Complexity of spin-glass Hamiltonians

Jiří Černý
University of Basel

October 4, 2023

Mean-field spin glasses

Hamiltonian. N interacting 'spins'

$$
H_{N, p}(\sigma)=\frac{1}{N^{(p-1) / 2}} \sum_{i_{1}, \ldots, i_{p}=1}^{N} J_{i_{1}, \ldots, i_{p}} \sigma_{i_{1}} \ldots \sigma_{i_{p}}
$$

J. i.i.d. standard Gaussian r.v.'s
p-spin SK: configuration space $\sigma \in\{-1,1\}^{N}$.
spherical p-spin SK: $\quad \sigma \in S^{N-1}(\sqrt{N})$.
Hamiltonian is a centred Gaussian process with covariance

$$
\mathbb{E}\left[H_{N, p}(\boldsymbol{\sigma}) H_{N, p}\left(\boldsymbol{\sigma}^{\prime}\right)\right]=N^{1-p}\left(\boldsymbol{\sigma} \cdot \boldsymbol{\sigma}^{\prime}\right)^{p}
$$

Classical questions: statics of spin-glasses

Gibbs measure:

$$
\mu_{N, p, \beta}(\mathrm{~d} \sigma)=\frac{1}{Z_{N, p}(\beta)} e^{-\beta H_{N, p}(\sigma)} \Lambda_{N}(\mathrm{~d} \sigma)
$$

where Λ_{N} is the uniform probability measure on $S^{N-1}(\sqrt{N})$
Partition function.

$$
Z_{N, p}(\beta)=\int e^{-\beta H_{N, p}(\sigma)} \Lambda_{N}(\mathrm{~d} \sigma)
$$

Free energy.

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E}\left[Z_{N, p}(\beta)\right]=F_{p}(\beta)
$$

Contributions by: Parisi, Talagrand, Guera, Toninelli, Panchenko, ...

Caricature of the process

"Typical realization of the Gibbs measure $e^{-\beta H_{N, p}(\sigma) "}$

Original motivation: Study a dynamics in this random landscape.

Motivation 2: Typical Morse functions on the N-sphere

Morse functions. $f: M \rightarrow \mathbb{R}$, such that all its critical points are non-degenerate. I.e. $\operatorname{det}\left(\nabla^{2} f(x) \neq 0\right)$.

Typical functions $=$ Gaussian processes.
By Schoenberg's theorem (1937), the only covariance functions that work on spheres of arbitrary dimension are mixtures of p-spins, i.e.

$$
\mathbb{E}\left[f(x) f\left(x^{\prime}\right)\right]=\sum_{p=0}^{\infty} a_{p}\left(x \cdot x^{\prime}\right)^{p}, \quad x, x^{\prime} \in S^{N-1}, a_{p} \geq 0
$$

(taking $f(x)=N^{-\frac{1}{2}} H_{N, p}\left(x N^{\frac{1}{2}}\right)$ corresponds to taking $a_{p}=\delta_{p}$.)
Such processes are a.s. Morse functions.
Questions. Can we say more about them?

- number of critical points of various index
- they mutual position
- links by saddles
- Euler characteristics of level sets
- gradient flows, stable manifolds, ...

Complexity

Complexity.

The number of critical points of a given index k with value in $B \subset \mathbb{R}$

$$
\operatorname{Crt}_{N, k}(B)=\#\left\{\begin{array}{c}
H_{N, p}(\boldsymbol{\sigma}) \in N B \\
\boldsymbol{\sigma}: \nabla H_{N, p}(\boldsymbol{\sigma})=0 \\
i\left(\nabla^{2} H_{N, p}(\boldsymbol{\sigma})\right)=k
\end{array}\right\}
$$

∇, ∇^{2} - gradient and Hessian restricted to $S^{N-1}(\sqrt{N})$
$i\left(\nabla^{2} H_{N, p}(\sigma)\right)$ - index of $\nabla^{2} H_{N, p}=\#$ negative eigenvalues

Total complexity.

$$
\operatorname{Crt}_{N}(B)=\sum_{k} \operatorname{Crt}_{N, k}(B)
$$

Complexity and random matrices

Result 1:

The (expected) complexity of the spherical p-spin spin glass is related to the spectrum of random GOE matrices.

