Du Val Singularities

Igor Burban

1 Introduction

We consider quotient singularities \mathbb{C}^{2} / G, where $G \subseteq S L_{2}(\mathbb{C})$ is a finite subgroup. Since we have a finite ring extension $\mathbb{C}[[x, y]]^{G} \subseteq \mathbb{C}[[x, y]]$, the Krull dimension of $\mathbb{C}[[x, y]]^{G}$ is 2 .

Note that $\mathbb{C}[[x, y]]^{\Sigma_{2}}=\mathbb{C}[[(x+y, x y)]] \cong \mathbb{C}[[x, y]]$. In order to get a kind of bijection between finite subgroups and quotient singularities we need the following definition.

Definition 1.1 Let $G \subseteq G L_{n}(\mathbb{C})$ be a finite subgroup. An element $g \in G$ is called pseudo-reflection if g is conjugated to $\operatorname{diag}(1,1, \ldots, 1, \lambda)$, where $\lambda \neq 1$. A group G is called small if it contains no pseudo-reflections.

Proposition 1.2 1. Let $G \subseteq G L_{n}(\mathbb{C})$ be a finite subgroup. Then

$$
\mathbb{C}\left[\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right]^{G} \cong \mathbb{C}\left[\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right]^{G^{\prime}}
$$

where the group G^{\prime} is a certain small subgroup of $G L_{n}(\mathbb{C})$.
2. Let $G^{\prime}, G^{\prime \prime} \subseteq G L_{n}(\mathbb{C})$ be two small subgroups. Then

$$
\mathbb{C}\left[\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right]^{G^{\prime}} \cong \mathbb{C}\left[\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right]^{G^{\prime \prime}}
$$

if and only if G^{\prime} and $G^{\prime \prime}$ to are conjugated.
3. Let $G \subseteq G L_{n}(\mathbb{C})$ be a small finite subgroup. Then $\mathbb{C}\left[\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right]^{G}$ is always Cohen-Macaulay.
4. Let $G \subseteq G L_{n}(\mathbb{C})$ be a small finite subgroup. Then $\mathbb{C}\left[\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right]^{G}$ is Gorenstein iff $G \subseteq S L_{n}(\mathbb{C})$.

Remark 1.3 Note that every subgroup of $S L_{n}(\mathbb{C})$ is small.
Now we want to answer the following question: what are finite subgroups of $S L_{2}(\mathbb{C})$ modulo conjugation?

2 Finite subgroups of $S L_{2}(\mathbb{C})$

Lemma 2.1 Every finite subgroup of $S L_{n}(\mathbb{C})\left(G L_{n}(\mathbb{C})\right)$ is conjugated to a subgroup of $S U(n)(U(n))$.

Proof. Let (,) be a hermitian inner product on \mathbb{C}^{n}. Define

$$
\langle u, v\rangle:=\frac{1}{|G|} \sum_{g \in G}(g u, g v)
$$

(Note that in case $G \subseteq U(n)$ it holds $\langle\rangle=,(, \quad)$). Then \langle,$\rangle is a$ new hermitian inner product on \mathbb{C}^{n} :

1. $\langle u, u\rangle \geq 0$.
2. $\langle u, u\rangle=0$ implies $u=0$.
3. $\langle u, v\rangle=\overline{\langle v, u\rangle}$.

It holds moreover

$$
\langle h u, h v\rangle=\frac{1}{|G|} \sum_{g \in G}(g h u, g h v)=\langle u, v\rangle .
$$

Hence G is unitary with respect to \langle,$\rangle . Moreover, \langle$,$\rangle has an orthonor-$ mal basis and let

$$
S:\left(\mathbb{C}^{n},\langle\quad, \quad\rangle\right) \longrightarrow\left(\mathbb{C}^{n},(\quad, \quad)\right)
$$

be a map sending vectors of the choosen orthonormal basis of the left space to vectors of the canonical basis of the right one. It holds $\langle u, v\rangle=(S u, S v)$. We know that $\langle g u, g v\rangle=\langle u, v\rangle$ for all $g \in G, u, v \in \mathbb{C}^{n}$. Hence we get $(S u, S v)=$ (Sgu, Sgv), or, setting $S^{-1} u$ and $S^{-1} v$ instead of u and v

$$
(u, v)=\left(S g S^{-1} u, S g S^{-1} v\right)
$$

for all $g \in G$ and $u, v \in \mathbb{C}^{n}$.
Now we want to describe all finite subgroups of $S U(2)$. Recall that

$$
S U(2)=\left\{A \in S L_{2}(\mathbb{C}) \mid A^{-1}=A^{*}\right\}=\left\{\left.\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right)| | \alpha\right|^{2}+|\beta|^{2}=1\right\}
$$

So, from the topological point of view $S U(2) \cong S^{3}$.
Theorem 2.2 There is an exact sequence of group homomorphisms

$$
1 \longrightarrow \mathbb{Z}_{2} \longrightarrow S U(2) \xrightarrow{\pi} S O(3) \longrightarrow 1
$$

More precisely,

$$
\operatorname{ker}(\pi)=\left\{ \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

Topologically π is the map $S^{3} \xrightarrow{2: 1} \mathbb{R}^{3}$.

