Functional central limit theorem for Betti numbers of Gaussian excursion sets

Christian Hirsch

joint work with R. Lachièze-Rey
Geometric and Topological Properties of Random Algebraic Varieties, Cologne, 6/10/23

Setup

$\triangleright F:=\{F(x)\}_{x \in \mathbb{R}^{d}}=$ centered Gaussian random field
\triangleright Stationarity $\rightsquigarrow F(\cdot+x) \stackrel{D}{=} F(\cdot), x \in \mathbb{R}^{d}$
$\rightsquigarrow\left(F\left(x_{1}\right), \ldots, F\left(x_{n}\right)\right)$ Gaussian random vector, $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$
\triangleright Covariance function

$$
C(x, y):=\operatorname{Cov}(F(x), F(y))
$$

$\triangleright A(u ; F):=\{x: F(x) \geqslant u\}=$ excursion set

Betti numbers

$\triangleright \beta_{0}, \beta_{1}, \beta_{2}=$ number of connected components, loops, cavities
$\triangleright \beta_{q, n}(u):=\beta_{q}\left(A(u ; F) \cap W_{n}\right):=\beta_{q}\left(A(u ; F) \cap[0, n]^{d}\right)$

Dream goal. Functional central limit theorem (CLT)

$$
\left|W_{n}\right|^{-1 / 2}\left(\beta_{q, n}(u)-\mathbb{E}\left[\beta_{q, n}(u)\right]\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \sigma^{2}(u)\right) .
$$

as a stochastic process in u.

Motivation from natural sciences
\triangleright Cosmic microwave background
\triangleright Materials science
\triangleright CLT used for hypothesis tests
(Estrade \& León, '16)
\triangleright CLT for Euler characteristic
\triangleright More local than Betti number
\triangleright Malliavin calculus
(Beliaev, McAuley, Muirhead, '23+)
\triangleright CLT for component count
\triangleright Martingale CLT \& stabilization
\triangleright Finite moments for critical points

CLT for Betti numbers • October 06, 2023 • Page 3

Morse theory

$\rightsquigarrow \beta_{q, n}(u)$ only changes at values u of critical points
\rightsquigarrow Marked point process of critical points of the field

$$
Y(W \times I):=\{(x, F(x)) \in W \times I: \nabla F(x)=0\}
$$

https://bastian.rieck.me

Major problem. Notoriously difficult to get moments of critical points
\triangleright Progress by (Gass \& Stecconi, '23) and (Ancona \& Letendre)
\triangleright Functional CLT needs control of the moment for the number of critical points with values in small intervals
\triangleright Restrict to subcritical level-set percolation

Gaussian fields assumptions

\triangleright Regularity. F should be of class \mathcal{C}^{4}
\triangleright Spectral regularity. $\operatorname{supp}(\hat{C})$ contains an open set
\triangleright Correlation decay. C should decay at ∞ as $\|x\|^{-\beta}$ for some $\beta \gg 0$
$\mathcal{C}(Q ; A):=$ union of connected components of A hitting Q.

Percolation assumption

For Q compact, for some $u_{c} \in \mathbb{R}$ there is $\lambda>0$ such that

$$
\limsup _{m \uparrow \infty} \frac{\log \mathbb{P}\left(\operatorname{diam}\left(\mathcal{C}\left(Q ; A\left(u_{c}\right)\right)\right) \geqslant m\right)}{m^{\lambda}}<0
$$

\rightsquigarrow (Severo, '22)

Fixed-level CLT

Represent Betti numbers as

$$
\beta(W, I)=\sum_{(x, v) \in Y(I)} \delta_{x}(W)+(\text { facet contributions })
$$

where $\delta_{x}=\mathbf{1}_{\{x \text { ref. point of } C\}} \beta_{q}(C, I)$.

Theorem (Fixed-level CLT)

Let $u>u_{c}$. Then, for $\beta_{n}(u):=\beta\left(W_{n}, A(u ; F)\right)$,

$$
\widetilde{\beta_{n}}(u):=\left|W_{n}\right|^{-1 / 2}\left(\beta_{n}(u)-\mathbb{E}\left[\beta_{n}(u)\right]\right) \Rightarrow \mathcal{N}\left(0, \sigma(u)^{2}\right)
$$

If $\lim \inf _{n \uparrow \infty}\left|W_{n}\right|^{-1} \mathbb{E}\left[\beta_{n}(u)\right]>0$, then $\sigma(u)^{2}>0$.

Theorem (FCLT for regular Betti numbers)

On any compact contained in $\left[u_{c}, \infty\right)$, it holds that $\tilde{\beta}_{n} \stackrel{d}{\Rightarrow} G$, for some centered Gaussian process G on $\left[u_{c}, \infty\right)$.

A Gaussian white noise is a random signed measure \mathcal{W} such that
$\triangleright \mathcal{W}(A) \sim \mathcal{N}(0,|A|)$ for $A \subseteq \mathbb{R}^{d}$ measurable
$\triangleright \mathcal{W}(A \cup B)=\mathcal{W}(A)+\mathcal{W}(B)$ for disjoints $A, B \subseteq \mathbb{R}^{d}$
$\triangleright \mathcal{W}(A)$ and $\mathcal{W}(B)$ are independent for disjoint $A, B \subseteq \mathbb{R}^{d}$.
In particular for f_{1}, f_{2} square integrable

$$
\operatorname{Cov}\left(\int_{\mathbb{R}^{d}} f_{1}(x) \mathcal{W}(\mathrm{d} x), \int_{\mathbb{R}^{d}} f_{2}(x) \mathcal{W}(\mathrm{d} x)\right)=\int_{\mathbb{R}^{d}} f_{1}(x) f_{2}(x) \mathrm{d} x .
$$

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be symmetric, square integrable and define $F(x):=g \star \mathcal{W}$. Then,

$$
g \star g=C=: \hat{\rho}=\widehat{\sqrt{\rho}} \star \widehat{\sqrt{\rho}} .
$$

