Mass Equidistribution for Random Holomorphic Sections

Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidis tribution

Mass Equidistribution for Random Holomorphic Sections

Turgay Bayraktar

(Sabancı University)

Geometric and Topological Properties of Random Algebraic Varieties October 5, 2023

Acknowledgement: The work is supported by Turkish Academy of

	Sciences.				
Turgay Bayraktar	Mass Equidistribu	ution for Rando	om Holomorp	hic Sectio	ns

Motivation

Mass Equidistribution for Random Holomorphic Sections

> Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidis tribution Let (M, g) be a compact Riemannian manifold without boundary and $\Delta := \Delta_g$ denotes the Laplace-Beltrami operator associated with the metric g. We also let dV be the corresponding volume element.

イロト イボト イヨト イヨト

Motivation

Mass Equidistribution for Random Holomorphic Sections

> Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidis tribution Let (M, g) be a compact Riemannian manifold without boundary and $\Delta := \Delta_g$ denotes the Laplace-Beltrami operator associated with the metric g. We also let dV be the corresponding volume element. An eigenfunction $\phi : M \to \mathbb{R}$ of Δ has the property $-\Delta \phi = \lambda \phi$ for some $\lambda \ge 0$. For such a ϕ one can define a probability measure

$$\mu_\phi := \frac{|\phi(x)|^2}{\|\phi\|^2} dV$$

where

$$\|\phi\|^2 = \int_M |\phi(x)|^2 dV(x).$$

A natural question in quantum chaos is to understand limiting behavior of μ_{ϕ} as $\lambda \to \infty$.

A D D A D D A D D A D D A

Quantum Ergodicity

Mass Equidistribution for Random Holomorphic Sections

> Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidis tribution

Definition

A weak limit $\mu_{\phi_{\lambda}} \rightarrow \nu$ is called a quantum limit.

Fact

Any quantum limit is invariant under geodesic flow.

イロト イヨト イヨト イヨト

Э

Quantum Ergodicity

Mass Equidistribution for Random Holomorphic Sections

> Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidis tribution On the other hand, there is a natural measure μ called Liouville measure which is invariant under geodesic flow.

Recall that geodesic flow is ergodic with respect to such a probability measure μ if the only flow invariant subsets are either of μ -measure zero or one. In this case, by Birkhoff ergodic theorem μ -almost all geodesics are μ -equidistributed.

Quantum Ergodicity

Mass Equidistribution for Random Holomorphic Sections

> Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidis tribution On the other hand, there is a natural measure μ called Liouville measure which is invariant under geodesic flow.

Recall that geodesic flow is ergodic with respect to such a probability measure μ if the only flow invariant subsets are either of μ -measure zero or one. In this case, by Birkhoff ergodic theorem μ -almost all geodesics are μ -equidistributed.

Theorem (Zelditch, Duke '87)

Let (M, g) be a compact Riemannian manifold without boundary. Assume that the geodesic flow is μ -ergodic. If $\{\phi_j\}_{j=0}^{\infty}$ is an ONB of eigenfunctions with $0 = \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \cdots$ then there is a subsequence j_k of density one (i.e. $\frac{j_k}{k} \rightarrow 1$) such that $\mu_{\phi_{j_k}} \rightarrow \mu$.

Question

Does there exists a quantum limit other than μ ?

Quantum Unique Ergodicity (QUE)

Mass Equidistribution for Random Holomorphic Sections

> Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidis tribution

Conjecture (Rudnick-Sarnak, CMP '94)

Let (M, g) be a negatively curved compact Riemannian manifold (in particular, the Liouville measure is ergodic) then $\mu_{\phi_{\lambda}} \rightarrow \mu$ i.e. μ is the unique quantum limit.

Theorem (Lindenstrauss, Annals of Math '06)

Let M be a compact arithmetic surface then the only quantum limit is the Liouville measure.

Theorem (Anantharaman, Annals of Math '08)

If ν is a quantum limit then the entropy $h(\nu) > 0$.

イロン イヨン イヨン イヨン

Complex Geometry Setting

Mass Equidistribution for Random Holomorphic Sections

> Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidis tribution Let *M* be a projective manifold of complex dimension *m* and $L \to M$ be an ample holomorphic line bundle endowed with a smooth (at least \mathscr{C}^2) Hermitian metric $h = e^{-\varphi}$ where $\varphi = \{\varphi_\alpha\}$ is a local weight of the metric.

The latter means that if e_{α} is a holomorphic frame for L over an open set U_{α} then $|e_{\alpha}|_{h} = e^{-\varphi_{\alpha}}$ where $\varphi_{\alpha} \in \mathscr{C}^{2}(U_{\alpha})$ such that $\varphi_{\alpha} = \varphi_{\beta} + \log |g_{\alpha\beta}|$ and $g_{\alpha\beta} := e_{\beta}/e_{\alpha} \in \mathcal{O}^{*}(U_{\alpha} \cap U_{\beta})$ are the transition functions for L.