From this theorem follows that there is a connection between finite subgroups of $S U(2)$ and $S O(3)$. The classification of finite isometry groups of \mathbb{R}^{3} is a classical result of F.Klein (actually of Platon). There are the following finite subgroups of $S O(3, \mathbb{R})$:

1. A cyclic subgroup \mathbb{Z}_{n}, generated, for instance, by

$$
\left(\begin{array}{ccc}
\cos \left(\frac{2 \pi}{n}\right) & -\sin \left(\frac{2 \pi}{n}\right) & 0 \\
\sin \left(\frac{2 \pi}{n}\right) & \cos \left(\frac{2 \pi}{n}\right) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

2. Dihedral group $D_{n},\left|D_{n}\right|=2 n$. It is the automorphism group of a prisma. It is generated by a rotation a and a reflection b which satisfy the relations $a^{n}=e, b^{2}=e,(a b)^{2}=e$. Note that the last relation can be choosen as $b a=a^{n-1} b$ or $b a b^{-1}=a^{-1}$.
3. Group of automorphisms of a regular tetrahedron $T=A_{4}$. Note that $|T|=12$.
4. Group of automorphisms of a regular octahedron $O=S_{4},|O|=24$.
5. Group of automorphisms of a regular icosahedron $I=A_{5},|I|=60$.

Observe that all non-cyclic subgroups of $S O(3)$ have even order.
Lemma $2.3\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ is the only element of $S U(2)$ of degree 2.
Proof. The proof is a simple computation.

$$
\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right)^{2}=\left(\begin{array}{cc}
\alpha^{2}-|\beta|^{2} & \alpha \beta+\beta \bar{\alpha} \\
-\bar{\beta} \alpha-\bar{\beta} \bar{\alpha} & \bar{\alpha}^{2}-|\beta|^{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
$$

implies $\alpha^{2}=\bar{\alpha}^{2}$ or $\alpha= \pm \bar{\alpha}$. Hence $\alpha=x, x \in \mathbb{R}$ or $\alpha=i x, x \in \mathbb{R}$. Moreover $\alpha \neq 0$ since otherwise must hold $-|\beta|^{2}=1$. In case $\alpha \in \mathbb{R}$ we have $\alpha \beta+$ $\beta \bar{\alpha}=2 \alpha \beta$ hence $\beta=0$ and $\alpha= \pm 1$. If $a=i x$ is purely imaginary then $\alpha^{2}-|\beta|^{2}=-|x|^{2}-|\beta|^{2}<0$.

Let $G \subseteq S U(2)$ be a finite subgroup, $\pi: S U(2) \longrightarrow S O(3)$ the $2: 1$ surjection. Consider two cases.

1. $|G|$ is odd. Then $G \cap \mathbb{Z}_{2}=\{e\}$ (no elements of order 2 in G). So $\operatorname{ker}(\pi) \cap$ $G=\{e\}$ and $G \longrightarrow \pi(G)$ is an isomorphism. Hence G is cyclic.
2. $|G|$ is even. The due to the Sylow's theorem G contains a subgroup of order 2^{k} and hence contains an element of order 2. But there is exactly one element of the second order in $S U(2)$ (see the lemma above). Hence $\operatorname{ker}(\pi) \subseteq G$ and $G=\pi^{-1}(\pi(G))$. So, in this case G is the preimage of a finite subgroup of $S O(3)$.

From what was said we get the full classification of finite subgroups of $S L_{2}(\mathbb{C})$ modulo conjugation.

1. A cyclic subgroup \mathbb{Z}_{k}. Let g be its generator. $g^{k}=e$ implies

$$
g \sim\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \varepsilon^{-1}
\end{array}\right)
$$

where ε is some primitive root of 1 of k-th order.
2. Binary dihedral group $\mathbb{D}_{n},\left|\mathbb{D}_{n}\right|=4 n$. To find the generators of \mathbb{D}_{n} we have to know the explicit form of the map $\pi: S U(2) \longrightarrow S O(3)$. Skipping all details we just write down the answer. $\mathbb{D}_{n}=\langle a, b\rangle$ with relations

$$
\left\{\begin{array}{ccc}
a^{n} & = & b^{2} \\
b^{4} & = & e \\
b a b^{-1} & = & a^{-1}
\end{array}\right.
$$

To be concrete,

$$
a=\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \varepsilon^{-1}
\end{array}\right), \varepsilon=\exp \left(\frac{\pi i}{n}\right), \quad b=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

3. Binary tetrahedral group $\mathbb{T},|\mathbb{T}|=24 . \mathbb{T}=\langle\sigma, \tau, \mu\rangle$, where

$$
\sigma=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad \tau=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \mu=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\varepsilon^{7} & \varepsilon^{7} \\
\varepsilon^{5} & \varepsilon
\end{array}\right), \quad \varepsilon=\exp \left(\frac{2 \pi i}{8}\right)
$$

4. Binary octahedral group $\mathbb{O},|\mathbb{O}|=48$. This group is generated by σ, τ, μ as in the case of \mathbb{T} and by

$$
\kappa=\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \varepsilon^{7}
\end{array}\right)
$$

