Complexity of spin-glass Hamiltonians

Jiří Černý

University of Basel

October 4, 2023

Mean-field spin glasses

Hamiltonian. N interacting 'spins'

$$H_{N,p}(\boldsymbol{\sigma}) = \frac{1}{N^{(p-1)/2}} \sum_{i_1,\ldots,i_p=1}^N J_{i_1,\ldots,i_p} \sigma_{i_1} \ldots \sigma_{i_p},$$

J. i.i.d. standard Gaussian r.v.'s

p-spin SK: configuration space $\sigma \in \{-1, 1\}^N$.

spherical p-spin SK: $\sigma \in S^{N-1}(\sqrt{N}).$

Hamiltonian is a centred Gaussian process with covariance

$$\mathbb{E}ig[\mathcal{H}_{N,
ho}({m\sigma})\mathcal{H}_{N,
ho}({m\sigma}')ig] = N^{1-
ho}ig({m\sigma}\cdot{m\sigma}'ig)^{
ho}.$$

Classical questions: statics of spin-glasses

Gibbs measure:

$$\mu_{N,p,\beta}(\mathrm{d}\sigma) = \frac{1}{Z_{N,p}(\beta)} e^{-\beta H_{N,p}(\sigma)} \Lambda_{N}(\mathrm{d}\sigma),$$

where Λ_N is the uniform probability measure on $S^{N-1}(\sqrt{N})$

Partition function.

$$Z_{N,p}(\beta) = \int e^{-\beta H_{N,p}(\sigma)} \Lambda_N(\mathrm{d}\sigma).$$

Free energy.

$$\lim_{N\to\infty}\frac{1}{N}\log\mathbb{E}[Z_{N,\rho}(\beta)]=F_{\rho}(\beta).$$

Contributions by: Parisi, Talagrand, Guera, Toninelli, Panchenko, ...

Caricature of the process

"Typical realization of the Gibbs measure $e^{-\beta H_{N,p}(\sigma)}$ "

Original motivation: Study a dynamics in this random landscape.

Motivation 2: Typical Morse functions on the N-sphere

Morse functions. $f: M \to \mathbb{R}$, such that all its critical points are non-degenerate. I.e. $det(\nabla^2 f(x) \neq 0)$.

Typical functions = Gaussian processes.

By Schoenberg's theorem (1937), the only covariance functions that work on spheres of arbitrary dimension are mixtures of p-spins, i.e.

$$\mathbb{E}[f(x)f(x')] = \sum_{p=0}^{\infty} a_p(x \cdot x')^p, \qquad x, x' \in S^{N-1}, a_p \ge 0$$

(taking $f(x) = N^{-\frac{1}{2}} H_{N,p}(xN^{\frac{1}{2}})$ corresponds to taking $a_p = \delta_p$.)

Such processes are a.s. Morse functions.

Questions. Can we say more about them?

- number of critical points of various index
- they mutual position
- links by saddles
- Euler characteristics of level sets
- gradient flows, stable manifolds, ...

Complexity

Complexity.

The number of critical points of a given index k with value in $B \subset \mathbb{R}$

$$\operatorname{Crt}_{N,k}(B) = \# \left\{ \begin{aligned} H_{N,p}(\sigma) \in NB, \\ \sigma : \nabla H_{N,p}(\sigma) = 0, \\ i(\nabla^2 H_{N,p}(\sigma)) = k \end{aligned} \right\}.$$

 ∇ , ∇^2 - gradient and Hessian restricted to $S^{N-1}(\sqrt{N})$ $i(\nabla^2 H_{N,p}(\sigma))$ - index of $\nabla^2 H_{N,p} = \#$ negative eigenvalues

Total complexity.

$$\operatorname{Crt}_N(B) = \sum_k \operatorname{Crt}_{N,k}(B).$$

Complexity and random matrices

Result 1:

The (expected) complexity of the spherical *p*-spin spin glass is related to the spectrum of random GOE matrices.

GOE: Probability distribution of the set of $N \times N$ real symmetric random matrices.