GOE: Probability distribution of the set of $N \times N$ real symmetric random matrices.

- The entries $\left(M_{i j}^{N}, i \leq j\right)$ are independent centred Gaussian r.v.s

$$
\mathbb{E}\left[\left(M_{i j}^{N}\right)^{2}\right]=\frac{1+\delta_{i j}}{2 N}
$$

- Spectrum. $\lambda_{0}^{N} \leq \lambda_{1}^{N} \leq \cdots \leq \lambda_{N-1}^{N}$
- Spectral measure. $L_{N}=\frac{1}{N} \sum_{i=0}^{N-1} \delta_{\lambda_{i}^{N}}$

Complexity and random matrices

Theorem (ABČ'12)
For all $N, p \geq 2, k \in\{0, \ldots, N-1\}$, and $B \subset \mathbb{R}$,

$$
\mathbb{E}\left[\operatorname{Crt}_{N, k}(B)\right]=C_{p, N} \times \mathbb{E}_{G O E}^{N}\left[e^{-N F_{p}\left(\lambda_{k}^{N}\right)} \mathbf{1}\left\{\lambda_{k}^{N} \in c_{p} B\right\}\right] .
$$

where

$$
C_{p, N}=2 \sqrt{\frac{2}{p}}(p-1)^{\frac{N}{2}}, \quad F_{p}(x)=\frac{p-2}{2 p} x^{2}, \quad c_{p}=\sqrt{\frac{p}{2(p-1)}}
$$

Large deviation analysis

Define Crt. $(u)=\operatorname{Crt} .((-\infty, u])$.

Theorem

For every k, p fixed

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \operatorname{Crt}_{N, k}(u)=\theta_{k, p}(u)
$$

where the functions $\theta_{k, p}, \theta_{p}$ look like (for $p=3$)

Implications for the energy landscape

Layered structure of the landscape.

- All critical points of index k are between $-E_{k}$ and $-E_{c}$.
- Below $-E_{1}$ there are only local minima
- Below $-E_{2}$ there are local minima and saddles of index $1, \ldots$
- There are no critical points of finite index above $-E_{c}+\varepsilon$
- All critical points of index αN have value in a small interval around $E(\alpha)$
$-E_{0}$ is the same as the ground state energy computed from Parisi formula.

Proof: Kac-Rice formula for the complexity

Main tool in the proofs:
Theorem (Kac-Rice Formula, e.g. Adler-Taylor '07)
Under some mild conditions, with $H=H_{N, p}$

$$
\begin{aligned}
& \mathbb{E} \operatorname{Crt}_{N, k}(B) \\
& =\int_{S^{N-1}} \mathrm{~d} \sigma \phi_{\nabla H(\sigma)}(0) \mathbb{E}\left[\left|\operatorname{det} \nabla^{2} H(\sigma)\right| \mathbf{1}_{H(\sigma) \in B, i\left(\nabla^{2} H(\sigma)\right)=k} \mid \nabla H(\sigma)=0\right] .
\end{aligned}
$$

Further results

Kac-Rice formula allows to compute the expectation of generalised complexity

$$
\operatorname{Crt}_{N}(A)=\#\left\{\sigma \in S^{N-1}: \nabla_{\mathrm{sp}} H_{N}(\sigma)=0, \mathbf{H}_{N}(\sigma) \in A_{N}\right\}
$$

where $A=\left(A_{N}\right)_{N \geq 1}$ and $\mathbf{H}_{N}(\sigma) \in A_{N}$ means

$$
\left(\sigma, \frac{1}{N} H_{N}(\sigma), \frac{1}{N} \nabla H_{N}(\sigma), \frac{1}{N} \nabla^{2} H_{N}(\sigma)\right) \in A_{N}
$$

and of

$$
\theta_{N}(A)=\frac{1}{N} \log \mathbb{E} \operatorname{Crt}_{N}(A)
$$

in many related models.

Examples:

- mixture of p-spins (given energy and index) [Auffinger-Ben Arous '13]
- TAP complexity [Fan-Mei-Montanari'18],
- bipartite spin glasses [McKenna'21]
- elastic manifold [Ben Arous-Bourgade-McKenna'22]
- ...
- in physics: Fyodorov et al., Ros, Biroli, Cammarota, Pacco, ...

