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H;j::)‘:;ic Let (M, g) be a compact Riemannian manifold without boundary and

Sections A := A, denotes the Laplace-Beltrami operator associated with the

Turgay metric g. We also let dV be the corresponding volume element.
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. An eigenfunction ¢ : M — R of A has the property —A¢p = A\¢ for
Quantum some A > 0. For such a ¢ one can define a probability measure
Ergodicity

|9(x)?
g = dv
[l
where

o2 = /M 60012V (x).

A natural question in quantum chaos is to understand limiting
behavior of 145 as A — oo.
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Quantum Ergodicity

Definition
A weak limit p14, — v is called a quantum limit.

Fact
Any quantum limit is invariant under geodesic flow.
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On the other hand, there is a natural measure p called Liouville
measure which is invariant under geodesic flow.

Recall that geodesic flow is ergodic with respect to such a probability
measure  if the only flow invariant subsets are either of p-measure
zero or one. In this case, by Birkhoff ergodic theorem p-almost all
geodesics are p-equidistributed.
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On the other hand, there is a natural measure p called Liouville
measure which is invariant under geodesic flow.

Recall that geodesic flow is ergodic with respect to such a probability
measure  if the only flow invariant subsets are either of p-measure
zero or one. In this case, by Birkhoff ergodic theorem p-almost all
geodesics are p-equidistributed.

Theorem (Zelditch, Duke '87)

Let (M, g) be a compact Riemannian manifold without boundary.
Assume that the geodesic flow is p-ergodic. If {qﬁj}jﬁo is an ONB of
eigenfunctions with 0 = Mg < A\; < Ap < -+ then there is a
subsequence jy of density one (i.e. % — 1) such that pg, — p.

Question
Does there exists a quantum limit other than 1 ?

= = — — — ~=
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Quantum Unique Ergodicity (QUE)

Conjecture (Rudnick-Sarnak, CMP '94)

Let (M, g) be a negatively curved compact Riemannian manifold (in
particular, the Liouville measure is ergodic) then p4, — p ie. pis
the unique quantum limit.

Theorem (Lindenstrauss, Annals of Math '06)

Let M be a compact arithmetic surface then the only quantum limit
is the Liouville measure.

Theorem (Anantharaman, Annals of Math '08)
If v is a quantum limit then the entropy h(v) > 0.
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Complex Geometry Setting

Let M be a projective manifold of complex dimension m and L - M
be an ample holomorphic line bundle endowed with a smooth (at
least 6’2) Hermitian metric h = e~% where ¢ = {p,} is a local

weight of the metric.

The latter means that if e, is a holomorphic frame for L over an
open set U, then |e,|, = e~%= where ¢, € €%(U,) such that
Yo = g +log|gap| and gap := ez/eq € O*(Uy N Ug) are the

transition functions for L.
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Equilibrium weight and measure

Mass Equidis- In this setting, we define global extremal weight ¢, to be
tribution for

Random . .
Holomorphic e :=sup{t is a psh weight : ¢p < ¢ on M}.

Sections

Turgay Then ¢, defines a singular Hermitian metric h, := e~ %< on L. We
Bayraktar

denote its curvature current by dd pe := dd(pe.o) on U,.

Quantum

Ergodicity Theorem (Berman ’09)

The metric is of class €1't. Moreover, the equilibrium measure
i, = (ddpe)™ /m!
is supported on the compact set
S, = M,(0)nD

where M (0) := {x € M : dd°p(x) > 0} and
D:={xeM: p(x)=wpex)}
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L2-global holomorphic sections

The geometric data given above allow us to define a scalar inner

product on the vector space of global holomorphic sections
HO(M, L®") via

(s1.52) = [ (51(6),52(6) etV
X
where dV is a fixed smooth volume form on M. We also let
SHO(M, L®") := {s € HO(M, L®™) : ||s]|, = 1}.

For a section s, € SH(M, L®") we define its mass to be the
probability measure
[5n(3) [fen 0V (%)

on M.
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Basic Example: SU(m+1) Polynomials

Example

Let M = P™ be complex projective space and L = O(1) hyperplane
bundle. Then H°(P™ O(N)) can be identified with homogenous
polynomials in m + 1 variables of degree N. Letting h = hgs
Fubini-Study metric, the sections

(N+m)! 1

i1 =G W = W

=

form ONB for H(P™, O(N)).