• The entries $(M_{ij}^N, i \leq j)$ are independent centred Gaussian r.v.s

$$\mathbb{E}[(M_{ij}^{\mathsf{N}})^2] = rac{1+\delta_{ij}}{2\mathsf{N}}.$$

- Spectrum. $\lambda_0^N \leq \lambda_1^N \leq \cdots \leq \lambda_{N-1}^N$
- Spectral measure. $L_N = \frac{1}{N} \sum_{i=0}^{N-1} \delta_{\lambda_i^N}$

Complexity and random matrices

Theorem (ABČ'12) For all N, $p \ge 2$, $k \in \{0, ..., N-1\}$, and $B \subset \mathbb{R}$, $\mathbb{E}[\operatorname{Crt}_{N,k}(B)] = C_{p,N} \times \mathbb{E}_{GOE}^{N} \left[e^{-NF_{p}(\lambda_{k}^{N})} \mathbf{1} \left\{ \lambda_{k}^{N} \in c_{p}B \right\} \right].$

where

$$C_{p,N} = 2\sqrt{\frac{2}{p}}(p-1)^{\frac{N}{2}}, \quad F_p(x) = \frac{p-2}{2p}x^2, \quad c_p = \sqrt{\frac{p}{2(p-1)}}$$

Large deviation analysis

Define Crt. $(u) = Crt. ((-\infty, u]).$

Theorem

For every k, p fixed

$$\lim_{N\to\infty}\frac{1}{N}\log\mathbb{E}\operatorname{Crt}_{N,k}(u)=\theta_{k,p}(u)$$

where the functions $\theta_{k,p}$, θ_p look like (for p = 3)

Implications for the energy landscape

Layered structure of the landscape.

- All critical points of index k are between $-E_k$ and $-E_c$.
- Below $-E_1$ there are only local minima
- Below $-E_2$ there are local minima and saddles of index 1, ...
- There are no critical points of finite index above $-E_c + \varepsilon$
- All critical points of index αN have value in a small interval around $E(\alpha)$

 $-E_0$ is the same as the ground state energy computed from Parisi formula.

Proof: Kac-Rice formula for the complexity

Main tool in the proofs:

Theorem (Kac–Rice Formula, e.g. Adler-Taylor '07) Under some mild conditions, with $H = H_{N,p}$

$$\mathbb{E}\operatorname{Crt}_{N,k}(B) = \int_{S^{N-1}} \mathrm{d}\sigma \,\phi_{\nabla H(\sigma)}(0) \mathbb{E}\Big[|\det \nabla^2 H(\sigma)| \mathbf{1}_{H(\sigma) \in B, i(\nabla^2 H(\sigma)) = k} \,\Big| \,\nabla H(\sigma) = 0 \Big].$$

Further results

Kac-Rice formula allows to compute the expectation of generalised complexity

$$\operatorname{Crt}_{N}(A) = \# \{ \sigma \in S^{N-1} : \nabla_{\operatorname{sp}} H_{N}(\sigma) = 0, \mathbf{H}_{N}(\sigma) \in A_{N} \}$$

where $A = (A_N)_{N \ge 1}$ and $\mathbf{H}_N(\sigma) \in A_N$ means

$$\left(\sigma, \frac{1}{N}H_N(\sigma), \frac{1}{N}\nabla H_N(\sigma), \frac{1}{N}\nabla^2 H_N(\sigma)\right) \in A_N$$

and of

$$heta_N(A) = rac{1}{N} \log \mathbb{E} \operatorname{Crt}_N(A)$$

in many related models.

Examples:

- mixture of p-spins (given energy and index) [Auffinger-Ben Arous '13]
- TAP complexity [Fan-Mei-Montanari'18],
- bipartite spin glasses [McKenna'21]
- elastic manifold [Ben Arous-Bourgade-McKenna'22]
- . . .
- in physics: Fyodorov et al., Ros, Biroli, Cammarota, Pacco, ...

Main problem

Is this computation useful?

- $Crt_N(A)$ does not need to concentrate around its expectation
- In general only

$$\lim_{N\to\infty}\mathbb{E}\theta_N(A)\leq \lim_{N\to\infty}\frac{1}{N}\log\mathbb{E}\operatorname{Crt}_N(A)$$

• It is useful in certain cases: Trivialisation

Main problem

Is this computation useful?

- $Crt_N(A)$ does not need to concentrate around its expectation
- In general only

$$\lim_{N\to\infty} \mathbb{E}\theta_N(A) \leq \lim_{N\to\infty} \frac{1}{N} \log \mathbb{E}\operatorname{Crt}_N(A)$$

• It is useful in certain cases: Trivialisation

How to prove the concentration for the complexity?