Main problem

Is this computation useful?

- $\operatorname{Crt}_{N}(A)$ does not need to concentrate around its expectation
- In general only

$$
\lim _{N \rightarrow \infty} \mathbb{E} \theta_{N}(A) \leq \lim _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \operatorname{Crt}_{N}(A)
$$

- It is useful in certain cases: Trivialisation

Main problem

Is this computation useful?

- $\operatorname{Crt}_{N}(A)$ does not need to concentrate around its expectation
- In general only

$$
\lim _{N \rightarrow \infty} \mathbb{E} \theta_{N}(A) \leq \lim _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \operatorname{Crt}_{N}(A)
$$

- It is useful in certain cases: Trivialisation

How to prove the concentration for the complexity?

Concentration: second moment method

A version of Kac-Rice formula allows to compute $\mathbb{E}\left(\operatorname{Crt}_{N}(A)^{2}\right)$
The calculation involves
$\mathbb{E}\left(\left|\operatorname{det} \nabla_{\mathrm{sp}}^{2} H_{N}(\sigma) \operatorname{det} \nabla_{\mathrm{sp}}^{2} H_{N}\left(\sigma^{\prime}\right)\right| \mathbf{1}_{A}\left(\mathbf{H}_{N}\left(\sigma, \sigma^{\prime}\right)\right) \mid \nabla_{\mathrm{sp}} H_{N}(\sigma)=\nabla_{\mathrm{sp}} H_{N}\left(\sigma^{\prime}\right)=0\right)$

- Subag (2017) for pure p-spin, all critical points with $H_{N}(\sigma) \leq E N$, $E \leq-E_{c}$

$$
\frac{\mathbb{E}\left(\operatorname{Crt}_{N}(E)^{2}\right)}{\left(\mathbb{E} \operatorname{Crt}_{N}(E)\right)^{2}} \xrightarrow{N \rightarrow \infty} 1
$$

- Auffinger-Gold (2020), critical points of a given finite index
- Kivimae (2022), bipartite spherical p, q-spin
- ... Belius-Schmidt (2023+) ...

Concentration: second moment method

A version of Kac-Rice formula allows to compute $\mathbb{E}\left(\operatorname{Crt}_{N}(A)^{2}\right)$
The calculation involves
$\mathbb{E}\left(\left|\operatorname{det} \nabla_{\mathrm{sp}}^{2} H_{N}(\sigma) \operatorname{det} \nabla_{\mathrm{sp}}^{2} H_{N}\left(\sigma^{\prime}\right)\right| \mathbf{1}_{A}\left(\mathbf{H}_{N}\left(\sigma, \sigma^{\prime}\right)\right) \mid \nabla_{\mathrm{sp}} H_{N}(\sigma)=\nabla_{\mathrm{sp}} H_{N}\left(\sigma^{\prime}\right)=0\right)$

- Subag (2017) for pure p-spin, all critical points with $H_{N}(\sigma) \leq E N$, $E \leq-E_{c}$

$$
\frac{\mathbb{E}\left(\operatorname{Crt}_{N}(E)^{2}\right)}{\left(\mathbb{E} \operatorname{Crt}_{N}(E)\right)^{2}} \xrightarrow{N \rightarrow \infty} 1
$$

- Auffinger-Gold (2020), critical points of a given finite index
- Kivimae (2022), bipartite spherical p, q-spin
- ... Belius-Schmidt (2023+) ...

These computations are difficult ...
Can we do something else?

General setting: mixed p-spin models

Hamiltonian:

$$
H_{N}(\sigma, J)=\sum_{p=1}^{P} a_{p} H_{N}^{p}(\sigma, J)+f_{N}(\sigma)
$$

where

$$
H_{N}^{p}(\sigma, J)=\sqrt{N} \sum_{i_{1}, \ldots, i_{p}=1}^{N} J_{i_{1}, \ldots, i_{p}} \sigma_{i_{1}} \ldots \sigma_{i_{p}}, \quad \sigma \in S^{N-1}\left(\text { or } B_{N}\right)
$$

and $J=\left(J_{i_{1}, \ldots, i_{p}}\right) \in \mathbb{R}^{N+N^{2}+\cdots+N^{P}}$ is a standard Gaussian vector.

