Du Val Singularities

Igor Burban

1 Introduction

We consider quotient singularities C? /G, where G C SLy(C) is a finite subgroup.
Since we have a finite ring extension C[[x,y]]¢ C C[[z,y]], the Krull dimension
of C[[x, y]]¢ is 2.

Note that C[[z,y]]** = C[[(z + y,zy)]] = C|[[z,y]]. In order to get a kind
of bijection between finite subgroups and quotient singularities we need the
following definition.

Definition 1.1 Let G C GL,(C) be a finite subgroup. An element g € G is
called pseudo-reflection if g is conjugated to diag(1,1,...,1,\), where A £ 1. A
group G is called small if it contains no pseudo-reflections.

Proposition 1.2 1. Let G C GL,(C) be a finite subgroup. Then

Clla1, x2, - - . 22]]¢ =2 Cl[z1, 22, . . ., 2],

where the group G’ is a certain small subgroup of GL,(C).
2. Let G',G" C GL,(C) be two small subgroups. Then

Cllzy, z2, .-, 2]]¢ 2 Cllay, 22, ..., 2]

if and only if G’ and G” to are conjugated.

3. Let G C GL,(C) be a small finite subgroup. Then C[[x1,z2,...,x,]]¢ is
always Cohen-Macaulay.

4. Let G € GL,(C) be a small finite subgroup. Then C[[x1,z2,...,2,]]¢ is
Gorenstein iff G C SL,(C).

Remark 1.3 Note that every subgroup of SL,(C) is small.

Now we want to answer the following question: what are finite subgroups of
SLs(C) modulo conjugation?



2 Finite subgroups of SL,(C)

Lemma 2.1 Fvery finite subgroup of SL,(C) (GL,(C)) is conjugated to a sub-
group of SU(n) (U(n)).

Proof. Let ( , ) be a hermitian inner product on C". Define
1
(u,v) := al Z(gmgv).
geG

(Note that in case G C U(n) it holds ( , Y= ( , )). Then {( , )isa
new hermitian inner product on C™:

1. (u,u) > 0.
2. (u,u) =0 implies u = 0.
3. (u,v) = (v,u).

It holds moreover

1
(hu, hv) = @l Z(ghu,ghv) = (u,v).

geG

Hence G is unitary with respect to ( , ). Moreover, ( , ) has an orthonor-
mal basis and let
S (Cnv< s >) - ((Cnv( s ))

be a map sending vectors of the choosen orthonormal basis of the left space to
vectors of the canonical basis of the right one. It holds (u,v) = (Su, Sv). We
know that (gu, gv) = (u,v) for all g € G, u,v € C™. Hence we get (Su, Sv) =
(Sgu, Sgv), or, setting S~'u and S~'v instead of u and v

(u,v) = (89S~ u, SgS~'v)

for all g € G and u,v € C".
Now we want to describe all finite subgroups of SU(2). Recall that

SU@2)={A€ SLy(C)|A™" = A*} = {( —aB g ) lla]? + |62 = 1}.

So, from the topological point of view SU(2) = S3.

Theorem 2.2 There is an exact sequence of group homomorphisms
1 — Zy — SU(2) = SO(3) — 1.

More precisely,

ker(m) :{i< (1) (1) )}.

Topologically T is the map S> 21, rp3,



From this theorem follows that there is a connection between finite subgroups
of SU(2) and SO(3). The classification of finite isometry groups of R? is a
classical result of F.Klein (actually of Platon). There are the following finite
subgroups of SO(3,R):

1. A cyclic subgroup Z,, generated, for instance, by

cos(£) —sin(2) 0
sin(2Z)  cos(¥) 0
0 0 1

2. Dihedral group D,,, |D,| = 2n. It is the automorphism group of a prisma.
It is generated by a rotation a and a reflection b which satisfy the relations
a" = e,b?> = e, (ab)? = e. Note that the last relation can be choosen as
ba = a"'b or bab~! = a"'.

3. Group of automorphisms of a regular tetrahedron T = A4. Note that
|T| = 12.

4. Group of automorphisms of a regular octahedron O = Sy, |O] = 24.

5. Group of automorphisms of a regular icosahedron I = A5, |I| = 60.
Observe that all non-cyclic subgroups of SO(3) have even order.