Therefore,

$$
g=\widehat{\sqrt{\rho}}
$$

1 Fixed-level CLT

2 Positivity of limiting variance

3 Functional CLT

4 Outlook

Proof of fixed-level CLT

Idea. Martingale decomposition
For $B \subseteq \mathbb{R}^{d}$, define the independent resampling of \mathcal{W} in B, i.e.

$$
\mathcal{W}^{(B)}(A)=\mathcal{W}(A \backslash B)+\mathcal{W}^{\prime}(A \cap B)
$$

where \mathcal{W}^{\prime} is a white noise independent of \mathcal{W}.
$\triangleright \mathcal{G}_{j}:=\sigma$-algebra generated by the restriction of \mathcal{W} to boxes $Q_{i}:=i+[0,1]^{d}$ with $i \leqslant \operatorname{lex} j$ lexicographically
Then, with $B_{\Delta, j}^{(n)}(u):=\beta_{n}(u ; F)-\beta_{n}\left(u ; F^{\left(Q_{j}\right)}\right)$,

$$
\beta_{n}(u)-\mathbb{E}\left[\beta_{n}(u)\right]=\sum_{j \in \mathbb{Z}^{d}} \mathbb{E}\left[B_{\Delta, j}^{(n)}(u) \mid \mathcal{G}_{j}\right]=: \sqrt{\left|W_{n}\right|} \sum_{j \in \mathbb{Z}^{d}} U_{j, n}
$$

Conditions for martingale CLT (McLeish, '74); (BMM, '23+).

1. $\sup _{j \in \mathbb{Z}^{d}}\left|U_{j, n}\right| \rightarrow 0$ in probability
2. $\sup _{n \geqslant 1} \mathbb{E}\left[\sup _{j \in \mathbb{Z}^{d}} U_{j, n}\right]<\infty$;
3. $\sum_{j \in \mathbb{Z}^{d}} U_{j, n}^{2} \xrightarrow{L^{1}} \sigma^{2}$ for some $\sigma^{2} \geqslant 0$.
4. $\mathbb{E}\left[\sum_{j \in \mathbb{Z}^{d}}\left|U_{j, n}\right|\right]<\infty$ for all $n \geqslant 1$;

Proof of fixed-level CLT

Issue. How to check conditions in practice?
\triangleright Simplifications (Penrose \& Yukich, '01); (BMM, '23+)
\rightsquigarrow Reduction to a stabilization and a moment condition.

Proposition (Stabilization condition; Lemma 3.7 of (BMM, '23+))

The sequence $\left\{B_{\Delta, o}^{(n)}\right\}_{n}$ converges almost surely to some a.s. finite $B_{\Delta, o}^{(\infty)}$.

Proof idea.

\triangleright Set $\gamma:=\beta / d-1 / 2$ and consider the decomposition

$$
B_{\Delta, j}^{(n)}(u)=: \sum_{i \in \bar{W}_{n}} B_{\Delta, i, j}
$$

Key task.

$$
\mathbb{P}\left(B_{\Delta, i, o} \neq 0\right)=|i|^{-\gamma+o(1)}
$$

Borel-Cantelli \rightsquigarrow a.s. only finitely many of the $B_{\Delta, i, o}$ are different from 0 .
$\triangleright d_{j, n}:=\operatorname{dist}\left(j, W_{n}\right)=$ distance of $j \in \mathbb{Z}^{d}$ from W_{n}

Proposition (Moment conditions; Lemma 3.6 of (BMM, '23+))

For any sufficiently small $\varepsilon>0$, it holds with $q=q(\varepsilon)=2+\varepsilon$ that

1. $\sup _{n \geqslant 1} \sup _{j \in \mathbb{Z}^{d}} \mathbb{E}\left[\left|B_{\Delta, j}^{(n)}\right|^{q}\right]<\infty$;
2.

$$
\sup _{n, k \geqslant 1} \frac{\sum_{j \in \mathbb{Z}^{d}: d_{j, n}>k} \mathbb{E}\left[\left|B_{\Delta, j}^{(n)}\right|^{q}\right]}{\left|W_{n}\right|^{3} k^{-\beta / 3}\left(k^{d}+k\left|W_{n}\right|^{(d-1) / d}\right)}<\infty ;
$$

3. $\sup _{n \geqslant 1}\left|W_{n}\right|^{-1} \sum_{j \in \mathbb{Z}^{d}} \mathbb{E}\left[\left|B_{\Delta, j}^{(n)}\right|^{q}\right]<\infty$.

Lemma (Moment bound on $B_{\Delta, j}^{(n)}$)

Let $3 \leqslant m<q_{0}(1-1 / \gamma)$ and $\mathbb{E}\left[Y\left(Q_{0}\right)^{q_{0}}\right]<\infty$. Then,

$$
\mathbb{E}\left[\left|B_{\Delta, j}^{(n)}\right|^{m}\right] \in O\left(\left|W_{n}\right|^{m} d_{j, n}^{-\gamma d\left(q_{0}-m\right) / q_{0}}\left(\left|W_{n}\right| \wedge d_{j, n}^{d}\right)\right)
$$

Proof sketch. First,

$$
\mathbb{E}\left[\left|B_{\Delta, j}^{(n)}\right|^{m}\right] \leqslant\left|\bar{W}_{n}\right|^{m} \mathbb{E}\left[\max _{i \in \bar{W}_{n}}\left|B_{\Delta, i, j}^{(n)}\right|^{m}\right] \leqslant\left|\bar{W}_{n}\right|^{m} \sum_{i \in \bar{W}_{n}} \mathbb{E}\left[B_{\Delta, i, j}^{m}\right]
$$