5. Finally we have the binary icosahedral subgroup $\mathbb{I},|\mathbb{I}|=120 . \mathbb{I}=\langle\sigma, \tau\rangle$, where

$$
\sigma=-\left(\begin{array}{cc}
\varepsilon^{3} & 0 \\
0 & \varepsilon^{2}
\end{array}\right), \tau=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
\left.-\varepsilon+\varepsilon^{4}\right) & \varepsilon^{2}-\varepsilon^{3} \\
\varepsilon^{2}-\varepsilon^{3} & \varepsilon-\varepsilon^{4}
\end{array}\right), \quad \varepsilon=\exp \left(\frac{2 \pi i}{5}\right)
$$

Remark 2.4 The problem of classification of finite subgroups of $G L_{2}(\mathbb{C})$ is much more complicated. Indeed, every finite subgroup $G \subseteq G L_{2}(\mathbb{C})$ can be embedded into $S L_{3}(\mathbb{C})$ via the group monomorphism

$$
\begin{aligned}
& G L_{2}(\mathbb{C}) \longrightarrow S L_{3}(\mathbb{C}) \\
& g \mapsto\left(\begin{array}{cc}
g & 0 \\
0 & \frac{1}{\operatorname{det}(g)}
\end{array}\right) .
\end{aligned}
$$

Finite subgroups of $G L_{2}(\mathbb{C})$ give main series of finite subgroups of $S L_{3}(\mathbb{C})$.
Now we can compute the corresponding invariant subrings.

3 Description of Du Val singularities

1. A cyclic subgroup $\mathbb{Z}_{n}=\langle g\rangle, g: x \mapsto \varepsilon x, y \mapsto \varepsilon^{-1} y, \varepsilon=\exp \left(\frac{2 \pi i}{n}\right)$. It is not difficult to see that $X=x^{n}, Y=y^{n}$ and $Z=x y$ generate the whole ring of invariants.

$$
\mathbb{C}[[x, y]]^{\mathbb{Z}_{n}}=\mathbb{C}[[X, Y, Z]] /\left(X Y-Z^{n}\right) \cong \mathbb{C}[[x, y, z]] /\left(x^{2}+y^{2}+z^{n}\right)
$$

It is an equation of A_{n-1}-singularity.
2. Binary dihedral group \mathbb{D}_{n}.

$$
\sigma:\left\{\begin{array}{llc}
x & \mapsto & \varepsilon x \\
y & \mapsto & \varepsilon^{-1} y
\end{array} \quad \tau:\left\{\begin{array}{ccc}
x & \mapsto & -y \\
y & \mapsto & x
\end{array}\right.\right.
$$

where $\varepsilon=\exp \left(\frac{\pi i}{n}\right)$. The set of invariant monomials is

$$
F=x^{2 n}+y^{2 n}, H=x y\left(x^{2 n}-y^{2 n}\right), I=x^{2} y^{2} .
$$

They satisfy the relation

$$
H^{2}=x^{2} y^{2}\left(x^{4 n}+y^{4 n}-2 x^{2 n} y^{2 n}\right)=I F^{2}-4 I^{2(n+1)}
$$

The standart computations show that

$$
\mathbb{C}[[x, y]]^{\mathbb{D}_{n}} \cong \mathbb{C}[[x, y, z]] /\left(x^{2}+y z^{2}+z^{n+1}\right)
$$

It is an equation of D_{n+2}-singularity.
3. It can be checked that for the groups $\mathbb{T}, \mathbb{O}, \mathbb{I}$ we get singularities
(a) $E_{6}: x^{2}+y^{3}+z^{4}=0$,
(b) $E_{7}: x^{2}+y^{3}+y z^{3}=0$,
(c) $E_{8}: x^{2}+y^{3}+z^{5}=0$.

We get the following theorem:
Theorem 3.1 Du Val singularities are precisely simple hypersurface singularities $A-D-E$.

We want now to answer our next question: what are minimal resolutions and dual graphs of Du Val singularities?

$4 \quad A_{1}$-singularity

Consider the germ of A_{1}-singularity $S=V\left(x^{2}+y^{2}+z^{2}\right) \subset \mathbf{A}^{3}$. Consider the blow-up of this singularity.

$$
\tilde{\mathbf{A}}^{3}=\left\{((x, y, z),(u: v: w)) \in \mathbf{A}^{3} \times \mathbf{P}^{2} \mid x v=y u, x w=z u, y w=z u\right\} .
$$

Take the chart $u \neq 0$, i.e. $u=1$. We get

$$
\left\{\begin{array}{llc}
x & = & x \\
y & = & x v \\
z & = & x w
\end{array}\right.
$$

What is $\tilde{S}=\overline{\pi^{-1}(S \backslash\{0\})}$? Consider first $x \neq 0$ (it means that we are looking for $\pi^{-1}(S \backslash\{0\})$).

$$
x^{2}+x^{2} v^{2}+x^{2} w^{2}=0, x \neq 0
$$

or

$$
1+v^{2}+w^{2}=0, x \neq 0
$$

In order to get \tilde{S} we should allow x to be arbitrary. In this chart \tilde{S} is a cylinder $V\left(1+v^{2}+w^{2}\right) \subset \mathbf{A}^{3}$. What is $\pi^{-1}(0)$? Obviously it is the intersection of \tilde{S} with the exceptional plane $((0,0,0),(u: v: w))$. In this chart we just have to set $x=0$ in addition to the equation of the surface \tilde{S}.

$$
\pi^{-1}(0)=\left\{\begin{aligned}
1+v^{2}+w^{2} & =0 \\
x & =0 .
\end{aligned}\right.
$$

We see that $E=\pi^{-1}(0)$ is rational and since all 3 charts of \tilde{S} are symmetric, we conclude that E is smooth, so $E=\mathbf{P}^{1}$. Now we have to compute the selfintersection number E^{2}. We do it using the following trick.