External field f_{N} :

- might be random, independent of J
- we assume that

$$
c_{f}=\frac{1}{N} \sup _{\sigma \in B_{N-1}} \max \left(\left|\nabla f_{N}(\sigma)\right|,\left\|\nabla^{2} f_{N}(\sigma)\right\|,\left\|\nabla^{3} f_{N}(\sigma)\right\|\right)<\infty
$$

Result: non-flat critical points

Definition. A critical point σ of H_{N} is called η-non-flat if

$$
\operatorname{spec} N^{-1} \nabla_{\mathrm{sp}}^{2} H_{N}(\sigma, J) \cap[-\eta, \eta]=\emptyset
$$

Number of non-flat critical points with properties A :

$$
\operatorname{Crt}_{N}^{\eta}(A, J)=\#\left\{\sigma: \sigma \text { is } \eta \text {-non-flat critical point, } \mathbf{H}_{N}(\sigma, J) \in A_{N}\right\}
$$

and

$$
\theta_{N}^{\eta}(A, J)=\frac{1}{N} \log \operatorname{Crt}_{N}^{\eta}(A, J)
$$

Remark. Minima under $-E_{\infty}$ in pure p-spin are typically non-flat

The concentration result

Theorem (Belius-Č'23+)
For all $0<\eta_{1}<\eta_{2} \leq 1$ there is $c=c\left(\eta_{1}\right)>0$ and $\kappa=\kappa\left(c_{f}\right.$, mixture, $\left.\eta_{1}\right)>0$ such that:
For $0<\delta \leq \min \left(c, \eta_{2}-\eta_{1}\right), N \geq \kappa \delta^{-2}$ and sets $A_{2} \subset A_{1}$ with $d\left(A_{2}, A_{1}^{c}\right) \geq \delta$:

$$
\mathbb{P}\left(\operatorname{Crt}_{N}^{\eta_{1}}\left(A_{1}\right) \leq \operatorname{Med} \operatorname{Crt}_{N}^{\eta_{2}}\left(A_{2}\right)\right) \leq \mathrm{e}^{-\kappa \delta^{2} N},
$$

and

$$
\mathbb{P}\left(\operatorname{Crt}_{N}^{\eta_{2}}\left(A_{2}\right) \geq \operatorname{Med}_{\operatorname{Crt}}^{N} \eta_{1}^{\eta_{1}}\left(A_{1}\right)\right) \leq \mathrm{e}^{-\kappa \delta^{2} N}
$$

Corollary
The same hold if Crt_{N} is replaced by θ_{N} :

$$
\begin{aligned}
& \mathbb{P}\left(\theta_{N}^{\eta_{1}}\left(A_{1}\right) \leq \operatorname{Med} \theta_{N}^{\eta_{2}}\left(A_{2}\right)\right) \leq \mathrm{e}^{-\kappa \delta^{2} N} \\
& \mathbb{P}\left(\theta_{N}^{\eta_{2}}\left(A_{2}\right) \geq \operatorname{Med} \theta_{N}^{\eta_{1}}\left(A_{1}\right)\right) \leq \mathrm{e}^{-\kappa \delta^{2} N}
\end{aligned}
$$

Applications

Corollary
If

$$
(A, \eta) \mapsto \theta^{\eta}(A):=\lim _{N \rightarrow \infty} \operatorname{Med} \theta_{N}^{\eta}(A)
$$

is continuous in (A, η), then

$$
\lim _{N \rightarrow \infty} \theta_{N}^{\eta}(A)=\theta^{\eta}(A), \quad \text { in probability }
$$

Pros: Pretty general, in typical points the median should be continuous

Cons:

- How to compute Med $\theta_{N}^{\eta}(A)$? Does it converge?
- How to compare with the Kac-Rice computation?

