dl) %D—l—> ODl(D1> — 0
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inducing an isomorphism Op, — Og(D1)®0Op,. Tensoring the exact sequence (21)
with the vector bundle W and applying Homg(V, — ) we obtain an exact sequence

0 — Hompg (Y, W(D1 — Ds)) — Hompg(V,W(D1)) — Homg(V,W @ Op,) — 0.
By the same argument as in Lemma 5.18 one can show that
pHompg (V, W(D;, — DQ)) =~ Rlp, Hompg (V, W(D, — DQ)) =0
which implies that we obtain an isomorphism of vector bundles on S
evy VPV p Home (V, W(D1)) — hyHome(V,W).

Remark 5.20. If S is a point, E a curve, Dy = {z} and Dy = {y}, this isomorphism

coincides with the map evgj’w(x) from Definition 4.11. This follows easily by compar-
ing the two constructions, using the canonical identification of Homg(V®C,, WRC,)
with Homg(V, W)|,.

The isomorphism of vector bundles
f,)jl’m : hiHomg(V, W) — hiHomg(V, W)

is defined by the commutative diagram of vector bundles on S

psHompg (V, W(Dl))

P g ()

hiHomp(V, W) ot hiHomp(V, W).

Remark 5.21. If we drop the assumption that
Homp, (Vi(ha(t)), Wi(hi(t))) = 0 = Extg, (Vi(ha(1)), Wi(ha(t)))

for all t € .S, we still get a morphism e_VL’W(Dl) but it may no longer be an isomor-
phism. This is the only change that occurs to the construction. Therefore, in this
situation we still obtain a morphism of vector bundles

f;jl’?; = 7::1’?;2 (w) : hiHomp(V, W) — hiHomg(V, W).

Remark 5.22. Because p : E — S is proper, two nowhere vanishing global sections
w,w’ € H(wps) differ by a factor ¢ = p*(¢) only, where ¢ € H(O%). If ' = puw,
we obtain @X{W (W) =¢p- @Zl’w(w) and f}jl’m (W)= f}jl’m (w'). In particular, if
S is a point, ¢ is a constant factor.
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Now let us prove the compatibility of f:l’v}\; with respect to base-change. We start
with the commutative diagram of coherent sheaves on E’

*(w)®id fr(xesp))
(22) [*Op ® f*Og(Dy) ———— f*(wgys(Dy)) —— f*(Op,)
OE’ ®OE’(D/1) w@id wE//S,(D’l) 7—D1>0D/1

the right part of which was obtained in Proposition 5.16. Next apply the functor
p.Homp (f*V, f*W® —): Coh(E") — Coh(5")
to the right square, which yields the commutative diagram

PiHomp (f*V, fW® f*(wgs(D1))) — pyHomp (f*V, f*W & f*Op,)

% F

pLHomp (f*V, fW @ wprys/(D})) ——— piHomp (f*V, f*W @ Opr)
in Coh(S”). There is an isomorphism of functors
[ Homp(V,W & —) — Homp (f*V, fW® f*(—))

between the categories of coherent sheaves Coh(FE) and Coh(E’). Composing these
functors with p} and then applying them to the residue map wg/s(D1) — Op, we
obtain a commutative diagram

Pl Homp(V,W & wp/s(D1)) —————— plf*Homp (V, W & Op,)

ﬂ f

pHomp (f*V, fW @ f*(wpys(D1))) — p.Homp (f*V, f*W & f*Op, ).

Finally, there is a natural transformation of functors ¢*p, — p. f* (base-change),
which is an isomorphism of functors on the category of S—flat coherent sheaves
on E. Since both sheaves HomE(V,W ® wE/S(Dl)) and Homg(V,W ® Op,) =
hy,Homg(hiV, kW) are flat over S, we obtain a commutative diagram

g*pHome(V, W @ wg;s(D1)) ——— g*p.Homp(V, W © Op,)

ﬁ f‘

p’*'HomE/ (f*V, f*W ® CUE//S/(DII)) E— p;'HomE/ (f*% f*W &® OD’I) .
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Using similar arguments one can show that the following diagram is commutative:

g p.Hompg (V, We ODl) — g*hiHomp(V, W)
p.Homp: (f*V, f*W® Op) = By Homp (f*V, f*WV),

in which all arrows are canonical isomorphisms. Composinig the two previous dia-
grams, we obtain the compatibility of @Z{W with base change, i.e. the commutative
diagram

" (resy ™)
9" (resy,.

g*p*HomE(V,W Q wE/s(D1)> g*hiHomg (VvW)

% JN
* *
res! VW

piHomp (f*V. f*W @ wrrs (D)) 1 hy " Homp: (f*V, W)

in which the vertical arrows are compositions of the natural isomorphisms con-
structed above. If we follow the same steps with the left square in diagram (22), we
obtain the compatibility with base change for @};’W (w).

In an analogue way, we can show that e_vZ;W is compatible with base change. This

proves the base-change property for f,]jlv,;; (w).

It remains to show that, in case S is a single point, the relative construction yields
the same result as the construction in Section 3. This follows from Theorem 4.17,
Remark 5.19 and Remark 5.20. This finishes the proof of the theorem. ([l

VW VW : VW o1 ;
Let r =7, (w) denote the image of 7 under the canonical isomorphism
hl’h2 h17h2 h1,h2

Homs (hiHome(V, W), hyHomp(V,W))

|

(S, hiHomp(W, V) @ hiHomg(V,W)).

From Theorem 5.17 we immediately obtain the following corollary.

Corollary 5.23. In the notation of Theorem 5.17 let nyyw : g* (h’{HomE(W,V) ®
hsHom(V, W)) — by Homp: (f*W, f*V) @ k" Hompg (f*V, [*W) be the canonical
isomorphism of bifunctors. Then we have:

x/ VW Y A % e 2%
Thv,w <g (rh17h2)> - Th/l,h’Q :

The following properties of the morphism f}jl’y}‘; are straightforward consequences of
the naturality of all the morphisms involved in the construction.
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Proposition 5.24. In the situation of Theorem 5.17, the isomorphism f,]jl’m 15

functorial with respect to isomorphisms f:V — V' and g : W — W', this means
that

VW
rhl,hg

hiHom(V, W) hiHom(V, W)
hi (cnj(f,g))l o lh; (enitr.9))
hiHom(V, W') hiHom(V', W')

is commutative. Moreover, for any line bundle L on E the following diagram is
commutative

RiHomg(V, W) hsHomg(V, W)

= =
VRLWSL

hiHomp(V @ LW R L) hsHomp(V @ LWV ® L),

where the vertical arrows are induced by the canonical isomorphism

Homp(V, W) — Homp(V @ LW ® L).

6. GEOMETRIC ASSOCIATIVE "—MATRIX

The main goal of this section is to define the so-called geometric associative -
matrix attached to a genus one fibration. Throughout this section, we work either in
the category Ans of complex analytic spaces or in the category of algebraic schemes
over an algebraically closed field k of characteristic zero. We start with the following
geometric data.

e Let E -2 T be a flat projective morphism of relative dimension one between
reduced complex spaces and denote by E the smooth locus of .

o We assume there exists a section s : T — E of p. Let ¥ := 1(T') C E denote
the corresponding Cartier divisor.

e Moreover, we assume that for all points ¢ € T' the fibre E; is a reduced and
irreducible projective curve of arithmetic genus one.

e The fibration E -~ T is embeddable into a smooth fibration of projective
surfaces over T" and wg/r = Op.

e For our applications it is convenient to assume the fibration E —— T is the
analytification of an algebraic fibration.

6.1. The construction. For a pair of coprime integers (n,d) € N x Z we denote

by Mg/’dT) : Ansy — Sets the moduli functor of relatively stable vector bundles of

(1,d)

rank n and degree d. In particular, M}, T

= Pic%, sr are the relative Picard functors
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and Mg/oT) = EOE /7 18 the relative Jacobian. The assumption that p : £ — T has

a section is only needed to ascertain that these functors have fine moduli spaces.
Theorem 6.1. In the above notation we have:
o The relative Jacobian @%/T is representable by the fibration E -~ T and
the universal line bundle L = Op  o(=A) @ m;0p(%), where A C E xr E
denotes the diagonal and 7o : E X7 E — FE is the natural projection.
e The functors EQIE/T for all d € 7Z are isomorphic to each other and these
isomorphisms are induced by tensoring with the line bundle Og(X).

e The natural transformation of functors det : Mg/’dT) — ﬂ% J7 1S an isomor-

phism. In particular, the moduli functor Mgfé 18 representable for all pairs
of coprime integers (n,d) € N x Z.

Proof. The first part of this theorem can be found in [2] the second statement is
trivial. The third part seems to be well-known, see for example [52] for the case
of an elliptic curve and [21] for the proof of a more general statement and further
details. O

From now on, by M L T we denote a fibration which, together with a universal
family P = P(n,d) € VB(M xr E), represents the functor M(g/’dT). For a closed point
t € T we denote by P, € VB(M; x E;) the restriction of P to M; X E;.

The morphisms p and [ induce a morphism C' := M X7 M X Exr E -4 T, from
which we obtain a Cartesian diagram of complex spaces:

. ~ f
MXTM XTEXTEXTE4>E

ql g Jp

C T.

Observe that ¢ : M xp M xp E X7 E xp7 E — C is again a genus one fibration
satisfying all the conditions listed at the beginning of this section.

Definition 6.2. The diagonal map A : E — Ex¢F induces two canonical sections
hl,hgi MXTMXTEXTE\J’%MXTMXTEXTEUIXTE

of the morphism ¢, given by the rule h;(v1, vo;y1,y2) = (v1, v2; Y1, Y2, y;) for i =1, 2.
Let D; be the reduced image of h;. Next, consider the two projection maps

WiZMXTMXTEUXTEUXTE—>MXTE,

given by 7;(v1, v2; Y1, ¥2,y) = (v, y) for i = 1,2. For any base point = (vq, v2; 41, y2) €
M xp M xp E xp E with t = g(x) we denote:

PYi = W:P‘qfl(x) = Pt|{vi}><Et S VB(Et)
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Consider the following closed subsets of the basis C"

Ay = {(v1,v3501,02) € Cloy = v} and  Ap = {(v1, 0501, 52) € Clyr = 2}
and their complement B = C'\ (A UAg). Then we have the induced genus one
fibration:

. ~ f
X<—>M XTM XTEXTEXTE—>E

N | Jp
B C - T.
Note that the images of the sections hy, hy : B — X are disjoint and for any point

& = (v1,v2;y1,92) € B we have: 7{P|,-1(,) = P" % P = m3P|4-1(2). Occasionally
we shall use the abbreviation V; = 7/P|x € VB(X) for i = 1, 2.

Lemma 6.3. The set of points A = {z € B | Vi(D2)|-1(2) = Va(D1)|g-1(2) } i a
closed analytic subset of B.

Proof. Since the morphism ¢ is projective, the sheaf ¢, Hom (Vi (D2), Va(Dy)) is co-
herent. Moreover, if ¥V and W are two stable vector bundles on an irreducible
projective curve F; of arithmetic genus one having the same rank and degree, then
Hompg, (V, W) # 0 if and only if V = W. Since the sheaf Hom (Vi (Ds), V2(Dy)) is
locally free, it is flat over B. Therefore, the base-change formula implies that for
a point x = (vy,v9;91,y2) € B with t = g(z), after identifying ¢~*(z) with E;, we
have:
q*Hom (Vl(DQ), VQ(Dl)) {a: = HomEt (V1|Et (yQ)a V2|Ez (yl)) :

Therefore, the set A coincides with the reduced support of ¢, Hom (Vl(Dg), Vg(Dl)),
hence it is a closed analytic subset. 0

Definition 6.4. Let w € H(wg/r) be a nowhere vanishing section of the dualising
sheaf wp/r and f*(w) € Hwx/p) its pull-back to X. Theorem 5.17 provides us
with a canonical homomorphism of vector bundles on B (see also Remark 5.21):

F=i(w) =i (ff(w) 1 hiHomx (Vi, Va) — hyHomx (V1, Vz)
and a canonical holomorphic section
r= r,‘jll,‘;? (w) € H(B, hiHomx (Va, V1) ® hyHomx(V1,Vs)).
We call 7 and r the geometric associative r-matriz of the fibration £ — T

Note that r and 7 depend on the pair of coprime integers (n, d), the fibration £ — T
and the section w € H°(wg/r) only. Two different choices of a universal bun-

dle P lead to a canonical isomorphism between the corresponding section spaces
H°(B, hiHomx (V2, Vi) ® hyHomx (V1,V,)) under which the constructed sections r
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are identified. This isomorphism may involve an automorphism of the moduli space
M and the tensor product with the pull back of a line bundle on M (see Prop. 5.24).

To formulate the base-change property (Proposition 6.5) for the geometric asso-
ciative r-matrix r, let § : 7" — T be any morphism between reduced analytic
spaces and

E’/L}E

]

T/L)T

the corresponding base-change diagram. From the representability of the functors
M(g/’dT) and Mgﬁ%, it follows easily that M’ := M x¢T" with P’ := (ux f)*P represents
the functor Mg”,’/d%/. Here we denoted by u : M x7T" — M the first projection and

ux f: M xp E' — M xq E coincides with u x idg : M’ X7 E — M X7 E under
the canonical identification M’ xp E' = M’ xp E.

By X', B’ we denote the spaces obtained from E' — T’ in the same way as
X, B were obtained from E — T. Using § =ux ux f x f x f: X' — X and
g = u X u X f X f : B — B, we obtain the Cartesian diagram

X/ L}X
o
B/ i} B

Note that there exist canonical isomorphisms ¢; : §*V; = ¢*n;P — V! = 7" P/,
using the notation of Definition 6.2.

Proposition 6.5. Let w € H(wg7) and w' = f*(w) € H*(wp 1), then the image
of the section r = r:ﬂf (w) € H° (h’{HomX(VQ,Vl) ® hiHomx (Vy, Vg)) under the
chain of canonical morphisms

H° (hiHomx (V2, Vi) @ hsHomx (Vi, V)
HO(3p)

HO (g*B(hTHOTTLX (Vg, Vl) & h;HOmx(Vl, Vz)))
Mv1,Vo

HO (" Homxi(§"Va, §"V1) ® hy"Homx (§"V1,5°V2))

HO ()" cni(g2.61) @k} cni(d1.62))

H (R} Homx/(V5, Vi) @ hby"Homx/(Vy, V3))
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isr = 7“:,11:/3 ('), where the first arrow is induced by the functor g3, the second by the

canonical isomorphisms of functors gyhf = h."g* and the third by the isomorphisms
of vector bundles ¢; : §*V; — Vi, i = 1,2.

Proof. This proposition is an immediate consequence of Corollary 5.23. OJ

Corollary 6.6. In the notations as above, let x = (vy,v9;y1,%2) € B andt = g(z) €
T. Let w € HO(wE/T) be a nowhere vanishing section and w; be its restriction to Fj.
Then the image of the section r = r(w) under the chain of canonical morphisms

H°(B, hiHomx (m3P,7{P) @ hiHomx (7; P, 73 P))

lcan

H°(B, hiHomx (m3P, m;P) ® hyHomx (7P, m3P) ® C,)

F

Home (P |y, P |y,) ® Home (P [y, P2,)

27;11:;573”2 (wy) obtained by the construction in Section 3 on the curve Fj.

In particular, the section r is non-degenerate on B\ A. Equivalently, the morphism
of vector bundles

7(w) : KyHomx (miP, m3P) — hiHomx (niP, 15 P)

is the tensor r

is an isomorphism over B\ A.

Remark 6.7. Since we assume the fibration F —- T is algebraic, the above con-
struction yields a meromorphic section r(w) of the vector bundle

hiHom(m3P, i P) ® hyHom(mi{ P, w5P)
over M XM x7ExrE, which is holomorphic on B = MXTMXTEXTE\(AMUAE)

and non-degenerate on B\ A, see Remark 5.21.

Our next goal is to show that the constructed canonical section r = r(w) satisfies a
version of the associative Yang—Bazter equation. For this purpose we need further
notation. Let

Py M xp M xp M x¢ E xp E xp E — M xp M xr E xp E

be the projection py(vi, va, vs; Y1, Y2, y3) = (Vi vj5 Yk, Y1), where 1 < i # j < 3 and
1 <k +#1<3. We also denote by

7AT]‘ZMXTMXTMXTEXTEUXTEXTE%MXTE
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the projection given by the formula 7;(v1, ve, vs; Y1, Y2, ¥ys,y) = (v,;y), where 1 <
j < 3. Similarly, we have three canonical sections

iliIMXTM XTMXTEV’XTEXTEU'—>MXTM XTM XTEXTEXTEXTE

given by the formulae h;(v,va, v, Y1, Yo, Ys) = (U1, V2, Vs, Y1, Yo, Y, ¥i), 1 < 0 < 3.
The set over which the Yang-Baxter relation will be defined is

. iy —1 -1 —1 -1
B:= ) () (B)=(p13)" (B)N(p13)" (B)N (p35)" (B).
gkl
Let r € H°(B, hyHom(m3P,m;P) ® hiHom(m;P,73P)) be the canonical holomor-
phic section constructed above. Observe that

(i) (hiHom(my P, wiP) @ hyHom(m P, m5P))
= hyHom(7}P, 71 P) ® hiHom (7P, 7} P).

Let rkl (pkl) r be the pull-back to BcM Xp M xr M X E X7 E X7 E. Then
we have:
e 732 is a meromorphic section of h*Hom(WSP 3P) ® h*Hom(w}jP T3 P).

e 13 is a meromorphic section of K Hom(7P, 7t P) @ hiHom (7P, 75 P).

Taking their composition, we obtain a meromorphic section (r;3)"*(r{3)"? of the holo-
morphic vector bundle hiHom(#3P, 7 P) @ hiHom (74P, ﬁ;P)@h*Hom( TP, 75P).
In a similar way, two other meromorphlc sections (7‘3)12(7‘5) and (7‘23)23(7‘13)13 of
this vector bundle can be defined. These sections are holomorphic over B.

Let x = (v1,ve,v3; 91, Y2,Y3) be a point in BCMxpMxpMxqpExpExpE
lying over the pomt t € T. Because h*Hom( P, ﬁjP){x is canonically isomorphic
to Home(P¥|,,, P%|,, ), we may consider 7/} (z) as an element of the tensor product
of vector spaces Home(P¥ |y, , PVi|,, ) ® Home(P¥|,,, P%],,) and we have a canonical
isomorphism of vector spaces

(hiHom(73P, 71 P) ® hyHom(75P, 73P) ® hiHom(7P, #5P))| =
= HomC(PU2|y17 P |y1) ® HomC(Pv3|y2=Pv2|y2) ® Hom(c<7)v1|y37lpvg|y3)‘

Definition 6.8. Assume E —— T is a genus one fibration which satisfies the con-
ditions set out at the beginning of Section 6 and fix (n,d) and w as before. We
call

(23) (r13) P (1) = (r13) 2 (r3)* + (r33)* (r13)? = 0
the Yang-Baaxter relation. The left-hand side of this equation is a holomorphic sec-

tion of the vector bundle hiHom(#3P, #: P)@hiHom(#5P, 73 P)@hiHom(71 P, #5P)

over B.
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Let 7 be the involution of M x M x5 E x5 E which is given by 7(v1, v2; Y1, y2) =
(va,v1; 2, 91). We say that r € H*(B, hiHom(r3P,;P) ® hiHom(m; P, m3P)) is
unitary, if

P iP PP
(24) P (W) = = (iR P )

This means that the section 7%(r) is mapped to —r under the composition of the
canonical isomorphisms

™ (h{Hom(m3P, m{P) ® hyHom(r{ P, m5P)) =
hyHom(mi P, m5P) @ hyHom(m3 P, mP) = hiHom(ny3P, miP) @ hiHom(mi P, w5 P).

The purpose of the following lemma is to use the relations (15) and (16), which
were shown for tensors r)1»> on smooth curves in Section 3, in order to prove that
r satisfies the Yang-Baxter relation (23) and is unitary (24) in the case of elliptic

fibrations with arbitrary fibers.

Lemma 6.9. Assume E —— T is a genus one fibration which satisfies the conditions
set out at the beginning of Section 6 and fix (n,d) and w as before. Denote v by rp
if constructed from the family E — T. Let U C T be a dense subset. Use the
restriction of w and the same pair of integers (n,d) to construct the section ry and
r¢ from the induced families E|y — U and Ey — {t}. Then the following conditions
are equivalent.

(1) The Yang-Baxter relation (23) holds for ry.

(2) The Yang-Baxzter relation (23) holds for ry.

(3) The Yang-Baxter relation (23) holds for ry for allt € T

(4) The Yang-Baaxter relation (23) holds for vy for allt € U.
If E, is smooth, the Yang-Bagter relation (23) holds for ry.

Similar statements hold for unitarity (24).

Proof Let BU = B xp U, B; := B xr {t} and define By, B, in a similar way. Note
that By C B is dense. If we apply Proposition 6.5 to the base-change U C T, we
obtain that r|p, corresponds (under a certain canonical isomorphism) to the section
ry obtained from the family Fy — U. Similarly, r|g, corresponds to the section r,
obtained from the family E, — {t}.

Let us denote the left hand side of the relation (23) by Rr, if it is a relation for 7.
Because the pI‘OJeCtIOHS py, are compatibel with restrictions to the subsets By C B
and BU C B we obtain from the above that Ryp| By corresponds to Ry under a
certain canonical isomorphism. Similarly, Ry B, corresponds to R; for each t € T'.
In particular, Rr|p  vanishes if and only if Ry does so and the vanishing of Rr|p,
is equivalent to the vanishing of R;.

As T is reduced, Ry = 0 is equivalent to Rp(z) = 0 for all # € B. Similar
statements hold for R; and R;. Because the zero locus of Ry, which is a section
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of a coherent sheaf on B , is a closed subset of B , the equivalence of the statements
(1)—(4) is now obvious.
Corollary 6.6 says that the restriction 7(w)|(w, vy ,y2) COrresponds to

PP () € Home (P2, Py, ) @ Home(P |y, P2],.,)

under a certain canonical isomorphism. For each x = (v, ve, v3; Y1, Y2, y3) € B, this
implies that R;(x) = 0 is equivalent to (15) which was shown to be true in Section
3 for smooth curves.

The proofs for unitarity are similar. U

Theorem 6.10. (a) For each Weierstraf$ curve E, smooth or singular, the sec-
tionr € H°(B, hiHom(m3P, 7 P) @ hyHom(w{ P, 73P)) from Definition 6.2
for the constant family E — Spec(C) satisfies the Yang—Baxter relation (23)
and the unitarity condition (24) for each choice of (n,d), P and w.

(b) Let E 25 T be a genus one fibration satisfying the conditions from the be-
ginning of this section. Letw € H O(wE/T) be a nowhere vanishing differential
form, (n,d) a pair of coprime integers and P = P(n,d) a universal family.
Then, the universal section

r=r(w) € H (B, hiHom(r3P,n{P) @ hyHom(r;P,m3P))

satisfies the Yang—Bagzter relation (23) and the unitarity condition (24).
Moreover, r depends holomorphically (and in particular, continuously) on
the parametert € T.

Proof. (a) Let Er C P2 x C? — C? =: T be the elliptic fibration given by the
equation zy? = 4x3 — gox2? — g32° and let A(go, g3) = g3 — 27¢32 be the discriminant
of this family. This fibration has a section (g2,93) — ((0 : 1 : 0),(g2,93)) and
satisfies the condition wg/r = Op. Let w € H'(wg/r) be a nowhere vanishing
differential form.

There exists t € T, such that the given curve E is isomorphic to the fibre FE;.
The chosen differential form on E coincides with w; up to a constant factor. The
restriction P|y;,« g, of a universal family P € VB(M X7 FE) is a universal family of
stable vector bundles of rank n and degree d on the curve F;.

Using the open dense subset U = T'\ A C T in the equivalence of the statements
(3) and (4) in Lemma 6.9 and the fact that (23) and (24) are satisfied for smooth
fibres by Lemma 6.9, we obtain the claim.

(b) Because each fibre of E — T is isomorphic to a Weierstrafl curve, part (a) and
Lemma 6.9 (2) and (3) imply the claim. O

6.2. Passing to Matrices. Our next goal is to pass from the categorical version of
the associative Yang—Baxter equation (23) to the one which was studied in Section
2. Our construction is based on the choice of a trivialization of the universal bundle
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P and on the choice of local coordinates on M and E. These two choices can be
made independently.