By Hölder with $q^{\prime}=q_{0} / m$ and $p^{\prime}=q_{0} /\left(q_{0}-m\right)$,

$$
\mathbb{E}\left[B_{\Delta, i, j}^{m}\right] \leqslant \mathbb{E}\left[B_{\Delta, i, j}^{q_{0}}\right]^{1 / q^{\prime}} \mathbb{P}\left(B_{\Delta, i, j} \neq 0\right)^{1 / p^{\prime}}=|i-j|^{-\gamma d / p^{\prime}+o(1)}
$$

Now,

$$
\begin{aligned}
\sum_{i \in \bar{W}_{n}}|i-j|^{-\gamma d / p^{\prime}} & \leqslant C \sum_{k \geqslant d_{j, n}} g_{j, n}(k) k^{-\gamma d / p^{\prime}} \\
& \in O\left(\left(\left|W_{n}\right| \wedge d_{j, n}^{d}\right) d_{j, n}^{-\gamma d / p^{\prime}}\right)
\end{aligned}
$$

where

$g_{j, n}(k):=\left|\left\{i \in \bar{W}_{n}:|i-j|=k\right\}\right| \in O\left(k^{d-1} \wedge n^{d-1}\right)$.
Proof of Proposition. Putting $\sigma:=q / q_{0}$, we note that for $k \geqslant n$,

$$
\sum_{j: d_{j, n} \geqslant k} \mathbb{E}\left[\left|B_{\Delta, j}^{(n)}\right|^{q}\right] \leqslant C \sum_{\ell \geqslant k} g_{\ell}^{(n)}\left|W_{n}\right|^{q+1} \ell^{-\gamma d(1-\sigma)}
$$

where $g_{\ell}^{(n)}:=\left|\left\{i \in \mathbb{Z}^{d}: \operatorname{dist}\left(i, W_{n}\right)=\ell\right\}\right|$. Since $g_{\ell}^{(n)} \in O\left(\ell^{d-1}\right)$, this is of order $O\left(\left|W_{n}\right|^{q+1} k^{d-\gamma d(1-\sigma)}\right)$.
$\#\left\{j: d_{j, n} \leqslant n\right\} \in O\left(\left|W_{n}\right|\right) \rightsquigarrow$ suffices to consider $d_{j, n} \geqslant n$.
$d_{j, n} \leqslant n$
Then, by the previous result with $k=n$,

$$
\left|W_{n}\right|^{-1} \sum_{j: d_{j, n} \geqslant n} \mathbb{E}\left[\left|B_{\Delta, j}^{(n)}\right|^{q}\right] \in O\left(\left|W_{n}\right|^{q+1-\gamma(1-\sigma)}\right) .
$$

$$
n\{\square
$$

Part (2). For $k \geqslant n$,

$$
\left|W_{n}\right|^{-1} \sum_{j: d_{j, n} \geqslant k} \mathbb{E}\left[\left|B_{\Delta, j}^{(n)}\right|^{q}\right] \in O\left(\left|W_{n}\right|^{q+1} k^{\left.d-\gamma\left(q_{0}-\sigma\right)\right) d}\right) .
$$

In particular,

$$
\frac{\left|W_{n}\right|^{q+1} k^{(1-\gamma(1-\sigma)) d}}{\left|W_{n}\right|^{3} k^{d-\beta / 3}}=\left|W_{n}\right|^{q-2} k^{(1 / 6-\gamma(2 / 3-\sigma)) d} \in O(1) .
$$

Goal. Show $\mathbb{P}\left(B_{\Delta, i, o} \neq 0\right)=|i|^{-\gamma d+o(1)}$
\triangleright Set $\Delta_{B}(x):=F(x)-F^{(B)}(x):=F(x)-g \star \mathcal{W}^{(B)}(x)$
\triangleright Need: topology of $\{F \geqslant u\} \cap \mathcal{C}_{i}$ is the same as $\{F+\Delta \geqslant u\} \cap \mathcal{C}_{i}$ if no "topological event" occurs in the evolution $t \rightarrow F_{t}:=F+t \Delta$.

Lemma (Deterministic topological lemma)

Assume that

1. There is no critical point in $\partial \mathcal{C}_{i}$ (i.e. such that $\nabla F_{t}(x)=0, F_{t}(x)=u$)
2. No $x \in Q_{i}$ shall lose (or gain) the "reference point" status

Then,

$$
B_{\Delta, i, j}=0
$$

Proof idea.

\triangleright Lemma 4.1 in (BMM, '23+)
\triangleright Morse-type theory; homotopy extension theorem

Question. How to bound probabilities of topological events?
\triangleright Why are they unlikely?
Idea. "More equations than unknowns"
$\triangleright \operatorname{For}(x, \hat{y})=\left(x,\left(y_{2}, \ldots, y_{d}\right)\right) \in \mathbb{R}^{2 d-1}$, denote by $\tilde{y}=\left(x_{1}, y_{2}, \ldots, y_{d}\right)$.
\triangleright Let $A=(x, \hat{y}) \in Q \times \mathbb{R}^{d-1}: \tilde{y} \in Q$.
\triangleright Define the operator $D^{2} F(x, \hat{y}):=\|x-\tilde{y}\|^{-1}(\nabla F(x)-\nabla F(\tilde{y}))$.
\triangleright Relevant event. $\exists t \in[0,1]$:

$$
\nabla F(x)+t \nabla \Delta(x)=\nabla F(\tilde{y})+t \nabla \Delta(\tilde{y})=0
$$

or, equivalently

$$
\nabla F(x)+t \nabla \Delta(x)=D^{2} F(x, \hat{y})+t D^{2} \Delta(x, \hat{y})=0
$$

In particular,

$$
\|\nabla F(x)\|<\|\nabla \Delta(x)\|,\left\|D^{2} F(x, \hat{y})\right\|<\left\|D^{2} \Delta(x, \hat{y})\right\|
$$

Lemma (Bulinskaya)

Let
$\triangleright A \subseteq \mathbb{R}^{m^{\prime}}$ compact with $m^{\prime}<m$.
$\triangleright\left(f_{1}(x), \ldots, f_{m}(x)\right), x \in A$: non-degenerate centred Gaussian field.
Then,

$$
\limsup _{\tau \rightarrow 0} \frac{\log \mathbb{P}\left(\inf _{x \in A} \max _{i \leqslant m}\left|f_{i}(x)\right| \leqslant \tau\right)}{\log \tau} \leqslant-1
$$

Sketch.