Let $\pi: \tilde{X} \longrightarrow X$ be the minimal resolution. It induces an isomorphism of fields of rational functions $\pi^{*}: \mathbb{C}(X) \longrightarrow \mathbb{C}(\tilde{X})$. Let $f \in \mathbb{C}(\tilde{X})$ be a rational function. Then it holds:

$$
(f) \cdot E=\operatorname{deg}_{E}\left(\mathcal{O}_{E} \otimes \mathcal{O}_{\tilde{X}}(f)\right)=\operatorname{deg}_{E}\left(\mathcal{O}_{E}\right)=0
$$

In particular it holds for $f \in \mathfrak{m} \subseteq \mathcal{O}_{X, 0}$:

$$
(f \circ \pi) \cdot E=0
$$

Consider the function $y \in \mathcal{O}_{X, 0}$. In the chart $u \neq 0$ we get $y \circ \pi=x u$. What is the vanishing set of y ?

1. $x=0$ is an equation of E.
2. $u=0$ implies $v^{2}+1=0$ or $v= \pm i$.

Hence $(f)=E+C_{1}+C_{2}$ and we have the following picture:

So, $(f) \cdot E=E^{2}+C_{1} \cdot E+C_{2} \cdot E=E^{2}+2=0$. From it follows $E^{2}=-2$.

$5 \quad E_{6}$-singularity

In this section we want to compute a minimal resolution and dual graph of E_{6} singularity $X=V\left(x^{2}+y^{3}+z^{4}\right) \subset \mathbf{A}^{3}$. Let $\tilde{X} \xrightarrow{\pi} X$ be a minimal resolution, $E=\cup E_{i}=\pi^{-1}(0)$ the exceptional divisor. In order to compute selfintersection numbers E_{i}^{2} we have to consider the map $\pi^{*}: \mathbb{C}(X) \longrightarrow \mathbb{C}(\tilde{X})$. Let $f \in \mathfrak{m}_{X} \subset$ \mathcal{O}_{X}, then equalities $(f \circ \pi) . E_{i}=0$ will imply the selfintersection numbers of E_{i}.

$$
\tilde{\mathbf{A}}^{3}=\left\{((x, y, z),(u: v: w)) \in \mathbf{A}^{3} \times \mathbf{P}^{2} \mid x v=y u, x w=z u, y w=z u\right\}
$$

Take first the chart $v \neq 0$ (i.e. $v=1$). We get equations

$$
\left\{\begin{array}{llc}
x & = & y u \\
y & =y \\
z & =y w
\end{array}\right.
$$

To get the equation of the strict transform of \tilde{X}_{1} we assume that $y \neq 0$ and

$$
y^{2} u^{2}+y^{3}+y^{4} w^{4}=0
$$

or

$$
u^{2}+y+y^{2} w^{4}=0
$$

In this chart \tilde{X}_{1} is smooth: Jacobi criterium implies

$$
\left\{\begin{aligned}
u & =0 \\
1+2 y w^{4} & =0 \\
w^{3} y^{2} & =0
\end{aligned}\right.
$$

It is easy to see that this system has no solutions.
In the chart $u=1$ the strict transform \tilde{X}_{1} is again smooth.
Consider finally the chart $w=1$.

$$
\left\{\begin{array}{l}
x=z u \\
y=z v \\
z=z
\end{array}\right.
$$

The strict transform is

$$
z^{2} u^{2}+z^{3} v^{3}+z^{4}=0
$$

or

$$
u^{2}+z v^{3}+z^{2}=0
$$

Jacobi criterium implies that this surface has a unique singular point $u=0, v=$ $0, z=0$, or in the global coordinates $((0,0,0),(0: 0: 1))$. We see that this point indeed lies only in one of three affine charts of \tilde{X}_{1}.

We now need an equation of exceptional fibre. The exceptional fibre is by the definition the intersection $\tilde{X}_{1} \cap\{((0,0,0),(u: v: w))\}$. To get its local equation in the chart $w=1$ we just have to set $z=0$ in the equation of \tilde{X}_{1}. $z=0$ implies $u=0$. Hence we get

$$
E_{0}=\{((0,0,0),(0: v: 1))\} \cong \mathbf{A}^{1}
$$

Going to the other charts shows that $E_{0} \cong \mathbf{P}^{1}$.
Finally, the function f in this chart gets the form $f=z u$.
Agreement. Since the number of indices depends exponentially on the number of blowing-ups, we shall denote the local coordinates of all charts of all blowing-ups \tilde{X}_{i} by the letters (x, y, z).