Let o = (mg,e0) € M Xr E C M x1 E be an arbitrary point, which lies over
to € T'. Consider a small open neighbourhood V- C M X E of the point o such that

there exists an isomorphism of vector bundles £ : P|y = v xcCn
Let g;jj :=mjohi: M Xp M Xp Exp E — M X¢p E, By :== n?,j:1 cpi_jl(V) and

O = Op(By N B) be the ring of holomorphic functions on By N B. The isomor-
phism ¢ induces trivializations ¢j;(§) : ¢;;P|, — Bo x C" from which we obtain

isomorphisms H°(By N B, hjyHom(m} P, 7 P)) =5 Mat,,,(0). Under the induced

isomorphism
H°(ByN B, kyHom(m3P, i P) @ hyHom(m; P, 15 P)) — Matysn(0) @0 Mat,, (0),

the section r is mapped to a tensor

s =1 (vy, va3 Y1, 42) = Z%(Ul,w; Y1, Y2) ® by (v1, 02391, 42)
in Mat, x,,(0) ®o Mat, x,,(0), where a, = a,(v1,vs2; y1,y2) and b, = b, (v1, v2; Y1, y2)
are holomorphic functions on By N B.

Because the fibration p : £ — T is smooth at eg and so also M — T at myg, there
exist an open neighbourhood Tj of ty € T" and an open disc D C C such that there
are open neighbourhoods of ey C E and of mg C M which are isomorphic to Ty x D
and such that the following diagrams of complex spaces are commutative:

E+—Ty xD M<+—Ty x D
N
T+ Ty T+ Tp.

We assume that V' is isomorphic to the fibred product of open neighbourhoods
of the form Ty x D, so that V = Ty x D?. With such V we obtain an isomor-
phism By = Ty x D* and the tensor r® = 7¢(vy, vo; y1,%2) will be written in such
coordinates as 7¢(t;v1, va; Y1, yo) with ¢ € Ty and vy, ve,y1,90 € D. We also define
By = mi,j,k:,l (pg)_l (By) and obtain an isomorphism By = Ty x DS. In these coor-
dinates, we have pz(t;vl,vg,v;),;yl,y%yg) = (t;v;,v;; Yk, ). This equation implies
that the Yang-Baxter relation (23) and unitarity (24) translate into (5) and (4)
respectively. Therefore, Theorem 6.10 (b) implies the following corollary.

Corollary 6.11. Let E 2> T be an elliptic fibration satisfying all the conditions
from the beginning of this section. Letw € H(wpg/r) be a nowhere vanishing section,

(n,d) be coprime integers, M = Mg;’;) 5 T be the moduli space of relatively stable
vector bundles of rank n and degree d, P = P(n,d) € VB(M xp E) be a universal
family. Let o = (mg,eq) € M X7 E be an arbitrary point lying over ty € T and choose
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coordinates around ey and mq as described above. Finally, let & : Ply — OF be a
trivialization of the universal family over a neighbourhood V of the point o.

Then, the tensor r*(t; vy, va; y1,Y2) is unitary (i.e. it fulfils (5)) and satisfies the
associative Yang-Bazter equation (4).

Our next goal is to explain how the tensor r¢ depends on the choice of the trivial-

ization £. We do not need to choose coordinates here. If P|y ~*, V x C" is another
trivialization of P, we obtain a commutative diagram

Plv

/ \
idx ¢

V xCr V x C",

where ¢ = ¢(v,y) : V — GL,(C) is a holomorphic function.

Proposition 6.12. The solutions r¢ and r° are gauge equivalent and such an equiv-
alence is given by the function ¢. In other words, gauge transformations of the
solutions of the associative Yang—Baxter equation, which are obtained from a geo-
metric associative r-matriz, correspond exactly to a change of trivialization of the
universal family P.

Proof. With respect to the second trivialization (, the section r can be written as a
tensor

¢ = rS(v1, vo; Y1, Y2) = Zai,(vhw;yhyz) ® by, (V1,023 91, 2).

v

The functions a, and a], are related by the following commutative diagram:

ay

cr cr

TE(Uzvyl) £(v1,y1)T

d(uzy) | P2 |y1 _ s pu |y1 #(v1,y1)

N lcwg,yl) . C(m,yl)l
cr cn.

Similarly for b, and b/, we have:

cr Ccr
7 T&(Ulva) §(U27y2)T

d(viy2) | PY |y2 — P2 |y2 B(v2,y2)

N lC(UhZ&) " C(U2,y2)l
cn Ccn.
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These diagrams imply the following transformation rules:
aly = ¢(U17 yl) Qy gbil(UQa 91)7
b, = ¢(v2,y2) by ¢~ (v1,2).

This means that the choice of a different trivialization ( of the universal bundle P
leads to the transformation rule

s (o1, y1) @ G2, 12)) 1° (d(va, 1) ™" @ G(v1,42) 1) =1°,

which means that r¢ and r¢ are gauge equivalent. Conversely, if we start with 7¢
and apply a gauge transformation ¢, the same calculation shows that the result is
r¢ where ¢ := (id x ¢) o €. O

Summing up all results of this section, we get the following theorem, which is one
of the main results of this article.

Theorem 6.13. Let E -2~ T be a genus one fibration satisfying the conditions from
the beginning of this section.

Let M = Mg;’;) 5 T be the moduli space of relatively stable vector bundles of rank
n and degree d and P = P(n,d) € VB(M xr E) be a universal family on M. We
fix a nowhere vanishing differential form w € H(wg/7r). Let ey € E and mg € M
be arbitrary points and choose coordinate neighbourhoods of the form Ty x D around
these two points. Let & be a trivialization of P in the corresponding neighbourhood
of 0 := (myg, eg). Let 6 = (mg,mg, eg,e0) € M Xp M X7 E xr E =Ty x D*.
Then, we get the germ of a meromorphic function

ré = (rgl/’;,)(w))s : (M o M x7 E X E,é) — Mat, 5, (C) ® Mat, 5, (C)
which satisfies the associative Yang-Baxter equation

7 (t; 01, v25 Y1, y2) P (G 01, 035 92, y3) P =

(L o1, 03591, y3) P (8 vs, vas 91, y2) A (8 02, v35 92, Y3) P (8 01, va; pn, )
and its “dual”
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Tg(t; Vg, U3; Y1, y2)237“§(t; U1, U3; Y1, y2)12 =
Ts(tﬂ)lan;ylay2>127'£(t302703;ylay3>13 + 7“5(75;’01,U3;3/1,y3)137“§(t;U2,U1;y27?/3)23-
Moreover, it fulfills the unitarity condition

7"5(@ V1, V25 Y1, Yo) = _T(”’g(@ V2, V1; Y2, yl)),

where T(a @ b) = b® a. The function r*(t; vy, ve; y1,y2) depends analytically on the
parameter t € T and its poles lie on the hypersurfaces vy = vo and y; = ys.
Different choices of trivializations of the universal family P lead to equivalent solu-
tions: if ¢ is another trivialization of P and ¢ = ( o &' (M x¢ E,0) — GL,(C)
1s the corresponding holomorphic function, then we have:

TC = (¢(t7 U1, 3/1) ® ¢(t7 V2, 92))7”§ ((b(ta V2, yl)il & (b(ta U1, y2)71) .

Finally, let T" -5 T be an arbitrary base change. Let E' = E xp T LT be the
induced genus one fibration. Then the corresponding moduli space M’ = Mgf;,_?, of
relatively stable vector bundles of rank n and degree d is isomorphic to M x T'.
Let W' € HO(wE//T/) be the pull-back of w and &' be the induced trivialization of the
pull-back P € VB(M' x7 E') of the universal family P. Let ej € E' and my € M’
be points which are mapped to eq and mg respectively. After choosing coordinate
neighbourhoods Ty x D of e € E and mog € M, we have induced neighbourhoods
T, x D of e, € E' and m{ € M' so that the morphism between E' and E (and
between M’ and M ) is given by g X idp. Then we have

r*(g(t); v1, v2; Y1, Ya) = 7’5/(75;7)171]2;?/1,92)

for all t € T} and all vi,ve,y1,y2 € D. In other words, the tensor v°(t; vy, va; Y1, Yo)
15 compatible with base change in the variable t.

6.3. Comment on reducible curves. The developed theory of the geometric -
matrices can be generalized literally to the case of reduced but reducible curves of
arithmetic genus one with trivial dualizing sheaf. In this subsection we discuss some
necessary technical results which are not yet available.

Throughout this section, F is a reduced projective curve with trivial dualizing sheaf.

e If F is smooth then it is isomorphic to an elliptic curve.

e Assume F is singular with singularities of embedding dimension equal to two.
Then Kodaira’s classification of degenerations of elliptic curves implies that
E is either a cycle of m projective lines (type I,,), a cuspidal cubic curve
(type II), a tachnode curve (type III) or a configuration of three concurrent
lines in a plane (type IV).

e However, the class of reduced genus one curve with trivial dualizing sheaf is
larger. For example, a generic configuration of m concurrent lines in P™~!
for m > 4 is such a curve.
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Let 7 : E — E be the normalization of E and E = Elu- . -Ulzm be the decomposition
into irreducible components. If F was not smooth, then F; = P! for all .. For a
vector bundle F on E we define its multi-degree to be

deg(F) = (4(F).....du(F)) € Z"

where d;(F) = deg(7*(F)|; ). The following lemma can be shown in the same way
as Lemma 9.6.

Lemma 6.14. Let F be a vector bundle on E. Then we have:
X(F) = h°(F) — B (F) = deg(F) := di(F) + - - - + du(F).

For fixed n € Z, and d € Z™ denote by Spl™ ™ (E) the category of simple vector
bundles of rank n and multi-degree d. Then we have the following result.

Theorem 6.15. Let E be a reduced plane cubic curve.

o If F is a simple vector bundle on E then ged (rk(F), x(F)) = 1;
o Ifd = (dy,ds,...,dy) satisfies ged(n,d; + - -+ d,,) = 1, then the functor

det : Spl"™ D (E) — Pic(E)

is an equivalence of categories. In particular, for any pair F', F' € Spl(n’d)(E)
such that F' 2 F" we have Homg(F', F") = 0.

The case of a smooth curve E is due to Atiyah [5]. A proof for the irreducible
singular Weierstrafl cubic curves can be found in [17] (nodal case) and [13] (cuspidal
case), see also Section 9. The remaining cases, i.e. the Kodaira fibers of type Iy, I3,
IIT and IV, were considered in a recent paper of Bodnarchuk, Drozd and Greuel [12].

Conjecture 6.16. Let £ be an arbitrary reduced projective curve with trivial
dualizing sheaf and m irreducible components. Then we have:

(1) The description of simple vector bundles on F given in Theorem 6.15 remains
true: the rank and degree of a simple vector bundle are coprime; a simple
vector bundle is determined by its rank and determinant; for given n and
d = (dy,...,dy,) satisfying ged(n, dy 4 - -+ d,,) = 1, the category Spl™¥(E)
is equivalent to Pic®(E), in particular, it is non-empty.

(2) For any pair (n,d) € Z, x Z™ as above, there exists an auto-equivalence
F e <T@, Pic(E), [1]> of the derived category Db(Coh(E)) inducing an equiv-
alence between Spl(”’d)(E ) and the category of torsion sheaves of length one
supported at the regular part of a single irreducible component of E.

(3) Consider the functor M(E"’d) : Ans — Sets given by

M (T) = {F € VB(E x T) | Flp.q € SOV (E) foral teT} [~
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where F; ~ F, if and only if there exists £ € Pic(T') such that F; =
F> @ pri(£). Then M5 is isomorphic to Homans( — , G), where G = C* for
a cycle of projective lines and G' = C in the other cases.

A proof of the first part of this conjecture in the case of cycles of projective lines was
recently announced by Bodnarchuk and Drozd. Note that in this case, a description
of simple vector bundles in terms of étale coverings is also known [18].

Let E, be an irreducible component of the curve E. Provided a universal family
P(n,d) € VB(E x G) of simple vector bundles of rank n and multi-degree d does
exist, one can proceed in the same way as in the present section to end up with a
solution rj(;’d’*) of the associative Yang—Baxter equation with all the properties of

Theorem 6.13.

Conjecture 6.16 is closely related to the study of moduli spaces of Simpson stable
sheaves on degenerations of elliptic curves, see recent papers by Herndndez Ruipérez,
Lépez Martin, Sdnchez Gémez and Tejero Prieto [35], and Lowrey [43].

Conjecture 6.17. Let E be as in Conjecture 6.16 and (n,d) € Z, x Z™ be such
that ged(n,dy +- - -+d,,) = 1. Then there exists a polarization H of the curve E and
a Hilbert polynomial p(t) € Q[t] such that all simple vector bundles of rank n and
multi-degree d are Simpson-stable with Hilbert polynomial equal to p. Moreover,
the moduli space Mg(n,d) is an open and dense subset of an irreducible component
of the moduli space M (p) of Simpson-stable sheaves with Hilbert polynomial p.

Since the exact combinatorics of simple vector bundles on reduced projective
curves with trivial dualizing sheaf is still to be clarified and their relationship to
Simpson-stable sheaves is not completely clear, we postpone a discussion of possible
generalizations of the results of Section 6 to a future publication.

7. ACTION OF THE JACOBIAN AND GEOMETRIC ASSOCIATIVE r—MATRICES

Let B = V(zy? — 423+ gow2? + g32%) C P? be a Weierstraf cubic curve and denote
by E the regular part of . Let e € E be any point. In this section we are dealing
with a single curve, not with a family of curves.

Fix a pair of coprime integers (n,d) € N x Z and let (M,P) be a pair which
represents the moduli functor Mg’d). In the previous section, we have shown how to
construct a tensor r¢(vi, va; Y1, yo) satisfying the associative Yang-Baxter equation.
In order to do so, we had to choose a point m € M, a trivialization £ of P over a
neighbourhood of (m, e) and coordinates around e € E and around m € M.

The main goal of this section is to show that it is possible to choose coordinates on
M such that the associative r-matrix ¢ is gauge equivalent to a solution r¢ depend-
ing only on the difference v = vy — vy of the “vector bundle” spectral parameters.
More precisely, we are going to prove that there are coordinates on M and there
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exists a gauge transformation ¢ : (C%v,y)’ O) — GL,,(C) such that the function

¢ (v1, V25 Y1, Yo) = (¢(vi,11) ® ¢(U2792))T§(U17U2§ y1,y2) (0(v2, 1) " @ B(v1,2) ")

is invariant under transformations (vy, ve) +— (v1 + v,v2 + v). In other words, there
exists a trivialization ¢ of the universal family P in a neighbourhood of the point
(m,e) € M x E such that we have

TC(U1 + v, U2 + v;y1,yz) = TC(Ul,Uz;ybyz)-

For simplicity of notation, we shall write rS(vi,va;y1,42) = 7°(v1 — VoY1, %2) =
r¢(v;y1,y2), where v = v; — vy. As it was explained in Section 2, the tensor
7¢(v; Y1, y2) satisfies the quantum Yang—Baxter equation and defines interesting first
order differential operators.

The key idea to find such a distinguished trivialization ( is to study the behaviour
of the geometric r-matrix under the action of the Jacobian J on M. The coordinates
on M are obtained from an isomorphism M — J and a surjective homomorphism of
groups C — J. Using the isomorphism M — J only, allows to give a coordinate
free description of the “dependence on the difference of the v;”, because J has
the structure of a group. The coordinates are used because they link the general
discussion of this section with the explicit calculations of the subsequent sections.

The functors Mg“d), Pic%, and Pic% are representable. Let (M,P), (J,£) and
(J%, £D) be spaces with universal families which represent these functors, so that
we have isomorphisms of functors as follows

a: MU s Mor(—, M),
3 : Pic%, — Mor( —, J) and 34 Pict, — Mor( —, J%).

Recall that the product F' x G : Ans — Sets of two functors F, G : Ans — Sets is
defined by (F'x G)(S) = F(S) x G(S). Because the tensor product of a stable vector
bundle of rank n and degree d with a line bundle of degree zero is again a stable
vector bundle of rank n and degree d, the Jacobian acts on the moduli space. On
the functorial level, this action is described as a natural transformation of functors

7 Pic%, x MU M)

which is defined as 74(N,F) = N @ F for any complex space S, any line bundle
N € Pic)(S) and any vector bundle F € Mg’d)(S). The natural transformation
7 induces a morphism of complex spaces 7 : J x M — M making the following
diagram commutative

Pict, x MU — % Mor(—,.J) x Mor(—, M) ————— Mor(—,J x M)
M s Mor( —, M)
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The unlabelled horizontal arrow is the isomorphism which results from the universal
property of the product of two complex spaces. The morphism J x M —— M
corresponds to the natural transformation 7, using Yoneda’s Lemma

Hom (Mor(—,J x M), Mor(—, M)) = Mor(J x M, M).

The following lemma describes the equivalence class of vector bundles on J x M
which corresponds to the morphism 7 € Mor(J x M, M) under ajxa.

Lemma 7.1. Denote 7 ;=7 X idg : J Xx M x E — M X E and let p,q,t be the
natural projections

JxMx FE
q
M x E JxFE Jx M

Then p*P @ ¢*L ~ 7P, i.e. there exists a line bundle N € Pic(J x M) such that
PPRCLRIEN TP,
Proof. Note that we have the commutative diagram

Mor(J x M, J) x Mor(J x M, M)

BXxa can
Pic%(J x M) x M (J x M) Mor(J x M, J x M)
TJXMJ( T
M(g’d)(J x M) —— Mor(J x M, M)
MO (M) i Mor (M, M).
Since T, (idyxp) = 7°(idps) = 7, we obtain: p*P ® ¢*L ~ (7 x idg)*P. O

Let o denote the neutral element of J and recall that we have chosen e € F and
m € M. Lemma 7.1 implies that there exist open neighbourhoods o € J" C J
and m € M’ C M such that ¢*L ® p*Plysxmrxe = TPl xe. The following
proposition is crucial.

Proposition 7.2. Let E be a WeierstrafS cubic curve, M = Mgl’d) be the moduli
space of stable vector bundles of rank n and degree d and J the Jacobian of E.
Then there exist open neighbourhoods o € J' C J and m € M’ C M, trivializations
£ Plarxe — Opp, 12 Llyxw — Oy and an isomorphism

LD Plyssrxe — T Plysmxis
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such that the following diagram in the category of vector bundles VB(J' x M’ x E’)
18 commutative:

‘P‘J’xM’xE’ -
(CI*L2 ®P*7D) |y xmisg ———————— T "Plyxm i
¢ (Llyxe) @p* (Plawrxe) 7 (Plarxer)
*(m®p*(€)
OJ’><M’><E’ ® O?’XM’XE’ 7:*(6)
mult
J'x M/ X E J'x M/ X E"

where I,, is the identity morphism.

Proof. This proposition follows from a case-by-case analysis made below for each
of the three types of Weierstrafl cubic curves, see Proposition 8.11 and Theorem
9.44. [

Remark 7.3. Note that we require the existence of a global isomorphism ¢ on the
whole space J' x M’ x E, although the condition on ¢ is local. The necessity of
these assumptions is explained in the course of the proof of Theorem 7.5, which is
one of the main results of this article.

To describe the correct coordinates on the moduli space M, we use a canonical
isomorphism M — J? and a non-canonical one J — J? which depends on
the chosen point e € E. To define the canonical one, which is given by taking
the determinant bundle, recall from Theorem 6.1 that we have an isomorphism of

functors det : Mgd) — &%. Using a and 3%, it defines an isomorphism of complex
spaces det : M — J? such that det* L@ ~ det(P).

Lemma 7.4. The following diagram is commutative

JIx M—— M

idy Xdetl J/det

J x J—"=J°,
where o : J x JU — J% corresponds (with the aid of 3 and (%) to the natural
transformation of functors o : Pic% xPict, — Pic% which sends (L', L") to L'*"®L".

Proof. This result follows from the isomorphism det(£ ® F) = £L%" @ det(F), where
F is a vector bundle of rank n and £ a line bundle. O
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The second isomorphism, t¢ : J — J¢, is defined by taking the tensor product
with Og(de). More precisely, on functorial level, it is given by

t5(M) = M @ Ogyp(d(S x {e})).

This gives us a commutative diagram

(25) IxJ—2
idJXtel Jtﬁ
Jx Jt—"=J4,

in which ¢’ is defined on functorial level by the same formula as ¢ in Lemma 7.4.
Finally, recall that the Jacobian J = Pic’(E) has the following description:

Cc/T if E is elliptic,
J=C*=C/Z if E is nodal,
C if E is cuspidal.

In particular, in all three cases we have a surjective homomorphism of Lie groups
7y : C — J. We combine 7; with the two isomorphisms det : M — J¢ and
t¢ : J — J? to obtain a local isomorphism m; : C — M, which gives us local
coordinates on M. This local isomorphism sits in the commutative diagram

o

CxC C
FJXF]LIJ/ JWM
Jx M . M, where o(a,b) = na + b.

It is obtained by combining diagram (25) with the one in Lemma 7.4 and the local
isomorphism 7; : C — J, which is a homomorphism of groups.

Theorem 7.5. Let E be a Weierstraf§ cubic curve, E its smooth part, (n,d) €

N X Z a pair of coprime integers, M = Mgb’d) denote the moduli space of stable
vector bundles of rank n and degree d and J = Pic’(E) be the Jacobian of E.

Let Plyrsrr -, Ohyrs g be a trivialization satisfying the conditions of Proposition
7.2. Then there exist coordinates on M' and on E', such that the corresponding
associative r-matriz v°(vy, va; Y1, y2) satisfies

(v + v, 00 + VY1, Y2) = 75 (01, V25 Y, Ya).-

Proof. Introduce the following notation. As in the previous section, for ¢ = 1,2 let
Wi:MxMxExExE—>M><E
be the canonical projections m;(vy, vo; Y1, y2; y) = (vi,y) and let

hi:MxMxExEHMxMxExExE
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be the canonical sections, given by h;(v1, vo; y1,vy2) = (v1, v2; Y1, Y2; ¥;). Let
T IJXMXMxXEXE—MxMxExE

be the canonical projection and
FIXMXMXEXE—MxMxFExE

be the “diagonal” action of the Jacobian .J, which is given by 7(g; vi,ve;y1,y2) 1=
(T(g,vl),T(g,vg); yl,yg). Let 7 =7 x idg and # = 7 X idg be the morphisms
T, J><M><M><E><E><E—>M><M><E><E><E,

q:JxMxMx E x Ex E —> J x E the canonical projection. Finally, for i = 1,2,
define the projections

ﬁi::mofr:JxMxMxE'XEXE%MxE
and the sections
fzi::idehi:JxMxMxExE—>J><M><M><E><E><E.

Using Theorem 5.17 and Proposition 5.24, we obtain the following commutative
diagram of vector bundles on the complex manifold U := J' x M’ x M' x E x E

* *

1 P,m5P

ir*(r L2 )
h1,ho

T*hiHom(mi P, 75 P) T hyHom(mi P, w5 P)

can can
rrr173 7r273
2 A ~ hi,ha A R R
hiHom (7P, 75 P) » hyHom(7tiy P, 7t5P)
on T TPRG*L 7r273®q L can
7 A ” o ~ hy.ho A R R R R
hiHom(TiP ® ¢*L, 75P ® ¢*L) hsHom(7iP ® §*L, #5P ® ¢*L)
hi (an(¢1,¢2)) SR s P hs (an(@l’@))
A . ) iy . A A
hiHom(T*ni P, 7*m3P) hiHom(T*ni{ P, 7*m3P)
can can

TP,y
f*(r;;lhﬂ'Q )
1.2

T*hiHom(miP,m5P) T*hiHom(m{P, m5P).

In this diagram, the isomorphisms of vector bundles ¢, : ¢*L @ 7;P — 7*nP are
defined as follows. For ¢ = 1,2 let

pii XM XM xEXxEXE—J xM xE

be the natural projection p;(g; v1, vo; y1, Y2;y) = (9,0i,y). Let £ : Plaprxe — Oy
be a trivialization and ¢ : ¢*LRp*P|ywrmrxe — TPyxmrx g an isomorphism, both
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satisfying the conditions of Proposition 7.2. Then we set ¢; to be the composition
of morphisms of vector bundles on U x E

LR TP i pi(¢"L & p*P) M piT"P RN T P.
Note that the commutative square which involves the ¢; is only available if ¢; is
defined on U x E and not only on U x E’. The reason is that res in the definition
of 7 would not be an isomorphism on E’ (see the proof of Theorem 5.17).