\triangleright If for some $x \in A, \max _{i \leqslant m}\left|f_{i}(x)\right|<\tau$, then for $y \in B(x, \tau)$,

$$
\max _{i \leqslant m}\left|f_{i}(y)\right| \leqslant \tau\left(1+\|\nabla f\|_{B(x, \tau)}\right)
$$

Let $\mu \in(0,1)$, and $X:=\int_{A} \prod_{i \leqslant m}\left|f_{i}(x)\right|^{-\mu} d x$.
Work from now under the event $\Omega:=\left\{\inf _{x \in A} \max _{i \leqslant m}\left|f_{i}(x)\right| \leqslant \tau\right\}$

Bulinskaya lemma

$$
X \geqslant \prod_{i \leqslant m}\left|f_{i}(x)\right|^{-\mu} \geqslant \tau^{m^{\prime}} \prod_{i \leqslant m} \frac{1}{\tau\left(1+\|\nabla f\|_{B(x, \tau)}\right.}=: \tau^{m^{\prime}-m \mu} \frac{1}{B}
$$

Hence, by Jensen's inequality,

$$
\begin{aligned}
\mathbb{P}(\Omega) & \leqslant \tau^{m \mu-m^{\prime}} \mathbb{E}[B X]=\tau^{m \mu-m^{\prime}} \mathbb{E}\left[B^{q}\right]^{\frac{1}{q}} \mathbb{E}\left[\left(\int_{A} \prod_{i \leqslant m}\left|f_{i}(x)\right|^{-\mu} d x\right)^{p}\right]^{1 / p} \\
& \leqslant c \tau^{m \mu-m^{\prime}}|A| \mathbb{E}\left[\int_{A} \prod_{i \leqslant m}\left|f_{i}(x)\right|^{-\mu p} \frac{d x}{|A|}\right]^{1 / p}
\end{aligned}
$$

\triangleright Choose μ such that $m \mu-m^{\prime}=1-\varepsilon$ and set $p:=(1-\varepsilon) / \mu$.
\triangleright As the field is non-degenerate, it is uniformly comparable with an iid vector, and

$$
\sup _{x \in A} \mathbb{E}\left[\prod_{i}\left|f_{i}(x)\right|^{-\mu p}\right]<\infty
$$

Corollary

Let φ, ψ two centred Gaussian fields $\mathbb{R}^{m^{\prime}} \rightarrow \mathbb{R}^{m}$. Then

$$
\mathbb{P}\left(\inf _{x}\|\varphi(x)\| /\|\psi(x)\|<1\right) \leqslant \inf _{\tau}\left(c \tau^{\alpha}+\exp \left(-\tau \sup _{x \in A} \operatorname{Var}(\psi(x))^{-1}\right)\right)
$$

Apply this result to the field

$$
\begin{aligned}
& \varphi(x, \hat{y})=\left(\nabla F(x), D^{2} F(x, \hat{y})\right) \in \mathbb{R}^{2 d} \\
& \psi(x, \hat{y})=\left(\nabla \Delta(x), D^{2} \Delta(x, \hat{y})\right)
\end{aligned}
$$

on $A=\left\{(x, y): x_{1}=y_{1}\right\} \subseteq \mathbb{R}^{2 d-1}$. Then,

$$
\|\varphi\| \leqslant\left\|d^{\leqslant 2} F\right\|,\|\psi\| \leqslant\left\|d^{\leqslant 2} \Delta\right\|
$$

Proposition (Non-degeneracy of partial derivatives)

For all x, the derivatives $\partial^{\alpha} F(x)$ form a non-degenerate Gaussian vector.
Sketch. By continuity, if $\sum_{i} \lambda_{i} \partial^{\alpha_{i}} F(0)=0$ a.s. Then, for some polynomial P,

$$
0=\operatorname{Var}\left(\sum_{i} \lambda_{i} \partial^{\alpha_{i}} F(0)\right)=\int P\left(\lambda_{1}, \ldots, \lambda_{d}\right) \rho(\lambda) d \lambda
$$

$\rightsquigarrow \operatorname{supp}(\rho) \subseteq\{\lambda: P(\lambda)=0\}$
$\rightsquigarrow\{\lambda: P(\lambda)=0\}$ contains an open set
$\rightsquigarrow P$ vanishes in a neighbourhood of some point

Smallness of perturbations

\triangleright Remains to bound the derivatives
Define

$$
\Delta_{B}(x):=F(x)-F^{(B)}(x):=F(x)-g \star \mathcal{W}^{(B)}(x)
$$

Proposition

Let $|\alpha| \leqslant 3$. If for some $\beta>d,\left|\partial_{\alpha} g(x)\right| \in O\left((1+|x|)^{-\beta}\right)$, for $A \subseteq \mathbb{R}^{d}$

$$
\left.\sup _{A}\left|\partial_{\alpha} \Delta_{B}(x)\right| \leqslant c\left(\log (\operatorname{diam}(A))+U_{A}\right) d(A, B)^{-\gamma d}\right)
$$

where U_{A} has a Gaussian tail.

First, by the Borell-TIS inequality and the entropy bound we have the following result

Proposition

Given any continuous centered Gaussian field G on some domain $A \subseteq \mathbb{R}^{d}$,

$$
\|G\|_{A}:=\sup _{x \in A}|G(x)| \leqslant\left(U_{A}+c(1+\log (\operatorname{diam}(A)+1))\right) \sup _{A} \sqrt{\operatorname{Var}(G(x))}
$$

where $\mathbb{P}\left(U_{A} \geqslant s\right) \in O\left(\exp \left(-c s^{2}\right)\right)$

Proof idea.