-1 0

Lemma 2.3< 0 —1

) is the only element of SU(2) of degree 2.

Proof. The proof is a simple computation.

a B\ [ =182 af+Ba)_ (1 0
5 a) =\ -Ba-Ba a*—18P ) =\ 0 1

2 2

implies a® = a® or a« = +a. Hence a = z,x € R or a = ix,z € R. Moreover
a # 0 since otherwise must hold —|3?> = 1. In case @ € R we have af3 +
Ba = 2af hence § = 0 and a = £1. If a = 4z is purely imaginary then
o —|B* = |z — |B* <0.

Let G C SU(2) be a finite subgroup, m : SU(2) — SO(3) the 2 : 1 surjec-
tion. Consider two cases.

1. |G| is odd. Then GNZs = {e} (no elements of order 2 in G). So ker(m) N
G = {e} and G — 7(G) is an isomorphism. Hence G is cyclic.

2. |G| is even. The due to the Sylow’s theorem G contains a subgroup of
order 2% and hence contains an element of order 2. But there is exactly
one element of the second order in SU(2) (see the lemma above). Hence
ker(m) € G and G = 7~ 1(7(G)). So, in this case G is the preimage of a
finite subgroup of SO(3).



From what was said we get the full classification of finite subgroups of SL4(C)
modulo conjugation.

1. A cyclic subgroup Zj. Let g be its generator. g¥ = e implies

NEO
g 08717

where € is some primitive root of 1 of k-th order.

2. Binary dihedral group D,,, |D,| = 4n. To find the generators of D,, we
have to know the explicit form of the map 7 : SU(2) — SO(3). Skipping
all details we just write down the answer. I,, = (a,b) with relations

an = b
b* = e
bab~! = a7t

To be concrete,

e 0 i 0 1
a’_(o 6—1>7€_e‘rp(z)7 b_<_1 0>

3. Binary tetrahedral group T, |T| = 24. T = (o, 7, u), where

(i 0 ([ 0 1 AU _(271'2')
g = 0 —i , T = 1 0 ,/L—ﬁ 65 c ,6—617]7?.

4. Binary octahedral group O, |Q| = 48. This group is generated by o, 7, u
as in the case of T and by
P 0
Lo &)

5. Finally we have the binary icosahedral subgroup I, |I| = 120. I = (o, 7),
where

> e 0 oL —e4et) e2-g3 s—ex(@)
- 0 82 a_\/g 62—83 8—54 ) - D 5 .

Remark 2.4 The problem of classification of finite subgroups of GL2(C) is
much more complicated. Indeed, every finite subgroup G C GLo(C) can be
embedded into SL3(C) via the group monomorphism

— .
I 0 T
Finite subgroups of GL2(C) give main series of finite subgroups of SL3(C).

Now we can compute the corresponding invariant subrings.



3 Description of Du Val singularities

1. A cyclic subgroup Z,, = {(g), g : x + ex,y > e 'y, e = exp(2Z). It is not

n
difficult to see that X = z",Y = y™ and Z = zy generate the whole ring
of invariants.

Cllz, y)*» = C[X, Y, Z]| /(XY — Z") 2 C[[z,y, ]}/ (a® + y* + 2").
It is an equation of A, _i-singularity.

2. Binary dihedral group D,,.

{ T —  ex { T = =y
g . 1 T ! 5

where € = exp(Zt). The set of invariant monomials is
F = 2" 442" H = xy(z® — "), I = 2%y°.
They satisfy the relation
H? = 22 (2™ + y*" — 22%7y%") = TF? — 41?2(0HD),
The standart computations show that
Cllz, yI°" = Cllz, y, 2]]/(z* + y=* + 2" ).
It is an equation of D, _o-singularity.
3. It can be checked that for the groups T, O, we get singularities

(a) Eg: 22 + 93+ 24 =0,
(b) Er: 2? +y3 +yz3 =0,
(c) Eg: 22 +y>+2° =0.

We get the following theorem:

Theorem 3.1 Du Val singularities are precisely simple hypersurface singular-
ities A— D — E.