イロト イボト イヨト イヨト

Equilibrium weight and measure

Mass Equidistribution for Random Holomorphic Sections

> Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidis tribution In this setting, we define global extremal weight φ_e to be

 $\varphi_e := \sup\{\psi \text{ is a psh weight} : \psi \leq \varphi \text{ on } M\}.$

Then φ_e defines a singular Hermitian metric $h_e := e^{-\varphi_e}$ on L. We denote its curvature current by $dd^c \varphi_e := dd^c(\varphi_{e,\alpha})$ on U_{α} .

Theorem (Berman '09)

The metric is of class $\mathscr{C}^{1,1}$. Moreover, the equilibrium measure

$$\mu_{\varphi_e} := (dd^c \varphi_e)^m / m!$$

is supported on the compact set

$$S_{arphi}:=M_{arphi}(0)\cap D$$

where $M_{\varphi}(0) := \{x \in M : dd^c \varphi(x) > 0\}$ and $D := \{x \in M : \varphi(x) = \varphi_e(x)\}.$

L²-global holomorphic sections

Mass Equidistribution for Random Holomorphic Sections

> Turgay Bayraktar

Quantum Ergodicity

Random Holomorphi Sections

Mass Equidi tribution The geometric data given above allow us to define a scalar inner product on the vector space of *global holomorphic sections* $H^0(M, L^{\otimes n})$ via

$$\langle s_1, s_2 \rangle := \int_X \langle s_1(x), s_2(x) \rangle_{h^{\otimes n}} dV$$

where dV is a fixed smooth volume form on M. We also let

$$SH^0(M, L^{\otimes n}) := \{s \in H^0(M, L^{\otimes n}) : \|s\|_n = 1\}.$$

For a section $s_n \in SH^0(M, L^{\otimes n})$ we define its mass to be the probability measure

 $|s_n(x)|^2_{h^{\otimes n}}dV(x)$

on M.

Basic Example: SU(m+1) Polynomials

Mass Equidistribution for Random Holomorphic Sections

> Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidis tribution

Example

Let $M = \mathbb{P}^m$ be complex projective space and $L = \mathcal{O}(1)$ hyperplane bundle. Then $H^0(\mathbb{P}^m, \mathcal{O}(N))$ can be identified with homogenous polynomials in m + 1 variables of degree N. Letting $h = h_{FS}$ Fubini-Study metric, the sections

$$S_J = [\frac{(N+m)!}{m!j_0! \dots j_m!}]^{\frac{1}{2}} z^J, \ J = (j_0, \dots, j_m), |J| = N$$

form ONB for $H^0(\mathbb{P}^m, \mathcal{O}(N))$.

A random SU(m+1) Polynomial is of the form

$$f_N(z_0,\ldots,z_m)=\sum_{|J|=N}a_JS_J$$

where a_J are i.i.d. standard complex Gaussian.

A (1) + A (2) + A (2) +

Mass asymptotics & Zeros

Mass Equidistribution for Random Holomorphic Sections

> Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidi tribution Theorem (Nonnenmacher-Voros '98; Shiffman-Zelditch '99; B. '20) Let $s_n \in SH^0(M, L^{\otimes n})$. Assume that

$$|s_n(x)|^2_{h^{\otimes n}}dV(x) \to \mu_{\varphi_e}$$

in weak* topology as $n \to \infty$. Then $\frac{1}{n}[Z_{s_n}] \to dd^c \varphi_e$ in the sense of currents.

Random holomorphic sections

Mass Equidistribution for Random Holomorphic Sections

> Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidis tribution Now, we fix an ONB $\{S_j^n\}_{j=1}^{d_n}$ for $H^0(M, L^{\otimes n})$ with respect to the inner product given earlier. Then a *a random holomorphic section* is of the form

$$s_n := \sum_{j=1}^{d_n} c_j^n S_j^n$$

where c_j^n are iid (real or complex) random variables of mean zero and variance one i.e. $\mathbb{E}[|c_i^n|^2] = 1$.

This definition induces a d_n -fold product probability measure $Prob_n$ on the vector space $H^0(M, L^{\otimes n})$. We also consider the product probability space $\prod_{n=1}^{\infty} (H^0(M, L^{\otimes n}), Prob_n)$.

A D D A D D A D D A D D A

Mass Equidistribution for Random Holomorphic Sections

Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidistribution We are interested in asymptotic distribution of masses of random holomorphic sections:

$$\nu_{s_n}:=|s_n(x)|^2_{h^{\otimes n}}dV.$$

More precisely,

$$X_n: H^0(M, L^{\otimes n}) \to \mathcal{M}(X)$$

 $s_n \rightarrow \nu_{s_n}$

defines a measure valued random variable. We wish to study

- asymptotics of $\mathbb{E}[X_n]$ or $Var[X_n]$ etc.
- a.e. limiting behavior of X_n
- linear statistics of X_n etc.