Let O denote the ring of holomorphic functions on U' := J'x M'x M'x E' x E' C U.
With the aid of the trivialization &, for ¢ = 1,2 we get isomorphisms

HO (U, 7*hiHom(m P, m3P)) = Mat,x,(0),
HO (U, 7*hiHom(m{P, m5P)) = Mat, . (O).

Under these identifications, we can write the morphisms H° (7?* (f;ﬁfﬂ) and

HO° (%* (f&i;zpn as matrices T and 1/, such that the large diagram we set up
earlier in this proof boils down to

Mat,yxn(O) ————— Mat,, i, (O)

o |1

Matnxn(O) %’ Matnxn(0>7 hence r = ﬁ',.

That the vertical arrows are identities is a consequence of Proposition 7.2.

If we choose arbitrary coordinates on J';, M" and E’, we have T(g;v1, v2; 41, y2) =
f5(017U2;y1,y2) and ¥'(g; v1, V2; Y1, Y2) = 775(7(9701),7(9702)391,y2)- If we use the
special coordinates on J' and M’ introduce above with the aid of 7; : C — J, we
obtain 7 (7 (g, v1), 7(g, v2); Y1, y2) = 7*(v1 4+ ng, vs + ng; y1, y2). This implies

7 (v 4+ ng, v2 +ng; Y1, y2) = T (g5 01,023 Y1, Y2) = F(g5 01, 023 Y1, Y2) = 7 (01, 025 41, Y2),
which gives the desired property of the tensor 7 (vi, va; Y1, yo). O

Remark 7.6. Proposition 7.2 and Theorem 7.5 remain valid if the open neighbour-
hoods J' and M’ are replaced by the maps 7; : C — J and my; : C — M.
Similarly, by identifying E with J' and then proceeding as in the case of M, we
may define a map 7 : C — E, which can be used instead of E’. The advantage of
this point of view is that v;, v, y; can be arbitrary complex numbers in the statement
of Theorem 7.5, whereas, if small neighbourhoods J’, M’ and E’ are used, we have
to make sure that v; and v; + v are in M’ and y; € E'.

Remark 7.7. Unfortunately, we have not found a “conceptual way” to prove Propo-
sition 7.2, without going to a case-by-case analysis. As a consequence, we do not
know whether this result generalizes to the relative case, when we replace a Weier-
stral curve E by the Weierstraf8 fibration zy? = 423 — gox2? — g323.
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Motivated by the corresponding result for the classical r—matrices [9], it is natural
to conjecture, that the statement of Theorem 7.5 holds for the other pair of spectral
variables, the “skyscraper” variables (yi,y2). Namely, there should exist coordinates
on E and a trivialization £ of the universal family P such that we have

7‘5(1}1 +o, v+ vy + Y, Y2 +y) = 7“5(1)1,1)2;91;?/2)-

Definition 7.8. Let r(v;y1,y2) € Mat,»,(C) ® Mat,»,(C) be a non-degenerate
unitary solution of the associative Yang—Baxter equation such that there exists the
limit 7(y1,y2) = lim (pr ® pr)r(v; y1,Y2). We say that r is of elliptic type if 7 is an
elliptic classical r-matrix, of trigonometric type if 7 is trigonometric and of rational
type if 7 is rational.

It was shown by Polishchuk [56, 57] that in the case of elliptic curves one always gets
an associative r-matrix of elliptic type and in the case of Kodaira cycles a solution
of trigonometric type.

Remark 7.9. It is natural to conjecture that for any pair of coprime integers (n, d)
the geometric r-matrix corresponding to a cuspidal cubic curve always is of rational

type.

The goal of the following three sections is to get an explicit form of the geometric
r-matrix attached to the Weierstraf fibration 2y? = 423 — gy22? — g323 and the pair
(n,d) = (2,1) at any given point (go, g3) € C2.

8. ELLIPTIC SOLUTIONS OF THE ASSOCIATIVE YANG—BAXTER EQUATION

In this section we are going to compute the solution of the associative Yang—Baxter
equation and the corresponding classical r—matrix, obtained from the universal fam-
ily of stable vector bundles of rank two and degree one on a smooth elliptic curve.
In [56, Section 2], Polishchuk computed the corresponding triple Massey products
using homological mirror symmetry and formulae for higher products in the Fukaya
category of an elliptic curve.

It is very instructive, however, to carry out a direct computation of the geomet-
ric triple Massey products for an elliptic curve, independent of homological mirror
symmetry. This approach allows us to express the resulting associative r—matrix in
terms of Jacobi’s theta-functions and the corresponding classical r—matrix in terms
of the elliptic functions cn(z), sn(z) and dn(z).

In order to proceed with the necessary calculations we recall some standard results
about holomorphic vector bundles on one-dimensional complex tori, a description
of morphisms between them in terms of theta-functions etc.

8.1. Vector bundles on a one-dimensional complex torus. We start with
some classical results about vector bundles on smooth elliptic curves.
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Theorem 8.1 (Atiyah, Theorem 7 in [5]). Let E be a smooth elliptic curve over C
and V a vector bundle on E.

o If Endg(V) = C then ged(rk(V),deg(V)) = 1, V is stable and is deter-
mined by (rk(V), deg(V), det(V)) € NXZ x E, where we use an isomorphism
PicY(E) =2 E.

o If V is indecomposable and m = ged(vk(V),deg(V)) then there exists a
unique stable vector bundle V' such that V = V' ® A,,, where A,, is the
indecomposable vector bundle of rank m and degree O recursively defined by
non-split the exact sequences

00— A, 1 — A, — O —0, A = 0.

In the complex-analytic case, one can give an explicit description of the stable holo-
morphic vector bundles on a one-dimensional complex torus.

Theorem 8.2 (Oda, Theorem 1.2 in [52]). Let E be an elliptic curve and 7, : E' —
E be an étale covering of degree n.

o IV is a stable vector bundle on E of rank n and degree d, then there exists a
line bundle £ € Pic*(E') such that V = m,.(L). Conversely, if ged(n,d) = 1
then for any L € PicY(E") the vector bundle V = m,.(L) is stable of rank n
and degree d.

o If L, N € Pict(E") satisfy mp.(L) = 1N, then (LN 1E" =2 Op.

A very convenient way to carry out calculations with vector bundles on complex tori
is provided by the theory of automorphy factors, see [47] or [50, Section 1.2].

Definition 8.3. Let 7 € C be a complex number such that Im(7) > 0. The category
of automorphy factors AF. is defined as follows. Its objects are pairs (®,n) where
n > 0 is an integer and ® : C — GL,(C) is a holomorphic function such that for all
z € C we have: ®(z+ 1) = ®(z). Given two automorphy factors (®,n) and (¥, m),
we define

A is holomorphic
Homag, ((®,n), (I,m)) = ¢ A: C — Mat,,(C) | A(z+1) = A(2)
Az +7)P(2) = V(2)A(2)

and the composition of morphisms in AF, is given by the multiplication of matrices.
In what follows, we shall frequently denote the object (®,n) of AF, by ®. Note that
one can define an interior tensor product in the category AF, induced by the tensor
product of matrices.

Let A = A, = Z ® Zr C C? be the lattice defined by 7, E = E, = C/A, the
corresponding complex torus and 7 : C — FE the universal covering of E. For an
object (®,n) of the category AF, we define the sheaf £(®) of Og—modules and an
embedding of sheaves mg : £(P) — 7. Of by the following rule.
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The open subsets U C FE for which all connected components of 7~'(U) map
isomorphically to U, form a basis of the topology of E. For such U, we let Uy be
a connected component of 7~ *(U) and denote U, = v + Uy for all ¥ € A,. Then
m.O%(U) = [1,ea OZ(U,) and we define

E@)(U) = {(F,Y(Z))WEA € m(0g) (V) ?jf(é i P) _ g'y((z'z))ﬂ(z)} '

By mg we denote the canonical embedding £(®) C 7. Of. The next theorem plays
a key role in our computation of elliptic r-matrices.

Theorem 8.4. In the notations as above the following properties are true.

e Let (D,n) be an object of AF. then the corresponding sheaf E(®) is locally
free of rank n.

e The map (P,n) — E(P) extends to a functor F : AF, — VB(E;) which is
an equivalence of categories

o The functor F commutes with tensor products: E(® @ V) = £(P) @ E(V).

e Let For : AF, — VB(C) be the forgetful functor, i.e. For(®,n) = O and
For(A) = A for any object (®,n) and any morphism A. Then there is an
isomorphism of functors v : m* o F — For, where for an automorphy factor

O we set yg to be the composition TE(P) Time), 0% =5 OF.
e The natural transformation v is compatible with tensor products, i.e. for any
pair (®,n), (¥, m) of automorphy factors we have a commutative diagram:

T (E(P @ W) e opn

% Tmult

TE(D) @ T E(V) — 2, om g On
o [fm,: E,, — E, is the éﬂz;ale covering given by the inclusion of lattices A, C
A:, then m (E(®)) = E(P), where ®(2) = ®(z+(n—1)7)-...- P(z2+7)P(z).
o The direct image m,.(E(P,m)) = E(®,mn) of a vector bundle E(®,m) is
given by the automorphy factor’

0 I, 0 ... 0
0 0 In ... 0
S=| o
0O 0 0 ... I,
® 0 0 ... O

In particular, if ®(z) is an automorphy factor and A : C — GL,(C) is a holomorphic
function such that A(z + 1) = A(z), then ¥(z) = A(z + 7)"'®(2)A(z) defines an
isomorphic locally free sheaf £(®) = £(W).

3we thank Oleksandr Iena for helping us at this point
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Remark 8.5. There is another way to describe the functor F. Let (®,n) be an
automorphy factor then the corresponding holomorphic vector bundle £(®) can be
defined as the quotient C x C"/ ~, where the equivalence relation is generated by
(z,0) ~ (24 1,v) ~ (2 + 7,®(2)v). Using this description, we have the following
commutative diagram of complex manifolds

CxC"——E(®)=Cx C"/ ~

4

s

C E.

The natural transformation v can be constructed using the fact that this diagram
is Cartesian.

Our next goal is to give a description of those automorphy factors which corre-
spond to indecomposable vector bundles on E. To do this, recall that the holomor-
phic morphism C — C* sending z to exp(2miz) identifies C* with C/Z and maps
7 to ¢, where ¢ = exp(mit). Hence, it induces an isomorphism FE = C*/¢?, where
the quotient is formed modulo the multiplicative subgroup generated by ¢.

Note that in the case of line bundles, automorphy factors are holomorphic func-
tions ¢ : C — C* which satisfy ¢(z + 1) = ¢(2). In what follows we shall use the
notation L£(y) := E(p). Line bundles of degree zero can be given by constant au-
tomorphy factors, for example £(1) = Op. Because the function a(z) = exp(2miz)
satisfies a(z + 1) = a(z) and a(z + 7) = ¢?a(z) with ¢ = exp(wiT) as above, the
constants ¢ € C* and ¢?¢ define isomorphic line bundles on E. In fact, the map
E :=C*/¢*> — Pic’(E) sending ¢ € C* to L(y) € Pic’(E), is an isomorphism.

To describe line bundles of non-zero degree, we denote py = L‘F € E=C/A.
The automorphy factor
wo(z) = exp(—miT — 2miz)
satisfies L(pg) = Og(po). To see this, recall that, by definition,

f is holomorphic
HY(L(p0)) = Hom (L (1), L)) = { f: € = C| f(z+1) = f(2)
f(z+7) = wo(2)f(2)

and that this vector space is one-dimensional and is generated by the basic theta
function

0(z|7) = 03(2|7) = Zexp(m’nQT + 2minz),

ne”Z

. Moreover,

see for example [49]. It is well-known that 0(z|7) vanishes at py = L*’TT

this is the only zero in the fundamental parallelogram of A,. Hence, H° (ﬁ((po)) =C
and by the Riemann-Roch theorem the line bundle £(¢g) has degree one. Moreover,
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if 6(z|7) it its non-zero global section then div(6(z|7)) = [po] and hence L(pg) =

1
Og(po). Because 6 (z + % —x

T) has its unique zero at x € E/, we obtain

(26) Op() 2 £ (tiy_,0).

where t%¢o(2) := @po(z + x). This gives a complete description of Pic'(E).

Finally, any line bundle of degree d can be written as O /([(d — 1)po] + [po — z])
for some point x € E. To complete the description of Pic(£), it remains to observe
that

Op([po — 2]+ (d = 1)[po]) = L(t500 - 5 ")

Our next aim is to find an explicit family of automorphy factors describing the
set of stable vector bundles of rank n and degree d on E, where ged(n,d) = 1.
Interpreting Oda’s description from Theorem 8.2 in terms of automorphy factors we
immediately obtain the following proposition.

Proposition 8.6. Let (n,d) € N x Z be coprime. For x € C/(1,7) let ppa(2,2) =
exp(—mindt — 2mwidz — 2mix). Then the family of automorphy factors

0 1 0 ... 0
O 01 ... 0
Dpalzox)=| + 1
O 00 ... 1
Boa 00 ... 0

describes the set of stable vector bundles of rank n and degree d on F.

However, these automorphy factors are not compatible with the action of the Jaco-
bian PicO(E). In order to overcome this problem, denote gz = exp (—%) and
let

1 0 0 ... 0
0 q% 0 ... 0
00 0 .. ¢gvt
Then A*1§n7dA =: ®,, 4 is the following matrix-valued function:
0 gz 0 0 0 10 0
0 0 gz 0 0O 01 ... 0
(27)  Pna(z,2) = : o =g e ]
0 0 O qz 0 00 1

K
318
S
3
ISH
o
o
o
AS)
I
o
o
o
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where ¢, (2) = exp(—minT — 271iz) and ¢, 4 = p%. Note that we have the equality
exp(—2miy) - @, 4(2, ) = @, 4(2, x + ny).

Lemma 8.7. In the notations as above, for two points x,z" € C/(1,nt) we have:
E(Cbn,d(z, :c)) = S(an,d(z, :c’)) if and only if x — 2’ € A,.

Proof. By Theorem 8.2, the vector bundle &% := 5(5n7d(2,a¢)) is stable of rank n
and degree d for any point # € E,,. By [5, Theorem 7] the Jacobian Pic’(E) acts

transitively on the moduli space M gl’d). Moreover, £* = £ @ L for a line bundle
L € Pic’(E) if and only if L& = O. For a € C, the line bundle £* := L (exp(2ia))
fulfills the property L™ = O precisely if na € A,. Observe that £% ® £* = £¥na,
In particular, it shows that £% = £*+9+7 for any z € E,,. and a,b € Z. O

Our next goal is to explain how the language of automorphy factors can be used
to describe a universal family of stable vector bundles of rank n and degree d on
E as well as to construct a trivialization of it. In order to do this, we need the
following generalization of Theorem 8.4.

As usual, let 7 € C be such that Im(7) > 0 and M be a complex manifold.
Then we define a category AF, (M), whose objects are pairs (®,n), where n > 1
is an integer and ® is a holomorphic function ® : C x M — GL,(C) such that
O(z+1,y) = ®(z,y) for all (z,y) € Cx M. For a pair of automorphy factors (®,n)
and (U, m) we set

B A is holomorphic
Homar, (i) (2, ) = ¢ C x M = Mat,,x,(C) | A(z + 1,y) = A(2,y)
A(z +7,y)0(2,y) = ¥(z,y) Az, y)

and the composition of morphisms in AF.(M) is given by the multiplication of
matrices. As before, we have a fully faithful functor

Fy : AF, (M) — VB(E x M)

mapping an automorphy factor (®,n) to the subsheaf £(®) of the sheaf 7, OF,
where myy = 7 xid : C x M — E x M. The sheaf £(®) is defined exactly as in
the absolute case. Moreover, ), is dense (hence an equivalence of categories) if, for
example, M = Ay x---xA,, CC™, where each A; C C,1 <17 < m is either an open
disc or C itself. This functor maps the tensor product of automorphy factors into the
tensor product of the corresponding vector bundles. Next, there is an isomorphism
of functors v : m;; o F — For, where For : AF, (M) — VB(C x M) is the forgetful
functor. For an automorphy factor ® the morphism ¢ is the composition

* mh(ma) * n can n
WMg(q)) —— Ty TmO¢xnr — O

Let U be an open subset of £ such that there exists a connected component U of
71 (U) which maps isomorphically to U. Hence, 7 : U — U is an isomorphism of
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Riemann surfaces and the morphism v induces a trivialization of the vector bundle
E(®)]vnr-

It is important to note that the natural transformation v is compatible with
tensor products, i.e. for any pair (®,n) and (¥, m) of automorphy factors we have
a commutative diagram:

Yo

™(E(@® V) » Otmr

ﬂ Tmult

TE(®) @ T E(W) — 2 L O, @ O,y

Moreover, any holomorphic map f : M — N of open domains induces a functor
f*: AF.(N) — AF,(M) mapping an automorphy factor & : C x N — GL,(C) to

the automorphy factor f*(®):C x M D ox N2 GL,(C). In these terms, we
have the following diagram of functors

AF,(N) AF. (M)

FNJ JFM
(Ixf)*

VB(E x N) —— 4 VB(E x M),

where both compositions (id x f)* o Fx and Fj; o f* are canonically isomorphic.

Our next goal is to give an explicit description of a universal family of stable
vector bundles of rank n and degree d on the complex torus £ = FE.. In what
follows, M = E. stands for the moduli space of such bundles. Consider a pair of
matrix-valued functions ¢, ¥V : C x C — GL,,(C) given by the formulae:

0O 10 ... 0
0O 01 ... 0
(28)  P(z,x) = exp(—2mix) oor o U(z,x) = exp(—2miz)l,,
0O 00 ... 1
el 00 0

where ¢,,(2) is the same as in (27). As in Remark 8.5, we define the vector bundle
E(P, V) € VB(E x M) via the following commutative diagram of complex manifolds:

CxCxCr— &P, ¥)=CxCxC"/ ~

| |

T™XT

CxC E x M,
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where the equivalence relation is given by the formulae:
(z,x;0) ~ (2 4+ 1, z50) ~ (2,2 4+ 1;0),
(z,m;0) ~ (z + 7,2, P(z, x)v),
(z,x;0) ~ (z,az + 75 \If(z,x)v).
Note that the following equalities are fulfilled:
U(z+7,2)0(z,2) = P(z,2 + 7)V(z,x)
as well as
O(z+1,2) = P(z,2) O(z,x+1) = P(z,2)
U(z+1,2) =V¥(z,x) U(z,x+1) =VY(z, ).

Hence the equivalence relation ~ is well-defined and £(®, V) is a holomorphic vector
bundle on E x M. Note that for any point xy € M we have:

E(@, )|y 0y = E(P( = 20)).

In particular, £(®, V) is a family of stable vector bundles of rank n and degree d on
E parameterized by the manifold M. By Lemma 8.7 we know that

(29) E(P, W > E(D, W) \EX{ o = n(xe — xp) € A,

)|E><{a: }

Lemma 8.8. Let p, : E; — E; be an étale covering of degree n® given by the rule
pn(x) = n-x. Then there exists a universal family P = P(n,d) of stable vector
bundles on E x M such that E(®, V) ~ (1 X u,)*P.

Proof. We know that M = E. is the moduli space of stable vector bundles of rank
n and degree d. Let Q € VB(E x M) be any universal family, then by the universal
property there exists a unique morphism v : M — M such that E(®, ¥) ~ (1 xv)*Q.
Since a morphism between two compact Riemann surfaces is either surjective or
constant, the morphism v is surjective. From the equality (29) we obtain that v
factorizes as

M——— M

SN

and the induced map 7 is both injective and surjective, hence biholomorphic. Then
the universal family P = (1 x )*Q € VB(E x M) is the one we are looking for. [

Remark 8.9. In a similar way, the functions ¢, : C x C — C* given by ¢(z,x) =
exp(—2miz) and 1(z, x) = exp(—2miz) define a universal family

L= L(p,) € Pic(E x J),
of degree zero line bundles on £ = E, where J = E, is the Jacobian of F.
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Lemma 8.10. Let P € VB(E x M) and L € Pic(E x J) be as in Lemma 8.8 and
Remark 8.9. Then the following diagram is commutative:

(30) CxC—2——cC

Jx M ——— M,
where o(a,b) = a+b, 7 : C — C/(1, 1) is the canonical projection and 7(z) = m(n-z).

Proof. Recall that the morphism 7 : J x M — M is uniquely determined by a choice
of universal families P and £ by the following property: the isomorphism

P‘Ex{’r(mb)} = ’C|E><{a} ® 7D|Ex{b}
holds for all points (a,b) € J x E. Consider the morphisms

pri 3 1xm

p: EXCxC—/FExC— Ex M,

Pri o Ixm

Gg: ExCxC—FExC—FExJ

and
1x7

5: ExCxCXLepxcX Ex.

The commutativity of diagram (30) is equivalent to the fact that ¢*£ ® p*P ~ ¢*P.
This is furthermore equivalent that for all (a,b) € C x C we have:

a2

qL ®1’5*P|Ex{a}x{b} - ~*P|E><{a}><{b}'
The last isomorphism can be rewritten as
L(p(a)) @E(P(—,b)) ZE(P(—,a+D)).
Since for all (a,b) € CxC we have p(z,a)-®(z,b) = ®(z, a+b), the result follows. [

Consider the morphisms p, ¢, 7: ExCxC — E xC, where p = pr, 5, ¢ = pr; 5, and

6 =1 x 0. We define the morphism §*L(p) ® p*E(P) N *E(®) by the following
commutative diagram:

§"L(p) @ jE(®) ? 6*E(®)
L) ® E(H*®) £(6"D)
£y o) ’ £(6°0),

where all vertical isomorphisms are canonical and ¢ corresponds to the morphism
in the category AF,(C x C) given by the identity matrix [,. In particular, the
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morphism ¢ is identity in the trivializations of p*&(®), 6*E(P) and ¢*L(p) induced
by vs and 7,. Summing up, we get the following proposition

Proposition 8.11. Let & : C x C — GL,(C) be as in (28), p(y) = exp(—2my)

and §*L(p) @ p*E(P) 2, d*E(®) be the morphism of vector bundles on E x C X
C constructed above. Take small local neighbourhoods in the moduli space M and
Jacobian J corresponding to small neighbourhoods of 0 € C with respect to the
diagram (30). Then the induced trivializations ¥ and £° of the universal families
P =P(n,d) and L = P(1,0) and the morphism ¢ are the ones we are looking for
i Proposition 7.2. In particular, Theorem 7.5 is true in the elliptic case.

Corollary 8.12. Let fgf’d) = 75 (v1, vo; Y1, Y2) be the associative r—matriz obtained

from the universal family P(n,d) of stable vector bundles of rank n and degree d on
the elliptic curve E. using the trivialization & = vg described above. Then we have:
féﬁ’d) (v1, V25 Y1, Y2) = Niﬁ’d) (V1 +v,v2 + V3 Y1, Y2)

for all values vy, ve,v and yy1,ys from a small neighbourhood of 0.

8.2. Rules to calculate the evaluation and the residue maps. In this subsec-
tion, we consistently denote the vector space of complex linear maps between two
complex vector spaces V, W by Lin(V, W). We reserve here the notation Homg( , )
for the vector space of morphisms of sheaves on the complex manifold C.

Let E = E, be a complex torus, Qg the sheaf of holomorphic differential one-
forms and w = dz € H°(Qg) a global section. We fix a pair of coprime integers
(n,d) € Z* x Z and let M = M ](En’d) be the moduli space of stable holomorphic
vector bundles of rank n and degree d on E. By P = P(n,d) € VB(E x M) we
denote the universal family and by &7 : Plyear — O|&., a trivialization, as
constructed in the previous subsection. Recall that these data define the germ of a
meromorphic function

=7 (M XMXxXFEXFE, 0) - Matnxn(c) ® Matnxn((C),

whose value at the point (v, va;y1,y2), where vy # vy and y; # ya, is defined via
the commutative diagram

(31) Homp (P, P (y1))

PUL,PY2(y1)
eVyy

Fyryy (W)

Lin(PU1|y177)U2|y1)
i)
Mat,, ., (C)

Lin(P* |y2’7)v1 ‘yz)
Mat,,«,(C),

7€ (v1,v2;91,2)
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where res] 7" (w) and evl, T @) are the maps defined in Section 4 and the ver-
tical isomorphisms are induced by the trivialization & of the universal bundle.

