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Preliminaries

We consider point processes, a.k.a. random point fields, living
on a suitable ambient space, e.g. Euclidean spaces
Point processes are random point sets, i.e. random variables
taking values in the space of dicrete point sets
Can also be seen as random discrete measures, equipped with
the topology of weak convergence

E.g., Poisson processes, Coulomb gases, eigenvalues of
random matrices, zeros of random polynomials ...
We consider the conditional distribution ρω(ζ) of the points
(denoted by ζ) inside a bounded open set D given the points
outside D (denoted by ω)
In Poisson point process, the points inside and outside D are
independent of each other
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Ginibre Ensemble

Finite n: µn = Eigenvalues of Gn = ((ξij))1≤i,j≤n, ξij i.i.d
NC(0, 1) (NO normalization by

√
n)

n = ∞: µ = limn→∞ µn (Ginibre ensemble)

Translation Invariant (in fact Ergodic)
Determinantal point process (d.p.p.).
Introduced by the physicist J. Ginibre as a model for
non-Hermitian matrix ensembles, motivated by Wigner’s
Hermitian matrix models of random Hamiltonians. Considered
as a model for interacting particle systems in dimension 2, c.f.
Forrester’s “Log-gases and random matrices”.
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Gaussian Analytic Function

Finite n: fn(z) = ξ0 +
ξ1√
1!

z + . . . ξk√
k!z

k + . . .+ ξn√
n!z

n

νn = Zeroes of fn (ξi iid NC(0, 1))

n = ∞:
ν = limn→∞νn
Zeroes of f (z) =

∑∞
k=0

ξk√
k!z

k

ν is Translation Invariant (and Ergodic)
Arises in the study of quantum chaotic dynamics, eg. in the
work of Bogomolnyi, Bohigas, Leboeuf.
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Spatial dependency structure: Ginibre Ensemble

Theorem (G.,Peres; Duke Math. J. ’17)
In the Ginibre ensemble,
(i)The points ω outside D determine exactly the Number N(ω) of
the points ζ inside D

“and nothing more”
(ii)A.e. ω,

(a) The conditional measure ρω(ζ) is absolutely continuous wrt
Lebesgue measure on DN(ω), and hence has a probability density
function fω(ζ)

(b)fω(ζ) > 0 a.e. wrt Lebesgue measure on DN(ω)
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Spatial dependency structure: Zeroes of Gaussian Analytic
Function

Theorem (G., Peres; Duke Math. J. ’17)
In the GAF Zero ensemble,
(i)The points ω outside D determine exactly the Number N(ω)

and Sum S(ω) of points ζ inside D, (so ζ ∈ constant sum
hypersurface ΣS(ω) ⊂ DN(ω)), “and nothing more”
(ii)A.e. ω,

(a) ρω(ζ) is absolutely continuous wrt Lebesgue measure on
ΣS(ω), and hence has a probability density function fω(ζ)

(b)fω(ζ) > 0 a.e. wrt Lebesgue measure on ΣS(ω)

ΣS(ω) : constant sum hypersurface
∑N(ω)

i=1 ζi = S(ω) inside DN(ω)
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A Hierarchy of Rigidity phenomena

π is rigid at level k if
The points of π outside D determine 0, 1, . . . , (k − 1)
moments of the points in D

Conditional distribution of the points of π inside D given the
outside has a non-vanishing density wrt Lebesgue measure on
the submanifold of DN(ω) defined by 0, 1, . . . , (k − 1) moments
being conserved.

Poisson is at Level 0 (i.e. no moments conserved)
Ginibre is at Level 1 (i.e. only 0th moment conserved)
GAF Zeros is at Level 2 (i.e. only 0th and 1st moment
conserved)
Natural point processes for Levels k ≥ 3 ??
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A Hierarchy of Rigidity phenomena

Theorem (G.-Krishnapur, Comm. Math. Phys. ’21 )
k rigidity There is a family of analytic functions with Gaussian
coefficients such that the points outside a disk determine the first
k moments of the points inside, and “nothing more”.

Natural
parametrized family of processes given by the zeroes of the
α-Gaussian analytic function

∞∑
r=0

ξr
(r !)α/2

zr

Phase transition in the rigidity behaviour in α at the values
α = 1, 12 ,

1
3 ,

1
4 , · · · . (rigid at level k for α ∈ ( 1k ,

1
k−1 ]).