Concentration: second moment method

A version of Kac–Rice formula allows to compute $\mathbb{E}(\operatorname{Crt}_N(A)^2)$ The calculation involves

 $\mathbb{E}\big(|\mathsf{det}\,\nabla^2_{\mathrm{sp}}\mathcal{H}_N(\sigma)\,\mathsf{det}\,\nabla^2_{\mathrm{sp}}\mathcal{H}_N(\sigma')|\mathbf{1}_A(\mathbf{H}_N(\sigma,\sigma'))\,\big|\,\nabla_{\mathrm{sp}}\mathcal{H}_N(\sigma)=\nabla_{\mathrm{sp}}\mathcal{H}_N(\sigma')=0\big)$

- Subag (2017) for pure *p*-spin, all critical points with $H_N(\sigma) \leq EN$, $E \leq -E_c$ $\frac{\mathbb{E}(\operatorname{Crt}_N(E)^2)}{(\mathbb{E}\operatorname{Crt}_N(E))^2} \xrightarrow{N \to \infty} 1$
- Auffinger-Gold (2020), critical points of a given finite index
- Kivimae (2022), bipartite spherical p, q-spin
- ... Belius–Schmidt (2023+) ...

Concentration: second moment method

A version of Kac–Rice formula allows to compute $\mathbb{E}(\operatorname{Crt}_N(A)^2)$ The calculation involves

 $\mathbb{E}\big(|\mathsf{det}\,\nabla^2_{\mathrm{sp}}\mathcal{H}_N(\sigma)\,\mathsf{det}\,\nabla^2_{\mathrm{sp}}\mathcal{H}_N(\sigma')|\mathbf{1}_A(\mathbf{H}_N(\sigma,\sigma'))\,\big|\,\nabla_{\mathrm{sp}}\mathcal{H}_N(\sigma)=\nabla_{\mathrm{sp}}\mathcal{H}_N(\sigma')=0\big)$

- Subag (2017) for pure *p*-spin, all critical points with $H_N(\sigma) \leq EN$, $E \leq -E_c$ $\frac{\mathbb{E}(\operatorname{Crt}_N(E)^2)}{(\mathbb{E}\operatorname{Crt}_N(E))^2} \xrightarrow{N \to \infty} 1$
- Auffinger-Gold (2020), critical points of a given finite index
- Kivimae (2022), bipartite spherical p, q-spin
- ... Belius–Schmidt (2023+) ...

These computations are difficult ... Can we do something else?

General setting: mixed *p*-spin models

Hamiltonian:

$$H_N(\sigma, J) = \sum_{p=1}^{P} a_p H_N^p(\sigma, J) + f_N(\sigma)$$

where

$$H^p_N(\sigma, J) = \sqrt{N} \sum_{i_1, \dots, i_p=1}^N J_{i_1, \dots, i_p} \sigma_{i_1} \dots \sigma_{i_p}, \quad \sigma \in S^{N-1} \text{ (or } B_N)$$

and $J = (J_{i_1,...,i_p}) \in \mathbb{R}^{N+N^2+\dots+N^P}$ is a standard Gaussian vector.

External field f_N:

- might be random, independent of J
- we assume that

$$c_{f} = \frac{1}{N} \sup_{\sigma \in B_{N-1}} \max\left(|\nabla f_{N}(\sigma)|, \|\nabla^{2} f_{N}(\sigma)\|, \|\nabla^{3} f_{N}(\sigma)\| \right) < \infty$$

Result: non-flat critical points

Definition. A critical point σ of H_N is called η -non-flat if

spec
$$N^{-1} \nabla_{\mathrm{sp}}^2 H_N(\sigma, J) \cap [-\eta, \eta] = \emptyset.$$

Number of non-flat critical points with properties A:

 $\operatorname{Crt}_{N}^{\eta}(A, J) = \# \{ \sigma : \sigma \text{ is } \eta \text{-non-flat critical point}, \mathbf{H}_{N}(\sigma, J) \in A_{N} \}.$