We want now to answer our next question: what are minimal resolutions
and dual graphs of Du Val singularities?

4 A;-singularity

Consider the germ of A;-singularity S = V(2% + y? + 22) C A3. Consider the
blow-up of this singularity.

AP ={((z,y,2), (u:v:w)) € A® x P?|zv = yu, 2w = zu, yw = zu}.



Take the chart v # 0, i.e. u=1. We get

r = z
Yy = U
z = xw

What is S = 7—1(S\{0})? Consider first 2 # 0 (it means that we are looking
for 771(S\{0})).

22 4+ 220% + 2%w? = 0,2 # 0,
or

1+v* +w? =0,z #0.

In order to get S we should allow 2 to be arbitrary. In this chart Sisa cylinder
V(1 +v? 4+ w?) C A3 What is 7=1(0)? Obviously it is the intersection of S
with the exceptional plane ((0,0,0), (u : v : w)). In this chart we just have to
set z = 0 in addition to the equation of the surface S.

i [ 1+ +w? = 0
T (O)_{ x = 0.

We see that E = m—1(0) is rational and since all 3 charts of S are symmetric,
we conclude that E is smooth, so E = P!. Now we have to compute the
selfintersection number E2. We do it using the following trick.

Let 7 : X — X be the minimal resolution. It induces an isomorphism of
fields of rational functions 7* : C(X) — C(X). Let f € C(X) be a rational
function. Then it holds:

(f).-E =degp(Op ® O%(f)) = dege(Og) = 0.
In particular it holds for f € m C Ox :
(fom).E=0.

Consider the function y € Ox . In the chart u # 0 we get y o™ = xu. What is
the vanishing set of y?

1. =0 is an equation of F.
2. u = 0 implies v2 +1 =0 or v = +i.

Hence (f) = E + C; + Cs and we have the following picture:



So, (f).E = E? + C1.E + Co.E = E* + 2 = 0. From it follows E? = —2.

5 Fg-singularity

In this section we want to compute a minimal resolution and dual graph of Fg-
singularity X = V(22 + 3® 4+ 2%) € A3. Let X = X be a minimal resolution,
E = UE; = 771(0) the exceptional divisor. In order to compute selfintersection
numbers E? we have to consider the map 7* : C(X) — C(X). Let f € mx C
Ox, then equalities (f om).E; = 0 will imply the selfintersection numbers of E;.
First step. Let X = V(22 4+ 33 +2%) C A3, f = 2. Consider the blow-up of A®:

A3 = {((z,y,2), (u:v:w) € A x P?|zv = yu, zw = zu, yw = zu}.

Take first the chart v # 0 (i.e. v =1). We get equations

T = yu
y =y
z = yw.

To get the equation of the strict transform of X; we assume that y # 0 and
v2u? 4 P+ ytwt =0,
or
u? +y+yPwt = 0.

In this chart X; is smooth: Jacobi criterium implies

u = 0
1+2yw* = 0
wiy? = 0.

It is easy to see that this system has no solutions.
In the chart u = 1 the strict transform X is again smooth.
Consider finally the chart w = 1.

r = zu
Yy = 2v
z = Zz



The strict transform is
20+ 230 42t =0,
or
w420+ 22 =0.

Jacobi criterium implies that this surface has a unique singular point u = 0,v =
0,z = 0, or in the global coordinates ((0,0,0), (0:0: 1)). We see that this point
indeed lies only in one of three affine charts of X 1.

We now need an equation of exceptional fibre. The exceptional fibre is by
the definition the intersection X; N {((0,0,0), (v : v : w))}. To get its local
equation in the chart w = 1 we just have to set z = 0 in the equation of X.
z = 0 implies © = 0. Hence we get

Eo = {((0,0,0),(0:v:1))} = A"

Going to the other charts shows that Ey = P!.
Finally, the function f in this chart gets the form f = zu.

Agreement. Since the number of indices depends exponentially on the number of
blowing-ups, we shall denote the local coordinates of all charts of all blowing-ups
X, by the letters (z,y, 2).

Second step. We have the following situation:

surface 2tz +22=0
function f=xz
exceptional divisor Ey z =0,z = 0.