Let $\sigma=d(A, B)$. Then,

$$
\operatorname{Var}\left(\Delta_{B}(x)\right)=2 \int_{B}|g(x-y)|^{2} d y \leqslant \int_{B(0, \sigma)^{c}}(1+\|x-y\|)^{-2 \beta} d y \leqslant c \sigma^{-2 \gamma d}
$$

Hence, the maximum over some A behaves as

$$
\left\|\Delta_{B}\right\|_{A} \in O\left(\left(\log (1+\operatorname{diam}(A))+U_{A}\right)(1+\rho)^{-\gamma d}\right)
$$

where U_{A} has Gaussian tails.

1 Fixed-level CLT

2 Positivity of limiting variance

3 Functional CLT

4 Outlook

Positivity of limiting variance

Idea. By martingale CLT,

$$
\sigma(u)^{2}=\mathbb{E}\left[\mathbb{E}\left[B_{\Delta, o}^{(\infty)} \mid \mathcal{F}_{0}\right]\right]
$$

where $\mathcal{F}_{0}:=\sigma\left(\mathcal{W} \cap Q_{i}: Q_{i} \prec Q_{1}\right)$

Key step. Expected Betti numbers decrease after perturbation

Lemma (Reduction of expected Betti number by perturbation)

There exists $m \geqslant 1$ and an open set $S \subseteq \mathbb{R}$ such that

$$
\sup _{s \in S} \lim _{n \uparrow \infty}\left(\mathbb{E}\left[\beta_{n}\left(F+s\left(g \star \mathbb{1}_{m Q_{0}}\right), u\right)\right]-\mathbb{E}\left[\beta_{n}(F, u)\right]\right)<0
$$

For $w \in \mathcal{C}^{4}$, we set

$$
D(w):=\lim _{n \uparrow \infty}\left(\beta_{n}(F+w ; u)-\beta_{n}\left(F^{\left(Q_{1}\right)} ; u\right)\right)
$$

In particular, $D(0)=B_{\Delta, o}^{(\infty)}$.
Positivity of the limiting variance (sketch).
\triangleright In the proof, we rely on a variant $B_{\Delta, 0 ; m}^{(\infty)}$ of $B_{\Delta, o}^{(\infty)}$, where instead of a partition into side-length 1 boxes, we use boxes of side length $m \geqslant 1$.
\triangleright Decompose the white noise \mathcal{W} on $m Q_{0}$ into $Z_{0} \mathbb{1}_{m Q_{0}}(\cdot)$ and an orthogonal part, where Z_{0} is a standard normal random variable.
\triangleright Consider $G(z):=\mathbb{E}\left[B_{\Delta, 0 ; m}^{(\infty)} \mid Z_{0}=z\right]$. Then, $\mathbb{E}\left[G\left(Z_{0}+s\right)\right]=\mathbb{E}\left[D\left(s\left(g \star \mathbb{1}_{m Q_{0}}\right)\right)\right]$, so that $\mathbb{E}\left[G\left(Z_{0}\right)\right]=0$.
\triangleright Reduction lemma $\rightsquigarrow \inf _{s \in \mathbb{R}} \mathbb{E}\left[G\left(Z_{0}+s\right)\right]<0$.
\triangleright Jensen's inequality $\rightsquigarrow \sigma^{2} \geqslant \operatorname{Var}\left(G\left(Z_{0}\right)\right)>0$.

Proof of Lemma

Key observation. $\lim _{u \uparrow \infty} \mu(u)=0$.
Reduction lemma $\rightsquigarrow \exists \zeta>0$ and $S \subseteq \mathbb{R}^{d}$ open such that $\sup _{s \in S} \mu(u-s)-\mu(u)<-7 \zeta$

$$
\rightsquigarrow \mathbb{E}[\beta(B(k), F+s)]-\mathbb{E}[\beta(B(k), F)]<-6 \zeta k^{d} .
$$

Four steps, valid for $n>m, k:=m-\sqrt{m}, s \in S$ and where we set $w:=w_{s, m}:=s g \star \mathbb{1}_{m Q_{0}}$:

1. $\mathbb{E}[|\beta(B(n), F)-\beta(B(k), F)-\beta(B(n) \backslash B(k), F)|] \leqslant \zeta m^{d}$
2. $\mathbb{E}[|\beta(B(n), F+w)-\beta(B(k), F+w)-\beta(B(n) \backslash B(k), F+w)|] \leqslant \zeta m^{d}$
3. $\mathbb{E}[|\beta(B(n) \backslash B(k), F+w)-\beta(B(n) \backslash B(k), F)|] \leqslant \zeta m^{d}$
4. $\mathbb{E}[|\beta(B(k), F+w)-\beta(B(k), F+s)|] \leqslant \zeta m^{d}$.

$$
\rightsquigarrow \sup _{s \in S} \lim _{n \uparrow \infty}\left(\mathbb{E}\left[\beta_{n}\left(F+s\left(g \star \mathbb{1}_{m Q_{0}}\right)\right)\right]-\mathbb{E}\left[\beta_{n}(F)\right]\right) \leqslant-\zeta m^{d},
$$

Expression I.