and

$$heta_N^\eta(A,J) = rac{1}{N}\log \operatorname{Crt}_N^\eta(A,J)$$

Remark. Minima under $-E_{\infty}$ in pure *p*-spin are typically non-flat

The concentration result

Theorem (Belius–Č'23+) For all $0 < \eta_1 < \eta_2 \le 1$ there is $c = c(\eta_1) > 0$ and $\kappa = \kappa(c_f, mixture, \eta_1) > 0$ such that: For $0 < \delta \le \min(c, \eta_2 - \eta_1)$, $N \ge \kappa \delta^{-2}$ and sets $A_2 \subset A_1$ with $d(A_2, A_1^c) \ge \delta$: $\mathbb{P}(\operatorname{Crt}_N^{\eta_1}(A_1) \le \operatorname{Med}\operatorname{Crt}_N^{\eta_2}(A_2)) \le e^{-\kappa \delta^2 N}$,

and

$$\mathbb{P}\big(\operatorname{Crt}_N^{\eta_2}(A_2) \geq \operatorname{\mathsf{Med}}\operatorname{Crt}_N^{\eta_1}(A_1)\big) \leq \mathrm{e}^{-\kappa\delta^2 N}.$$

Corollary

The same hold if Crt_N is replaced by θ_N :

$$\mathbb{P}ig(heta_N^{\eta_1}(A_1) \leq \mathsf{Med}\, heta_N^{\eta_2}(A_2)ig) \leq \mathrm{e}^{-\kappa\delta^2 N}, \ \mathbb{P}ig(heta_N^{\eta_2}(A_2) \geq \mathsf{Med}\, heta_N^{\eta_1}(A_1)ig) \leq \mathrm{e}^{-\kappa\delta^2 N}.$$

Applications

Corollary

lf

$$(A,\eta)\mapsto heta^\eta(A):=\lim_{N o\infty}\operatorname{Med} heta^\eta_N(A)$$

is continuous in (A, η) , then

$$\lim_{N\to\infty}\theta_N^{\eta}(A)=\theta^{\eta}(A), \qquad \text{in probability}$$

Pros: Pretty general, in typical points the median should be continuous

Cons:

- How to compute Med $\theta_N^{\eta}(A)$? Does it converge?
- How to compare with the Kac–Rice computation?

Applications: Comparison with Kac–Rice

Corollary

lf

$$rac{1}{N}\log \mathbb{E}ig(\operatorname{Crt}^\eta(A)^2ig) = rac{2}{N}\log \mathbb{E}ig(\operatorname{Crt}^\eta(A)ig) + o(1),$$

and $(A, \eta) \mapsto \lim_{N \to \infty} \log \mathbb{E} \operatorname{Crt}_{N}^{\eta}(A)$ is continuous in (A, η) , then

$$\lim_{N\to\infty}\theta_N^\eta(A)=\lim_{N\to\infty}\log\mathbb{E}\operatorname{Crt}_N^\eta(A).$$

Pros:

- Compares to Kac–Rice
- Requires weaker second moment computation, (cf. [BBM])
- Proof is robust

Cons: Still requires second moment computation.

Concrete application

Concentration for number of critical points with given radial derivative.

Theorem (Belius-Schmidt '23+)

Consider mixed p-spin Hamiltonian without external field. Let

$$A = A(x,\varepsilon) = \{N^{-1}\partial_r H_N(\sigma) \in (x-\varepsilon, x+\varepsilon)\}$$

If $x \in [x_-, x_+]$, then, in probability,

$$\lim_{\varepsilon\downarrow 0} \lim_{N\to\infty} \theta_N(A(x,\varepsilon)) = \theta(x).$$

Tools: Gaussian isoperimetric inequality

- P_n standard Gaussian measure on \mathbb{R}^n
- For $B \subset \mathbb{R}^n$, define *t*-blowup as

$$B_t = \{x \in \mathbb{R}^n : d(x, B) \le t\}$$

Theorem

For any $n \ge 1$, $t \ge 0$ and $B \subset \mathbb{R}^n$ measurable

$$P^{n}(B_{t}) \geq 1 - \exp\left\{-\frac{1}{2}\left(t + \Psi^{-1}(P^{n}(B))^{2}
ight)^{2}
ight\}$$

We will apply this for J's, that is:

- $n = N + N^2 + \dots + N^P$, (typical norm of J is \sqrt{n}),
- $B = {\operatorname{Crt}_N^\eta(A, J) \ge \operatorname{Med} \operatorname{Crt}_N^\eta(A, J)},$
- $t \sim \sqrt{N}$