Let m: C — C/A, = E be the universal covering, o = 7(0) € E. Take an open
neighbourhood U of the point o in E such that there exists a connected component
U of #71(U) which maps isomorphically to U. For the sake of convenience, we
denote the preimage 7! (y) € Uofa point y € U by the same letter y. By Theorem
4.23 we have a commutative diagram

Lin(P”]yl,Pvz|y1) — Lin<7"*7)vl|y1>7r*7)v2|y1)
resp, P (“)T Tl PP (o)
HomE(Pvl, P2 (yl)) -~ Homc (W*P”l,W*P”Q(Dl))
eVZj;l’Pv2<y1)J levg;«pul,,r*mz(m)

Lin(73“1 ]y2,73”2|y2) -~ Lin(7r*77”1 |ys, TP |y2)

where O¢(D;) = 7*Og(y1) is the subsheaf of the sheaf M¢ of meromorphic functions
on C, whose local sections are meromorphic functions having at most simple poles
along the infinite, but locally finite set D; = {yl +y ‘ v E AT} =71 (yy).

Recall that the description of a universal family P in terms of automorphy factors
yields an isomorphism of vector bundles v : 73, P — Og,,,. For any point v € M it
induces an isomorphism " : 7*P¥ — Og. If we apply Lemma 4.10 and Proposition
4.12 to these isomorphisms and use the morphisms res,, (&) and ev,, from Lemma 4.5
and Lemma 4.13, which are given by res,, (@) (F) = res,, (Fdz) and ev,,(F) = F(y2),
we obtain the following commutative diagram

cnj(y°1,7"2)

Lin(7* P, , T*P"2|,,) Mat,, ., (C)
resgfpul P2 (&))T resy, (@)
. enj (71,972 (D))
Hom¢ (7r P”l,W*PUQ(Dl)) Matnxn((’)C(Dl))
evﬂ'*Pvl’ﬂ-*PLQ(Dl)J' evy2
Y2
N A enj(31,7°2)
Lin(7*P|,,, 7*P"2|,,) Mat,, ., (C).




VECTOR BUNDLES AND YANG-BAXTER EQUATIONS 79
The three previous diagrams in this subsection give us another one:
7 (v1,02;91,2)

m %

Hom(c (OE, O%(Dl))

Mat,,«,,(C) Mat,,«,,(C)

cnj(év1, E2) enj (1 772(D1)) ”*T cnj(év, E2)
HOI”E(Pm, prz (1/1))
v U v U
TGSZ 1,pv2 (w evZ; 1,P%2(y1)

PVl pll
Ty1.y2 (w)

I—in(Pv1|y1>PU2|y1)

Lin(Pvl|y27Pv1|y2)~

Our next goal is to describe the image of the morphism cnj (7“1 , Y2 (Dl)) or*. Let
Yy(2) = — exp(—2miz + 2miy — 2miT). It is easy to see that Homp (O, L(¢,)) is one-
dimensional and generated by the section 6, corresponding to the theta-function
0,(z) =0 (z + HTT — y| 7'). Note that 8, is a holomorphic function on C having only
one simple zero at y inside a fundamental parallelogram of A,. Hence, we have an
isomorphism a : Og(y) — L(¥y).

In order to be more precise, recall that £(v,) is a subsheaf of the sheaf 7.0¢. In
particular, we have: H°(L(t,)) = C- 6, C H*(Oc). On the other hand, the sheaf
Og(y) is a subsheaf of the sheaf of meromorphic functions Mg and H°(Op(y)) =
C - 1. Without loss of generality we may assume that H°(«)(1) = 6,. This choice
fixes the isomorphism «.

Recall that for a point x € M we have: P" = £(®,), where &, = &(—,v) is the
function defined by the equality (27). Then we have an isomorphism

v id®a Vo .
P2(y1) =% P2 @ L{ty) = E(ty, - Buy)
and the following diagram is commutative:

'yyl’v2

77*5(¢y1 (I)vz) O¢

can] Tmult

TE () ® TE(®y,) Oc ® Op

™ (a)®id %

T Op(y1) @ 7°E(Py,)

where @ : 7 (Op(y1)) = Oc(D1) — Oc is defined to be a(f) = f6,,, 7
corresponds to the automorphy factor v, - ®,,, 7¥* to ¢,, and y** to ®,,. As a
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result, we get the following commutative diagram:

cnj (7”1 "2 (Dl))

Hom¢ (W*P”l (P2 ® OE(Ql)))

Hom(; (71'*73’01 , T* (PW X £<'¢yl))) Hom@ (Og, OZ&)

\ For

HomAFT (®’u1 3 ¢y1 ¢U2)

and @, is given by the formula &, (F) = 9£

Y1

Hom¢ (O{é, Og(Dl))

cnj (7“1 Y2 (Dl))

Corollary 8.13. Let O =I'(C,O¢), O(D;) =T'(C,O¢(Dy)) and
I = Im(HomAFT(q)vl,nyCI)w) — Matnxn(O)).
Then the following diagram is commutative:

V1,V2
H?h’

resy, Vyy

Matan(O(Dl))

)

7€ (v1,v2;y1,
Mat,u e (C) Selcioh Mat,u . (C).

In particular, this gives the following algorithm to compute the value of an associative
geometric r—matrixz of elliptic type at a point (v, ve;y1,y2) € M X M x E X E with
respect to the trivialization &:

(1) First describe the vector space
HZ?UQ = |m<H0mAFT (q)vl, wyl . CIDW) — Matnxn(0)>

(2) The morphism Tes,, : Mat,x,(O) — Mat,»,(C) is given by the formula
F(2) dz> _ F(y1) _ F(y1)

0, (2) O, () 0 (57| 7)

and the morphism €V, : Mat,,,,(0) — Mat,,,,(C) is given by the formula

F(?J2) _ F(y2)
0y, (y2) G(Z/‘FHTT‘T).

F(z) + T€S,, <

F(z) —
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(3) Compute 7 (vy, vo;y1,92) as the composition

(s, @)
-

Mat,, ., (C) e 22, Mat, ., (C).

Note that there is an ambiguity in choosing the morphism «. Another choice of «
corresponds to rescaling the section 8, by A € C* to A0, . However, it is easy to
see from the algorithm above, that the resulting linear map 7 (vy, vo; y1,y2) does not
depend on this choice.

8.3. Calculation of the elliptic r—matrix corresponding to M](Ezl). Let P™
and P* be a pair of non-isomorphic simple vector bundles of rank two and degree
one on the elliptic curve F = FE., y; and ys two distinct points. In what follows
we denote ¢ = exp(miT), ¢, = exp(—mix), e(z) = exp(—2miz), p(z) = e(z + 1),
r=mx9—xand y = Yo — Y1.

As we have seen in the previous subsection, one can write P% = £ (CQ, (1)2,1,%-(2)),

where
¢2,1,xi qxi QO(Z) 0 . qgci i )

and the line bundle Og(y;) corresponds to the automorphy factor
Uy (2) = —e(z + 7 — ).
Recall that ITj1*2 =

{A(z) - ( u(2) ?Lfg)) )‘ Az +1) = A(2), A(z +7)8(2) = oty (2)D(2) A(2) }

w(z)
This leads to two systems of functional equations
{ wz+71) = gty (2)t(2) nd { e(2)v(z+7) = @iy (2)w(z)
tz+7) = @iy, (2)u(z) wz+7) = @p(2)ty(2)v(z)

which are equivalent to

u(z+27) = a(2)u(z) v(z+27) = b(2)v(2)
u(z+1) = (U(j_> ) and viz+1) = v(z)( )
_ulz T . p(z
© T vE T

where

2
a(z) = exp (—27Ti7’ — 27 (z + ’ ; T yl)) and

b(z) = exp (—27?2'7' — 27 <Z + g - y1)>2 :
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Lemma 8.14. Let E = E. be an elliptic curve, po(z) = exp(—mit — 2mwiz), | €
N. Then H°(L(p})) has a basis {0[4,0] (Iz|iT)|0 < a <l,a €Z}, where we use
Mumford’s notation

Ola,b(z|T) = Z exp(mi(n + a)’1 + 2mi(n + a)(z + b)).

In the particular case of bundles of rank two and degree one it is convenient to
use instead the four classical theta-functions of Jacobi:

01 (z|7) = 2¢ i (=1)g"™ D sin((2n + 1)mz),

n=0
Os(z|7) = 2¢1 io ¢"" Y cos((2n + 1)7z),
O5(z|T) =1+ 2_§1 q" cos(2mnz),
Oi(z|T) =142 i_ojl(—l)"q"Q cos(2mnz).
Remark 8.15. In Mumford’s notation it holds:
0r(2|r) = =0 [3, 5] (2I7) Oa(2]7) = 0 [3, 0] (2I7)
O5(z|T) = 6]0,0] (2|7) 04(z|7) = 6 [0, 3] (2|7).

In what follows we shall express all our computations in terms of Jacobi’s theta-
functions. From Lemma 8.14 and Remark 8.15 we immediately obtain:

Corollary 8.16. If we let

un(2) = by (2 <z—y1+x;T)
us(2) = (2 (z—y1+x;7)

and
Fi(z) = Uz +7 ,Gr(z) = pl\z vl 2 , k=12,
EETINE) PN

then Fi(2), F2(2), G1(2), Ga(2) is a basis of TIj1"2.

The following proposition summarises the main properties of Jacobi’s theta-functions
which we need in our calculation of the associative r—matrix corresponding to the
universal family of stable vector bundles of rank two and degree one.
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Proposition 8.17 (see [26] and Section 1.4 in [42]). The transformation rules for
shifts of theta-functions are given by the table

10(2) | 0(==2) [0(z+1)] 6(z+7) [0(z+1+7)]0(z+3)] 0(z+1) |

O1(2) | —01(2) | —6i(z) | —p(2)01(2) | p(2)0i(z) | 6a(2) |iq(2)0a(z)
O2(2) | b2(z) | —b2(z) | p(2)0a(2) | —p(2)0a(2) | —01(z) | q(2)05(2)
03(2) | 0s(2) 03(2) p(2)03(2) p(2)03(2) 04(2) q(2)02(2)
04(2) | 0a(z) | 04(2) | —p(2)0a(2) | —p(2)0a(2) | 05(2) |iq(2)6i(z)

where p(z) = exp(—mi(2z+7)) and q(z) = exp (—m' (z + %)) Moreover, Jacobi’s

theta-functions satisfy the so-called Watson’s determinantal identities:

93(2x|27)92(2y\27) 05(2y|27)02(2x|27) = 01 (x + y|7)01 (2 — y|7),
01(22|27)04(2y|27) — 01(2y|27)04(22|27) = O2(2 + y|7)0:1 (z — y|7T),
01(22]27)04(2y|27) + 01(2y[27)04(22(27) = 01 (z + y|T)02(z — y|T),
04(2x)27)0,4(2y|27) — 01(2y|27)61 (2x|27) = O3(x + y|7)04(x — y|T),
0,(22|27)04(2y|27) + 01 (2y|27)01(22|27) = O4(x + y|T)05(x — y|T).

By Corollary 8.16, any element of II7*2 can be written as a sum
A(Z) = OéFl(Z) + 6F2(Z> -+ ’YG1<Z> + 5G2(Z)

for some «, 3,7,6 € C. In order to calculate the geometric associative r—matrix
r¢(z1, 25 Y1, y2) We have to solve the system of linear equations

165, (A(2)) = ( .« ) .

Then the linear map 7¢(x1, Z2;y1,%2) : Mataxo(C) — Matyyo(C) is given by the

rule
a b res;11 evy, 1
[ A Z) —— —A .
(c d) O

It is easy to see that the system of linear equations

15, (0F(2) + OF(2) +61(2) +563(2)) = (¢ )

splits into two independent systems

s, (F0) = (g ) et () = (0 0).
where F(z) = aFi(2) + fFy(z) and G(z) =vG1(2) 4+ 6Ga(2).

Computation of the “diagonal terms”. The system of linear equations

res,, (F(2)) = @F () = ( 0 d )
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reads as
O3(x + T|4T)o + O3 (z 4+ 7[47)8 = 05(HE|7)a
O3(x + 37]4T)a + Oy (z + 37478 = —e(7 + 2)04(17|7)d.
By Watson’s identity, the determinant of this system is
Os(z + 7|4T)  O2(x + T]47T)
Os(x + 37[4T) O2(x + 37]47)

= e(x + 7)0,(x|27)0,(T|27)

A = ‘ = 01(z + 27|27)0, (—7|27) =

and we obtain:
P(AET x
o = %(92@ +37/47)a + e(T + §)0z(x + T|47)d)
5 = —BEED (gy(w + 3riar)a+ elr + )0z + Tl4r)d).

This implies:
- 0
(1, T2; Y1, Y2) K g )} =

ol (L7 |- 052y + x + 7)471) 0
il 12+T| ) X | p1(2) 0 ~ 03(2y + x 4 37)47)
Os(y + 57 IT) A @2ty +T)

052y + x + 7|47) 0
—pa(2) 052y 4+ & 4 37]47)

0 @2+ g +7)

where

p1(2) = Oz(x + 37|47)a + e(x/2 + 7)02(x + T|47)d,

po(2) = 03(x + 37|47)a + e(x/2 + 7)03(x + T|47)d.
In order to calculate the “diagonal part” of the corresponding tensor r(xy, z2;y1, y2)
we use the inverse of the canonical isomorphism

Matzy2(C) ® Matyy2(C) — Lin(Matgxg((C), Matgxg(C))
given by the formula X ® Y +— tr(X o —)Y. It is easy to see that under the map
Lin(Mat2X2((C)7 Mat2x2(C)) — Matyy2(C) ® Matgy2(C)
a linear function e;; — ajley, afj € C* corresponds to the tensor ajle;; @ ey
Again, Watson’s identities imply:
e The coefficient at e1; ® eq; is
052y + x + 7|47)02(x + 37|47) — 022y + x + 7|47)03(x + 37|4T) =
O1(z +y + 27|27)0, (y — 7|27).
e The coeflicient at €99 ® e99 1S
e(—y) (0s(z + 7]47)02(2y + x + 37|47) — ba(x + 7]47)05(2y + x + 37[47)) =
=01(x +y + 27)27)01(y — 7|27).
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e The coefficient at e ® €17 is
e(z/2+ 1) (QQ(I + 7|47)05(2y + x + 7) — O3(x + T|47)02(2y + = + 7')) =
=e(x/24 1)0(y + x + 7|27)0: (y|27).

e The coefficient at e1; ® e99 is
e(—y —x/2 —7)(02(2y + x + 37]47)05(x + 37|47) — 03(2y + 2 + 37|47)03(x + 37]47))
=e(x/2+7)01(y + = + 7|27)01 (y|27).
Now observe that
O1(z +y + 27|27)01 (y — 7|27) = ie(x + y/2 + 57/4)01(x + y|27)04(y|27)
and

e(x/2+71)01(y + x + 7]27)01 (y|27) = de(x + y/2 + 57/4)04(x + y|27)61 (y|27).

Hence, the “diagonal part” of r(x1, zo; y1,y2) is
C[6:1(z+y[27)04(y|27) (€11 @ €11+ €20 ®€90) +04(x+y[27) 01 (y]27) (€11 D22+ 22 @611 )],

where
O3(55 ez + § + °F)
Os(y + 5717) A
+ H7)7) = dexp(—mi(y + 7/4))01(y|7) and 6;(0]7) = 0 it
)¢’ (0|7). Using the transformation rules from Proposition

C:

From the identities 65(y
follows: 04(=|7) = ie(%
8.17 we get:
o 9, (0|7) B 01(0|7)
~ 040027)6 (z]27)6, (y[7) {‘ f‘ ’
91 (2 T> (92 <2 T) 61 (le)

where we have used Landen’s transform

0,(0(27)0, (22]27) = 0y (| 7) 0o (| 7).

It remains to observe that A(ej; ® €11 + €92 ® €92) + B(e11 @ egn + €22 @ e11) =
1 1
§(A + B)(ell + 622) X (611 + 622) — §(A — B)(ell — 622) X (611 — 622)7
and that by Watson’s identities we have
x x
01w+ y127)0a(y[27) + Ol + 9200 (wI27) = 00 (y+ 5| 7) 02 (5|7)

and

01 (a + y127)0a(y]27) — Ba(x + y|27)01 (y|27) = 6 (y + g( T) 0, (%‘ T) ,
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so the contribution of the “diagonal terms” is
161(0]7) 01 (y + 5I7) 16,(0]7) O2(y + 5I7)

— I1®1+ =
26,(y|T) 91(§|7') 260, (y|T) 92(%“)

h & h.

Contribution of the “skew terms”. We have to solve the system of linear
equations

165, (1G1(2) + G (2)) = ( - ) .

In explicit form this system reads as

O5(z|47)y + Oo(z|47)d = 05(=)b
O3(x + 27[47)y + O (x + 27|47)0 = —e(x/2 — y1)05(E|T)e.
By Watson’s formulas the determinant of this system is
_ | Os(zfdn) Op(xldr) | _
B2 =1 p(w+ 2r(ar) Go(a +2rjdr) | =~ @+ TRT)G(TI2T).

Hence, the solution of this system of equations is

{ vo= HQ(HTT|T)§92(x + 2747)b + e(x/2 — y1 )02 (x|47)c)
6 = 05(87|7)(0s(x + 27]47)b + e(x/2 — y1)05(x]4T)c.)

As a result, we obtain:
- 0 b
7’5($17$2§yl,y2) [( c 0 )} =

05(5717) 0 03(2y + x|47)
B3(y + BT|7) A, % {ql(z) ( —e(y1 — x/2)03(2y + x + 27]47) 0 >
—2(2) ( —e(yp — x/2)02(2y + = + 27|47) ! 0 )] ’

where
G1(2) = Ox(x + 27)47)b + e(x/2 — y1 )02 (x|4T)c,
@2(2) = 03(x + 27|47)b + e(x /2 — y1)b5(x|47)c.

Again, Watson’s identities imply:
e The coefficient at e5; ® €19 is

Os(x + 27|47)05(2y + x|47) — O5(x + 27|47)05(2y + x|dT) =
1
= (7)) 0l + iz 0120)

e The coefficient at €19 ® e9; is

O5(x|47)05(2y + x + 27|47) — Oo(2|47)05(2y + x + 27|47) =
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=e (%(ff +7)+ y) O4(x + y[27)04(y[27).

e The coeflicient at e;9 ® €19 1S
e(x/2 — y1) (02(x]47)05(2y + = + 27]47) — O3(2[47)02(2y + z + 27[47)) =
= e(z/2 — y1)bh (z + y|27)01(y|27).
e The coefficient at ey ® eq; is
e(yr — x/2) (03(z + 27(47)02(2y + = + 27[47) — Oa(z + 27[47)05(2y + = + 27]47)) =
= e(y2 + x/2 + 7)01 (y + z[27) 01 (y[27).
Note that the coefficients of the tensors ejo ® e15 and es; ® e9; are not functions of
Yy = yo—y1. In order to overcome this problem we take ¢(y) = ( e(yO/Q) e(—?'/él) )
and consider the gauge transformation
(51, y2) — (1) ® (ya))r(z;y1,12) (¢ (1) © ¢ (1))

It is easy to see that the “diagonal tensors” ey, ® ey(k,l = 1,2) remain unchanged
(and, in particular, this gauge transformation does not influence the final answer
for the “diagonal terms” obtained before) and the transformation rule for the “skew
tensors” is the following:

era®en — e(3)e(LT2)ern ® e,

eg1 ®ea — e(—g)e ( y1+y2)€21 ® e,
e12®ea = e(—%)en ® e,

ea1 ®en — e(f)en ®ern.

Hence, the new tensor of “skew terms” is
C [94((L’+y‘27)94(y‘27)(621®€12+612®€21)+91 (m+y[27')91 (y|27')(612®612+621 ®621)] ,

where

T R N AL
0s(y + 57|7) As 04(0[27)04(x|27)0: (y|7)
01(0|7)

03(x/2|7)04(x/2|7)01 (y|7)

Using the equality

(5 o)e (Vo) om (0 )e (V)

= (A+ B)(e12 ® a1 + €21 ® erz) + (A — B)(ea1 ® ea1 + €12 ® 1)
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and Watson’s identities

x X
Oaly + 2 127)04(y127) + 01y + 212000 (w127) = 0: (w+ 5| 7) b5 (5| 7)

T T
Ouly + 2127)04(y127) — 01y + 21200 wI27) = 05 (y+ 5| 7) 0a (5 |7)
it follows that the contribution of the “skew terms” is

LOL(0r) (Galy+ 31 Ouly+ 51)
291<y\r>( 0,2l C 27T ToEn) ¢ )

~(23) (1)

In summary, we obtain the following theorem.

where

Theorem 8.18. The universal family of stable vector bundles of rank two and degree
one on an elliptic curve E; gives the following solution of the associative Yang—
Bazter equation:

@1 160,(0|7) (91(y+§|r)IL O2(y + 5|7)
y) = = - 1+ —F—5—h®h+
o (@Y = 35 m) \ 6 0,([7)
O3(y + 5[7) ( +Z

|7)
o T2 e 7@”)'

03(017)61 (2|7)
05(0[7)04(2|7)’

Recall that

and
01(0[7) = 02(0]7)83(0|7)04(0]7),
see [42, Sections 1.5 and Section II.1]. Let 7(y) = lin%(pr ® pr)r(z;y) then we have:

Theorem 8.19. The solution of the classical Yang—Baxter equation obtained from
the universal family of stable vector bundles of rank two and degree one on a complex

torus F. is
oy L fen(y) 1 dny)
=5 (G S 55 O w7 e)

Remark 8.20. Note that res, (r(z;y)) = 31 ® 1, hence the tensor r,(y) := r(z;y)
also satisfies the quantum Yang—Baxter equation for x # 0. In fact, it is the well-
known solution of the QYBE which was found and studied by Baxter.
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Remark 8.21 (see for example Section VIL.3 in [22]). Let

@(Z)IéJF > ((z—ml—m)Q_(NTJlrm)Q)

(n,m)€Z?\{0,0}

be the Weierstral p—function. Then ¢'(3) = ¢'(3) = ¢/(137) =0 and 3,7 and £~
are the only branch points of p(z) in the fundamental parallelogram of A.. Denote

ey = @(%), es = p(7) and ez = p(HTT) Then we have:

w=a= (SY - (i) o-o- ()

9. VECTOR BUNDLES ON SINGULAR CUBIC CURVES

To compute the associative r-matrices coming from the nodal and cuspidal Weier-
strafl cubic curves, we use a description of vector bundles on singular projective
curves via the formalism of matrix problems [25], see also [16, 11]. The purpose
of this section is to set up a clear language and provide the core technical tools
necessary for our applications.

9.1. Description of vector bundles on singular curves. We start with recalling
the general approach of Drozd and Greuel to study torsion free sheaves on singular
projective curves [25]. In our applications, the normalization of the curve will always
be rational.

Let X be a reduced singular (projective) curve, 7 : X — X its normalization,
7 := Homo(m(0%),0) = Anno(m.(O5)/O) the conductor ideal sheaf. Denote
by n: Z = V(Z) — X the closed artinian subspace defined by Z (its topological
support is precisely the singular locus of X) and by 7 : 7 — X its preimage in X ,
defined by the Cartesian diagram

(32) 7%

The proof of the following lemma is straightforward.

Lemma 9.1. The diagram (32) is also a push-down diagram. Moreover, denote
v =nm = nn and consider the following natural transformations of functors:

] 1x — m7",
*
q ILX — N,
C: T — W — vk,
m: nm° — NI — vt
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Then for any vector bundle V on X we have a short exact sequence

—Jy
( q ) C m
0y N Ve L ™),

v .Y — 0.
In order to relate vector bundles on X and X we use the following definition.

Definition 9.2. The category Tri(X) is defined as follows.
e Its objects are triples (]7,/\/, m), where Ve VB()?), N € VB(Z) and
m: 7N — ﬁ*]j
is an isomorphism of Oz-modules, called the gluing map.

e The set of morphisms HomTri(X)((ﬁl,/\/'l,rﬁl),(172,/\/'2,%2)) consists of all

pairs (F, f), where F' : Vi — V, and f : N1 — N, are morphisms of vector
bundles such that the following diagram is commutative

F M- T,

7~r*(J‘)J lﬁ*(F)

ﬁ'*NQ & 77}*]72
Remark 9.3. The category Tri(X) is endowed with an interior tensor product:
(ﬁlw/\/-h r’ﬁl) X (1727/\/’27 Fﬁg) - (ﬁl X )72)-/\/-1 ®N27 Fﬁ)?

where m is defined to be the composition

(M @ N) — TN @ TN 2% 7V @ 7V, —— 7 (N @ V).
Similarly, we define the functor det : Tri,(X) — Trii(X), where Tri,(X) denotes
the full subcategory of Tri(X) whose objects (V, N, m) satisty rk(V) = rk(N) = n.