Betti numbers of components contained in $B(k)$ are taken into account in $\beta(B(n), F)$. Also the Betti numbers of components contained in $B(n) \backslash B(k)$ are accounted for in $\beta(B(n), F)$.
\rightsquigarrow deviations come from components intersecting $\partial B(k)$.
\triangleright Stationarity \rightsquigarrow suffices to show that $\mathbb{E}[\beta(\mathcal{C}(B(1)))]<\infty$.
\triangleright Let

$$
\begin{aligned}
\Omega_{m}:= & \{m \geqslant 1 \text { is minimal such that all components } \\
& \text { hitting } B(1) \text { are contained in } B(m)\} .
\end{aligned}
$$

Then, by stationarity and Cauchy-Schwarz,

$$
\begin{aligned}
\mathbb{E}[\beta(\mathcal{C}(B(1)))] & \leqslant \sum_{m \geqslant 1} \mathbb{E}\left[Y(B(m)) \mathbb{1}\left\{\Omega_{m}\right\}\right] \\
& \leqslant \sqrt{\mathbb{E}\left[Y(B(1))^{2}\right]} \sum_{m \geqslant 1}|B(m)| \sqrt{\mathbb{P}\left(\Omega_{m}\right)}<\infty
\end{aligned}
$$

\triangleright First, decompose

$$
\beta(B(k), F+w)=: \sum_{j \in B(k) \cap \mathbb{Z}^{d}} B_{j}(F+w)
$$

\triangleright Next,

$$
\sup _{x \in \mathbb{R}^{d}}|w(x)| \leqslant|s| \sup _{x \in \mathbb{R}^{d}} \int_{B(m)}|g(x-y)| \mathrm{d} y \leqslant|s| \sup _{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}}|g(x-y)| \mathrm{d} y<\infty
$$

and similarly for the derivatives.
\triangleright Now, by Hölder, bound $\mathbb{E}\left[\left|B_{j}(F+w)-B_{j}(F)\right|\right]$ by

$$
\mathbb{P}\left(B_{j}(F) \neq B_{j}(F+w)\right)^{1 / p}(\underbrace{\mathbb{E}\left[\left|B_{j}(F)\right|^{q}\right]}_{<\infty}{ }^{1 / q}+\underbrace{\mathbb{E}\left[\left|B_{j}(F+w)\right|^{q}\right]}_{<\infty}{ }^{1 / q}) .
$$

$$
\begin{aligned}
& \mathbb{E}[|\beta(B(n) \backslash B(k), F+w)-\beta(B(n) \backslash B(k), F)|] \\
& \leqslant \sum_{j: k<|j| \leqslant m} \mathbb{E}\left[\left|B_{j}(F+w)-B_{j}(F)\right|\right]+\sum_{j:|j| \geqslant m+\sqrt{m}} \mathbb{E}\left[\left|B_{j}(F+w)-B_{j}(F)\right|\right]
\end{aligned}
$$

Hence, need to show that

$$
\begin{gathered}
\max _{j: k<|j| \leqslant m} \mathbb{P}\left(B_{j}(F+w) \neq B_{j}(F)\right) \in o(1), \\
\sum_{j:|j| \geqslant m+\sqrt{m}} \mathbb{P}\left(B_{j}(F+w) \neq B_{j}(F)\right)^{1 / p} \in o\left(m^{d}\right) .
\end{gathered}
$$

Here, we consider the perturbations $F^{(t)}:=F+t w$. Then, for $x \in B(m)^{c}$,

$$
|w(x)|=\left|\int_{B(m)} g(x-u) \mathrm{d} u\right| \leqslant \int_{|u|>\operatorname{dist}(x, B(m))}|g(u)| \mathrm{d} u \in O\left(\operatorname{dist}(x, B(m))^{d-\beta}\right)
$$

Thus, by Bulinskaya, $\mathbb{P}\left(B_{j}(F+w) \neq B_{j}(F)\right)=\operatorname{dist}(x, B(m))^{d-\beta+o(1)}$. Also,

$$
\sum_{j \mid \geqslant m+\sqrt{m}} \operatorname{dist}(j, B(m))^{-(\beta-d) / q_{\mathrm{M}}} \leqslant c_{3} \sum_{i \geqslant m+\sqrt{m}} i^{d-1}(i-m)^{-(\beta-d) / q_{\mathrm{M}}} \in O\left(m^{d-1 / 2}\right)
$$

1 Fixed-level CLT

2 Positivity of limiting variance

3 Functional CLT

4 Outlook

Functional CLT

We prove tightness by verifying the Chentsov condition,

$$
\mathbb{E}\left[\tilde{\beta}_{n}(I)^{4}\right] \leqslant c n^{2 d}|I|^{5 / 4}
$$

where $\tilde{\beta}_{n}\left(\left[u_{-}, u_{+}\right]\right):=\tilde{\beta}_{n}\left(u_{+}\right)-\tilde{\beta}_{n}\left(u_{-}\right)$
Cumulant expansion

$$
\mathbb{E}\left[\tilde{\beta}_{n}(I)^{4}\right]=3 \operatorname{Var}\left(\tilde{\beta}_{n}(I)\right)^{2}+c_{4}\left(\tilde{\beta}_{n}(I)\right)
$$

Key step. Show that

$$
\sup _{n \geqslant 1} \sup _{I \text { is } n \text {-big }}\left|W_{n}\right|^{-1}|I|^{-5 / 8} \operatorname{Var}\left(\beta_{n}(I)\right)+\left|W_{n}\right|^{-7 / 6} c_{4}\left(\beta_{n}(I)\right)<\infty
$$

where I is n-big if $|I| \geqslant\left|W_{n}\right|^{-2 / 3}$ and to show that
Proof of tightness. Note that

$$
\mathbb{E}\left[\tilde{\beta}_{n}(I)^{4}\right] \leqslant 3 c\left|W_{n}\right|^{2}|I|^{5 / 4}+c\left|W_{n}\right|^{7 / 6}
$$

Then, $\left|W_{n}\right|^{7 / 6} \leqslant\left|W_{n}\right|^{2}|I|^{5 / 4}$ because $|I|$ is n-big.
CLT for Betti numbers • October 06, 2023 • Page 31

Lemma (Moment bounds)

Let $M \geqslant 1$. Then, $\mathbb{E}\left[Y\left(\mathcal{C}_{0} \times \mathbb{R}\right)^{M}\right]<\infty$ and

$$
\sup _{I \subseteq I_{\mathrm{b}}} \sup _{i \in \mathbb{Z}^{d}}|I|^{-31 / 32} \mathbb{E}\left[Y\left(\mathcal{C}_{i} \times I\right)^{M}\right]<\infty \text { for every compact } I_{\mathrm{b}} \subseteq \mathbb{R}
$$

