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Mean-field spin glasses

Hamiltonian. N interacting ‘spins’

HN,p(σ) =
1

N(p−1)/2

N∑
i1,...,ip=1

Ji1,...,ipσi1 . . . σip ,

J· i.i.d. standard Gaussian r.v.’s

p-spin SK: configuration space σ ∈ {−1, 1}N .

spherical p-spin SK: σ ∈ SN−1(
√
N).

Hamiltonian is a centred Gaussian process with covariance

E
[
HN,p(σ)HN,p(σ

′)
]
= N1−p(σ · σ′)p.
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Classical questions: statics of spin-glasses

Gibbs measure:

µN,p,β(dσ) =
1

ZN,p(β)
e−βHN,p(σ)ΛN(dσ),

where ΛN is the uniform probability measure on SN−1(
√
N)

Partition function.

ZN,p(β) =

∫
e−βHN,p(σ)ΛN(dσ).

Free energy.

lim
N→∞

1

N
logE[ZN,p(β)] = Fp(β).

Contributions by: Parisi, Talagrand, Guera, Toninelli, Panchenko, . . .
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Caricature of the process

Energy Landscape      −50
    −100
    −150
    −200

“Typical realization of the Gibbs measure e−βHN,p(σ)”

Original motivation: Study a dynamics in this random landscape.
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Motivation 2: Typical Morse functions on the N-sphere

Morse functions. f : M → R, such that all its critical points are

non-degenerate. I.e. det(∇2f (x) ̸= 0).

Typical functions = Gaussian processes.

By Schoenberg’s theorem (1937), the only covariance functions that work on

spheres of arbitrary dimension are mixtures of p-spins, i.e.

E[f (x)f (x ′)] =
∞∑
p=0

ap(x · x ′)p, x , x ′ ∈ SN−1, ap ≥ 0

(taking f (x) = N− 1
2HN,p(xN

1
2 ) corresponds to taking ap = δp.)

Such processes are a.s. Morse functions.

Questions. Can we say more about them?

• number of critical points of various index

• they mutual position

• links by saddles

• Euler characteristics of level sets

• gradient flows, stable manifolds, . . .
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Complexity

Complexity.

The number of critical points of a given index k with value in B ⊂ R

CrtN,k(B) = #

σ :

HN,p(σ) ∈ NB,

∇HN,p(σ) = 0,

i(∇2HN,p(σ)) = k

 .

∇, ∇2 - gradient and Hessian restricted to SN−1(
√
N)

i(∇2HN,p(σ)) - index of ∇2HN,p = # negative eigenvalues

Total complexity.

CrtN(B) =
∑
k

CrtN,k(B).
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Complexity and random matrices

Result 1:

The (expected) complexity of the spherical p-spin spin glass

is related to the spectrum of random GOE matrices.

GOE: Probability distribution of the set of N × N real symmetric random

matrices.

• The entries (MN
ij , i ≤ j) are independent centred Gaussian r.v.s

E[(MN
ij )

2] =
1 + δij
2N

.

• Spectrum. λN
0 ≤ λN

1 ≤ · · · ≤ λN
N−1

• Spectral measure. LN = 1
N

∑N−1
i=0 δλN

i
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Complexity and random matrices

Theorem (ABČ’12)

For all N, p ≥ 2, k ∈ {0, . . . ,N − 1}, and B ⊂ R,

E[CrtN,k(B)] = Cp,N × EN
GOE

[
e−NFp(λ

N
k )1

{
λN
k ∈ cpB

}]
.

where

Cp,N = 2

√
2

p
(p − 1)

N
2 , Fp(x) =

p − 2

2p
x2, cp =

√
p

2(p − 1)
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Large deviation analysis

Define Crt·(u) = Crt·((−∞, u]).

Theorem

For every k, p fixed

lim
N→∞

1

N
logECrtN,k(u) = θk,p(u)

where the functions θk,p, θp look like (for p = 3)
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Implications for the energy landscape
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Layered structure of the landscape.

• All critical points of index k are between −Ek and −Ec .

• Below −E1 there are only local minima

• Below −E2 there are local minima and saddles of index 1, . . .

• There are no critical points of finite index above −Ec + ε

• All critical points of index αN have value in a small interval around E(α)

−E0 is the same as the ground state energy computed from Parisi formula.
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Proof: Kac-Rice formula for the complexity

Main tool in the proofs:

Theorem (Kac–Rice Formula, e.g. Adler-Taylor ’07)

Under some mild conditions, with H = HN,p

ECrtN,k(B)

=

∫
SN−1

dσ ϕ∇H(σ)(0)E
[∣∣det∇2H(σ)

∣∣1H(σ)∈B,i(∇2H(σ))=k

∣∣∣∇H(σ) = 0
]
.
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Further results

Kac–Rice formula allows to compute the expectation of generalised complexity

CrtN(A) = #
{
σ ∈ SN−1 : ∇spHN(σ) = 0,HN(σ) ∈ AN

}
where A = (AN)N≥1 and HN(σ) ∈ AN means(

σ, 1
N
HN(σ),

1
N
∇HN(σ),

1
N
∇2HN(σ)

)
∈ AN

and of

θN(A) =
1

N
logECrtN(A)

in many related models.

