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Mean-field spin glasses
Hamiltonian. N interacting ‘spins’
1 N
HN,p(O‘) = 7N(P*1)/2 Z J,‘l’m,;pa','1 <Oy
iyeenyip=1
J. i.i.d. standard Gaussian r.v.’s

p-spin SK: configuration space o € {—1,1}V.

spherical p-spin SK: o e SNHVN). ‘

Hamiltonian is a centred Gaussian process with covariance

E[Huo(0)Hup(0)] = NP (o)
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Classical questions: statics of spin-glasses

Gibbs measure:

I - o
() = 5= e do),
P

where Ay is the uniform probability measure on SM=1(v/N)

Partition function.

Znp(B) = / e e IAL(do).

Free energy.
.1
N"_)"‘oo N log E[Zn,p(B)] = Fb(B).

Contributions by: Parisi, Talagrand, Guera, Toninelli, Panchenko, ...
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Caricature of the process
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“Typical realization of the Gibbs measure e~ PHn.p(e)

Original motivation: Study a dynamics in this random landscape.
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Motivation 2: Typical Morse functions on the N-sphere

Morse functions. f : M — R, such that all its critical points are
non-degenerate. l.e. det(V?f(x) # 0).

Typical functions = Gaussian processes.
By Schoenberg’s theorem (1937), the only covariance functions that work on
spheres of arbitrary dimension are mixtures of p-spins, i.e.

E[f()f(x)] =D ap(x-x),  x,x'es' ™t a,>0
p=0
(taking f(x) = Nf%HMp(XN%) corresponds to taking ap = d,.)

Such processes are a.s. Morse functions.

Questions. Can we say more about them?
® number of critical points of various index
® they mutual position
® links by saddles
® Euler characteristics of level sets

® gradient flows, stable manifolds, ...
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Complexity

Complexity.
The number of critical points of a given index k with value in B C R
Hy,»(o) € NB,
CrtN,k(B) =#<0: VHN’,,(O') =0,
i(V?Hy p(0)) = k

V, V? - gradient and Hessian restricted to S" 7' (v/N)
i(V?Hp,p(e)) - index of V2Hy , = # negative eigenvalues

Total complexity.

CrtN(B) = Z CrtNyk(B).
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Complexity and random matrices
Result 1:

The (expected) complexity of the spherical p-spin spin glass
is related to the spectrum of random GOE matrices.

GOE: Probability distribution of the set of N x N real symmetric random
matrices.

® The entries (MU ,i <j) are independent centred Gaussian r.v.s

1+ 50

BI(M))) = S

e Spectrum. N <AV < ... <AV,

® Spectral measure. Ly = LSVt Vi
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Complexity and random matrices

Theorem (ABC'12)
Forall N, p>2, ke {0,...,N—1}, and B C R,

E[Crtn 4 (B)] = Con x ENoe |e "#P01INY € ¢,B].
5 P,

2 N pP—2, [P
= — — 2 = — PR M
CPyN 2\/;(P 1) ) FP(X) 2p X, 6 2(P — 1)

where
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Large deviation analysis
Define Crt.(u) = Crt.((—o0, u]).

Theorem
For every k, p fixed

. 1
NILmOO N logE Crty k(u) = Ok p(u)

where the functions 0y p, 6, look like (for p = 3)

002 0.4 B3(u)
001 F 02
‘ u u
164 | —F.-163 -20 -5 -10 -05 0.5 1.0
oot T : —02f
-0.02L -7 - : —04b
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Implications for the energy landscape

0.02

r03(u)

=0.02% -

Layered structure of the landscape.

® All critical points of index k are between —Ey and —E..

® Below —E; there are only local minima

L
-15

L
-1.0

-05

® Below —E, there are local minima and saddles of index 1, ...