The standard planar GAF is Gaussian r.v. in the space of L2

analytic functions w.r.t. complex Gaussian measure. The
α-GAFs are Gaussian r.v. in the space of L2 analytic functions
w.r.t. other measures on C (roughly, density ∼ e−|z|2/α ).
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Approximate Gibbsian structures in point processes

Theorem (Gangopadhyay-G.-Tan, Commun. Pure Appl. Math.
’23)
For the general α-Gaussian zero ensembles, as well as the Ginibre
ensemble, there are positive quantities m(ω),M(ω) such that the
conditional density fω satisfies, on its support Ξ(ω), the following :

m(ω) exp(2
∑
i 6=j

log |ζi − ζj |)1Ξ(ω) ≤ fω(ζ),

and
fω(ζ) ≤ M(ω) exp(2

∑
i 6=j

log |ζi − ζj |)1Ξ(ω),

Thus, almost surely the conditional measure exhibits quadratic
repulsion. Provides a general programme for demonstrating
approximate Gibbsian structures in strongly correlated point
processes, which can be executed on the basis of finite particle
estimates.
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Some Interesting Results en route

Theorem (Reconstruction of Gaussian Analytic Function, G.-Peres)
The zeroes of the GAF determine the function a.s. (up to a
multiplicative factor of modulus 1). In other words, if ν denotes
the zeroes of the GAF f , then ∃ an analytic function
g(z) =

∑∞
k=0 ak(ν)zk such that f (z) = γ.g(z)

Here γ follows Unif (S1) and is independent of ν.
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Mutual singularity of Palm measures:

Theorem (G., Elec. Comm. Probab. ’16)
For a point process P on a background space Ξ(R or C) which is
rigid at level k, and point configurations x ∈ Ξm, y ∈ Ξn, the
reduced Palm measures Px and Py are mutually absolutely
continuous if and only if we have matching moments
mi(x) = mi(y) for i ≤ k.

In particular, for the GAF zero process, the Palm measures ρz
and ρw are mutually singular for a.e. z,w (in spite of
translation invariance).

Rigidity phenomena have subsequently seen extensive works by
Bufetov, Dereudre, Leble, Maida, Leble, Shirai, Najnudel ....
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The emergence of Forbidden Regions

A key object of interest in the study of point processes is the
event that there is a “hole” of large radius R .

For Gaussian random polynomials of high degree (growing as
αR2)The probability of this event is � e−cR4 .
The constant c is explicitly known.
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Rigidity type phenomena: a large deviations approach

Question (Key questions)
Given that there is a hole of size R, how do the zeroes look
like, even in expectation ?
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The emergence of Forbidden Regions

Comparison with GUE eigenvalue process on R: the
conditional intensity exhibits a spike at R and subsequently
decreases to the equilibrium intensity. (Majumdar et. al. )

Comparison with Ginibre eigenvalue ensemble on C: the
conditional intensity exhibits a singular component at R and
subsequently decreases to the equilibrium intensity. (Lebowitz
et. al., Shirai)
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The emergence of Forbidden Regions

Theorem (with A. Nishry, Commun. Pure Appl. Math. ’19)
The conditional intensity for zeroes of Gaussian random
polynomials has the following behaviour:

There is a singular component at the edge of the hole
There is subsequent “forbidden region”, namely, in the annulus
R < r <

√
eR, the conditional intensity → 0 as R → ∞.

Beyond
√

eR, the conditional intensity behaves, in the limit
R → ∞, like the equilibrium intensity.
Subsequent results on holes of more general shape
(Nishry-Wenmann)
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The emergence of Forbidden Regions

Upcoming work : Existence of Forbidden Regions on Riemann
surfaces (Dinh-G.-Wu)

The global geometry of the Riemann surface plays a role
Remarkable : the Forbidden Region can cover all of the
complementary space on any Riemann surface, depending on
the size of the hole
Explicit computations possible on sphere, torus ....
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Proof Sketch: Rigidity of Number of Points of GAF

Given: outside zeroes of GAF
Want: number of inside zeroes

Linear Statistic:
∫
ϕdν, ϕ ∈ C2

c (C)
Scaling: ϕL(z) = ϕ

( z
L
)

(Sodin Tsirelson) var[
∫
ϕLdν] = O

(
1

L2

)
Take ϕ as roughly 1D (e.g. 1D ≤ ϕ ≤ 12D, ϕ ∈ C2

c )
By Sodin Tsirelson,∫
ϕLdν ≈ E[

∫
ϕLdν] =

∫
ϕL(z)ρ1(z)dm(z)

But
∫
ϕLdν = n(D) +

∫
DL\D ϕLdν

Know outside zeroes ⇒ Know
∫
DL\D ϕLdν ⇒ Compute n(D)

approximately, now let L → ∞
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