Part (1). Let $K \geqslant 1$ be minimal with $\mathcal{C}_{0} \subseteq B(0, K)$.
\triangleright Then, by Cauchy-Schwarz and stationarity,

$$
\begin{aligned}
& \mathbb{E}\left[Y\left(\mathcal{C}_{0} \times \mathbb{R}\right)^{M}\right] \leqslant \sum_{k \geqslant 1} \mathbb{E}\left[Y(B(0, k) \times \mathbb{R})^{M} \mathbb{1}\{K=k\}\right] \\
& \leqslant \sum_{k \geqslant 1} \sqrt{\mathbb{E}\left[Y(B(0, k) \times \mathbb{R})^{2 M}\right]} \sqrt{\mathbb{P}(K=k)} \\
& \leqslant \sqrt{\mathbb{E}\left[Y(B(0,1) \times \mathbb{R})^{2 M}\right]} \sum_{k \geqslant 1}(2 k)^{M+1} \sqrt{\mathbb{P}(K=k)}
\end{aligned}
$$

Part (2). Proceed similarly as in the proof of part (1). Moreover,

$$
\begin{aligned}
& \mathbb{E}\left[Y(B(0,1) \times I)^{p M}\right] \leqslant \underbrace{\mathbb{E}\left[Y(B(0,1) \times \mathbb{R})^{p M^{2}}\right]^{1 / M}}_{<\infty} \underbrace{\mathbb{E}[Y(B(0,1) \times I)]^{1 / p}}_{O\left(|I|^{1 / p}\right)} . \\
& \text { CLT for Betti numbers • October 06, 2023 • Page 32 }
\end{aligned}
$$

Idea. Consider the approach from (Davydov, '96)
\triangleright Write β_{n} as $\beta_{n}(u)=\beta_{n}^{+}(u)-\beta_{n}^{-}(u)$ with $\beta_{n}^{+}(u)$ and $\beta_{n}^{-}(u)$ decreasing in u.
\rightsquigarrow may assume that β_{n} is decreasing (sum of tight processes is tight)
Need to check that $\mathbb{E}\left[\beta_{n}(I)\right] \in o\left(\sqrt{\left|W_{n}\right|}\right)$ for n-small I

$$
\mathbb{E}\left[\beta_{n}(I)\right] \leqslant \sum_{j \in \bar{W}_{n}} \mathbb{E}\left[Y\left(Q_{j} \times I\right)\right]=\left|\bar{W}_{n}\right| \mathbb{E}\left[Y\left(Q_{o} \times I\right)\right] \in O\left(\left|W_{n}\right||I|^{7 / 8}\right)
$$

Proof of cumulant bound. Martingale decomposition
$\triangleright \mathcal{G}_{j}:=\sigma$-algebra generated by the restriction of \mathcal{W} to boxes of the form Q_{i} with i preceding j in the lexicographic order $\leqslant_{\text {lex }}$.
Then, with $B_{\Delta, j}^{(n)}(I):=\beta_{n}(I ; F)-\beta_{n}\left(I ; F^{\left(Q_{j}\right)}\right)$,

$$
\beta_{n}(I)-\mathbb{E}\left[\beta_{n}(I)\right]=\sum_{j \in \mathbb{Z}^{d}} \mathbb{E}\left[B_{\Delta, j}^{(n)}(I) \mid \mathcal{G}_{j}\right]
$$

Variance bounds

First, since $\left\{B_{\Delta, i}^{(n)}\right\}_{i \in \mathbb{Z}^{d}}$ is a martingale-difference sequence,

$$
\operatorname{Var}\left(\beta_{n}(I)\right)=\sum_{j \in \mathbb{Z}^{d}} \operatorname{Var}\left(\mathbb{E}\left[B_{\Delta, j}^{(n)}(I) \mid \mathcal{G}_{j}\right]\right) \leqslant \sum_{j \in \mathbb{Z}^{d}} \mathbb{E}\left[B_{\Delta, j}^{(n)}(I)^{2}\right]
$$

Now, $\mathbb{E}\left[B_{\Delta, i, j}(I)^{2}\right] \leqslant \mathbb{E}\left[B_{\Delta, i, j}(I)^{2 M}\right]^{1 / M} \mathbb{P}\left(B_{\Delta, i, j}(I) \neq 0\right)^{1 / p^{\prime}}$ where

$$
\mathbb{P}\left(B_{\Delta, i, j}(I) \neq 0\right)=|i-j|^{-\gamma d / 5+o(1)}|I|^{4 / 5}
$$

$$
\rightsquigarrow \mathbb{E}\left[B_{\Delta, j}^{(n)}(I)^{2}\right]^{1 / 2} \leqslant \sum_{i \in \bar{W}_{n}} \mathbb{E}\left[B_{\Delta, i, j}(I)^{2}\right]^{1 / 2} \leqslant c \sum_{i \in \bar{W}_{n}}|i-j|^{-\gamma d / 8}|I|^{3 / 8} .
$$

\triangleright If $d_{j, n}:=\operatorname{dist}\left(j, W_{n}\right) \leqslant n$, then $\mathbb{E}\left[B_{\Delta, j}^{(n)}(I)^{2}\right] \in O\left(|I|^{3 / 4}\right)$.
\triangleright If $\operatorname{dist}\left(j, W_{n}\right) \geqslant n$, then

$$
\mathbb{E}\left[B_{\Delta, j}^{(n)}(I)^{2}\right] \in O\left(d_{j, n}^{2(1-\gamma / 8) d}|I|^{3 / 4}\right)
$$