The following theorem summarizes main results about the category Tri(X) and its
relations with the category of vector bundles VB(X).

Theorem 9.4 (Lemma 2.4 in [25] and Theorem 1.3 in [16]). Let X be a reduced
curve.

o Let F: VB(X) — Tri(X) be the functor assigning to a vector bundle V the triple
(T*V,n*V,my), where my : 7(n*V) — 0*(7*V) is the canonical isomorphism.
Then I is an equivalence of categories.

e The functor F commutes with tensor products: we have a bifunctorial isomorphism
F(V1 ® V3) — F(V1) @ F(Vy).

Moreover, we have an isomorphism Fodet — det oF of functors VB, (E) — Triy(E),
where VB,,(E) denotes the category of vector bundles of fized rank n.
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o Let G : Tri(X) — Coh(X) be the functor assigning to a triple (V,N,m) the
coherent sheaf

Y= ker(ﬂ*ﬁ & nN Lem, V*ﬁ*ﬁ)y

where ¢ = c¥ is the canonical morphism 7T*17 — W*ﬁ*f]*l} = V*ﬁ*i} and m is the

composition NN == 0,7, 7N — v, 7N LAWN V*n*V Then the coherent sheaf V
is locally free. Moreover, the functor G is quasi-inverse to F.
o N
Being more precise, let V M TV @® N be the canonical inclusion. Then the
*(p)

morphisms p : ™V —% YV <2V and § n*y @ N =5 N are iso-
morphisms and (7*V,n*V, my) &9, (V,N, ) is an isomorphism in the category
Tri(X).

o Let T = (V;, Ni,m;), i = 1,2 be objects of Tri(X) and V; = G(T;). Consider the
short exact sequences defining V; = G(T;):

()

0—Y —1—>7T*]N}i@7]*./\/" i—>V*77 Y, — 0.
Then the sequence

& = e cm = =
00— VIV M (V1 @ Vy) @77*(./\/1 ®N2) Q v (V1 @ Vy) — 0

1$ exact, where

p: VoV, 2 2V @ 25 (V@ W)
q: Vl@VQﬂn*/\/i@n*NQﬁ)n*(Nl ®N2)

c: 7T*<V1 ® Vg) o), T Ts ~*(Vl ® Vg) = V*ﬁ (]71 ® 92)

7« (can)

m: 77*(./\/1 ®N2) > T TT (N1 ®Nz) —> ven (V1 & Vz) ,
using m from Remark 9.3. This means that (=) gives us a bifunctorial isomorphism

ar, 1, - G(T) @ G(T) — G(T1 ® T).

e Let For : Tri(X) — VB()?) be the forgetful functor mapping a triple T =
W,N,m) toV. Let V = G(T) and v = p : ©V — V be the isomorphism
introduced above. Then we obtain an isomorphism of functors v : n* o G — For,
In particular, we have a commutative diagram.:

Homi(x) (71, 72) — & Homx (V1,Vs)

S

enj(vr Y1)

Hom)~(<]717 ]72) — Homg (W*Vl, 7T*V2).
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Moreover, v is compatible with tensor products: for T, = (Vi, N;, m;) and Vi = G(T;)
(i =1,2) the diagram

W*G(,]—l) ® W*G(’]Vg) & (alez) W*G(,]—l ® 7'2>
Vi ® Vs

18 commutative.

Our next goal is to obtain an explicit description of stable vector bundles on a
singular Weierstra§ curve E. In this context, we replace X by E and note that
the normalisation is £ =2 P!. In order to obtain a clearer description of objects of
Tri(E), recall the following well-known theorem.

Theorem 9.5 (Birkhoff-Grothendieck). On the projective line P!, taking the degree
gives an isomorphism Pic(P') = Z. Any vector bundle £ on P! splits into a direct
sum of line bundles: £ = @,ez0p1(n)™.

This implies that if (V, N, M) is an object of Tri(E) with rk(V) = n, we have

V= @Op1(l)kl and N =20},  where Zkl =n.

leZ YA

Note that A is in fact free, because Z is artinian. From now on we shall always fix
a decomposition of V as above.

An explicit description of morphisms between objects in Tri( E') requires to choose
coordinates on P'. Let (29, 21) be coordinates on V' = C?. They induce homogeneous
coordinates (zp : 21) on the projective line P*(V) = (V' \ {0})/ ~, where v ~ \v for
all A € C*.

We set Uy = {(20 : 21)]20 # 0} and Uy = {(20 : 21)|21 # 0} and put 0 := (1 :0),
00 :=(0:1), z=2z/20 and w = 2y/2;. So, z is a coordinate in a neighbourhood of
0. f U=UyNUy and w = 1/z is used as a coordinate on U, then the transition
function of the line bundle Op:(n) is

= (3)
_—

Uyx CoU xC 20 UxCcU, xC.

The vector bundle Op:(—1) is isomorphic to the sheaf of sections of the so-called
tautological line bundle

{(LLv)]vel} cPY(V)xV = O}
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The choice of coordinates on P! fixes two distinguished elements, 2y, and z;, in the
space Homp: (Opl (—1), O]pl):

P! x C2 +——0p(—1) == P! x C

~07

]P>1

where z; maps (1, (vg, v1)) to (I, v;) for i = 0, 1. It is clear that the section z, vanishes
at oo and z; vanishes at 0. After having made this choice, we may write

m—n _m—n—1 m—n

Homp: (Op1 (1), Op1(m)) = Clzo, 21]m—n = (20" ", 2 2,2 e

Lemma 9.6. Let E be a singular Weierstraf curve, ™ : P! — E its normalization
and V a vector bundle on E. Then degg (V) = degp: (7*V).

Proof. If n = rk(V) then 7*V is a vector bundle of rank n on P'. The canonical
morphism g : V — m,m*V is generically injective and V is torsion free, hence ker(g) =
0 and we have an exact sequence

0—V-Lary—8—0,

where § is a torsion sheaf supported at the singular point s of the curve E. Since ¢
commutes with restrictions to an open set, we have

S = (coker(Op — m.(Om)))".
Because s is either a node or a cusp, we obtain h°(S) = n. Using the Riemann-Roch
formula, this implies
degp(V) = x(V) = x(m7"V) = X(S) = X(7"V) — n = degp (77V).
O

Lemma 9.7. Let E be a singular Weierstraf$ curve, ™ : P! — E its normalization
and V a simple vector bundle of rank n on E. Then

e V is stable.
o YV = Opi(c)" @& Opi(c+1)"* for some integer ¢ € Z and some non-negative
integers ny, ny which satisfy n = ny + no.

Proof. For the first statement see for example [20, Corollary 4.5]. To prove the
second part, let F(V) = (V, 0%, m) and assume

TV 2V = Opi(c) @ Op (d) ® V",

where d—c > 2. Because the length of 7 is two, we can find a non-zero homogeneous
form p = p(zp,21) € Homp: (Opi(c), Op1(d)) such that 7*(p) = 0. This gives us a
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non-scalar endomorphism of V corresponding to the endomorphism (F, f) of the
triple F(V) given by f =id and

1 00
F=1|p 10
0 01
This contradicts our assumption that V was simple. 0

An explicit description of the morphism m by a matrix requires to fix isomorphisms
G : 7°Op1(l) — Oz. In order to keep compatibility with tensor products in our
description of vector bundles, we have to ensure that for all k,1 € Z the following
diagram is commutative:

(33) 17"Op1 (k) @ 77" Op1 (1) ———— 71" Op1 (k + 1)
Ck®CzJ lﬁkﬂ
OZ ® OZ mult OZ

In the case of a nodal or cuspidal Weierstrafl cubic curve we shall explicitly give our
choice of these isomorphisms.

Remark 9.8. It is natural to assume (y = id. Then such a family of isomorphisms
{G }iez is uniquely determined by ¢ = ¢; : 7" (Oﬂn(l)) — O3. Moreover, the choice
of a global section p = p; = azy + bz € HU(Opl(l)), which does not vanish on 7,

determines ¢ as follows: ((s) = ;—)’ . Modulo automorphisms of P! such a section
Z

p is determined by its unique zero, which should belong to P!\ Z =~ E. In other
words, our choice of a set of trivializations {(;},cz corresponds to the choice of a
smooth point in Atiyah’s classification of vector bundles on an elliptic curve [5].
Note that, because we have fixed a decomposition V = @D,z O (D™, a family
{¢}iez induces an isomorphism ¢V : 7%V — O%. Because N = 0%, we also get an
isomorphism 7*N = (’)’Zi. This allows us to describe the map m : #*N — ﬁ*l7 as a
matrix in GL,(O3).
Corollary 9.9. Let Mat; be the category of square matrices over the ring Oz. The
choice of isomorphisms {( }iez yields a functor P¢ : Tri(E) — Maty, assigning to
a triple (V, 0%, m) the matriz of the Oz-linear map

n M %% Cg n
or " 5y 5 o

Moreover, let H® = PS o F : VB(E) — Maty. Using (33), for any L € Pic(E) and
V € VB(E) we obtain:

HY(L®V)=H(L) -H(V) and H(det(V)) = det(H'(V)).
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Let (V,N,m) be an object of Tri(F). We have a natural action of the group
Autp: (V) x Autz(N) on the vector space Hom z(7* AN, 77*V). The orbits of this action
correspond precisely to the points in the fibre of the functor 7* : VB(E) — VB(P*)
over V. In what follows, we shall use this action to find a normal form for m. A
description of the matrix problem describing all vector bundles on an irreducible
Weierstrafl cubic curve, can be found in [25] and [11]. In this article, we are mainly
interested in a description of simple vector bundles. Having in mind Lemma 9.7, we
introduce the following notation.

In order to recover a vector bundle V from the matrix H¢()), we need to specify
V. For a singular Weierstra$ cubic curve E, let VBV (E) be the full subcategory of
VB(FE) consisting of vector bundles V such that 7%V = Op! @ Op1(1)"* for some non-
negative integers ni,ny € Z. In a similar way, let Tri(o’l)(E) be the corresponding
subcategory of the category Tri(E).

Definition 9.10. Let E be a Weierstra3 cubic curve E. Consider the following
category BM(E) of “block matrices”:

e Its objects are invertible matrices over the ring O with a block structure:

Moo | Mo,
M= :
( My | M )

where My, and Mi; are square matrices, possibly of size zero.

e Let M and N be two objects of BM(E) of sizes m = mg+m; and n = ng+mn;
respectively, where the block M;; has size m; X m; etc. Then a morphism
from M to N in the category BM(FE) is given by a pair of matrices (F, f),
where f € Mat, x,,(O7z) and

Fol| O
F =
( Fio | Fiu )

has blocks Fg € Mat,xm, (C), Fi1 € Maty,, xm, (C) and Fig € Mat,,, xme(O3),
such that FM = N f. Here f is the image of the matrix f under the morphism
Mat,xm(Oz) — Mat,,x,(O5) induced by the ring homomorphism O; —
O3.

e The composition of morphisms in BM(E) is given by the matrix product.

Proposition 9.11. Take some isomorphism ¢ : Opi(1)|z — Oz. Then in the
notation of Remark 9.8 and Corollary 9.9, we have equivalences of categories:

VBOY(E) - TreY () £ BM(E)

with block structure on P¢ ()7, 07, rﬁ) coming from the decomposition V= Opt ©
Op1(1)™2. Moreover, the functor P¢oF sends det(V) € VB(E) to the determinant of
the corresponding matriz P*(F(V)).
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Proof. This result follows from Theorem 9.4 and the observation that the map
ﬁ* . Hom]pl (O]Pl, O]pu(l)) — Homg(Og, OZ)

is an isomorphism both for a nodal and a cuspidal cubic curve. 0

9.2. Simple vector bundles on a nodal Weierstraf3 curve. The main aim of
this subsection is an explicit description of those objects in Tri(£) which correspond
to simple vector bundles on a nodal Weierstral curve £. We give an algorithm
which produces some kind of normal form of such triples for each given rank and
degree. Crucial for our application to the Yang—Baxter equation is a description of
the family of all simple vector bundles with fixed rank and degree in a way which is
compatible with the action of the Jacobian. We shall also see that rank and degree
of a simple vector bundle on a nodal Weierstrafl curve are always coprime.

Let E be a nodal Weierstra$l curve, e.g. given by zy? = 23 +2%2, s = (0:0: 1) the
singular point and 7 : P — E its normalization. Choose homogeneous coordinates
(20 : 1) on P! in such a way that 771(s) = {0, co}. Then, in notations of the previous
subsection, Z and Z are reduced complex spaces as follows

Z={s} and Z={0}U{oo}.
Hence, for (]},/\/’, r71) € Tri(E) the map m is just an isomorphism of C x C-modules,
i.e. it is given by a pair of invertible matrices m(0) and m(o0).

The linear form p = p¢(20,21) = 21 — 20 € H° (O]pl(l)) does not vanish on Z.
Following the recipe from Remark 9.8, we consider the collection of isomorphisms

- for each open subset V' C P!

G 7 Op1 (1) — O3 given by the formula ((s) = Z%

7
not containing (1:1),! € Z and any s € F(V, Opl(l)).

This implies the following evaluation rule for morphisms of vector bundles on P!:
if ¢ =apzl" "+ a1zl "z + o+ a2 € Hompr (Opi(n), Opi(m)) then we
have a commutative diagram

N n*(q) -

i7" Op1 (1) — i7" Op1 (m)
Cnl ((_DTS—naO 0 ) lgm

Co ® Co i Co ® Coe.

If the family {¢;} is understood, we shall often write 7*(¢) = (((—=1)™ "ao), (@m-n))-

Our next goal is to describe the category BM(E) from Definition 9.10. An object
of BM(FE) is a pair of matrices m(0) and m(co) simultaneously divided into blocks

(0) = Mo(0) ‘ Mo (0) (o0) — Moo(00) ‘ M (00)
(m_<MM®AM@>’ <)—<Mmm)mmm>'
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Two objects (m(0), m(c0)) and (m’(0), m’(c0)) of BM(E) are isomorphic if and only
if the corresponding blocks have the same sizes and there exist matrices

ro= (i) e = ()

and f such that

F(0)m(0) =m'(0)f,  F(c0)m(cc) = m'(c0)f.

In particular, we have the following isomorphism in the category BM(E):

(m(0), m(c0)) = (m(0)m(c0)~",id)

i.e. without loss of generality we may assume that the second matrix m(co) is the
identity matrix.

To illustrate how the explicit identification of vector bundles on E and objects of
BM(FE) works in practice, we shall now consider the simplest interesting case: the
description of Pic!(E). We explicitly determine for each y € E the object in Tri(E)
which corresponds to the line bundle Og(y).

The chosen coordinates provide us with an isomorphism C* 2 U := P!\ {0, 00}
mapping y € C* to (1 : y) € U. As FE is nodal, the normalization restricts to
an isomorphism 7 : P!\ {0,00} — E. Together, this gives us an identification
E = C*, under which y € C* corresponds to § := m(y) = (1 : y) € P*. Obviously,
™ (Op(y)) = Op1 () = Op1(1) and the following lemma is true.

Lemma 9.12. For the given choice of homogeneous coordinates on P' and the set
of trivializations {(; }1ez described above, we obtain for ally € E = C*

F(Op(y)) = (O (1).Cs, (). (1))).

Proof. Assume 7o, () =
TOE = F(OE) = (O]pl (C

mutative diagram

F(Or(y)) = (Om(1),Cs, ((A),(1))). It is clear that
,((1),(1))). Moreover, by Theorem 9.4 we have a com-

HomTri(E)<TC9E7 TOE(ZJ)) = HomE(OE7 OE<y))

Hompl (Opl, O[pl(]_)) Hompl (Opl, Opl (g))

ni (170 770.,)

The section z; —yzy € Homp: (OP1, Op (1)) generates the image of 7*, hence belongs
to the image of For. Using the description of morphisms in the category Tri(E) and
the evaluation rule 7*(z1 — yz0) = ((y), (1)), this is equivalent to the existence of a
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constant ¢ € C* making the following diagram commutative:

o)

CopCoo ——CoCy

10 A0
0 1 y 0 0 1
o)
CopCo —— Cy 8 C.
This implies that A = y and F(Og(y)) = (O (1), Cs, ((y), (1))). O

Our next goal is to describe the so-called Atiyah bundles.

Lemma 9.13. Let E be a nodal Weierstraf§ curve. Then there exists a unique
indecomposable semi-stable vector bundle A,, of rank n and degree 0 such that all its
Jordan-Hoélder factors are isomorphic to Og. This vector bundle is called the Atiyah
bundle of rank n and is given by the triple (Oﬁ,ﬁ, Cz, rTw), where

11 0 ... 0 10 0 ... 0
o1 1 ... 0 01 O 0
m0)=J,(1)=1] : + -~ - m(oo) =L, =| * + . -
0O 0 ... 1 1 0O 0 ... 1 0
0 0 0 1 00 ... 0 1

Proof. The category of semi-stable vector bundles with the Jordan-Holder factor Og
is equivalent to the category of finite-dimensional modules over C|[t]], see for example
[29, Theorem 1.1 and Lemma 1.7]. Therefore, there exists a unique indecomposable
vector bundle A,, of rank n recursively defined by the non-split exact sequences

0—A, — A1 — O —0 and A =0g.

In order to get a description of A,, in terms of triples, first observe that 7*A,, = Op,

hence F(A,) = (O, C?,m). The morphism m is given by two invertible matrices
m(0), m(o0) € GL,(C). If m" = (m’(0),m’(c0)) is another pair such that

m’(0) = S7'm(0)T, m'(c0) = S 'm(c0)T

with ST € GL,(C), then ( 5, CL, rT1’) and ( 5, C2, rﬁ) define isomorphic vector
bundles on E. We may, therefore, assume m(oco) = I,,. Keeping m(co) = I, un-
changed, the matrix m(0) can still be transformed to S7'm(0)S. Hence, m(0) splits
into a direct sum of Jordan blocks. Since the vector bundle A,, is indecomposable,
m(0) ~ J,(A) for some A € C*. From the condition Homg(A4,,,O) = C one can
easily deduce A = 1. 0
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Now we start to focus on simple vector bundles on a nodal Weierstrafl curve E.
We aim at giving a canonical form for those elements (V, N, m) in Tri(E) which
correspond to simple vector bundles on E under the functor F from Theorem 9.4.

Definition 9.14. Let E be a nodal cubic curve and n; > 0, ny > 0 integers. The
category MP4(n1,n2) is defined as follows.

e Its objects are invertible matrices with blocks M;; € Mat,; xn,(C)

My | Mys
M= .
(le M, )

e Morphisms are pairs of block matrices
Homwip, (1 ,n0) (M, M") = {(S,T) | SM = M'T},

with obvious composition and such that

A 0 A 0
S:<C”B) and TZ(C’”B)

have blocks of the same size as the blocks of M and M.
By MP?(n1,n,) we denote the full subcategory of simple* objects of MPq(ny,ns).

The proof of the following lemma is straightforward.

Lemma 9.15. Let VB"Y (E) be the category of vector bundles V € VB(E) such

ni,n2

that TV = Opt @ Op (1)"2. Then VB (EY and MP,q(ny,ns) are equivalent.

ni,n2

Proof. Let BM,, »,(E) be the full subcategory of BM(E) consisting of matrices,
whose diagonal blocks have sizes ny X n; and ns X ny. By Proposition 9.11 the
categories VBgLOl’}TBQ(E) and BM,,, ,,(EF) are equivalent. But it is easy to see that

sending and M € MP,4(ny,n2) to (M,id) € GL,, 1n,(O%) as an object in BM,,, ,,, (E)
with same block structure, is an equivalence. 0

Remark 9.16. If n, = 0 the block structure becomes invisible and we end up in
a situation of elementary linear algebra. Indeed, we have MP.q(n,0) = GL,(C)
and Homwp,,(n,0)(M, M') = {S | SM = M'S}. The indecomposable objects in this
category are precisely those which are isomorphic to a Jordan block J,(\), A € C*.
The endomorphism ring of J,,(\) is isomorphic to C[t]/¢". Hence, MP:,(n,0) = () if
n > 1 and MP;,4(1,0) = GL,(C) = C*.

We aim now at finding a canonical form for objects M € MP},(n1,n2). This means
that we wish to find in each isomorphism class of MP},(n1,n2) a unique object with
a particularly “simple” structure. We shall often say that we can “reduce” a matrix
M to a matrix N if M and N are isomorphic in MP; ;(ny,n2) and N has a “simpler”

4Simple objects of MP,q(n1,ny) are by definition the objects having only scalar endomorphisms.
They are sometimes called Schurian objects or bricks.
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form than M. The reduction procedure described below is based on the following
easy lemma.

Lemma 9.17. The block Mo has full rank, if M € MP;4(n1,ng) is simple.

Proof. If the matrix Mi5 does not have full rank, M can be reduced to the form

M, My|0 O
0 0|71 O
My My 0 Ms |’
Mg M, |0 DM;g
where My, Moy and Myy are split into blocks such that M; and Mg are square

matrices. As an object of MP,q(n1,n2), such a matrix has an endomorphism (S, 7)
with

M=

I 00 O I 010 0
0O 1|10 0 0 I 10 0
S=l73z0o7 0| =0 070
M800[ M1 MQOI

Since M is invertible, at least one of the matrices M; and M5 is not the zero matrix,
hence (S,T) is not a scalar multiple of the identity. This implies that M was not
simple. [l

Example 9.18. The triple (OPI ® Opi(1),C?, rTw) with

defines for any A € C* a simple vector bundle of rank 2 and degree 1 on E. The
corresponding matrix for this vector bundle is M 1(A) :== (9}) € MP,(1,1). O

Theorem 9.19. Let E be a nodal Weierstraf$ curve and denote by Spl(”’d)(E) the set
of all isomorphism classes of simple vector bundles of rank n and degree d on E. If
ged(n, d) = 1 the map det : Spl™?(E) — Pic’(E) = C* is bijective. If ged(n,d) > 1
we have Spl™?(E) = 0.

This result can be proven by various methods, see for example [17, Theorem 3.6]
for a description of simple vector bundles on E in terms of étale coverings. For the
reader’s convenience we shall outline another proof®, which is parallel to the case of
a cuspidal cubic curve [13].

Proof. First note that, without loss of generality, we may assume 0 < d < n. If
Spl™D(E) # () and V is a non-zero element of Spl™® (E) then, by Lemma 9.7,

F(V) = (031 @ O (1), €4, (M, id) ),

5This proof is due to Lesya Bodnarchuk.
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where no = d and n; = n —d. By Lemma 9.15 we have an equivalence Spl("’d)(E) =
MP: (n —d,d).

Assume first ny = 0 and ny > 1. In this case, we have seen in Remark 9.16
that MP24(n,0) = 0. This implies Spl™”(E) = § for n > 1. On the other hand,
SplM(E) = Pic’(E) ~ E.

For the rest of this proof we assume ny > 0. By Lemma 9.17, the block My of
M € MP:,(n1,n2) has maximal rank. If n; = ny this means that M, is invertible
and M can be reduced to the form

- (343

where X splits into a direct sum of Jordan blocks with non-zero eigenvalues. It is
easy to see that M is decomposable in MP,4(ny,n5) unless n; = ny = 1. Hence,
MP? (m,m) =0 if m > 1.

On the other hand, if n; # ny, we can reduce M to the form (because both n; > 0)

0 [T 0 M, M, |0
M, |0 My, | if ng >mny, orto 0 0 [I ] ifng>no.
Mjy [0 Ma, Mgy M;, [0

In both cases, the additional split of the blocks is made in such a way that M{; and
M), are square matrices. A straightforward calculation shows that

! M{l M{2
= (3
is an object of MP: (ny,ne — ny) or MP:,(ny — ng, ng) respectively. This implies
that, in case ny > nq, the fully faithful functor
MP? (n1,ng — ny) — MP: 4 (nq,n2)

which is defined on objects by sending

/ / 0 |I O
N' = ( %}1 %}2 ) to N= /[ N |0 N | €MPiy(ni,n2)
21 22 N§1 0 NéQ

and on morphisms by sending

A0 A 0
((D/ E) ) <D// E)) € HomMPzd(nl,ng—nl)(MlyN/)

A [0 0 Alo o0
NLDTA 0 |.| 0[4 0 € Homwips. (ny.ma) (M, N)
NLD'|D' E D'|D E

is in fact an equivalence of categories. Similarly, if ny > no, we obtain an equivalence

MP? (ny — ng,ng) — MP;  (n1,ns).
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If we start with any pair of positive integers n; # ny and continue to reduce the
size of the matrix in the way described above, we obtain an equivalence of cat-
egories MP?,(m,m) — MP; (ny,ny), where m = ged(ny,ng). Our assumption
Spl™¥(E) # § implies now ged(n, d) = ged(ny,ns) = 1 and our construction gives
us an equivalence

MPid(L 1) — MPfld(nl,ng).
Using Lemma 9.17 we see that each object in MP; (1, 1) is isomorphic to

for some A € C*. We consider M (\) to be the canonical form for objects in
MP:,(1,1). Its image under the equivalence MP; (1,1) — MP; (n1,ns2) constructed
above will be denoted by M,, »,(\). This is a canonical form for objects of the
category MP;,(n1,m2). An explicit description of M, »,(A) is given in Algorithm
9.20 below.