Second step. We have the following situation:

$$
\begin{cases}\text { surface } & x^{2}+z y^{3}+z^{2}=0 \\ \text { function } & f=x z \\ \text { exceptional divisor } E_{0} & x=0, z=0\end{cases}
$$

Consider again the blowing-up of this surface. It is easy to see that the only interesting chart is

$$
\left\{\begin{array}{llc}
x & = & y u \\
y & = & y \\
z & =y v
\end{array}\right.
$$

We get the strict transform

$$
y^{2} u^{2}+y v y^{3}+y^{2} v^{2}=0, y \neq 0
$$

or

$$
u^{2}+y^{2} v+v^{2}=0
$$

Again $y=0, u=0, v=0$ is the only singularity of the blown-up surface. The exceptional fibre of this blowing-up has two irreducible components: $y=0$ implies $u \pm i v=0$ (we call this components E_{1}^{\prime} and $E_{2}^{\prime \prime}$).
What is the preimage (under preimage we mean its strict transform) of E_{0} ? $x=0, z=0$ implies $u=0, v=0$.
The function $f=x z$ gets in this chart the form $f=y^{2} u v$.

Third step. We have the following situation:

$$
\begin{cases}\text { surface } & x^{2}+y^{2} z+z^{2}=0 \\ \text { function } & f=x y^{2} z \\ \text { exceptional divisor } E_{0} & x=0, z=0 \\ \text { exceptional divisor } E_{1} & y=0, x \pm i z=0\end{cases}
$$

Let us consider the next blowing-up.

$$
\left\{\begin{array}{l}
x=y u \\
y=y \\
z=y v
\end{array}\right.
$$

The strict transform is

$$
y^{2} u^{2}+y^{2} y v+y^{2} v^{2}=0, y \neq 0
$$

or

$$
u^{2}+y v+v^{2}=0
$$

It is an equation of A_{1}-singularity (and it means that we are almost done). The exceptional fibre consists again of two irreducible components $E_{2}^{\prime}, E_{2}^{\prime \prime}$. They local equations are $y=0, u \pm i v=0$. The function f is $u y^{4} v$. It is easy to see that the preimage of E_{0} is $u=0, v=0$.
What about the preimage of E_{1} ? Our surface lies in the affine chart \mathbf{A}^{3} embedded into $\mathbf{A}^{3} \times \mathbf{P}^{2}$ via the map $(y, u, v) \mapsto((y u, y, y v),(u: 1: v))$. But then the condition $y=0$ would imply that the preimage of E_{1} lies in the exceptional plane $((0,0,0)(u: 1: v))$. But it can not be true! The solution of this paradox is that the preimage of of E_{1} lies in another coordinate chart.

Consider

$$
\left\{\begin{array}{l}
x=x \\
y=x u \\
z=x v
\end{array}\right.
$$

The strict transform is

$$
x^{2}+x^{2} u^{2} x v+x^{2} v^{2}=0, x \neq 0
$$

or

$$
1+x u^{2} v+v^{2}=0
$$

The equations of the exceptional fibre E_{2} in this chart are $x=0$, what implies $v= \pm i$. The preimage of E_{1}

$$
\left\{\begin{array}{ccc}
x \pm i z & = & 0 \\
y & = & 0
\end{array}\right.
$$

is given by

$$
\left\{\begin{array}{cl}
x \pm i x v & =0 \\
x u & =0, x \neq 0
\end{array}\right.
$$

hence

$$
\left\{\begin{array}{ccc}
v & = & \pm i \\
u & = & 0 \\
x & & \text { arbitrary }
\end{array}\right.
$$

In the picture it looks like:

It is easy to see that all intersections are transversal.
Fourth step. We have the following situation: there are two coordinate charts
$\left\{\begin{array}{ll}\text { surface } & x^{2}+y z+z^{2}=0 \\ \text { function } & f=x y^{4} z \\ \text { exceptional divisor } E_{0} & x=0, z=0 \\ \text { exceptional divisor } E_{2} & y=0, x \pm i z=0 .\end{array} \quad \begin{cases}\text { surface } & 1+x y^{2} z+z^{2}=0 \\ \text { function } & f=x^{4} y^{2} z \\ \text { exceptional divisor } E_{1} & y=0, z= \pm i \\ \text { exceptional divisor } E_{2} & x=0, z= \pm i .\end{cases}\right.$

Our next step is the blowing-up at the point $(0,0,0)$ in the first coordinate chart. Again, in order to get equations of the preimages of E_{0} and E_{2} we have to consider two coordinate charts.

$$
\left\{\begin{array}{llc}
x & = & y u \\
y & = & y \\
z & =y w
\end{array}\right.
$$

The strict transform is a cylinder

$$
u^{2}+v+v^{2}=0
$$

The preimage of E_{0} is given by equations $u=0, v=0$, the exceptional fibre E_{3} is given by $u^{2}+v+v^{2}=0, y=0$, our function $f=u y^{6} v$. In another chart we have

$$
\left\{\begin{array}{llc}
x & = & x \\
y & = & x u \\
z & = & x v
\end{array}\right.
$$

The strict transform is given by

$$
x^{2}+x^{2} u v+x^{2} v^{2}=0, x \neq 0
$$

or

$$
1+u v+v^{2}=0
$$

The exceptional fibre E_{3} is given by $1+u v+v^{2}=0, x=0$, the preimages of E_{2}^{\prime} and $E_{2}^{\prime \prime}$ are given by $u=0, v= \pm i, f=x^{6} u^{4} v$.