Consider again the blowing-up of this surface. It is easy to see that the only
interesting chart is

x = yu
y =y
z = yv.

We get the strict transform
y*u® +yoy® + y*® =0,y #0,

or
u? + %0 4+ 0% = 0.

Again y = 0,u = 0,v = 0 is the only singularity of the blown-up surface. The
exceptional fibre of this blowing-up has two irreducible components: y = 0
implies u + v = 0 (we call this components | and EY).

What is the preimage (under preimage we mean its strict transform) of Ey?
x =0,z =0 implies u = 0,v = 0.

The function f = xz gets in this chart the form f = y?uv.



Third step. We have the following situation:

surface 2 +y?2+22=0
function f=zy’z
exceptional divisor Fy x=0,z2=0
exceptional divisor F; y =0,z +1z =0.

Let us consider the next blowing-up.

x = yu
y =y
z = Yyv

The strict transform is
y*u® + yPyv + y*u® =0,y £ 0,

or
u? +yv+0v? =0.

It is an equation of A;-singularity (and it means that we are almost done). The
exceptional fibre consists again of two irreducible components E}, EY. They
local equations are y = 0,u £ iv = 0. The function f is uy*v. It is easy to see
that the preimage of Ey is u = 0,v = 0.

What about the preimage of E;? Our surface lies in the affine chart A3 em-
bedded into A3 x P? via the map (y,u,v) — ((yu,y,yv), (u: 1:v)). But then
the condition y = 0 would imply that the preimage of F; lies in the exceptional
plane ((0,0,0)(u : 1 :v)). But it can not be true! The solution of this paradox
is that the preimage of of F; lies in another coordinate chart.

Consider
T = T
Yy = zu
z = xv,



The strict transform is

22 4+ 22urv + 220 = 0,2 # 0

or

1+ zuv +v2 =0.

The equations of the exceptional fibre Fs in this chart are = 0, what implies
v = +4. The preimage of E;

rxiz = 0
y =0
is given by
rxizv = 0
TU = 0,z #0,
hence
vo= +i
u = 0
x arbitrary
In the picture it looks like:
1
: (u=0, v=-i, x=0)
- ’
| . i
: &
| (u=0.v=i, x=0) )
EZ

It is easy to see that all intersections are transversal.

Fourth step. We have the following situation: there are two coordinate charts

surface

function

exceptional divisor Ejy
exceptional divisor Fo

22 +yz+22=0
f=ay'z
r=0,2=0

y=0,z+iz=0.

10

surface

function

exceptional divisor F
exceptional divisor Fo

1+ay?z+22=0

f=azy%
y=0,2z==1¢
r=0,z==+i.



Our next step is the blowing-up at the point (0,0, 0) in the first coordinate
chart. Again, in order to get equations of the preimages of Fy and Fy we have
to consider two coordinate charts.

T = yu
y =y
z = yw.

The strict transform is a cylinder
u? 4+ v+02 =0.
The preimage of Ej is given by equations u = 0,v = 0, the exceptional fibre F3

is given by u? +v + 02 = 0,y = 0, our function f = uySv. In another chart we
have

xr = =z
Yy = zu
z = aw.

The strict transform is given by
2?4+ 22w+ 2202 =0, #£0

or
1+uv+0%=0.
The exceptional fibre E3 is given by 1 4+ uv + v? = 0,2 = 0, the preimages of
EY and EY are given by u = 0,v = 44, f = 2%u%v.
Hence our exceptional fibre E is given by the following configuration of
projective lines:

11



k) Ey Ey

"
El

The dual graph of this configuration is

Fifth step. We have to take into account three coordinate charts of a minimal
resolution.

X: 22424+22=0 X l+yz+22=0 X 1+xy?2z+22=0
fi xzytz fi xbytz fi xby%z

Ey: 2=0,2=0 Ez: 2=0224+yz+22=0 Ei: y=0,2=4i
Ez: y=0,22+yz+22=0 Ey: y=0,z==1 Ey: z=0,2z=+1.

Now we have to compute the divisor (f).