Observe now that isomorphic objects of MP:,(n1,n2) have the same determinant
and that the functor MP: (1,1) — MP: (n1,ns) respects the determinant up to a
sign which depends on (n;,ns) only. As a consequence, we see that M, ,,,(A\) =
My 5, (X) if and only if det(M,, o, (X)) = det(Mip, 4, (X)), which is equivalent to
A = N. Because we have

F(det(V)) = (Op1(ns), Cs, (det(M), 1))

for any V € Spl™®(E), we see now that det : Spl™¥(E) — Pic!(E) is bijective if
ged(n, d) = 1. O

Algorithm 9.20. For any pair of positive coprime integers (ni,ns), the simple
objects My, ny(A) € MP4(n1,n2) are described in the following way.

(1) First, we produce a sequence of pairs of coprime integers by replacing at each
step a pair (ng, ng) by (ny —ng, ny) if ny > ny and by (nq,ny —ny) if ng > ny.
We continue until we arrive at (1,1).

(2) Starting with the matrix M; () € MP;, from Example 9.18 we recur-
sively construct the matrix M, »,(A\) as follows. We follow the sequence
constructed in part (1) in reverse order and

e if we go from (mq,msg) to (my + mg, my) we proceed as follows

X Y| O

XY
Mm1,m2(/\) = (7‘W) = Mm1+m2,m2(>\) = 0 O H Iy
z W

0
e and similarly, if we go from (mq,ms) to (mq, my + msy) we set

M) = (17 = M) = | X e \V%
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Remark 9.21. From the construction it is clear that M, ,,(A) is an n x n-matrix
having exactly one non-zero entry in each column and each row. Exactly one of
these non-zero entries is equal to A € C* and this entry is found in the last row. All
the other non-zero entries are equal to 1.

Remark 9.22. Because simple vector bundles on Weierstrafl curves are stable ([20,

Cor. 4.5]), we have Spl™®(E) = M ,E;”’d) and Theorem 9.19 provides another proof
of the part of Theorem 6.1 which says that two stable vector bundles V; and V, of
the same rank on a nodal Weierstrafl curve are isomorphic if and only if det();) =
det(Vz)

Example 9.23. Let us apply Algorithm 9.20 to describe in terms of triples all
simple vector bundles on £ of rank 5 and degree 12. From earlier calculations we
see that the normalisation of such a bundle is V = Op1(2)? @ Op:1(3)?, in particular
(n1,m2) = (3,2). The sequence of reductions for sizes of matrices from the category

MP,q is:
(3,2) — (1,2) — (1, 1).
This induces a reverse sequence of functors
MPLa(1,1) — MP{4(1,2) — MP(4(3,2),

giving the following sequence of canonical forms:

01 0100

0l1 01 0 00 011 0
(T‘T)i—) 0/j0 1 J]—1 00001
A0 0 00 1/0 0

A0 0]0 O

Therefore, the set of stable vector bundles of rank 5 and degree 12 is described by
the family of triples (Op1(2)® @ Op1(3)?, C2, m), where

01 0[00
00 0[10

mO)=| 00 0[0 1], mo)=I
00 1[00
A0 0/0 0

Example 9.24. The indecomposable semi-stable vector bundles V of rank two and
degree zero, whose Jordan-Holder factors are locally free, are of the form £ ® As,
where L € PicO(E). Using Lemma 9.13 and compatibility with tensor products, we
see that they are described by the triples (Oz,,C2,m) € Tri(E), where

m(0) = AJy(1) = (g i) AeC and m(oo) =T, = <(1) ‘D .
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Lemma 9.25. Let A € C*, X = diag(ay, ag, ..., ) witho; € C*Li=1,...,n and
n=ny + ng, then XMy, n,(A) = My, (A1 - ... - @) as objects of MPq.

Proof. It is not hard to see that XM, ,,(\) € MP,q4 is again simple, hence it is
isomorphic to a canonical form M, ,,(A). This means that there exist invertible
matrices S = (4 %) and T = (4 2) such that M,, ,,(N) = ST XM, »,(M\)T.
Because det(S) = det(A) det(B) = det(7"), we obtain A" = Adet(X). O

Remark 9.26. If ny,n, are fixed and for each A € C there is given an object
M(\) € MP:,(n1,n2), we obtain simple vector bundles Vy of rank n = n; + ngy
on E such that F(Vy) & (Opf @ Op(1)"2,C"2, (M (X),id)). Similarly, for each
3 € C* there exists a unique line bundle L4 on E such that F(Lg) = (O, C, (5, 1)).
We say that the family M()\) is compatible with the action of the Jacobian, if
for all A\, € C* we have M(5"\) = SM()\). This implies, but is stronger than
Vgn)\ = ﬁg ® Vy.

Lemma 9.25 implies that the vector bundles V) given by the family M,, ,,(\)
satisfy Vgny = Lg ® Vy, but M, »,(A\) is not compatible with the action of the
Jacobian. However, if we replace all non-zero entries of M,, n,(\) by /X, some fixed
n-th root of A, we obtain an object Ny, »,(A) € MPyq(ny,ng) which is isomorphic to
My, 1y (X) and which is compatible with the action of the Jacobian: Ny, ., (6"\) =
BNy, ny(A). Another choice of ¥/X gives an isomorphic vector bundle.

Because there is no global choice of an n-th root, we define Nmm (t) := Ny, (t")
for all £ € C* in order to globalize this construction. Compatibility for this family
has now the form N, ,,(8t) = BNy, n,(t). As we shall see in Subsection 9.4, this
will give us a trivialization of a universal family of stable vector bundles compatible
with the action of Jacobian, necessary to construct a gauge transformation of the
geometric associative r-matrix depending on the difference of the vector bundle
spectral parameters.

If we apply this construction to the family of triples from Example 9.18, which
describe the simple vector bundles of rank 2 and degree 1, we obtain a family of
vector bundles described by triples (Op1 & Opi(1),C%, m) with

m(0) = Ny (\) = (%) AeC* and m(co) = (%%) .

This family of matrices is compatible with the action of Pic’(E). But for A and —\
we always obtain isomorphic vector bundles.

9.3. Vector bundles on a cuspidal Weierstrafl curve. We now recall an explicit
description of those objects in Tri(£) which correspond to simple vector bundles on
a cuspidal Weierstral curve F, following the approach of [13]. The exposition is
very similar to the nodal case and includes an algorithm producing a normal form



VECTOR BUNDLES AND YANG-BAXTER EQUATIONS 105

for such triples for each given rank and degree. Rank and degree of a simple vector
bundle on a cuspidal Weierstrafl curve also turn out to be coprime.

Let E be the cuspidal cubic curve, given by the equation zy? = z3. Its normali-
sation 7 : P! — F is given by m(20 : 2z1) = (2821 : 25 : 2}). With these coordinates
on P! the preimage of the singular point s = (0:0:1) € Fis 7 !(s) = (0: 1) = cc.
Then Z is the reduced point s € E with the structure sheaf C. Moreover, 7 is
non-reduced with support at co = (0 : 1) € P! and structure sheaf R = Cle]/e?.

The morphism 7 : Z — Z corresponds to the canonical ring homomorphism C — R.

Recall that w = zy/z; is a coordinate in the neighbourhood U, of the point
(0 : 1). The morphism 7 : Z — P! corresponds to the map evy_ : Op(Us) —
05(Us) = R, given by evy_(w) = e. Next, following the recipe of Remark 9.8 we
use the section p¢(zo, 21) = 21 € H?(Opi(1)) to define the collection of isomorphisms

l

G 7" Op1(l) — O3. They are given by the formula (;(s) = evy (i> for each open
~1

set V C Uy, alll € Z and any s € F(V, Opl(l)). A morphism
q=q(z0,21) = apzy" "+ arzy " e A G2 € Homp ((’)Pl(n), Op: (m))
is therefore evaluated according to the rule

N " (q) N
7*Op1(n) e, 7*Op1(m)

% icm

R
The following lemma shows how the explicit identification of m with a matrix is
carried out for line bundles of degree one.
The chosen coordinates provide us with an isomorphism C = U, = P! \ {co}
mapping y € C to (1 : y) € Uy. In the cuspidal case, the normalization restricts

am—n+tam—n—1€

to an isomorphism 7 : P!\ {00} — E. Together, this gives us an identification
E = C, under which y € C corresponds to § := 7 (y) = (1 : y) € PL.

Lemma 9.27. With respect to the given choice of homogeneous coordinates on P!
and the set of trivializations {( }1ez described above, we have for all y € E = C

F(Or(y)) = (Op(1),Cy, 1 — ye).

Proof. As in the case of a nodal cubic curve, because Og(y) is a line bundle of
degree one, we know T, () = F(Og(y)) = (Op:(1),Cs, (1 + Ae)) for some A € C
and To, = F(Og) = (Om,Cs,(1)). By Theorem 9.4 we have a commutative
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diagram

Hompg (Og, Og(y))

Jﬁ*

HOm]pl (O]}Dl , (9]}»1 (:lj)) .

Homyi(k) (TO, TOE(?J))

ForJ

Hom]pl (O]]:Dl, O]}Dl (1))

enj(v70 7170)

The section z; —yzo € Homp: (O]pl, Op (1)) generates the image of 7*, hence belongs
to the image of For and there exists ¢ € C such that the following diagram is

commutative:
R R
11 J{l-ﬁ-)\a
R R

This implies ¢ = 1, A = —y and F(O(y)) = (Om (1), Cs, (1 — ye)). O

&
—

1—ye
—

We aim now at giving a canonical form for those elements in Tri(£) which corre-
spond to simple vector bundles on E having rank n and degree d. Just as in the nodal
case, without loss of generality, we may assume 0 < d < n. Recall that VBS)l’}TZZ(E)
is the full subcategory of VB(O’l)(E), whose objects are vector bundles V with fixed
normalization 7%V =V = Opt @ Op1(1)"2. The category VB7(101’71722(E) is equivalent
to the full subcategory of Tri(E) whose objects (V, N, m) satisfy N 2 Cr+72 and
= Opi @ Op1(1)". Hence, these objects are described by an invertible matrix

m = my +em. € GL,, 1, (R). Note the following easy lemma.

Lemma 9.28. Let m = mg + em. be an element of Mat, «,(R), where mg,m. €
Mat, ., (C). Then the matriz m is invertible if and only if mg is. Moreover, in the
latter case we have: det(m) = det(mg) (1 + £ tr(my'm.)).

Next, two such matrices m, m" € GL,,, 1, (R) correspond to isomorphic vector bundles
if and only if there exist a matrix f € GL,,4n,(C) and an automorphism F of
Opt @ Op1(1)™ such that m" = 7*(F)~' o m o #*(f). For any m, using f = m;"
and F' = id, we find an equivalent matrix m’ with m{ = id. In order to reduce
m = id + em, further, we split m. into blocks (m.);; € Mat,,,»n,(C) and let

1 0
F= (o
( F21 Inz )

be the automorphism of V with Fy, = 20(Me)21 € Mat,,xn, (Clz0, 21]1). With this
choice of F and f = id, a straightforward calculation, which uses

70 = () e (o)
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shows that we can reduce m = id + em, further to the form

(I, | 0O My | Mis
m‘(o In2>+€< 0 | My )
Therefore, triples (Og} @ Op1(1)"2, Ctn2 rﬁ) with such m form a category which

(0,1)

is equivalent to VB,

(E). This motivates the following definition.
Definition 9.29. Let E be a cuspidal cubic curve and ny > 0, ny > 0 integers. The
category MP.,(n1,ny) is defined as follows.

e Its objects are “matrices” with three blocks M;; € Mat,, xn,(C)

~( My | My
M_< X ]\422)7

where X is an “empty” or “non-existing” block.
e Morphisms are given by “matrices”

HomMpCp(M, M/) = {S | SM = M/S} .

g; 522 ) has blocks of the

same size as the blocks of M and M’. The condition SM = M'S means that

SuMy = M5+ M{3S9
SuMis = M,S%
Sor Mg + SoaMay = My Saa,

in other words: we ignore the lower left block in SM and M’S.

As in the nodal case, we denote by MP; (ni,ns) the full subcategory of simple
objects of MP,(nq, ns).

with obvious composition and such that S = (

Remark 9.30. If ny = 0 the block structure and the non-existing block disappear
and we end up in a situation similar to the one described in Remark 9.16. Here we
have MP,(n,0) = Mat,»,,(C) and Homyp,, 0 (M, M') = {S| SM = M'S}. The
indecomposable objects in this category are precisely those which are isomorphic to
a Jordan block J,(A), A € C. As before, this implies MPZ (n,0) = () if n > 1 and
MP?,(1,0) = C.

Lemma 9.31. For any pair of non-negative integers (ny,ns) with ny > 0, the cat-
egories VBQ},QQ(E) and MP,(n1,n2) are equivalent. Under this equivalence, simple

vector bundles correspond to objects of MP? (n1,nz).

Proof. Sending M € MP{ (n1,n2) t0 In,4n, + €M € GLy, 14,(03), with inherited
block structure from M, gives an equivalence between MP? (n1,n2) and BM,,, ,,, (E).
The proof of the lemma is now completely parallel to the case of a nodal cubic curve
and is, therefore, left to the reader. O
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Next, we wish to find a canonical form for objects M € MP; (n1,ny). Similar to
the nodal case, in each isomorphism class of MPZ (n1,n2), we are going to describe a
unique object with a particularly “simple” structure. Again, the reduction procedure
described below is based on an easy lemma.

Lemma 9.32. The block My has full rank, if M € MP (n1,n2) is simple.

Proof. Just as in the nodal case (Lemma 9.17), if M5 does not have full rank, the
matrix M can be reduced to the form

My |My| 0| O
0] 0 I |0
X | x || Mg | My
X | x 0 | My

and we obtain a non-scalar endomorphism

M =

I |0 x|x
0 |1] x|x
=\ oTorr70 |
W10 0|I
where W is an arbitrary matrix of appropriate size. O

Example 9.33. For any A € C, the triple (OHDl ® Opi(1),C? rﬁ) with

) ER

o (212) (31

defines a simple vector bundle of rank 2 and degree 1 on a cuspidal cubic curve E.
It corresponds to Mi1(A) := (% §) € MPZ,(1,1).

Theorem 9.34 (see [13]). Let E be a cuspidal cubic curve and denote by Spl™® (E)
the set of all isomorphism classes of simple vector bundles of rank n and degree d
on E. If ged(n,d) = 1 the map det : SpI™D(E) — Pic(E) = C is bijective. If
ged(n, d) > 1 we have Spl™ P (E) = 0.

Proof. The proof very similar to the proof of Theorem 9.19. A first difference is that
if ny = ny, we can transform the matrix M € MP? (n,n) to the form

M= ( My | 1 > ’
x 10
because the block M, is square and invertible. We can further reduce the block M;

to its Jordan canonical form keeping the block M;s = [ unchanged. This implies
that M splits into a direct sum of objects of the form

( me\) Ién )
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which are simple in MP.,(m, m) if and only if m = 1.
The other difference is that a simple object M € MP,(n1,n2) can be reduced to

0| I 0 M, M, |0
M=\ x|M, M, | ifny>ny, orto M= 0 M |I | if ng>no.
x| 0 M x x |0

A straightforward calculation shows that the matrix

(M| M
M= ( X | M,
is an object of MPZ (n1,ny —ny) or MP? (n; — ng,ny) respectively and that
det(id + eM) = det(id + eM").

If ged(ni,n2) = 1, we end up with an equivalence MP7 (1,1) — MPZ (n1,7n2) just
as in the nodal case. Using Lemma 9.32 we see that each object in MP (1,1) is

isomorphic to
Al
Ml’l(A) == <7‘T> y )\ S (C

By definition, M, »,(\) € MPZ (n1,n2) denotes the image of M;;()\) under the
equivalence described above. Again, M, ,,(\) = My, n, (') in MPZ (11, n2) if and
only if A = X. From the identity det(id +M;1(\)) = 1+ &), the bijectivity of the

determinant map follows. 0

Remark 9.35. Reversing the reduction step in the proof of Theorem 9.34 gives us
an algorithm similar to Algorithm 9.20 which produces the matrix M, ,,,(\) starting
with M 1(A). The only non-zero diagonal element of M, ,,,(\) will be the moduli
parameter A € C, i.e. A = tr(M,, ,,(N)).

Lemma 9.36. Let A\ € C, A = diag(ay, g, ..., ) with a; € C and n = ny + na,
then A+ My, ny(AN) = My, oA+ a1 + a0+ - -+ + ) as objects of MP,,.

Proof. We proceed by induction on n, the size of the matrix M, ,,(A). The case
ny = ny = 1is an easy calculation. Assume the statement is true for all pairs (nq, ns)
of positive integers such that n; +ny < n. We shall deal with the case n; > ns, the
opposite case is similar and left to the reader.

From the proof of Theorem 9.34 we know that M, ,,()\) has the structure

My M, | 0 ' /
Mm,m(/\) = 0 M2,2 [nz so that Mm—m,m()‘) = ( ]\ill %}2 ) )
X X \ 0 22

with Mj,, MJ, being square matrices of sizes n; —ny and ns respectively. If we write

A = diag(ag, @2, -+ oy Qg o |0y g1y -+ -y Qg [ Qg 1, - - -5 ) = diag (A Ag] Ag),
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with A; being diagonal blocks, we obtain

M, + Ay M, 0
A+ My, (X)) = 0 M, + A | I,
X X | As

A straightforward calculation shows that the matrix

In,—n, O X
S = 0 I, | %
0 —As | I,

defines an isomorphism in the category MP.,(n1,ns) between A + M, ,,,(\) and

M{l + A M{Q 0
X X |0

The inductive hypothesis implies that M, _n, n,(A) + diag(A;| A2 + A3) is a simple
object of MP,(ny —ng, ny) which is isomorphic to My, _ny n,(A+ 01 +...+a,). This
implies that A+ M, n,(A) = My, ny( A+ a1 + ...+ ay) in MP,(n1,n2). It was not
possible to give a direct proof like for Lemma 9.25 in the nodal case, because it is
not obvious at the beginning that A + M, »,(\) € MP,, is again simple. O

Remark 9.37. This lemma implies that the object Ny, n,(A) € MP,(n1,n2), ob-
tained from M,, ,,(\) by replacing each diagonal entry by %, is isomorphic to
My, 0y (X) in MP (1, n2). Moreover, this matrix is compatible with the action of the
Jacobian in the sense that for all A, 5 € C we have 51, + Ny, n, (A) = Npy o (RB+N).
This is equivalent to (1 +€8)(L, + €N,y ny (X)) = L, + €Ny o (08 + ). The precise
meaning of this condition will be clarified in Subsection 9.4.

Remark 9.38. Because simple vector bundles on Weierstrafl curves are stable ([20,

Cor. 4.5]), we have Spl™¥(E) = M ,(En’d) and Theorem 9.34 provides another proof of
the part of Theorem 6.1 which says that two stable vector bundles V; and V5 of the
same rank on a cuspidal Weierstrafl curve are isomorphic if and only if det(V;) =
det(Vg).

Moreover, because the group Pic’(E) 2 C is torsion free and divisible, it follows
from det(V ® £) 2 det(V) ® L®" that the action of the Jacobian Pic’(E) on the set

M ]E;"’d) of stable vector bundles of rank n and degree d is simply transitive.

Example 9.39. The family of vector bundles on a cuspidal cubic curve, described
by the triples (Op: @ Op1(1), C2, m) with
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defines a universal family of stable vector bundles of rank 2 and degree 1. The family

of matrices
an,nz(/\) = <4‘7)

is compatible with the action of Pic’(E).

O NI
N> =

9.4. Universal families and their trivializations. The goal of this subsection
is an explicit description of a universal family on the moduli space of stable vector
bundles on a singular Weierstrafl cubic curve E.

For a reduced complex space B consider the Cartesian diagram

7 x B Je=xid piop

ﬁB:ﬁXidJ/ J/WB:WXid

ZxB ™" pxB
and abbreviate vp = g o) = np o . If B is a point we omit the subscript B in
the notation introduced.

Let us fix homogeneous coordinates (zp : 21) on P! and denote Opi,p(l) =
priOp (1), where pr; : P! x B — P! is the projection map. Let p = p(z0,21) €
H°(Op:1(1)) be a section, which is non-vanishing on Z. The recipe of Remark 9.8
gives a family of isomorphisms ¢ : 7*(Op1 (1)) — O. Pulling back to P! x B, we
obtain isomorphisms ¢ : 75 (Opi (1)) — O, 5 denoted for the sake of simplicity
by the same letters.

Let A = @D,z Orix5(1)™ be a vector bundle of rank n on P! x B. Then there

1 1 : A o=k n A . ~x A n
are induced isomorphisms ¢ : A — 07 5 and (7 Vs A — vp:O% o,

denoted again by the same letters. For any point b € B we have: Xb = .thlx v =
@D,z Opi(1)™. In a similar way, we obtain isomorphisms (A4 : i A, — O7 and
Ao V*ﬁ*jb — V*O%. Note that the isomorphisms ¢* and ¢4 are related by the
canonical base change diagrams.

Now we proceed with our construction of vector bundles on £ x B. We start
with an invertible matrix M € GL, (O3, z). If convenient, we may start instead
with a holomorphic function M : B — Mat,,(C), denoted by the same letter.
The corresponding element in GL,, (O3, z) will then be (M, id) in the nodal case and
1,, + €M in the cuspidal case (see Lemmas 9.15 and 9.31). For any point b € B we
denote by M(b) the corresponding matrix in GL,(Oz) or Mat, ., (C) respectively.
Following the notation of Subsection 9.1, we denote

. n can n vB« (M) n
m: Oy g — vp 0%, — vp.0%
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and let m be the unique map which makes the following diagram of isomorphisms
commutative:

n m ~ T ¢A n
OZXB \7754/ OZXB
M

In a similar way, let m, and m;, be the morphisms determined by the matrix M (b).
The following theorem is a mild generalization of Theorem 9.4.

Theorem 9.40. Let A = @iczO0p ()™ be a vector bundle of rank n on P, ( :
O(1)p |Z — Oj be the isomorphism induced by a section p = p¢(zo, 21) € HO(OPI (1)),

and A = ®1ezO0p1yg(1)™ be the pull-back of A to P* x B.

e Consider the coherent sheaf A on E X B given by the exact sequence

(p)

P T n (¢Am)
(34) 0—A—> 1. ADNB0O%,p

VB*O%XB — 0.

Then A € Coh(E x B) is locally free and for each b € B we have: Ay = Algxpy =
G(A‘Ex{b}, 07, ﬁ(b)), where G is the functor described in Theorem 9.4. In what
follows, we shall use the notation A = G(./Z(, 0%, . M).

o Let B = BrezOp1x(1)™ be a vector bundle of rank m onP'x B, N € GL,,,(O3, ),

vB«(N)

n:neO%, 5 —> v 07 , —— v 07 o and B = G(.Z, O?XB,?{). Then

B
Hompx (A, B) C Hompiy (A, B) X Matysn(Ozys)

consists of those pairs (F, f) for which the following diagram is commutative:

s — s T pA
ﬁB(f)J lﬁg(F)
B -
ZxB ~ N ‘ npB
— ,/ B

e Let f : B — B be a holomorphic map between reduced analytic spaces. Let
M'" € GL, (O3, 5) be the image of the matriz M under the morphism induced by
H(O3, 5) — H°(O3, ), which is gien by pull-back under f. Let A’ = (id x f)* A,
A = (id x f)*A etc. Then we have: A’ = G(./T’, By M), In other words, this

construction is compatible with base change.
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e Let N € HO(O*ZXB), L= Op1yp(c) for some c € Z and L = G(Z, OZXB,?T) be the
corresponding line bundle, i.e. we have an exact sequence

(4) (¢En)

00— L —% WB*E@ 77B>k(9Z><B - VB*OZXB — 0.