Hence our exceptional fibre E is given by the following configuration of projective lines:

The dual graph of this configuration is

Fifth step. We have to take into account three coordinate charts of a minimal resolution.
$\left\{\begin{array}{ll}\tilde{X}: & x^{2}+z+z^{2}=0 \\ f: & x y^{4} z \\ E_{0}: & x=0, z=0 \\ E_{3}: & y=0, x^{2}+y z+z^{2}=0\end{array} \quad\left\{\begin{array}{ll}\tilde{X}: & 1+y z+z^{2}=0 \\ f: & x^{6} y^{4} z \\ E_{3}: & x=0, x^{2}+y z+z^{2}=0 \\ E_{2}: & y=0, z= \pm i\end{array} \quad \begin{cases}\tilde{X}: & 1+x y^{2} z+z^{2}=0 \\ f: & x^{6} y^{2} z \\ E_{1}: & y=0, z= \pm i \\ E_{2}: & x=0, z= \pm i\end{cases}\right.\right.$
Now we have to compute the divisor (f).
Let $X \subset \mathbf{A}^{3}$ be a normal surface, $Y \subset X$ a closed curve, $f \in \mathbb{C}(X)$ a rational function. Suppose that $\mathfrak{p} \subset \mathbb{C}[X]$ is the prime ideal corresponding to Y. Then $\mathbb{C}[X]_{\mathfrak{p}}$ is a discrete valuation ring and

$$
\operatorname{mult}_{Y}(f)=\operatorname{val}_{\mathbb{C}[X]_{\mathfrak{p}}}(f)
$$

1. Consider the first chart. Let $f=x y^{6} z=0 . \quad x=0$ implies $z=0$ or $z=-1 . x=0, z=0$ is an equation of $E_{0}, x=0, z=-1$ is the strict transform C of the curve $x=0$ in $V\left(x^{2}+y^{3}+z^{4}\right) \subset \mathbf{A}^{3}$.
What is the multiplicity of E_{0} ? The generator of the maximal ideal of the $\operatorname{ring}\left(\mathbb{C}[x, y, z] /\left(x^{2}+z+z^{2}\right)\right)_{\mathfrak{p}}$ is \bar{x} and $\bar{x}^{2} \sim \bar{z}$. Therefore $\operatorname{mult}_{E_{0}}(f)=3$. $y=0$ gives an equation of E_{3}. It is easy to see that $\operatorname{mult}_{E_{3}}(f)=6$. Note that the curve C has transversal intersection with E_{3} at the point $x=0, y=0, z=-1$.
2. Consider the second chart. In this chart holds $f=x^{6} y^{4} z=0 . z=0$ is impossible, $x=0$ cut out the equation of E_{3} and $y=0$ equations of E_{2}^{\prime} and $E_{2}^{\prime \prime}$. The same computation as above shows that $\operatorname{mult}_{E_{3}}(f)=6$ (what is not surprise and makes us sure that we did not make a mistake in computations) and mult ${ }_{E_{2}^{\prime}}(f)=\operatorname{mult}_{E_{2}^{\prime \prime}}(f)=4$.
3. In the same way we obtain that $\operatorname{mult}_{E_{1}^{\prime}}(f)=\operatorname{mult}_{E_{1}^{\prime \prime}}(f)=2$. Therefore we obtain:

$$
(f)=6 E_{3}+4\left(E_{2}^{\prime}+E_{2}^{\prime \prime}\right)+2\left(E_{1}^{\prime}+E_{1}^{\prime \prime}\right)+3 E_{0}+C
$$

We have $C . E_{3}=1$, all other intersection numbers of C with irreducible components of E are zero. Intersection numbers of irreducible components are coded in the dual graph (which is E_{6}, see the picture above). The whole job was done in order to compute self-intersections.

$$
(f) \cdot E_{0}=6+3 E_{0}^{2}=0 \Longrightarrow E_{0}^{2}=-2
$$

In the same way we conclude that the other selfintersection numbers are -2 .

Remark 5.1 Let X be a normal surface singularity, $\pi: \tilde{X} \longrightarrow X$ its minimal resolution, $E=\bigcup_{i=1}^{n} E_{i}=\pi^{-1}(0)$ the exceptional divisor. Suppose that \tilde{X} is a good resolution, all $E_{i} \cong \mathbf{P}^{1}$ and $E_{i}^{2}=-2$. Then X is a simple hypersurface singularity.