Examples:

• mixture of p-spins (given energy and index) [Auffinger-Ben Arous ’13]

• TAP complexity [Fan-Mei-Montanari’18],

• bipartite spin glasses [McKenna’21]

• elastic manifold [Ben Arous-Bourgade-McKenna’22]

• . . .

• in physics: Fyodorov et al., Ros, Biroli, Cammarota, Pacco, . . .
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Main problem

Is this computation useful?

• CrtN(A) does not need to concentrate around its expectation

• In general only

lim
N→∞

EθN(A) ≤ lim
N→∞

1

N
logECrtN(A)

• It is useful in certain cases: Trivialisation

How to prove the concentration for the complexity?
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Concentration: second moment method

A version of Kac–Rice formula allows to compute E(CrtN(A)2)
The calculation involves

E
(
|det∇2

spHN(σ) det∇2
spHN(σ

′)|1A(HN(σ, σ
′))

∣∣∇spHN(σ) = ∇spHN(σ
′) = 0

)
• Subag (2017) for pure p-spin, all critical points with HN(σ) ≤ EN,

E ≤ −Ec

E(CrtN(E)2)
(ECrtN(E))2

N→∞−−−−→ 1

• Auffinger–Gold (2020), critical points of a given finite index

• Kivimae (2022), bipartite spherical p, q-spin

• . . . Belius–Schmidt (2023+) . . .

These computations are difficult . . .

Can we do something else?

14/26



Concentration: second moment method

A version of Kac–Rice formula allows to compute E(CrtN(A)2)
The calculation involves

E
(
|det∇2

spHN(σ) det∇2
spHN(σ

′)|1A(HN(σ, σ
′))

∣∣∇spHN(σ) = ∇spHN(σ
′) = 0

)
• Subag (2017) for pure p-spin, all critical points with HN(σ) ≤ EN,

E ≤ −Ec

E(CrtN(E)2)
(ECrtN(E))2

N→∞−−−−→ 1

• Auffinger–Gold (2020), critical points of a given finite index

• Kivimae (2022), bipartite spherical p, q-spin

• . . . Belius–Schmidt (2023+) . . .

These computations are difficult . . .

Can we do something else?

14/26



General setting: mixed p-spin models

Hamiltonian:

HN(σ, J) =
P∑

p=1

apH
p
N(σ, J) + fN(σ)

where

Hp
N(σ, J) =

√
N

N∑
i1,...,ip=1

Ji1,...,ipσi1 . . . σip , σ ∈ SN−1 (or BN)

and J = (Ji1,...,ip ) ∈ RN+N2+···+NP

is a standard Gaussian vector.

External field fN :

• might be random, independent of J

• we assume that

cf =
1

N
sup

σ∈BN−1

max
(
|∇fN(σ)|, ∥∇2fN(σ)∥, ∥∇3fN(σ)∥

)
< ∞
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Result: non-flat critical points

Definition. A critical point σ of HN is called η-non-flat if

specN−1∇2
spHN(σ, J) ∩ [−η, η] = ∅.

Number of non-flat critical points with properties A:

CrtηN(A, J) = #
{
σ : σ is η-non-flat critical point,HN(σ, J) ∈ AN

}
.

and

θηN(A, J) =
1

N
log CrtηN(A, J)

Remark. Minima under −E∞ in pure p-spin are typically non-flat
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The concentration result

Theorem (Belius–Č’23+)

For all 0 < η1 < η2 ≤ 1 there is c = c(η1) > 0 and κ = κ(cf ,mixture, η1) > 0

such that:

For 0 < δ ≤ min(c, η2 − η1), N ≥ κδ−2 and sets A2 ⊂ A1 with d(A2,A
c
1) ≥ δ:

P
(
Crtη1N (A1) ≤ MedCrtη2N (A2)

)
≤ e−κδ2N ,

and

P
(
Crtη2N (A2) ≥ MedCrtη1N (A1)

)
≤ e−κδ2N .

Corollary

The same hold if CrtN is replaced by θN :

P
(
θη1N (A1) ≤ Med θη2N (A2)

)
≤ e−κδ2N ,

P
(
θη2N (A2) ≥ Med θη1N (A1)

)
≤ e−κδ2N .
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Applications

Corollary

If

(A, η) 7→ θη(A) := lim
N→∞

Med θηN(A)

is continuous in (A, η), then

lim
N→∞

θηN(A) = θη(A), in probability

Pros: Pretty general, in typical points the median should be continuous

Cons:

• How to compute Med θηN(A)? Does it converge?