Then the following sequence is exact:

-
(plﬁjq) (¢A®2 mBn )

O—>A®£—>7TB*(.Z®E)@773* g — vp.0 — 0,

n
ZxXB

where the morphism m X n s induced by the matriz M - N, i X j is the morphism

Ao L 2 WB*.Z@ WB*E 22, B (.Z@ /3) and p X q s defined is a similar way.
This means that the tensor product of a vector bundle with a line bundle is given
by the product of the corresponding matrices. More generally, the tensor product of
two vector bundles corresponds to the tensor product of the defining matrices.

e Finally, we have the following short exact sequence:

— det A de
0 — detA— 7. det AP TIB*OZXB w VB*OZXB — 0,

where the morphism det(m) corresponds to the determinant det(M) € H°(O5, ).

Proof. To prove the first part of the statement, note that the sheaf VB*O%X 5 8
B-flat. Hence, for any point b € B the restriction of the sequence (34) to £ x {b}

(¢ m)

0 — Ay — m Ay 1.0 v.0% — 0,
is exact again. By Theorem 9.4 the coherent sheaf A, is locally free. Since B is
reduced, A is locally free, too.

~_The description of morphisms between A and B in terms of morphisms between
A and B and matrices M and N follows from the universal property of the kernel.

In order to show the base change property for G we use again that Z/B*O%X 5 s

flat over B. Let f =id x f : E x B' — E x B then the functor f* induces a short
exact sequence

() - F (A m
0— frA _(P_)_) [ (WB*A@ nB*ngB) << )
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Consider the following commutative diagram:

Ple’LPleL}Pl

Wl e |

ExB —1 pxp—"

| Jp@
!

B’ B

It implies that the base-change morphism f *TB*AV — g (id X f )*2( is an isomor-
phism. Indeed, it can be identified with the composition of isomorphisms

Jz:*TrB*JZ( = f~*7TB>kprT"‘i = f*prTW*A = 7TB/*(id X f)*pr*{.,i = 71-B’*(id X f)*,;(’

given by the flat base change. Denote A’ = (id x f)*.Z Then it is not difficult to
show that the following diagrams are commutative:

. ~ N g x Frim) g n
f*ﬂ-B*A%f VB*O%XB f*nB*O%XB f VB*OZXB

canJ lcan CaHJ/ lcan
¢

’

~ n n m n
g A >VB'*OZxBf n8O% ’ VB'*OZxB' )

in which the vertical morphisms are induced by the base change. This implies that
we have the following commutative diagram

B 7 i ~ N F* C“‘T m _

0 f*.A (p) £ (WB*A@UB*O%xB) ¥> f* (VB*O%XB) 0
~J( T l (CK, m’) (l)n

0 f*.A 7TB’*-/4 S5 nB’*ngB/ ——— VB ZxB T 0.

Finally, the compatibility of G with tensor products can be proven along similar
lines as in the absolute case, see [16, Kapitel 2] for more details. 0

It turns out that the description of simple vector bundles in terms of objects of
MP? (11, 12) and MP; (n1,ng) respectively, allows us to give an explicit description
of a universal family of stable vector bundles of rank n and degree d on nodal and
cuspidal Weierstrafl cubic curves.

Proposition 9.41. Let E be either a nodal or a cuspidal Weierstrafl cubic curve,
0 < d < n be coprime integers and G = C* if E is nodal and G = C if E is
cuspidal. If M : G — Mat,,«,,(C) is a holomorphic function such that the image of
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M contains exactly one representative of each isomorphism class in MP: (n — d, d)
or MP? (n — d,d) respectively, then

P =GO}, & Opixa(1)h, 0%, M)
18 a universal family of stable vector bundles of rank n and degree d on E.

Proof. By Lemma 9.15 and Lemma 9.31 and because each simple vector bundle is
stable ([20, Cor. 4.5]), for each stable vector bundle V of rank n and degree d there
exists a unique b € G such that V = P,

Let Q € VB(E x M gl’d)) be a universal family of stable vector bundles of rank
n and degree d on E. The universal property implies that there exists a unique
morphism f : G — Mgl’d) such that P = (id x f)*Q ® prjL. Restricting on
E x {b} shows that f(b) = [Ps], the point in M gl’d) which corresponds to the
isomorphism class of the vector bundle P,. Since Py, 2 Py, for by # by, the map f
is bijective. Because M ]E;"’d) is known to be smooth, bijectivity of f implies that f
is an isomorphism. Hence, the pair (G, P) represents the moduli functor. O

Corollary 9.42. Let E be a singular Weierstraf§ cubic curve, G = C* if E is nodal
and G = C if E is cuspidal, 0 < d < n be coprime integers, P = ngXdG@Oplxg(l)d,
and M be the canonical form from the proofs of Theorems 9.19 and 9.3/ respectively.
Then the coherent sheaf

P m

P = ker(ﬂG*ﬁ ®ne:Oppg — VG*O%XG)

is a uniwersal family of stable vector bundles of rank n and degree d on the curve E.

To construct a trivialization of a vector bundle A given by a matrix A € GL,, ((9 s G)
via the sequence (34), we pick a holomorphic section p = pe € H° (O]pl(l)) (in our
applications we shall have p = z1). This section induces a family of trivializations
{&:0pm(l)|g — 05}162’ compatible with tensor products, from which we obtain

isomorphisms &4 : ﬂ|,7xG — OF ., because A = @ Opiy(D)F. Here, U C P!

could be any subset on which p; does not vanish, but we shall assume UNnZz = 0,
which implies that 7¢|g,, : U x G — U x G is an isomorphism. Restricting the

sequence (34) to the open subset U x G C E x G, we obtain a trivialization £# of
the family A

TG (5“4) "
UxG-*

(35) ¢ Alpse — maAluxa
Remark 9.43. Note that in the construction of all our families of stable vector
bundles on a singular Weierstrafl cubic curve we have chosen two sections p¢, pe €
H° (Opl(l)). These choices are independent of each other! The section p. is used
to define a family A associated to a matrix A € GL, (OZXG)’ whereas pg is used to

trivialize it on U X G.
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Even though in our application of Theorem 9.44 we shall come back to the frame-
work of Section 7, we consider here a more general setting: J and M are arbi-
trary reduced complex spaces. We denote the canonical projections as before by
pEXIXM-—EXM,q:EXJXM-—EXJ p;:ZXJXxM-—ZxM

anqu:ZXJxM—>Z><J.

Theorem 9.44. Let 7 : Jx M — M be a flat morphism, 7 =idg x 7, 77 =idz x 7
and fir P € GL, (OZxM) and N € GLl(ngM) such that

(36) TLP = qyN - piP .

Denote by P € Mgl’d) and N € Pic°(E) the bundles defined by P and N respectively.
Let pe € H° (Opl(l)) be a section which gives trivializations £F of P on U x M and
EN of N on U x J.

Then there exists an isomorphism ¢ : ¢*N ® p*P — 7*P which is represented
by the identity with respect to the trivializations €7 and &N on U x J x M (compare
with Proposition 7.2).

Proof. The bundles P and N are defined by the short exact sequences

! ~ N n
OéNMWJ*N@nJ*OZXJ <<N )

Vs Ozyy — 0
and

(1) (¢”p)

0—P — WM*P S nM*ngM —> M*On - 07

where P = Dz Op1 (D)% and N = Opiys(c). Let P = D.er Op1 7 (DF and
N = Op1y 5 11(c). By Theorem 9.40 we have short exact sequences

~ % n <7 7 (p) n
0 — 7P — (Trxar)sP B 07500+ 0% scar 7o), Vi) O%, 5 o0p — 0,

¢” p*(p) n
0 — D P — (7TJ><M) P@ (77J><M) OZ><J><M (_—P_L (VJXM) ngij — 07

and

. N g*(n)
0 — ¢'N — (Txm)- N & (17x0)«Ozxrxm g (Vrxm)s Oz s — 0

Moreover, we also know that the sequence

0— q*N@p*P — (7TJ><M>*7/5 S (anM)*OgXJxM i (VJXM>*O%><J><M —0

is exact, where we abbreviated 5 = (¢? ¢*(n)®p*(p) ). Because 7 is flat, the morphism
7*(p) is induced by the matrix 72(P) and the morphism ¢*(n) X p*(p) by the matrix
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q5(N) - p5(P). Hence, using (36), we obtain a commutative diagram

. (¢? #+(m) on
(WJXM>*,P D (nJXM)*O%xeM <VJXM)* ZxJIxM

(6 %) id

~ (Cﬁ Q*(n)ﬁp*(p)) n
(7TJ><M>*P D (nJXM)*O%xeM <VJXM)*OZ><J><M

But this implies that we have an induced morphism ¢ : ¢*N ® p*P — 7*P.

It remains to verify that the isomorphism ¢ is the identity with respect to the
trivializations induced by &7 and ¢V. By Theorem 9.40, we have a commutative
diagram

7* (i) ~

id can
7:*73 (7-‘-J><M)>s<7/5
© id
" X 7" ()X (i) ~
¢ 7N @ p*marP

The key point is now that the trivializations 575 and 5/\7 are the pull backs of trivi-
alizations 55 : D Op ()M — Of and fgf : (’zpl(c)b — (’)q\, on P!. This implies
that the base-change morphism can : 7*(my)«P — (T7xm)«P is the identity with
respect to the trivializations ¢¥ and 7. It follows that, in these trivializations, the
isomorphism ¢ is the identity. 0

After choosing representing pairs (J?, L), (J,£) and (M, P) for the functors
Ed, Pic’ and MTEL’d, in Section 7 we have constructed a morphism 7: J x M — M.
To make this explicit, let G = C* if F is nodal and G = C if E is cuspidal. For
simplicity, we assume again 0 < d < n.

We define J = J% = M = G with universal bundles £® and £ both given by
(y,1d) in the nodal case and by 1 + €y in the cuspidal case. We define the universal
bundle P to be given by (M,,_44,1d) in the nodal case (proof of Theorem 9.19) and
1, + eM,,_4q in the cuspidal case (proof of Theorem 9.34). Universality was shown
in Corollary 9.42.
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Using the notation of diagram (25) in Section 7, we obtain now ¢ = idg and det =
+idg, the sign depending on (n,d) only. Moreover, because ((y1), (1)) ((12), (1)) =
((ylyg), (1)), the group structure on J = G is multiplication in the nodal case and
because (1 + y1€)(1 + y2e) = 1 + (y1 + y2€), the group structure is addition in the
cuspidal case. Therefore, 7 = ¢’ : G x G — G has the description 7(a,b) = a™b in
the nodal case and 7(a,b) = na + b in the cuspidal case.

We also consider the vector bundle P’ of rank n and degree d on G' x E, which
is given by (N,—_q4,1d) in the nodal case (Remark 9.26) and 1, + &N, _44 in the
cuspidal case (Remark 9.37). These were constructed in such a way that (36) holds
with respect to the morphism 7/ : G x G — G given by 7/(a,b) = ab (respectively
7'(a,b) = a+Db).

If f, : G — G is given by f,(t) = t™ in the nodal case and by f,(¢f) = nt in the
cuspidal case, we have (idg x f,) o7 = 7o (idgxs X fn), because J = G is abelian.

From Remark 9.26 and Remark 9.37 respectively, it is clear that (idg x f,)*P and
P’ are isomorphic after restriction to a fibre. This implies that these two bundles are
locally isomorphic (with respect to the basis G, which is reduced). Equivalently, up
to a twist by the pull-back of a line bundle on G, (idg X f,,)*P and P’ are isomorphic.
As G is a non-compact Riemann surface, we even get (idg x f,)*P = P’, but we do
not need this in the sequel.

Corollary 9.45. The morphism 7" and the bundles P’ and L satisfy the properties of
Theorem 9.44. Moreover, each point of G has an open neighbourhood M' C G such
that there exits an isomorphism ¢ : ¢*L Q@ p*Plesxixmr — TPlexsxmr, which is
represented by the identity with respect to the trivializations ¥ and €~ on U x J x M.

Proof. Because, up to a local isomorphism, 7 is isomorphic to addition of complex
numbers, it is flat. Now, the first statement is clear from the above. The prove the
second, chose a sufficiently small open neighbourhood M’ C G around a given point
on G such that f, restricted to M’ is an isomorphism and (idg X f,,)*P is isomorphic
to P’ over E x M'. Because qo (idgxs X fn) = q, po (idgxs X fn) = (idg X f,) op
and (idg x f,) o7 = To(idgxs X fn), with the aid of the isomorphism idgy s X f”‘M’
the claim follows from the first part of the corollary. 0

In the cuspidal case, f, is an isomorphism, hence we may choose M "= (. In the
nodal case, however, the matrix N, ,, does not descent to M = G, as it involves
taking n-th roots; f,, is an unramified n-fold cover. Therefore, the isomorphism ¢
exists only locally on M in this case.

Remark 9.46. The map = — Og(x) gives a canonical isomorphism E — Picl,.
Let e € E be the point which has coordinate z = 1 in the nodal case (Subsection
9.2) and z = 0 in the cuspidal case (Subsection 9.3). This point corresponds to

the neutral element of .J under the isomorphisms £ <=5 J! L (see Section 7).
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This isomorphism and our choice of the representing pair (J, £) with J = G induce
coordinates on E.

Lemma 9.12 shows that these coordinates coincide with the ones induced by the
coordinates on P! and the normalization morphism P!\ Z —— E. However, by
Lemma 9.27 we see that in the case of a cuspidal curve these two choices are different;
they are related by the involution of C mapping z to —z.

Remark 9.47. If (n,d) € Z* x Z are coprime integers, we let ¢ be the unique
integer for which n; = (1 +¢)n —d > 0 and ny = d — cn > 0. With the aid of the
equivalence between VBgfl”C;;l)(E) and VBflol”l,L(E), given by the tensor product with
Og(ce), it can be shown that all the results of this section are also valid for such

pairs (n,d).

10. COMPUTATIONS OF 7-MATRICES FOR SINGULAR WEIERSTRASS CURVES

Let E be a singular Weierstrafl cubic curve, Qg the sheaf of regular holomorphic
1-forms, w € HY(Qg) a no-where vanishing global section. As usual, for a pair

of coprime integers (n,d) € Z* X Z, let M = M ,E;”’d) be the moduli space of stable
holomorphic vector bundles of rank n and degree d on E, P = P(n,d) € VB(E x M)
be a universal family and ¥ : P|yxar — O|%., 0 its trivialization, as constructed
in the previous section. Recall that these data define the germ of a meromorphic
function

7 =7 (M x M x E x E,0) — Mat,x,(C) ® Mat,,,(C),

whose value at the point (vq,v9;91,¥2), where v; # vy and y; # o, is defined
via the commutative diagram (31). Our next goal is to get explicit formulae to
calculate the morphisms res)™ """ (w) and eviy VPP W) p the case of nodal and
cuspidal Weierstrafl cubic curves. To do this, we consider first the case of vector

bundles on a projective line P!.

10.1. Residue and evaluation morphisms on P!. Let (2 : z;) be homogeneous
coordinates on P', 0 = (1:0) and U = {(z0 : 21)|z # 0}. Let z = ;—(1] be a local

coordinate on U. In what follows, we shall use the identification C =U mapping
re€Cto(l:x)eU.

Let V =,y Or (§)™ and W = @, Op: (i)™ be a pair of vector bundles on P
of ranks n and m respectively. Then a morphism F' € Homp:(V, W) can be written
in matrix form: F' = (Fj;), where Fj; € Mat,,, xn, ((C[zo, Zl]i—j)-

Consider the set of trivializations {& COp (D)l — OU}ZGZ mapping a local
p
Zlu
& Vjy — 0% and & : W]y — O, Let 2,y € U and w be a meromorphic

section p of Op:i(l) to the holomorphic function . They induce trivializations
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differential form on P! holomorphic at z. Let £ be the morphism

£V id n can ~np
Ve C, — O ® C, — CZ;

the morphism £ is defined in a similar way. Our goal is to get explicit formulae to
calculate the morphisms:

resy " (w) &v.em)

Home: (V, W(z)) “2— Homp (V ® C,, W @ C,) 2220,

and

Mat,, ., (C)

evy M) enj(8”.£W

Homg: (V, W(z)) ——— Homp: (V ® C,, W ® C,) DEL ), Matyen(C).

Let 0 = 21 — 229 € H°(Opi1(1)) be a section such that div(c) = [z]. Then o defines
an isomorphism Opi (1) — Opi(z) mapping a global section p = p(2g, z1) to the
meromorphic function g. Moreover, it induces an isomorphism

ty : Homp (W, W(1)) — Homg: (V, W(z)).
Let V' = V|y and W' = W|y. By Proposition 4.8 we have a commutative diagram

vV, W w
Home: (V, W(z)) —— =0 Homp (V© C,, W ® C,)
can can
res};,’wl (w)

Homy (V', W'(x)) Homy (V' @ C,, W' @ C,)
enj(¢¥, €7 (@) enj(8v, )
Homy (OF, 07 () rese () Homy (Cr, C7)

can can

Mat,,x, (O(2))

resg (w)

Mat,,«»(C),

where O(z) denotes the vector space of meromorphic functions on U which have at
most a pole of order one at x. Let T" be the composition

enj(e¥, % (@)
—_

Homp: (V, W(1)) 7, Homp: (V. W(x)) Mat,,x,, (O(2)).

Then we have the following result: if ' € Homp: (V,W(1)) then T(F) =
Let w = g(z)dz then by Lemma 4.5 we have:

F(1,2)

zZ—=X "

resx(w)<M> =g(z)F(1,z).

z—x
Corollary 10.1. In the above notation, the morphism

Tes, :=resy(w) o T': Homp: (V, W(1)) — Mat,,x,,(C)
has the following form.:
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o if w= % then F(zg,z1) is mapped to %F(l,x);
e if w=dz then F(zy, 2 ) is mapped to F(1, ).

In a similar way, we compute the morphism ev;j’w(x). Indeed, by Proposition 4.12
we have a commutative diagram

evv’W(z)
Homg: (V, W(z)) 2 Homg: (V @ C,, W @ C,)
can evleWl(w) can

Homy (V, W' (x)) Homy (V' @ C,, W @ C,)
enj (¢V, ¢V () enj(€V,0)

Homy (OF, O (x)) S Homy (C2, CI)

can can

Matmxn(O(aj)) Mat,,«,(C)

evy

and for A(z) € Maty,x, (O(z)) we have ev, (A(z)) = A(y).
Corollary 10.2. In the above notations, the morphism
:=evy, oT: Homp (V,W(1)) — Mat,,x,,(C)

€vy

maps a matriz F(zy, z1) € Homp: (V, W(1)) to m 1 =F(1,y).

Remark 10.3. The above morphisms can be included into the following diagram:

HOm]pl (V, W(l))

lo
evy

Homp: (V, W(z))

Teésy

resg (w) eVy

Mat,,«n(C) Mat, 5, (C)

In particular, the linear maps tes, and v, depend on the choice of a section o €
HO° (Oﬂm(l)) vanishing at x: such a ¢ is determined uniquely only up to a non-zero
constant. However, as we shall see below, this choice does not affect the final formula

to compute the triple Massey product 7" P (w) on a cubic curve.
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10.2. Residue and evaluations maps on singular Weierstrafl curves. Let FE
be a singular Weierstrafl cubic curve, s € F its unique singular point, 7 : P! — E
normalization of E. We choose homogeneous coordinates on F in such a way that
7 s) ={(0:1),(1:0)}if E is nodal and 7~1(s) = {(0: 1)} if E is cuspidal. Let
E be the regular part of E then the isomorphism 7 : P*\ 7~ !(s) — E induces local
coordinates on E. In what follows, we shall identify a point y € E = G with its
preimage § = (1 :y) € PL. Let 0 < d < n be a pair of mutually prime integers and
P € VB(E x M) a universal family of stable vector bundles of rank n and degree d
on E. Recall that for v; # vo € M and y; # ys € E we have a commutative diagram

Hompg (73”1 |y, P2 \yl) L Homp: (W*P”l |y, TP ‘271)
resp, P (wﬁ Tresgfpvl P2 (5)
Hompg (P, P2(y1)) L Homp: (m* PV, m* P2 (7))
evzl);l ’7’”2(?/1{ Jevg;ﬂpvl’“ww(gl)
Hompg (P”l ®Cy,, P2 ® (Cyz) -~ Homp: (W*P”l | o, TPV |g2)

PUL 7PU2 (yl)

PP (W) and evy, can

In particular, the computation of the morphisms res,

be reduced to an analogous computation on P!

Let E' and M’ be open neighbourhoods of e € E and m € M, £ : Plpxyr —
O% p be a trivialization of the universal family P which is compatible with the
action of the Jacobian. For v € M’ let P¥ = P|gx, and £ be the induced trivializa-
tion &Y : PP|p — O%,. Next, for y € E' let (¥ be the corresponding isomorphism
P @ C, — C}. Our goal is to compute the value of the geometric r-matrix ré
at the point (vy, vo;y1,%2). This linear morphism 7 (vy, vo; y1, ¥o) is defined via the
commutative diagram

cnj 5_1’1’5_”2
Homp (P © Cyy, P @ Cy,) 1 ) Mat,,xn (C)

FZU,.}/;% (W)J( o lfﬁ (v1,v2;91,Y2)
enj(£11,802)
HOI’T1E(7)U1 &® Cyzu PUQ ® Cyz) Matnxn(C).

Let P = O @04, (1) and P be the pull-back of P to P x M. Let ¢; : Opi (1)]3 —
O3 be the isomorphism used in Section 9 in the construction of the category Tri(E).

Recall that the universal family P = P(n, d) was defined using the following short
exact sequence

i . 73m
0—7P (L>> TP @ O 0 (&), vt O%, 0 — 0,
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In particular, the trivialization 573 ; 73|UX v — Oy induces the trivialization

P i 5 & on
5 :P|E'><M’ —>7TM*7)|E’><M’ — O I« M+
Moreover, by Theorem 9.4 we know that the morphism

7T*(i) ~ can

PP P 2 P

is an isomorphism. Hence, we have the following commutative diagram

cnjom*

Homg (P" ® Cyy, P2 @ Cyy) Homp1 (P @ Cy,, P ® Cy,)
enj(g1, €72 m
Matnxn resgy
7”;)1”1,27’1)2( ) 7 (v1,v2;91,y2) HZ}’UQ
Matan evL-,Q
» v cnjom*
Hompg (Pt @ Cy,, P*> @ Cy,) Homp:1 (P @ Cy,, P @ Cy,)

cnj ( V1, V2 (yl))

where IT)1"2 = Im(HomE(P”l,P“2 (1)) Homp: (ﬁj;(ﬂl)))
The morphisms resg, : II}1"2 — Homp: (P @ Cy, P ®Cy,) and evy, : I, —

Homp: (75 ® Cy,, P® Cj,) are isomorphisms. Hence, in order to compute the linear
map 7 (v, va; Y1, 42), it suffices to get explicit formulae for the morphisms

Homg: (P ® Cgl,,ﬁ ®Cy) TN I 27, Homp: (P Cy,, P Cy,)-

Consider the short exact sequence

i
0 — Ogr(1) M 7. (Op1 (1)) & 1.0z ), Oz — 0.

By Theorem 9.4 we know that the morphism
i+ On(G1) = 7 (Op(m1)) =2 77,081 (1) < Opi (1)
is an isomorphism. Let o = j(1) € H°(Op (1)). Then the morphism
t, : Homp: (ﬁ,ﬁ(l)) — Homp: (ﬁﬂs(yl))
introduced in Subsection 10.1 is the inverse of the morphism

j« : Homp: (ﬁ,ﬁ(yl)) — Homp: (ﬁ,ﬁ(l))
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induced by j. Consider the short exact sequence

(qv2) (¢ mva))

— P 2L P @O 0% — 0

We know that the sequence

wr v (B~ (P m) n
0 — P”(y) — mP(1) ©n0y —— 1.0% — 0

is exact, where k is the morphism P2 @ Og(y;) D8 s P 7, O0p (1) =5, (75(1))
and m corresponds to the tensor product of matrices m(vy) and n.

Lemma 10.4. In the above notation, the following diagram is commutative:

PU? yl

Proof. This follows from the definition of the morphism k£ and the fact that the
diagram

m*(can) ~

™ (P(y1)) » P @ O (1) m*mP(1)

7* (can)®@m* (can) ~

P @ Op1 (1) 1, P @ 71, Op (1) P @ Opi(1)

is commutative. O

Using Lemma 10.2, we obtain the following result.