Indeed we know that the intersection matrix $\left(E_{i} \cdot E_{j}\right)_{i, j=1}^{n}$ is negatively definite. Let Γ be the dual graph of X. Then the quadratic form given by intersection matrix coinside with the Tits form of the dual graph:

$$
Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=-2\left(\sum_{i=1}^{n} x_{i}^{2}-\sum_{1=i<j=n} a_{i j} x_{i} x_{j}\right)
$$

where $a_{i j}$ is the number of arrows connecting vertices i and j. From the theorem of Gabriel we know that Q is negatively definite (and quiver is representation finite) if and only if $\Gamma=A-D-E$. Since our singularity is rational, it is taut and uniquely determined by its dual graph.

6 2-dimensional McKay correspondence

Recall that we defined Du Val singularities as quotient singularities $\mathbb{C}[[x, y]]^{G}$, where $G \subseteq S U(2)$ is some finite subgroup. A natural question is: are there any connections between the representation theory of G and geometry of the minimal resolution of a singularity? Let us recall some standart facts about representations of finite groups.

Theorem 6.1 (Mashke) Let G be a finite group. Then the category of $\mathbb{C}[G]$ modules is semi-simple.

This theorem means that any exact sequence of $\mathbb{C}[G]$-modules splits. In particular, every finite-dimensional $\mathbb{C}[G]$-module is injective and projective. But an
indecomposable projective module by a theorem of Krull-Schmidt is isomorphic to a direct summand of the regular module. Let

$$
\mathbb{C}[G] \cong \bigoplus_{i=1}^{s} \Phi_{i}^{n_{i}}
$$

be a direct sum decomposition of $\mathbb{C}[G]$. Then $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{s}$ the whole list of indecomposable $\mathbb{C}[G]$-modules.

Lemma 6.2 Let $\mathbb{C}[G] \cong \bigoplus_{i=1}^{s} \Phi_{i}^{n_{i}}$ be a decomposition of the regular module into a direct sum of indecomposable ones. Then it holds

$$
\operatorname{dim}_{\mathbb{C}}\left(\Phi_{i}\right)=n_{i}
$$

In particular, the following identity is true:

$$
\sum_{i=1}^{s} n_{i}^{2}=|G|
$$

Definition 6.3 Let G be a group, $(\Phi, V), \Phi: G \longrightarrow \operatorname{End}(V)$ its representation. The character of a representation Φ is the function $\chi_{\Phi}: G \longrightarrow \mathbb{C}$ defined by the rule $\chi_{\Phi}(g)=\operatorname{Tr}(\Phi(g))$.

Remark 6.4 1. It is easy to see that the character does not depend on the choice of a representative from the isomorphism class of a representation:

$$
\operatorname{Tr}(\Phi(g))=\operatorname{Tr}\left(S^{-1} \Phi(g) S\right)
$$

2. It holds:

$$
\begin{gathered}
\chi_{\Phi \otimes \Psi}=\chi_{\Phi} \chi_{\Psi}, \\
\chi_{\Phi \oplus \Psi}=\chi_{\Phi}+\chi_{\Psi} .
\end{gathered}
$$

In other words, χ defines a rings homomorphism from the Grothendieck ring of $\mathbb{C}[G]$ to \mathbb{C}.
3. It holds:
$\chi_{\Phi}\left(h^{-1} g h\right)=\operatorname{Tr}\left(\Phi\left(h^{-1} g h\right)\right)=\operatorname{Tr}\left(\Phi(h)^{-1} \Phi(g) \Phi(h)\right)=\operatorname{Tr}(\Phi(g))=\chi_{\Phi}(g)$.
It means that χ_{Φ} is a central function, i.e. a function which is is constant on conjugacy classes of G.

Theorem 6.5 A finite dimensional representation of a finite group G is uniquely determined by its character.

Idea of the proof. Let φ, ψ be two central functions on G. Set

$$
\langle\varphi, \psi\rangle:=\frac{1}{|G|} \sum_{g \in G} \chi_{\Phi}(g) \overline{\chi_{\Psi}(h)}
$$

It defines an hermitian inner product on the space of all central functions on G. The theorem follows from the fact that $\chi_{\Phi_{1}}, \chi_{\Phi_{2}}, \ldots, \chi_{\Phi_{s}}$ is an orthonormal basis of this vector space. Indeed, let Φ be any finite-dimensional representation of G. Then we know that

$$
\Phi \cong \oplus \Phi_{i}^{m_{i}}
$$

Then it obviously holds $m_{i}=\left\langle\chi_{\Phi}, \chi_{\Phi_{i}}\right\rangle$.
Corollary 6.6 The number of indecomposable representations of a finite group G is equal to the number of its conjugacy classes.