イロト イボト イヨト イヨト

Mass Equidistribution for Random Holomorphic Sections

> Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidistribution For a continous function $g: M \to \mathbb{R}$ consider the random variables $X_n^g: H^0(M, L^{\otimes n}) \to \mathbb{R}$

$$X_n^g(s_n) = \int_M g(z) |s_n(x)|_{h^{\otimes n}}^2 dV$$

= $\langle T_n^g(s_n), s_n \rangle_n$

where $T_n = \prod_n \circ M^g$ is the Toeplitz operator with multiplier g.

Mass Equidistribution for Random Holomorphic Sections

> Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidistribution For a continous function $g: M \to \mathbb{R}$ consider the random variables $X_n^g: H^0(M, L^{\otimes n}) \to \mathbb{R}$

$$X_n^g(s_n) = \int_M g(z) |s_n(x)|_{h^{\otimes n}}^2 dV$$

= $\langle T_n^g(s_n), s_n \rangle_n$

where $T_n = \prod_n \circ M^g$ is the Toeplitz operator with multiplier g.On the other hand,

$$\mathbb{E}(X_n^g) = \int_M g(z)\mathbb{E}|s_n(x)|^2_{h^{\otimes n}}dV$$

= $\int_M g(z)\sum_j |S_j^n(x)|^2_{h^{\otimes n}}dV$
= $\int_M g(z)B_n(x)dV = Tr(T_n^g).$

Turgay Bayraktar

Mass Equidistribution for Random Holomorphic Sections

Bergman Kernel Asymptotics

Mass Equidistribution for Random Holomorphic Sections

Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidistribution

Theorem (Berman '09)

Let $L \to M$ be an ample line bundle endowed with a C^2 metric $e^{-\varphi}$ and dV be a smooth volume form. Then

$$rac{1}{d_n}B_n(x)dV o \mu_{arphi_e}$$

in weak* topology on M. Moreover,

$$\frac{1}{d_n}|K_n(x,y)|^2_{h^{\otimes n}}dV(x)\wedge dV(y)\to\Delta\wedge\mu_{\varphi_e}$$

Here $\Delta := [\{x = y\}]$ denotes the current of integration along the diagonal in $M \times M$ and for any bounded continuous function Ψ we have

$$\int_{M\times M} \Psi(x,y) \Delta \wedge \mu_{\varphi_e} := \int_{S_{\varphi}} \Psi(x,x) d\mu_{\varphi_e}.$$

Turgay Bayraktar Mass Equidistribution for Random Holomorphic Sections

Mass Equidistribution for Random Holomorphic Sections

Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidistribution Corollary

In the above setting, we have

$$rac{1}{d_n}\mathbb{E}[X_n^g]
ightarrow \int_{\mathbb{C}^m}g(z)d\mu_{arphi_e} ext{ as } n
ightarrow\infty.$$

Moreover, if the random coefficients are i.i.d. Gaussian then

 $Var[X_n^g] = O(d_n).$

Sub-Gaussian random variables

Mass Equidistribution for Random Holomorphic Sections

> Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidistribution A real valued random variable $X : \Omega \to \mathbb{R}$ is called subgaussian with parameter b > 0 (or *b*-subgaussian) if the moment generating function (MGF) of X is dominated by MGF of normalized Gaussian N(0, b) that is

$$\mathbb{E}[e^{tX}] \leq e^{rac{b^2t^2}{2}}$$
 for all $t \in \mathbb{R}$.

The classical examples of 1-subgaussian random variables are Standard Gaussian N(0, 1), Bernoulli random variables $\mathbb{P}[X = \pm 1] = \frac{1}{2}$, and uniform distribution on [-1, 1]. Moreover, all bounded random variables of mean zero are subgaussian.

A D D A D D A D D A D D A

Mass Equidistribution for Random Holomorphic Sections

> Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidistribution

Theorem (B. '20)

Assume that the random coefficients c_j are i.i.d. sub-Gaussians with mean zero and unit variance. Then for almost every sequence in $\prod_{n=1}^{\infty} (H^0(M, L^{\otimes n}), \operatorname{Prob}_n) \text{ the masses}$

$$rac{1}{d_n}|s_n(z)|^2_{h^{\otimes n}}dV o d\mu_{arphi_e}$$

in the weak-star sense on S_{φ} . In particular, almost surely in $\prod_{n=1}^{\infty} (H^0(M, L^{\otimes n}), \operatorname{Prob}_n)$ the normalized currents of integration

$$\frac{1}{n}[Z_{s_n}] \to dd^c \varphi_e$$

in the sense of currents.

This generalizes [Shiffman-Zelditch '99].

Mass Equidistribution for Random Holomorphic Sections

イロト イポト イヨト イヨト

Mass Equidis-
tribution for
Random
Holomorphic
Sections

Turgay Bayraktar

Quantum Ergodicity

Random Holomorphic Sections

Mass Equidistribution Thank you!

・ロト ・回ト ・ヨト ・ヨト

æ