® There are no critical points of finite index above —E; + ¢

® All critical points of index N have value in a small interval around E(«)

—Ep is the same as the ground state energy computed from Parisi formula.
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Proof: Kac-Rice formula for the complexity

Main tool in the proofs:

Theorem (Kac—Rice Formula, e.g. Adler-Taylor '07)

Under some mild conditions, with H = Hy
E Cl'tNyk(B)

= /SN_1 do ¢VH(a)(0)EUdet V2H(O)‘1H(o’)€B,i(V2H(cr)):k ’ VH(o) = 0}-
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Further results
Kac—Rice formula allows to compute the expectation of generalised complexity
Crtn(A) = #{o € S" . Vi Hy(0) = 0,Hu(0) € An}
where A = (An)n>1 and Hy(o) € Ay means
(7 & H(0), &V Hu (o), 4 V°Hn(0) ) € An

and of .
On(A) = N logE Crtn(A)
in many related models.
Examples:
® mixture of p-spins (given energy and index) [Auffinger-Ben Arous '13]
® TAP complexity [Fan-Mei-Montanari'18],
® bipartite spin glasses [McKenna'21]

® elastic manifold [Ben Arous-Bourgade-McKenna'22]

® in physics: Fyodorov et al., Ros, Biroli, Cammarota, Pacco, ...
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Main problem

Is this computation useful?
® Crty(A) does not need to concentrate around its expectation
® In general only
lim Efn(A) < lim lIog]ECrtN(A)
N— o0 N—oo N

® |t is useful in certain cases: Trivialisation
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Main problem

Is this computation useful?
® Crty(A) does not need to concentrate around its expectation
® In general only
lim Efn(A) < lim lIog]ECrtN(A)
N—so0 N—oo N

® |t is useful in certain cases: Trivialisation

How to prove the concentration for the complexity?
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Concentration: second moment method

A version of Kac—Rice formula allows to compute E(Crty(A)?)
The calculation involves

E(|det V2, Hu (o) det V2, Hn(0")[1a(Hn (0, ")) | VepHn (o) = VspHn (") = 0)

® Subag (2017) for pure p-spin, all critical points with Hy(o) < EN,
E<—-E.
E(CrtN(E)2) N— oo
(ECrtn(E))?

® Auffinger—Gold (2020), critical points of a given finite index

e Kivimae (2022), bipartite spherical p, g-spin
.. Belius=Schmidt (2023+) ...
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Concentration: second moment method

A version of Kac—Rice formula allows to compute E(Crty(A)?)
The calculation involves

E(|det V2, Hu (o) det V2, Hn(0")[1a(Hn (0, ")) | VepHn (o) = VspHn (") = 0)

® Subag (2017) for pure p-spin, all critical points with Hy(o) < EN,
E<—-E.
E(CrtN(E)z) N— oo
(ECrtn(E))?

® Auffinger—Gold (2020), critical points of a given finite index

e Kivimae (2022), bipartite spherical p, g-spin
.. Belius=Schmidt (2023+) ...

These computations are difficult ...
Can we do something else?
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General setting: mixed p-spin models

Hamiltonian:
P

Hu(o, ) = apHiy(o,J) + fu(o)

where

N
HA (o, )) = VN Z JiriyOiy Oy, O € SM71 (or By)

fyenerip=1

.....

External field fy:
® might be random, independent of J

® we assume that

1
¢ = N sup max (|Vf/\/(0')|7 ||V2fN(U)H, ||V3fN(U)H) < oo
o€By_1
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Result: non-flat critical points
Definition. A critical point o of Hy is called n-non-flat if
spec N~'V2, Hy(o, J) N [-n,7] = .
Number of non-flat critical points with properties A:
Crty (A, J) = #{o : o is n-non-flat critical point, Hy(c, J) € An}.

and 1
0u(A ) = N log Crt}, (A, J)

Remark. Minima under —E., in pure p-spin are typically non-flat

0.02

0.01

L i !
164 —E.-163

—~0.01 [ L e

-0.02L -7
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The concentration result

Theorem (Belius—C’23+)

For all 0 < m < m2 <1 there is c = c(n1) > 0 and k = k(cr, mixture,n;) > 0
such that:

For0 < 8 < min(c,m —m), N> kd~2 and sets Ay C Ay with d(As, AS) > 6:
P(Crtl (A1) < Med Crtl? (4r)) < e "N,

and
P(Crtf?(Az) > Med Crtl (A1) < e ™V,

Corollary

The same hold if Crty is replaced by Oy:
P(07 (A1) < Med 072(Az)) < e 5N,

P(072(A2) > Med 07 (A)) < e "N,
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Applications

Corollary

If
(A,n) — 07(A) = lim Med07(A)
N— o0

is continuous in (A, n), then

lim 67(A) = 6"(A), in probability
N— oo

Pros: Pretty general, in typical points the median should be continuous

Cons:
® How to compute Med 6},(A)? Does it converge?