Let X C A3 be a normal surface, Y C X a closed curve, f € C(X) a rational
function. Suppose that p C C[X] is the prime ideal corresponding to Y. Then
C[X], is a discrete valuation ring and

multy (f) = valex, (f)-

1. Consider the first chart. Let f = 2y%2 = 0. = = 0 implies z = 0 or
z=—1. £ =0, z =0 is an equation of Ey, x = 0,z = —1 is the strict
transform C of the curve z = 0 in V(22 + y3 + 2%) C A3.

What is the multiplicity of Ey? The generator of the maximal ideal of the
ring (Clz,y,2]/(z% + 2+ 2?))y is T and ? ~ z. Therefore multg, (f) = 3.

y = 0 gives an equation of E3. It is easy to see that multg,(f) = 6.
Note that the curve C has transversal intersection with E3 at the point
,]3:0,2/:072: —1.

2. Consider the second chart. In this chart holds f = z%y%*z = 0. z = 0
is impossible, x = 0 cut out the equation of E3 and y = 0 equations of
E} and EY. The same computation as above shows that multg,(f) = 6
(what is not surprise and makes us sure that we did not make a mistake
in computations) and multg, (f) = multgy (f) = 4.

12



3. In the same way we obtain that multg, (f) = multg,(f) = 2. Therefore
we obtain:

(f) =6E3+ 4(Ey + EY) +2(Ey + EY) + 3Eo + C.

We have C.E3 = 1, all other intersection numbers of C' with irreducible
components of E are zero. Intersection numbers of irreducible components
are coded in the dual graph (which is Eg, see the picture above). The whole
job was done in order to compute self-intersections.

(f).Eo =6+3E2 =0= E? = 2.
0 0

In the same way we conclude that the other selfintersection numbers are
—2.

Remark 5.1 Let X be a normal surface singularity, = : X — X its minimal
n

resolution, E = |J E; = 7~ (0) the exceptional divisor. Suppose that X is a
i=1

good resolution, all B; =2 P! and E? = —2. Then X is a simple hypersurface

singularity.

Indeed we know that the intersection matrix (E;.E};);';_; is negatively defi-
nite. Let I' be the dual graph of X. Then the quadratic form given by intersec-
tion matrix coinside with the Tits form of the dual graph:

n

Qer, 2, ) = =200 a7 — > agmixy),

i=1 1=i<j=n

where a;; is the number of arrows connecting vertices ¢ and j. From the theorem
of Gabriel we know that @ is negatively definite (and quiver is representation
finite) if and only if ' = A — D — E. Since our singularity is rational, it is taut
and uniquely determined by its dual graph.

6 2-dimensional McKay correspondence

Recall that we defined Du Val singularities as quotient singularities C[[z, y]]¢,
where G C SU(2) is some finite subgroup. A natural question is: are there
any connections between the representation theory of G and geometry of the
minimal resolution of a singularity? Let us recall some standart facts about
representations of finite groups.

Theorem 6.1 (Mashke) Let G be a finite group. Then the category of C[G|-
modules is semi-simple.

This theorem means that any exact sequence of C[G]-modules splits. In partic-
ular, every finite-dimensional C[G]-module is injective and projective. But an
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indecomposable projective module by a theorem of Krull-Schmidt is isomorphic
to a direct summand of the regular module. Let

cle)= e
i=1

be a direct sum decomposition of C[G]. Then ®1,Ps,..., P, the whole list of
indecomposable C[G]-modules.

S

Lemma 6.2 Let C[G] = @ D" be a decomposition of the regular module into
i=1
a direct sum of indecomposable ones. Then it holds

dim(c ((I)i) = N;.

In particular, the following identity is true:

S
an =|G]|.
i=1

Definition 6.3 Let G be a group, (,V), ® : G — End(V) its representation.
The character of a representation ® is the function x¢ : G — C defined by the
rule xa(g) = Tr(®(g)).

Remark 6.4 1. It is easy to see that the character does not depend on the
choice of a representative from the isomorphism class of a representation:

Tr(®(g)) = Tr(S™'®(g)S).

2. It holds:
XU = Xe XV,
Xoer = X& + Xv.

In other words, x defines a rings homomorphism from the Grothendieck
ring of C[G] to C.