Definition 6.7 (McKay quiver) Let $G \subseteq S U(2)$ be a finite subgroup, $\Phi_{0}, \Phi_{1}, \ldots, \Phi_{s}$ all indecomposable representations of G. Let Φ_{0} be the trivial representation, $\Phi_{\text {nat }}$ the natural representation (i.e. the representation given by the inclusion $G \subseteq S U(2))$. Define the McKay graph of G as the following:

1. Vertices are indexed by $\Phi_{1}, \ldots, \Phi_{s}$ (we skip Φ_{0}).
2. Let

$$
\Phi_{i} \otimes \Phi_{n a t} \cong \bigoplus_{j=0}^{s} \Phi_{j}^{a_{i j}}
$$

(or, the same

$$
\chi_{i} \chi_{n a t}=\sum_{i=0}^{s} a_{i j} \chi_{j}
$$

Then we connect vertices Φ_{i} and Φ_{j} by $a_{i j}$ vertices.
It is easy to see that $\Phi_{0} \otimes \Phi_{\text {nat }}=\Phi_{\text {nat }}$.
Remark 6.8 It holds $a_{i j}=a_{j i}$.
Indeed,

$$
a_{i j}=\left\langle\chi_{i} \chi_{\mathrm{nat}}, \chi_{j}\right\rangle=\frac{1}{|G|} \sum_{g \in G} \chi_{i}(g) \chi_{\mathrm{nat}}(g) \overline{\chi_{j}(g)}=\sum_{g \in G} \chi_{i}(g) \chi_{\mathrm{nat}}(g) \chi_{j}\left(g^{-1}\right)
$$

(here we use that $g^{n}=1$ and hence $\Phi(g)^{n}=\mathrm{id}$. From this follows $\Phi(g) \sim$ $\operatorname{diag}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k}\right)$ and $\left.\Phi\left(g^{-1}\right) \sim \operatorname{diag}\left(\varepsilon_{1}^{-1}, \varepsilon_{2}^{-1}, \ldots, \varepsilon_{k}^{-1}\right)=\operatorname{diag}\left(\bar{\varepsilon}_{1}, \bar{\varepsilon}_{2}, \ldots, \bar{\varepsilon}_{k}\right).\right)$ Since $\Phi_{\text {nat }}$ is the natural representation, all $\Phi_{\text {nat }}(g) \in S U(2), g \in G$. Let $A \in S U(2)$. If $A \sim \operatorname{diag}(a, b)$ then $A^{-1} \sim \operatorname{diag}(b, a)(a b=1$.) Therefore we have $\chi_{\text {nat }}(g)=\chi_{\text {nat }}\left(g^{-1}\right)$. Then we can continue our equality:

$$
\sum_{g \in G} \chi_{i}(g) \chi_{\mathrm{nat}}(g) \chi_{j}\left(g^{-1}\right)=\sum_{g \in G} \chi_{i}(g) \chi_{\mathrm{nat}}\left(g^{-1}\right) \chi_{j}\left(g^{-1}\right)=\left\langle\chi_{i}, \chi_{\mathrm{nat}} \chi_{j}\right\rangle=a_{j i}
$$

Example 6.9 Let $G=\mathbb{D}_{3}$ be a binary dihedral group. As we already know, $\left|\mathbb{D}_{3}\right|=12$. The group \mathbb{D}_{3} has two generators a, b which satisfy the following relations:

$$
\left\{\begin{array}{ccc}
a^{3} & = & b^{2} \\
b^{4} & = & e \\
a b a & =b^{-1}
\end{array}\right.
$$

The group \mathbb{D}_{3} has 4 1-dimensional representations $a=1, b=1$; $a=1, b=-1$; $a=-1, b=i$ and $a=-1, b=-i$. The natural representation is also known: it is just

$$
a=\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \varepsilon^{-1}
\end{array}\right), \quad b=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

where $\varepsilon=\exp \left(\frac{\pi i}{6}\right)=\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$. There is also another one irreducible 2-dimensional representation:

$$
a=\left(\begin{array}{cc}
\cos \frac{2 \pi}{3} & i \sin \frac{2 \pi}{3} \\
i \sin \frac{2 \pi}{3} & \cos \frac{2 \pi}{3}
\end{array}\right), \quad b=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

We have found all indecomposable representations of G : $1+1+1+1+4+4=$ $12=\left|\mathbb{D}_{3}\right|$. We can sum up the obtained information into the character table.

	$\chi(a)$	$\chi(b)$	dim	
0	1	1	1	trivial
1	1	-1	1	
2	-1	i	1	
3	-1	$-i$	1	
4	1	0	2	natural
5	-1	0	2	

From this table we can derive the whole structure of the Grothendieck ring of $\left|\mathbb{D}_{3}\right| \cdot \chi_{\text {nat }}^{2}$ can be only $\chi_{0}+\chi_{1}+\chi_{5}$. In the same way $\chi_{5} \chi_{\text {nat }}=\chi_{2}+\chi_{3}+\chi_{4}$.

We get the McKay graph of $\left|\mathbb{D}_{3}\right|$:

Observe that we obtained the dual graph of the D_{5}-singularity. Note that the fundamental cycle of the D_{5}-singularity is

$$
Z_{\mathrm{fund}}=E_{1}+2 E_{4}+2 E_{5}+E_{2}+E_{3}
$$

But the coeffitients of this decomposition are the same as the dimensions of the representations corresponding to the vertices of the McKay quiver.

Theorem 6.10 (McKay observation) Let $G \subseteq S U(2)$ be a finite subgroup, $\mathbb{C}[[x, y]]^{G}$ the corresponding invariant subring. Then the McKay quiver of G coinside with the dual graph of $\mathbb{C}[[x, y]]^{G}$, dimensions of the representation corresponding to a vertex of McKay quiver is equal to the multiplicity of the corresponding component of the exceptional fibre in the fundamental cycle.