A random SU(m-+1) Polynomial is of the form

fN(Z(),...,Zm): Z aJSJ

=N

where a; are i.i.d. standard complex Gaussian.
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Mass asymptotics & Zeros

Theorem (Nonnenmacher-Voros '98; Shiffman-Zelditch '99; B. '20)
Let s, € SHO(M, L®"). Assume that

[5n(x)[hendV (x) = e,

in weak* topology as n — co. Then 1[Z, ] — dd°yp. in the sense of
currents.

v
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Random holomorphic sections

Now, we fix an ONB {S] ;'11 for HO(M, L®") with respect to the
inner product given earlier. Then a a random holomorphic section is

of the form
dy

o— ngn
1=
j=1
where ¢! are iid (real or complex) random variables of mean zero and

j
variance one i.e. E[|c]|*] = 1.

This definition induces a d,-fold product probability measure Prob,
on the vector space HO(M, L®"). We also consider the product
probability space []7”; (H°(M, L®"), Prob,).
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Mass asymptotics of random holomorphic sections

We are interested in asymptotic distribution of masses of random
holomorphic sections:

Vs, 1= |sn(X)|20.dV.
More precisely,
Xn o HO(M, L®") — M(X)
Sp — Vs,
defines a measure valued random variable. We wish to study
@ asymptotics of E[X,] or Var[X,] etc.
@ a.e. limiting behavior of X,

@ linear statistics of X, etc.
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Mass asymptotics of random holomorphic sections

For a continous function g : M — R consider the random variables

XE: HO(M,L®™) —» R

XE(s)) = /M &(2)|5(x) BndV
= <Tr§(5n)a5n>n

where T, =1, o M& is the Toeplitz operator with multiplier g.
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Mass asymptotics of random holomorphic sections

For a continous function g : M — R consider the random variables

XE: HO(M,L®™) —» R

XE(s)) = /M &(2)|5(x) BndV
= <Tr§(5n)a5n>n

where T, =1, o M& is the Toeplitz operator with multiplier g.On
the other hand,

=
>

=
I

| &@EIs(fendv
| ) LIS erV

= /g(z)Bn(X)dV:Tr(Tﬁ’).
M
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Let L — M be an ample line bundle endowed with a C?> metric e~ %
and dV be a smooth volume form. Then
1
dn
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Bn(x)dV — pi,

in weak* topology on M. Moreover,

tribution

1
Mass Equidis- d—\K,,(x, V) [2andV(x) AdV(y) — A A pig,

Here A := [{x = y}] denotes the current of integration along the
diagonal in M x M and for any bounded continuous function ¥ we
have
/ V(x,y)A N g, = / V(x, x)d g, .
Mx M S

©
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Mass asymptotics of random holomorphic sections

Corollary

In the above setting, we have
1
—E[XE8] — / g(z)dpy,, as n— oo.
d, cm

Moreover, if the random coefficients are i.i.d. Gaussian then

Var[XE] = O(d,).
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Sub-Gaussian random variables

A real valued random variable X : Q — R is called subgaussian with
parameter b > 0 (or b-subgaussian) if the moment generating
function (MGF) of X is dominated by MGF of normalized Gaussian
N(0, b) that is

2.2
E[eX] < e’ forall t € R.

The classical examples of 1-subgaussian random variables are
Standard Gaussian N(0, 1), Bernoulli random variables

P[X = +1] = % and uniform distribution on [—1,1]. Moreover, all
bounded random variables of mean zero are subgaussian.
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Mass Equidis-

tribution for ’
it Theorem (B. '20)

Holomorphic - .. o g
Sections Assume that the random coefficients c; are i.i.d. sub-Gaussians with

Turgay mean zero and unit variance. Then for almost every sequence in
Bayraktar o] 0 ®n
[12, (H°(M, L®"), Prob,) the masses

Quantum 1
Ergodicity

—|sn(2)[20ndV — dp,,
Random dn
Holomorphic
Sections

in the weak-star sense on S,. In particular, almost surely in

timrouidis I ol (H°(M, L®™), Prob,) the normalized currents of integration

1
E[an] — dd®pe

in the sense of currents.

This generalizes [Shiffman-Zelditch '99].
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Thank you!

Mass Equi
tribution
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