Proposition 10.5. The following diagram is commutative:

HomT,i(E) (Tpv1,T7>v2(y1)) For Hom]p1 7) )
o| J
cnj(ivl |v2( )
Hom (P, P2 (y,)) i(F ) or Home: (P, P(§1)).

where Tpo = F(P?) for allv e M.
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Proof. First note that by Theorem 9.4 the diagram

Homiice) (Tpws s Tz )

cnj (T“l,ﬁ) om* -

Hompg (P, P2(y1)) Homg: (P, P(1))

is commutative. By Lemma 10.2 the diagram

Hompg ('Pv1 ) pre (y1))

enj (1,72 (31) ) o

Homp: (ﬁ, 75(@1)) Homp: (ﬁ, ﬁ(l))

is commutative, too. Patching both diagrams together and using that j, = t-1 we
get the claim. O
Corollary 10.6. Let ﬁ;ﬁ’vz = Im(HomTri(E) (T’Pl’l,TPU2(yl)) For, Homp: (ﬁ,ﬁ(l)))
Then the following diagram is commutative:

fivtes 5 Homg: (P, P(1))

t{ }g

HZ?UQ [ HOm]}D1 (757 ﬁ(?jl))

Collecting everything together, we get the following algorithm for computing asso-
ciative r—-matrices coming from a singular Weierestrafl cubic curve E.

Algorithm 10.7. Let w € H*(Q;") ¢ HO(Qp") be the global regular differential

one form on P! equal to & if Fis nodal and dz if F' is cuspidal. The linear morphism
z
7 (v1, v2; Y1, y2) can be computed in the following way.
e Compute the vector space ﬁz;m C Homp (75, 73(1))
e Consider the morphism Tes,, : Homp: (ﬁ,ﬁ(l)) — Mat,,»,,(C) given by
lF(l,yl) if E is nodal

ﬁyl(F) = Y1 . . .
F(1,y1) if E is cuspidal.
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e If F is either nodal or cuspidal, we set ev,, : Homp: (ﬁ, ﬁ(l)) — Mat, ., (C)
to be given by the formula

1

Wyz(F) = Ys — U1

F(l,yQ)

e The linear morphism 7 (vy, vo; 91, %2) © Matyxn(C) — Mat,,(C) can be
computed as the composition

—1
I’eSy1

Mat,,xn(C) —25 TI2%2 %2 Mat,, ., (C).
10.3. A trigonometric solution obtained from a nodal cubic curve. Let E
be a nodal Weierstrafl cubic curve. In this subsection we calculate the associative r-
matrices corresponding to the moduli spaces of rank two (semi-)stable vector bundles
on a nodal Weierstrafl curve. We use the notation from Subsection 9.2.

We start with the case of the moduli space of stable vector bundles of rank 2
and degree 1, M = M ](52’1) = C*. It is convenient to use the local homeomorphism
o : C* — C* given by o(z) = 2%, because, according to Example 9.18 and Remark
9.26, the family of stable vector bundles (1 x ¢)*P(2,1) is then given by the triple
(Op1 ® Op1 (1), C2, m), where

m(()):(g)\ 3),Ae@* and m(oo):<(1] (1’)

Our goal is to compute the map
b o Y
)= (5 ¢)

Step 1. In order to calculate the entries o, 1,7, & we first need to describe the
subspace I1)1** C Homp: (Op1 & Op1 (1), Op1 (1) & Op1(2)). Following the recipe of
Subsection 9.2, we take the section p; = 21 — 2z, to evaluate a morphism

Y1,Y2

o

a'zy+ad' % t

F= ( b/Zg—Fb//ZoZl +b///2% d/20+d//21 ) € HomIP’1 (Opl@OPl(l)aOPl(l)@OP’l@))'

This gives the following evaluation rule:
—a ot a’ ot
F(O):( % _d/)7 F(OO):(b/// d//>-

From the definition of the category of triples we see that F belongs to Hy;\llv)‘Q if
and only if there exists a matrix ¢ € Matyyo(C) making the following diagram
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commutative:

C3 @ CZ, Cie CZ,

CiaC% CioC

This is equivalent to the equations:

0 A 0 A
F(oo) =¢ and F(O)<)\1 01):()\2% %yl)gp

Taking a”,b",b", d" as free variables and solving the above system we get

ad = —dpd

d = —dyad”

t = Ayd”

Vo= ()", where \ = %
1

Step 2. Next, the equation Tes,, (F) = < CCL Z ) reads as

a +a"y t B a b
b/_|_b//y1 +b”’yf d’+d”y1 =MW c d .

From this we obtain

.
A
a = - 11_y1)\2 (d+ \a)
@ = —L(at )
Vo= M2
o= o — )\2)—\1— 11/15
- lb
A A
1 __AY1
d 11_ 32 (a+ \d)
d" = m(d + )\CL)
t = ylb
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Step 3. By the formula for the evaluation map we get:
_ 1 a +a"y, t Lo 9
evy,(F)=—— = - ,
y2( ) Yo — U ( b/ + b//y2 + b///yg d/ + d//y2 y n f

where we denote )
Yo — A y1a+>\(y2—y1)d

L Y 1— 22

w = Z/lb )
Ay2 —y1) |y — Ny

f - 1_)\2 a+ 21_)\2 d

| - (y2—y1)(g2—ky1)b+y20

In order to calculate the corresponding solution of the associative Yang-Baxter
equation we use the inverse of the canonical isomorphism

Matgxz(C) X Matgxg(C) — Lin(Matgxg(C), Matgxg(C))
given by X ® Y +— tr(X o —)Y. It is easy to see that under this inverse
Lin(MatQXQ((C), Mat2X2<C)) — Matgxg(c> & Matzxg(C)

a linear function e;; — afjekl, afjl € C corresponds to the tensor afjleﬂ ® ey;. Having

this rule in mind we obtain the desired associative r—matrix:

—\2 A
(A Y1, Y2) = (v yzy )(13/1 \2) (e11 ® €11 + €22 ® €99) +1—)\2(€11 ® €99 + €92 ® €11)
2 — Y1 )L — -
— )2
+ i €21 ® €10 + Y2 €12 ® €91 + ufim ® eo1.
Y2 — Y2 — Y1 A

The gauge transformation ¢(z) = ¢(; z) : (C?,0) — Aut(Mat,(C)) (see Definition

2.5) given by
(ea)= (o)) (%)

yields the transformation

ei ®ej; — e; ®ejj, 1,7 € {1,2}
w2
1

SSY8

€21 ¥ e1g — €21 & €12

€12 @ €91 — —g; €12 ¥ ea1
1
e €91 — ——¢ €91.
21 @ e91 7175 €21 @ €21
Thus, we end up with the solution

—\? A
r(Ay) = (v _y1>(1 ) (e11 ® €11 + €22 ® €g) + m(en ® €92 + €22 ® €11)+
Y y oA
+ (€12 ® €91 + €21 @ €12) + (\/—— — —> €91 & €21,
y—1 Ay
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where y = @. Using the notation 1 = ej; + eg9, this can be rewritten as

Y
(A y) = T+ ——(en G ent + o2 ® ex) (11 @ 22 + e ® e11)
r = -
Y 12 y_1€11 €11 T €22 &) €22 )\+1611 €22 T €22 & €11
Yy y oA
+ (612®621+€21®612)+(\/————)621@)621-
y—1 A VY

This is a solution of the associative Yang—Baxter equation of type (10), and by
Theorem 2.15 this tensor also satisfies the quantum Yang—Baxter equation.
In order to rewrite r(\;y) in the additive form, we make the change of variables
= exp(2iz), A = exp(iv). Making a gauge transformation we can multiply the
tensor eg; ® e with an arbitrary scalar without changing the coefficients of the
other tensors. Therefore, we obtain

D0, 2) sin(z+v)( @ en +em ®en) + 1( © e + e ® ex )+
Pirg(V,2) = ——————2 (e e e o . . . . .
trg sin(z) sin(v) 11 11 22 22 Sin(o) 11 22 T €22 11
——(e12 ® €21 + 21 ® e12) + sin(z + v)ea @ ear.
sin(z)
Up to a scalar, the corresponding solution 7(z) := lim,_o(pr ® pr)r(v;z) of the

classical Yang—Baxter equation is the trigonometric solution of Cherednik:

1
Ttrg(2) = 5 cot(z)h ® h +

- (12 ® €91 + €91 ® e12) + sin(2)eg ® eo.
sin(z)

10.4. Trigonometric solutions coming from semi-stable vector bundles.
Our next goal is to construct a solution 7(v; y) of the associative Yang-Baxter equa-
tion (8) having a higher-order pole with respect to v. The triple ((9]%1, C?, m) with

- (3 3)ree o mor- (3 ])

describes a universal family of semi-stable indecomposable vector bundles of rank
two and degree one, having locally free Jordan-Holder factors.

Step 1. First we compute the subspace H;‘f’)‘Q C Homp (Opl ®Op1, Op1 (1) DOp1 (1))
Recall that for a morphism

P ( azg+adz Vz+0'%

C/ZO —I— CI/Zl dIZO _|_ d//Zl ) E Hompl (Opl @ O]:[Dl, O]Pl(l) @ OIPI(]_))

we take the evaluation rule induced by the section ps = 21 — zo:

/ b/ " b//
F(0) = —F := - ( Y ) F(oo) = F" := ( Y ) .
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Thus, F belongs to IT)**2 if and only if we have
AAL Y e A
F@)(O A1>_( ) o).
This implies that

/!

" nan
F = —\p F” +Ay1( a +g d ).

—c
0
Step 2. The equation Tes,, (F) = y; ( . ) reads F' + y F” = ( ﬁ Z )

Solving this equation we obtain

( a’ = ! a -+ A c
ol (1=))2
A 1 AA+1) A
b= b— d
1IAQ+1—A 123" 1-2
/! _
C __1_A§ 1
d = - d.
\ T 1o
Step 3. From the formula &v,,(F) = (F" + y2 F") we obtain:
- Y2 — W
(2570
wwe\cd) " \n ¢)
where
( p= y—A a A c
(=D =2 (1-=4)
y -
n= c
(y =11 =A)
§=— A c+ y—A d
G- o na-n
A y— A A1+ N) A
= — b— d
S (R Ve R T (R VAR R
and y = %2 , A= & Hence, we obtain the associative r—-matrix
Y1’ 1
r(A\y) = y—A (e11 ® €11 + €22 @ €22 + €21 ® €12 + €12 @ €21) +
; UEE DY 11 @ €11+ €2 @ e + €21 @ e12 + €12 @ €2
A1+ A
+(1 ) (2®@h—h®e) — Heu ® e12-
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Denoting y = exp(2iz), A = exp(—2iv) and making a gauge transformation
€11 > €11, €2 = €92, €12 — 2€12 and egy 5621

we finally end up with an associative r—matrix

(v;2) = B+ ) (€11 ® €11 + €20 ® €3 + €21 @ €13 + €15 ® €97)
ruw,2) = ——————\€ (& (& e e (& e (&
) 2Sin<2) Sin('l}) 11 11 22 22 21 12 12 21
1 cos(v)
+ ———(612 ® h — h R e — ——=—=€19 ® eq9.
2sin2(v)( . ) sin?(v)

Remark 10.8. Since lir% (pr®pr(r(v; z))) does not exist, the family of indecompos-
able semi-stable vector bundles of rank two and degree zero on a nodal Weierstraf3

curve F, whose Jordan-Holder factors are locally free, does not give a solution of
the classical Yang—Baxter equation.

10.5. A rational solution obtained from a cuspidal cubic curve. In this sub-
section we shall calculate the rational solution of the classical Yang—Baxter equation,
obtained from a universal family of stable vector bundles of rank 2 and degree 1 on
a cuspidal cubic curve. In terms of Subsection 9.3 the universal family is described
by the family of triples (O]pl @ Opi(1),C?, m), where

0 Al
1)~|—5(O)\),)\E(C.
As in the previous subsection, let

a b © P e [ @b
(C d)EMat2X2<C) and (77 §>:T217;2(c d)

Step 1. Again, we start by calculating the linear subspace H;ll”\z C Homp: (O[[Dl S
Op1(1), Opi(1) ® Op1(2)). Recall that, in the case of a cuspidal curve, a morphism

O =

m:mo—i—gmaz(

F = a/20+a/lzl ¢ € Hom 1(@1@0 1(1) 01(1)@0 1(2))
b’zg—i—b“zozl +b///Z% d/Zo—l—d,/Zl P P P )y VP P

is evaluated on the analytic subspace Z using the section p. = z;. This gives the
following evaluation rule:

Fe a’+de t
b/// + b//€ d// +d/€ .
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From the definition of the category Tri( E) we see that F' belongs to H;\MZ if and only
if there exists a matrix f € Matgy2(C) making the following diagram commutative

a’ ot a 0
b/// d// +€ b// d/

R? R?

10\ (N 1 1 0\ (ho—y 1
(0 1)*5(0 >\1> (o 1)+5( 0 Ag—y1>

R2

R2

where R = C[e]/e?. This leads to the equality

a 0 N a’ t ALY Ae—w 1 a’ t
b// d/ b/// d// O )\1 - O )\2 _ yl b/// d// .

Taking a”, 0/, 0" and t as free variables we obtain

a = ()\ _ y1)a” v

b = ()\ _ yl)b”/

d = ()\ o y1)a" —_yr — ()\ _ yl)Qt
d"=a" — (\N—y)t.

Step 2. By the formula for the residue map res,, we have:

_ B a +a"y t _fa b
resyl(F) - (b/_'_b//yl —i—b”’y% d’+d”y1 - c d

from which we get:

/

t = b
1 )\—yl 1
noo_ b —d
¢ ot 2 o
A A A — A
yo— A M), A
) A )2 1 ?
wo_ L AMA=y), 1
L 2a 5 b 2d

Step 3. Since the formula for the map ev,, is given by:

o d + "y, t _Lfew
n(F) = Yo — 1 ( O+ by+ 0"y d+d'ys ) y\n ¢
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we obtain:
)
o Y2 — (A —=y1)(y2 — 1) Y2 —
e =(1+ ) Ja + 5 b+ ) d
b o=t
— — A AN — A —
n _ (e yl)(’y22 %t )a_ (A = w)( 42‘?J2)(y2 y1>b+
Lo (?/2_y1;()\+y2)d
o=y (e —y)y =N Y2 — U
\ £ o a 5 b+ 1+ o d

From this we get the following associative r-matrix:

1
37) r(\ vy, =—1®1+
(37) (A 92) = 53 —

(611 K e11 + e K eg+e1pQ e + 691 X 612) +

AN — A+
h® ey — ( y12)( ) e21 ® e1.
Projecting this matrix to sl(C) ® sly(C) we obtain the rational solution of the

classical Yang—Baxter equation

A=

+ €21 @ h +

1
(38) T(y1,10) = “h@h+en®en +en@en |+ %h & €91 — 2621 ® h,
2

Y2 —y1 \2 2
found for the first time by Stolin in [62]. It is easy to check that 7(yi,ys) does
not have infinitesimal symmetries, hence by Theorem 2.15 the tensor r(\,y1,y2)
satisfies the Quantum Yang—Baxter equation. This solution was recently found by
Khoroshkin, Stolin and Tolstoy [39].

Remark 10.9. By a result of Belavin and Drinfeld [9] it is known that the r—matrix
(38) is equivalent to a solution depending on the difference of spectral parameters.
However, we were not able to find the corresponding gauge transformation in the
literature and the following form of Stolin’s solution seems to be new. Consider the
gauge transformation ¢ : (C,0) — AUt(ﬁ[g(C)) given by the formula

2 1 4

o(y)h = h — 2y%ea1, @(y)ern = —%h + 162~ %621 and  ¢(y)ea = de.

Then we have: (gb(yl) & qb(yz))r(yl, Y2) = s(y2 — 1), where

1/1
(39) s(y) = §<§h® h+ €12 X €91 + €91 ®612> +y(621 X h—|— h® 621) — y3621 X e91.

Remark 10.10. For any ¢t € C* consider the constant gauge transformation
1

€11 — €11, €22+ €32, €91 > teg, €13 ;612-
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Then the associative r—matrix (37) transforms into the solution

1
Tt(A7y17y2> =1 ® 1 +

(611 K e11 + e Qe + €12 @ ea1 + €21 ® 612) +
2\ Y2 — U1

AN\ — A+
h ® 621) + ( y21)( y2) €21 ® €a1.

Taking the limit ¢ — 0, we get the following solution of the associative Yang—Baxter
equation (12):

A+ Yo

>\_
+t< 2y1e21®h+

1 1
(40) r(Ay) = ﬁ]l ® 1+ ;(611 ® €11 + 22 ® €33 + €13 ® €31 + €21 ® €13).

Note that the corresponding solution of the classical Yang-Baxter equation (3) is
the rational solution of Yang.

11. SUMMARY

Let us summarise the main analytical results obtained is this article. We have
shown that for any pair of coprime integers 0 < d < n and an irreducible reduced
projective curve E with trivial dualizing sheaf one can canonically attach the germ
of a tensor-valued function

P (0391, ) 1 (C2,0) — Mat,y,(C) @ Mat, . (C)
satisfying the associative Yang—Baxter equation
r(usyr, o) Pr(u+ vsys, y3)* = r(u + vy, gs) Pr(—viyi, o)

+1(v; Y2, y3)°r(ws y1, y3) '

By Proposition 2.9, the tensor rgb’d) (v;91,y2) defines a family of commuting first

order differential operators. Moreover, under certain conditions (which are always
fulfilled at least for elliptic curves and for nodal cubic curves) it also satisfies the
quantum Yang—Baxter equation with respect to the spectral variables y; and ¥, and
a fixed value of v # 0. For (n,d) = (2,1) these tensors rg’l) have the following
explicit form

e For an elliptic curve £ = E. = C/(1, 1) we get

01(0|7) [01(y + v|7) Oo(y + v|7)
2,1 ,.. 1 1 1
Os(y + v|T) 0,(y + v|T) }
— V0 RQR0+ ———7RX ,
O3(v[T) O4(v[T)

where 1 = e + €99, h = €11 — €29,0 = i(@gl — 612) and Y = €21 + e19. This solution
is a quantization of the elliptic solution of the classical Yang—Baxter equation

ey - 1 eny) L dn(y) o
o (Y) 2(m@ﬁ®m+smw”®”+smw ® >-
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studied by Baxter, Belavin and Sklyanin.
e For the plane nodal cubic curve E = V (zy* —x
solution

3 —22?) C P? we get a trigonometric

sin(y + v)
sin(y) sin(v)

L1
sin(y)

This solution is a quantization of the trigonometric solution of Cherednik:

Tt(fél)(va y) = (€11 ® e11 + €22 ® €22) + (€11 ® €2 + €20 ® eq1)+

1
sin(v)

(12 ® €91 + €91 ® e12) + sin(y + v)eg ® eg.

1
féfél)(y) =3 cot(2)h @ h +

- (612 ® €91 + €91 ® €12) + sin(y)es ® ea;.
sin(y)

e For the cuspidal nodal cubic curve E = V(zy* —2?) C P? we get a rational solution

1
rﬁiél)(vvylayQ) = 51 ® 1 +

” " (611 X €11 + €929 X €929 + €12 X €21 -+ €921 X 612)+
2 Y1

+ (v —y1)ea @h+ (v+y2)h @ ez —v(v—y1)(v+ ya)ea ® eg.

This solution of the quantum Yang—Baxter equation is a quantization of the rational
solution of Stolin

1 1
T(Y1,Y2) = (—h Q@ h+en®ex + e ® 612) + &h & e91 — 2621 ® h.
Y2 —y1 \ 2 2 2

Note that this solution is gauge equivalent to the solution

1,1
s(y) = &(5’1 @ h+en®en +en® 612) +y(eog @h+h®ey) — yies ® en
depending on the difference of spectral parameters.

e Next, the following solution r2Y

o deg (V3 ) of the associative Yang-Baxter equation

is a degeneration of the rational solution rggl)(v, Y1,Yo):

1 1
Tfiél_)deg(% y) = %]1 @1+ ;(611 @ e11 + €22 ®egx + €12 K €91 + €21 @ 612)-
The corresponding solution of the classical Yang—Baxter equation is the rational

solution of Yang:

1/1
rg"cl—)deg(y) = ;(éh ® h+ €12 ®eg1 + €21 @ 612> .

e In the case of a nodal cubic curve E, the universal family of indecomposable semi-
stable vector bundles of rank 2 and degree 0 having locally free Jordan-Holder factors
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gives the following solution of the associative Yang—Baxter equation:

20 (4 ) = SR +Y)
Tieg (V3 Y) 2 sin(y) sin(v) (611 @ e11 + €22 W ega + €21 Qe12+ €12 621)
1 cos(v)
+———(e2®h—-—h®ep) — ——c€12® eia.
2sin2(v)( 2 12) sin®(v) e

This solution has higher order poles with respect to the spectral variable v and does
not project to a solution of the classical Yang-Baxter equation. However, it still
yields a family of commuting Dunkl operators.

The second analytic application of methods developed in this article, is the follow-
ing. Consider the Weierstra§ family of plane cubic curves zy? = 423 — gox2? — g32°,
where go, g3 € C. Recall the following classical result.

Proposition 11.1 (see Section 114 in [36]). Let 7 € C\R and A, =Z + 7Z C C?
be the corresponding lattice. Then the complex torus C/A; is isomorphic to the
projective cubic curve zy* = 43 — goxz? — g32°, where
(41)
1 1
g2 = 60 Z — g 93 =140 Z (! &+ m/'—)6"
ooy M) om0y T T)

Conversely, for any pair (go,g93) € C? such that A(ga, g3) = g5 — 2793 # 0 there
exists a unique T from the domain D given below, such that (ga, g3) = (g2(7), g3(7)).

1
D:{TEC‘|Re(7)|§§, T[> 1 if Re(r) <0, |7[>1 if Re(7>>0}

Let (n,d) € N x Z be a pair of coprime integers and M = Mg;’;) >~ E be the
moduli space of relatively stable vector bundles on E of rank n and degree d with
universal family P(n, d). Let t = (g2, 93) and o = ((0:1:0),t) € E, m € M be the
point corresponding to o and £ be some trivialization of P(n,d) in a neighbourhood
of (o,m) € E xp M and w € H°(wg7) be a nowhere vanishing regular one-form.
Then we get the germ of a meromorphic function

ré = (Tg/’é'ﬁ)(w))é : (M X7 M X7 E X E,é) — Mat, x,,(C) x Mat, ,,(C)
which satisfies the associative Yang—Baxter equation
Tg(t; U1, V235 Y1, y2)127’5(t; U1, V35 Y2, y3)23 = Tg(t; U1, V35 Y1, 3/3)137’5(@ Vs, V235 Y1, y2)12+

78 (8 v2, U3 Y2, Y3) P (8 01, V23 Y1, y3)
and its “dual”

(L 02, v35 Y1, y2) P (G o1, vss 91, y2) ' = 16 (G 01, va5 91, y2) P (8 va, vss v, ) P

78 (801, 035 Y1, Y3) P (6 02, 015 Y2, ) P
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Moreover, it fulfills the unitarity condition
ré(t v1, va5 91, 2) = —7 (10 (02, 01392, 1)),

where 7(a ® b) = b ® a. The function r*(¢; vy, ve; 91, %2) depends analytically on the
parameter ¢ € T and its poles lie on the hypersurfaces v; = v, and y; = ys.

Next, different choices of trivializations of the universal family P lead to equivalent
solutions: if ¢ is another trivialization of P and ¢ = (0o ¢ 1 (M X7 E,0) — GL,(C)
is the corresponding holomorphic function, then we have:

TC = (¢(ta U1, yl) ® gb(t: V2, y2>)’f’§ (gb(ta V2, yl)_l ® gb(ta U1, yQ)_l)'

(2,1)

We have shown that r " (v;y) is equivalent to the solution rg);)(t;v;y) for all

t = (g2, g3) such that A(t) # 0. This equivalence relation is generated by the gauge

transformations and coordinate changes.

(2,1)

The trigonometric solution 7.’ (v;y) is equivalent to the solution T(EQ/lT) (t;v;v)

for t = (g2,93) # (0,0) but such that A(¢) = 0. Finally, the rational solution

)

Eitl)(v; Y1, Y2) is equivalent to the solution rg/;,) ((O, 0);v; y).

In other words, we get the following result, which seems to be difficult to show by
(2,1)

rat

r

(v;y1,y2) is equivalent to a solution,
which is a degeneration of the trigonometric solution rgfél)(v; y) and of the elliptic

solution 7“‘5121’1) (v;y).

direct computations: the rational solution r
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