• How to compare with the Kac–Rice computation?
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Applications: Comparison with Kac–Rice

Corollary

If
1

N
logE

(
Crtη(A)2

)
=

2

N
logE

(
Crtη(A)

)
+ o(1),

and (A, η) 7→ limN→∞ logECrtηN(A) is continuous in (A, η), then

lim
N→∞

θηN(A) = lim
N→∞

logECrtηN(A).

Pros:

• Compares to Kac–Rice

• Requires weaker second moment computation, (cf. [BBM])

• Proof is robust

Cons: Still requires second moment computation.
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Concrete application

Concentration for number of critical points with given radial derivative.

Theorem (Belius-Schmidt ‘23+)

Consider mixed p-spin Hamiltonian without external field. Let

A = A(x , ε) = {N−1∂rHN(σ) ∈ (x − ε, x + ε)}

If x ∈ [x−, x+], then, in probability,

lim
ε↓0

lim
N→∞

θN(A(x , ε)) = θ(x).

20/26



Tools: Gaussian isoperimetric inequality

• Pn standard Gaussian measure on Rn

• For B ⊂ Rn, define t-blowup as

Bt = {x ∈ Rn : d(x ,B) ≤ t}

Theorem

For any n ≥ 1, t ≥ 0 and B ⊂ Rn measurable

Pn(Bt) ≥ 1− exp
{
− 1

2

(
t +Ψ−1(Pn(B))2

)2}

We will apply this for J’s, that is:

• n = N + N2 + · · ·+ NP , (typical norm of J is
√
n),

• B = {CrtηN(A, J) ≥ MedCrtηN(A, J)},
• t ∼

√
N
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Quantitative implicit function theorem

Theorem

Let x0 ∈ Rn, y0 ∈ Rm, δx , δy > 0 and let F : Bn(x0, δx)× Bm(y0, δy ) → Rn be a

C 1-function such that F (x0, y0) = 0, DxF (x0, y0) is an invertible matrix and

sup
x,y :|x−x0|≤δx

|y−y0|≤δy

∥∥I − (DxF (x0, y0))
−1 DxF (x , y)

∥∥
op

≤ 1

2
.

Let H = sup
x,y :|x−x0|≤δx ,|y−y0|≤δy

∥DyF (x , y)∥op,

M = ∥(DxF (x0, y0))
−1∥op,

δy = min
(
δx/(2MH), δy

)
.

Then there exists a continuous function g : Bm(y0, δy ) → Rm such that

(x , y) ∈ Bm(y0, δx)× Bm(y0, δy ) is a solution to F (x , y) = 0 iff x = g(y).

Furthermore g is Lipschitz continuous with constant at most 2MH.

Will be applied for F = ∇spHN(σ, J), x ↔ σ and y ↔ J.

22/26



Regularity estimates

Let HN be any of HN ,∇Hn,∇2Hn

Lemma

(a) For every J, J ′ and σ ∈ SN−1

∥HN(σ, J + J ′)−HN(σ, J)∥ ≤ c∥J ′∥
√
N

(b) On the set GN of J’s of probability at least 1− e−2N , for all σ, σ′ ∈ SN−1

∥HN(σ, J)−HN(σ
′, J)∥ ≤ cN∥σ − σ′∥.
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Key lemma

As consequence of the implicit function theorem, the non-flat critical points

cannot appear/disappear after perturbation of J’s of order
√
N

Lemma

Let η ∈ (0, 1] and δ ∈ (0, c(η)), and J ∈ GN .

(a) If σ is η-flat critical point of HN(·, J) and ∥J ′∥ ≤ δ
√
N, then there is

exactly one critical point σ′ of HN(·, J+ J ′) which is (η− cδ)-flat such that

∥σ − σ′∥ ≤ cδ

N−1∥HN(σ
′, J + J ′)−HN(σ, J)∥ ≤ cδ

(b) If σ is a η-flat critical point of HN(·, J + J ′), then . . .

Corollary

For J ∈ GN and ∥J ′∥ ≤ δ
√
N

Crtη−cδ
N (Acδ, J + J ′) ≥ CrtηN(A, J) ≥ Crtη+cδ

N (A−cδ, J + J ′).
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Summary

• We obtained “concentration” for the number of non-flat critical points

• The estimates are very robust :
• use only regularity of the landscape and basic techniques
• can be extended to other domains than SN−1 (TAP equations)

• Can be generalised to infinite mixtures

• We hope that they will be useful
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Thank you!

26/26