Applications: Comparison with Kac-Rice

Corollary
If

$$
\frac{1}{N} \log \mathbb{E}\left(\mathrm{Crt}^{\eta}(A)^{2}\right)=\frac{2}{N} \log \mathbb{E}\left(\mathrm{Crt}^{\eta}(A)\right)+o(1)
$$

and $(A, \eta) \mapsto \lim _{N \rightarrow \infty} \log \mathbb{E} \operatorname{Crt}_{N}^{\eta}(A)$ is continuous in (A, η), then

$$
\lim _{N \rightarrow \infty} \theta_{N}^{\eta}(A)=\lim _{N \rightarrow \infty} \log \mathbb{E} \operatorname{Crt}_{N}^{\eta}(A)
$$

Pros:

- Compares to Kac-Rice
- Requires weaker second moment computation, (cf. [BBM])
- Proof is robust

Cons: Still requires second moment computation.

Concrete application

Concentration for number of critical points with given radial derivative.
Theorem (Belius-Schmidt '23+)
Consider mixed p-spin Hamiltonian without external field. Let

$$
A=A(x, \varepsilon)=\left\{N^{-1} \partial_{r} H_{N}(\sigma) \in(x-\varepsilon, x+\varepsilon)\right\}
$$

If $x \in\left[x_{-}, x_{+}\right]$, then, in probability,

$$
\lim _{\varepsilon \not 0} \lim _{N \rightarrow \infty} \theta_{N}(A(x, \varepsilon))=\theta(x) .
$$

Tools: Gaussian isoperimetric inequality

- P_{n} standard Gaussian measure on \mathbb{R}^{n}
- For $B \subset \mathbb{R}^{n}$, define t-blowup as

$$
B_{t}=\left\{x \in \mathbb{R}^{n}: d(x, B) \leq t\right\}
$$

Theorem
For any $n \geq 1, t \geq 0$ and $B \subset \mathbb{R}^{n}$ measurable

$$
P^{n}\left(B_{t}\right) \geq 1-\exp \left\{-\frac{1}{2}\left(t+\Psi^{-1}\left(P^{n}(B)\right)^{2}\right)^{2}\right\}
$$

We will apply this for J 's, that is:

- $n=N+N^{2}+\cdots+N^{P}, \quad$ (typical norm of J is \sqrt{n}),
- $B=\left\{\operatorname{Crt}_{N}^{\eta}(A, J) \geq \operatorname{Med}_{\operatorname{Crt}}^{N}{ }_{N}^{\eta}(A, J)\right\}$,
- $t \sim \sqrt{N}$

Quantitative implicit function theorem

Theorem

Let $x_{0} \in \mathbb{R}^{n}, y_{0} \in \mathbb{R}^{m}, \delta_{x}, \delta_{y}>0$ and let $F: B_{n}\left(x_{0}, \delta_{x}\right) \times B_{m}\left(y_{0}, \delta_{y}\right) \rightarrow \mathbb{R}^{n}$ be a C^{1}-function such that $F\left(x_{0}, y_{0}\right)=0, D_{x} F\left(x_{0}, y_{0}\right)$ is an invertible matrix and

$$
\sup _{\substack{x, y:\left|x-x_{0}\right| \leq \delta_{x} \\\left|y-y_{0}\right| \leq \delta_{y}}}\left\|I-\left(D_{x} F\left(x_{0}, y_{0}\right)\right)^{-1} D_{x} F(x, y)\right\|_{o p} \leq \frac{1}{2} .
$$

Let

$$
\begin{aligned}
H & =\sup _{x, y:\left|x-x_{0}\right| \leq \delta_{x},\left|y-y_{0}\right| \leq \delta_{y}}\left\|D_{y} F(x, y)\right\|_{o p}, \\
M & =\left\|\left(D_{x} F\left(x_{0}, y_{0}\right)\right)^{-1}\right\|_{o p} \\
\bar{\delta}_{y} & =\min \left(\delta_{x} /(2 M H), \delta_{y}\right) .
\end{aligned}
$$

Then there exists a continuous function $g: B_{m}\left(y_{0}, \bar{\delta}_{y}\right) \rightarrow \mathbb{R}^{m}$ such that $(x, y) \in B_{m}\left(y_{0}, \delta_{x}\right) \times B_{m}\left(y_{0}, \bar{\delta}_{y}\right)$ is a solution to $F(x, y)=0$ iff $x=g(y)$. Furthermore g is Lipschitz continuous with constant at most 2 MH .