® How to compare with the Kac—Rice computation?
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Applications: Comparison with Kac—Rice

Corollary
If 1 5
N log E(Crt"(A)?) = v log E(Crt"(A)) + o(1),

and (A,n) — limy_o log E Crt}}(A) is continuous in (A,n), then

. n T n
lim 07 (A) = NI;mQQ log E Crt}},(A).

N— o0

Pros:
® Compares to Kac—Rice
® Requires weaker second moment computation, (cf. [BBM])

® Proof is robust

Cons: Still requires second moment computation.
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Concrete application

Concentration for number of critical points with given radial derivative.

Theorem (Belius-Schmidt ‘23+)

Consider mixed p-spin Hamiltonian without external field. Let
A=A(x,e) = {N'9,Hn(0) € (x — &,x + )}
If x € [x=, x4], then, in probability,

lim lim On(A(x,¢€)) = 0(x).

el0 N—oo
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Tools: Gaussian isoperimetric inequality

® P, standard Gaussian measure on R”

® For B C R", define t-blowup as
B: ={xeR":d(x,B) <t}
Theorem
Foranyn>1,t>0 and B C R" measurable

P'(B:) 2 1—exp{ - 3(t+ ¥} (P"(B))*)’}

We will apply this for J's, that is:
®* n=N+N+...+ N, (typical norm of J is v/n),
o B={Crt](A,J) > Med Crtl}(A, /)1,
o t~VN
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Quantitative implicit function theorem

Theorem
Let xo € R", 0 € R, 44,0, > 0 and let F : By(x0,0x) X Bm(y0,9y) — R" be a
C'-function such that F(xo,y0) = 0, DxF(x0, o) is an invertible matrix and

N =

sup |1 = (D.F (x0,30)) ' DiF (x, )], <

Let H = sup Dy F(x, ¥)|lops

X,y x=x0| <dx, |y —yo| <8y
M = ||(D«F (x0,%0)) " llop,
0y = min (6x/(2MH),4,).

Then there exists a continuous function g : Bm(y0,0,) — R™ such that

(x,¥) € Bm(yo,0x) X Bm(y0,9y) is a solution to F(x,y) =0 iff x = g(y).
Furthermore g is Lipschitz continuous with constant at most 2MH.

Will be applied for F = VspHu(o,J), x <> 0 and y < J.
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Regularity estimates

Let Hy be any of Hy, VH,, V?H,
Lemma

(a) For every J,J" and o € SN™!

IHn(o,J + J) = Hu(o, )| < c| SIVN
(b) On the set Gy of J's of probability at least 1 —e™?", for all 0,0’ € SN~!

[Hn (o, J) = Hu(o", )] < eNJlo —o’]].
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Key lemma
As consequence of the implicit function theorem, the non-flat critical points

cannot appear/disappear after perturbation of J's of order VN

Lemma
Let n € (0,1] and é € (0, ¢(n)), and J € Gw.

(a) If o is n-flat critical point of Hn(-,J) and ||J'|| < 6v/N, then there is
exactly one critical point o' of Hy(-, J+ J') which is (n— c§)-flat such that

lo =o'l < cé
N7 Hn(o",J+ J') — Hu(o, J)|| < c6

(b) If o is a n-flat critical point of Hy(-,J + J'), then ...
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Key lemma
As consequence of the implicit function theorem, the non-flat critical points

cannot appear/disappear after perturbation of J's of order VN

Lemma
Let n € (0,1] and é € (0, ¢(n)), and J € Gw.
(a) If o is n-flat critical point of Hn(-,J) and ||J'|| < 6v/N, then there is
exactly one critical point o' of Hy(-, J+ J') which is (n— c§)-flat such that
lo =o'l < cé
N~ Hn(o', J+ ) — Hy(o, )| < b

(b) If o is a n-flat critical point of Hy(-,J + J'), then ...

Corollary
For J € Gy and || J'|| < 6v/N

Crtl (A5, J+ 1) > Crtl(A, ) > Crtl (A5, J+ J).
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Summary

We obtained “concentration” for the number of non-flat critical points

The estimates are very robust :
® use only regularity of the landscape and basic techniques
® can be extended to other domains than SV=1 (TAP equations)

® Can be generalised to infinite mixtures

® \We hope that they will be useful
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Thank you!
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