3. It holds:
xa(h~'gh) = Tr(®(h~' gh)) = Tr(®(h)~'®(g9)®(h)) = Tr(®(g)) = xa(9)-

It means that xg is a central function, i.e. a function which is is constant
on conjugacy classes of G.

Theorem 6.5 A finite dimensional representation of a finite group G is uniquely
determined by its character.

14



Idea of the proof. Let ¢, be two central functions on G. Set

geqG

It defines an hermitian inner product on the space of all central functions on
G. The theorem follows from the fact that xo,, X®,,. .., X®, is an orthonormal
basis of this vector space. Indeed, let ® be any finite-dimensional representation
of G. Then we know that

O~ pd.

Then it obviously holds m; = (xs, X, )-

Corollary 6.6 The number of indecomposable representations of a finite group
G is equal to the number of its conjugacy classes.

Definition 6.7 (McKay quiver) Let G C SU(2) be a finite subgroup, ®g, 1, ..., P
all indecomposable representations of G. Let ®y be the trivial representation,

4t the natural representation (i.e. the representation given by the inclusion
G C SU(2)). Define the McKay graph of G as the following:

1. Vertices are indezed by ®q,..., P, (we skip Po).
2. Let

;@ Opor = EP 2T
§=0

(or, the same

XiXnat = Z @ijXj-
i=0
Then we connect vertices ®; and ®; by a;; vertices.
It is easy to see that ®g ® ®pat = Ppat-
Remark 6.8 It holds a;; = aj;.

Indeed,

Qaij = {(XiXnat> XJ |G| Z Xi(9)Xnat (9 Z Xi(9)Xnat (9)X; (g_l)
9cG geq

(here we use that ¢" = 1 and hence ®(g)" = id. From this follows ®(g) ~
diag(ey,ea,...,e) and ®(g71) ~ diag(e; ', 5", ..., 1) = diag(e1, &2, . . ., Ek).)
Since ®jy,¢ is the natural representation, all ®,,+(g9) € SU(2),9 € G. Let
A € SU(2). If A ~ diag(a,b) then A1 ~ diag(b,a) (ab = 1.) Therefore we

have Xpat(9) = Xnat(¢~!). Then we can continue our equality:

> Xi(9)xnat (9 = > X @xnat (907" = (Xi XnatXs) = @
geG geqG
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Example 6.9 Let G = D3 be a binary dihedral group. As we already know,
|Ds| = 12. The group D3 has two generators a,b which satisfy the following
relations:

ad = b

bt =

aba = b L
The group D3 has 4 1-dimensional representations a = 1,b=1; a = 1,b = —1;
a=—1,b=1and a = —1,b = —i. The natural representation is also known: it

is just

CL_es() b_Ol
0 et ) "7\ -10)°

where e = exp(Zl) = 1+ ‘/_z There is also another one irreducible 2-dimensional
representation:

2n 2m
cos Sw zsm%?% b= 0 1 .
isin 5 cos 5F -1 0
We have found all indecomposable representationsof G: 1+1+1+1+4+4=
12 = |D3|. We can sum up the obtained information into the character table.

x(a) | x(b) | dim
0 1 1 1 trivial
1 1| -1 1
21 -1 i 1
3 1| — 1
4 1 0 2 | natural
5[ =1 0 2

From this table we can derive the whole structure of the Grothendieck ring
of [D3]. x3,¢ can be only xo+ X1+ xs. In the same way x5Xpat = X2 + X3+ X4
We get the McKay graph of |Ds|:

Observe that we obtained the dual graph of the Djs-singularity. Note that
the fundamental cycle of the Ds-singularity is

qund = El + 2E‘4 + 2E5 + EQ + Eg.

But the coeffitients of this decomposition are the same as the dimensions of the
representations corresponding to the vertices of the McKay quiver.
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Theorem 6.10 (McKay observation) Let G C SU(2) be a finite subgroup,
Cl[z,y]]¢ the corresponding invariant subring. Then the McKay quiver of G
coinside with the dual graph of C[[z,y]]®, dimensions of the representation cor-
responding to a verter of McKay quiver is equal to the multiplicity of the corre-
sponding component of the exceptional fibre in the fundamental cycle.
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