Will be applied for $F=\nabla_{\mathrm{sp}} H_{N}(\sigma, J), x \leftrightarrow \sigma$ and $y \leftrightarrow J$.

Regularity estimates

Let \mathbf{H}_{N} be any of $H_{N}, \nabla H_{n}, \nabla^{2} H_{n}$

Lemma

(a) For every J, J^{\prime} and $\sigma \in S^{N-1}$

$$
\left\|\mathbf{H}_{N}\left(\sigma, J+J^{\prime}\right)-\mathbf{H}_{N}(\sigma, J)\right\| \leq c\left\|J^{\prime}\right\| \sqrt{N}
$$

(b) On the set \mathcal{G}_{N} of J's of probability at least $1-\mathrm{e}^{-2 N}$, for all $\sigma, \sigma^{\prime} \in S^{N-1}$

$$
\left\|\mathbf{H}_{N}(\sigma, J)-\mathbf{H}_{N}\left(\sigma^{\prime}, J\right)\right\| \leq c N\left\|\sigma-\sigma^{\prime}\right\| .
$$

Key lemma

As consequence of the implicit function theorem, the non-flat critical points cannot appear/disappear after perturbation of J's of order \sqrt{N}

Lemma

Let $\eta \in(0,1]$ and $\delta \in(0, c(\eta))$, and $J \in \mathcal{G}_{N}$.
(a) If σ is η-flat critical point of $H_{N}(\cdot, J)$ and $\left\|J^{\prime}\right\| \leq \delta \sqrt{N}$, then there is exactly one critical point σ^{\prime} of $H_{N}\left(\cdot, J+J^{\prime}\right)$ which is $(\eta-c \delta)$-flat such that

$$
\begin{gathered}
\left\|\sigma-\sigma^{\prime}\right\| \leq c \delta \\
N^{-1}\left\|\mathbf{H}_{N}\left(\sigma^{\prime}, J+J^{\prime}\right)-\mathbf{H}_{N}(\sigma, J)\right\| \leq c \delta
\end{gathered}
$$

(b) If σ is a η-flat critical point of $H_{N}\left(\cdot, J+J^{\prime}\right)$, then \ldots

Key lemma

As consequence of the implicit function theorem, the non-flat critical points cannot appear/disappear after perturbation of J's of order \sqrt{N}

Lemma

Let $\eta \in(0,1]$ and $\delta \in(0, c(\eta))$, and $J \in \mathcal{G}_{N}$.
(a) If σ is η-flat critical point of $H_{N}(\cdot, J)$ and $\left\|J^{\prime}\right\| \leq \delta \sqrt{N}$, then there is exactly one critical point σ^{\prime} of $H_{N}\left(\cdot, J+J^{\prime}\right)$ which is $(\eta-c \delta)$-flat such that

$$
\begin{gathered}
\left\|\sigma-\sigma^{\prime}\right\| \leq c \delta \\
N^{-1}\left\|\mathbf{H}_{N}\left(\sigma^{\prime}, J+J^{\prime}\right)-\mathbf{H}_{N}(\sigma, J)\right\| \leq c \delta
\end{gathered}
$$

(b) If σ is a η-flat critical point of $H_{N}\left(\cdot, J+J^{\prime}\right)$, then \ldots

Corollary

For $J \in \mathcal{G}_{N}$ and $\left\|J^{\prime}\right\| \leq \delta \sqrt{N}$

$$
\operatorname{Crt}_{N}^{\eta-c \delta}\left(A_{c \delta}, J+J^{\prime}\right) \geq \operatorname{Crt}_{N}^{\eta}(A, J) \geq \operatorname{Crt}_{N}^{\eta+c \delta}\left(A_{-c \delta}, J+J^{\prime}\right)
$$

Summary

- We obtained "concentration" for the number of non-flat critical points
- The estimates are very robust :
- use only regularity of the landscape and basic techniques
- can be extended to other domains than S^{N-1} (TAP equations)
- Can be generalised to infinite mixtures
- We hope that they will be useful

Thank you!