Quantitative implicit function theorem

Theorem

Let $x_0 \in \mathbb{R}^n$, $y_0 \in \mathbb{R}^m$, $\delta_x, \delta_y > 0$ and let $F : B_n(x_0, \delta_x) \times B_m(y_0, \delta_y) \to \mathbb{R}^n$ be a C^1 -function such that $F(x_0, y_0) = 0$, $D_x F(x_0, y_0)$ is an invertible matrix and

$$\sup_{\substack{x,y:|x-x_0|\leq\delta_x\\|y-y_0|\leq\delta_y}} \left\|I - (D_x F(x_0, y_0))^{-1} D_x F(x, y)\right\|_{op} \leq \frac{1}{2}$$

Let

$$H = \sup_{\substack{x,y:|x-x_0| \le \delta_x, |y-y_0| \le \delta_y}} \|D_y F(x,y)\|_{op},$$

$$M = \|(D_x F(x_0, y_0))^{-1}\|_{op},$$

$$\overline{\delta}_y = \min(\delta_x/(2MH), \delta_y).$$

Then there exists a continuous function $g : B_m(y_0, \overline{\delta}_y) \to \mathbb{R}^m$ such that $(x, y) \in B_m(y_0, \delta_x) \times B_m(y_0, \overline{\delta}_y)$ is a solution to F(x, y) = 0 iff x = g(y). Furthermore g is Lipschitz continuous with constant at most 2MH.

Will be applied for $F = \nabla_{sp} H_N(\sigma, J)$, $x \leftrightarrow \sigma$ and $y \leftrightarrow J$.

Regularity estimates

Let \mathbf{H}_N be any of $H_N, \nabla H_n, \nabla^2 H_n$

Lemma

(a) For every
$$J, J'$$
 and $\sigma \in S^{N-1}$

$$\|\mathbf{H}_N(\sigma, J+J') - \mathbf{H}_N(\sigma, J)\| \leq c \|J'\|\sqrt{N}$$

(b) On the set \mathcal{G}_N of J's of probability at least $1 - e^{-2N}$, for all $\sigma, \sigma' \in S^{N-1}$

$$\|\mathbf{H}_N(\sigma, J) - \mathbf{H}_N(\sigma', J)\| \le cN\|\sigma - \sigma'\|.$$

Key lemma

As consequence of the implicit function theorem, the non-flat critical points cannot appear/disappear after perturbation of J's of order \sqrt{N}

Lemma

Let $\eta \in (0,1]$ and $\delta \in (0, c(\eta))$, and $J \in \mathcal{G}_N$.

(a) If σ is η -flat critical point of $H_N(\cdot, J)$ and $||J'|| \le \delta \sqrt{N}$, then there is exactly one critical point σ' of $H_N(\cdot, J + J')$ which is $(\eta - c\delta)$ -flat such that

$$\|\sigma - \sigma'\| \le c\delta$$
$$N^{-1} \|\mathbf{H}_N(\sigma', J + J') - \mathbf{H}_N(\sigma, J)\| \le c\delta$$

(b) If σ is a η -flat critical point of $H_N(\cdot, J + J')$, then ...

Key lemma

As consequence of the implicit function theorem, the non-flat critical points cannot appear/disappear after perturbation of J's of order \sqrt{N}

Lemma

Let $\eta \in (0,1]$ and $\delta \in (0, c(\eta))$, and $J \in \mathcal{G}_N$.

(a) If σ is η -flat critical point of $H_N(\cdot, J)$ and $||J'|| \le \delta \sqrt{N}$, then there is exactly one critical point σ' of $H_N(\cdot, J + J')$ which is $(\eta - c\delta)$ -flat such that

$$\|\sigma - \sigma'\| \le c\delta$$
$$N^{-1} \|\mathbf{H}_N(\sigma', J + J') - \mathbf{H}_N(\sigma, J)\| \le c\delta$$

(b) If σ is a η -flat critical point of $H_N(\cdot, J + J')$, then ...

Corollary

For
$$J \in \mathcal{G}_N$$
 and $||J'|| \le \delta \sqrt{N}$
 $\operatorname{Crt}_N^{\eta-c\delta}(A_{c\delta}, J+J') \ge \operatorname{Crt}_N^{\eta}(A, J) \ge \operatorname{Crt}_N^{\eta+c\delta}(A_{-c\delta}, J+J').$

Summary

- We obtained "concentration" for the number of non-flat critical points
- The estimates are very robust :
 - use only regularity of the landscape and basic techniques
 - can be extended to other domains than S^{N-1} (TAP equations)
- Can be generalised to infinite mixtures
- We hope that they will be useful

Thank you!