Finally,

$$
\sum_{j: \operatorname{dist}\left(j, W_{n}\right) \geqslant n} d_{j, n}^{2(1-\gamma / 8) d} \in O\left(\left|W_{n}\right|^{3-\gamma / 4}\right)
$$

Cumulant bounds

First, by multilinearity of cumulants,

$$
c_{4}\left(\tilde{\beta}_{n}(I)\right)=\sum_{i, j, k, \ell \in \mathbb{Z}^{d}} a_{i, j, k, \ell} c_{4}\left(B_{\Delta, i}^{(n)}, B_{\Delta, j}^{(n)}, B_{\Delta, k}^{(n)}, B_{\Delta, \ell}^{(n)}\right)
$$

where each summand is bounded as

$$
\left|c_{4}\left(B_{\Delta, i}^{(n)}, B_{\Delta, j}^{(n)}, B_{\Delta, k}^{(n)}, B_{\Delta, \ell}^{(n)}\right)\right| \in O\left(\prod_{m \in\{i, j, k, \ell\}} \mathbb{E}\left[\left(B_{\Delta, m}^{(n)}\right)^{4}\right]^{1 / 4}\right)
$$

We now distinguish indices in $\mathcal{I}:=\left\{i: d_{i, n} \leqslant n\right\}$ and those outside \mathcal{I}. First, $\mathbb{E}\left[\left|B_{\Delta, i}^{(n)}\right|^{4}\right]=\left|W_{n}\right|^{5} d_{i, n}^{-\gamma d+o(1)}$. In particular,

$$
\sum_{i: d_{i, n} \geqslant n} \mathbb{E}\left[\left|B_{\Delta, i}^{(n)}\right|^{4}\right]^{1 / 4}=\left|W_{n}\right|^{1+5 / 4-\gamma / 4+o(1)}
$$

so that

$$
\sum_{\mathcal{I}^{c}}\left|c_{4}\left(B_{\Delta, i}^{(n)}, B_{\Delta, j}^{(n)}, B_{\Delta, k}^{(n)}, B_{\Delta, \ell}^{(n)}\right)\right|=\left|W_{n}\right|^{4+5 / 4-\gamma / 4+o(1)}
$$

Remains to deal with indices in \mathcal{I}. Here, partition the sum into $\Sigma_{1}+\Sigma_{2}$.
$\triangleright \mathfrak{d}(\{i, j, k, \ell\}):=\max _{\{S, T\} \prec\{i, j, k, \ell\}} \operatorname{dist}\left(\{s\}_{s \in S},\{t\}_{t \in T}\right)$
$\triangleright \Sigma_{1}$ contains indices with $\mathfrak{d}(\{i, j, k, \ell\}) \leqslant\left|W_{n}\right|^{o(1)}$
$\triangleright \Sigma_{2}$ contains rest
$\triangleright \Sigma_{1} \rightsquigarrow O\left(\left|W_{n}\right|^{1+o(1)}\right)$ summands; each in $O(1)$
$\triangleright \Sigma_{2} \rightsquigarrow O\left(\left|W_{n}\right|^{4}\right)$ summands.
Key step. Show that each of the Σ_{2}-factors decays at speed $\left|W_{n}\right|^{-\gamma / d+o(1)}$

Lemma (Spatial decorrelation)

It holds that

$$
\left|c_{4}\left(B_{\Delta, i}^{(n)}, B_{\Delta, j}^{(n)}, B_{\Delta, k}^{(n)}, B_{\Delta, \ell}^{(n)}\right)\right|=\mathfrak{d}(\{i, j, k, \ell\})^{-\gamma+o(1)}
$$

Idea. Cluster-decomposition of the cumulant derived in (Penrose \& Yukich, 2001). Consider $k_{0}:=\mathfrak{d}(\boldsymbol{z}):=\operatorname{dist}(\{i, k\},\{j, \ell\})$. Then, need to bound

$$
\operatorname{Cov}\left(B_{\Delta, i}^{(n)} B_{\Delta, j}^{(n)}, B_{\Delta, k}^{(n)} B_{\Delta, \ell}^{(n)}\right)=\sum_{z^{\prime}} \operatorname{Cov}\left(B_{\Delta, i^{\prime}, i} B_{\Delta, k^{\prime}, k}, B_{\Delta, j^{\prime}, j} B_{\Delta, \ell^{\prime}, \ell}\right)
$$

\triangleright Now, use a resampling representation
For $\tilde{B}_{\Delta, i^{\prime}, i}$ resample in half-space of points closer to i than to j.

$$
\begin{aligned}
& \rightsquigarrow\left|\operatorname{Cov}\left(B_{\Delta, i^{\prime}, i} B_{\Delta, k^{\prime}, k}, B_{\Delta, j^{\prime}, j} B_{\Delta, \ell^{\prime}, \ell}\right)\right| \\
& =\left|\mathbb{E}\left[B_{\Delta, i^{\prime}, i} B_{\Delta, k^{\prime}, k} B_{\Delta, j^{\prime}, j} B_{\Delta, \ell^{\prime}, \ell}-\tilde{B}_{\Delta, i^{\prime}, i} \tilde{B}_{\Delta, k^{\prime}, k} \tilde{B}_{\Delta, j^{\prime}, j} \tilde{B}_{\Delta, \ell^{\prime}, \ell}\right]\right|
\end{aligned}
$$

Then, by Hölder,

$$
\begin{aligned}
& \left|\operatorname{Cov}\left(B_{\Delta, i^{\prime}, i} B_{\Delta, k^{\prime}, k}, B_{\Delta, j^{\prime}, j} B_{\Delta, \ell^{\prime}, \ell}\right)\right| \\
& \leqslant 2 \mathbb{P}\left(B_{\Delta, i^{\prime}, i} B_{\Delta, k^{\prime}, k} B_{\Delta, j^{\prime}, j} B_{\Delta, \ell^{\prime}, \ell} \neq \tilde{B}_{\Delta, i^{\prime}, i} \tilde{B}_{\Delta, k^{\prime}, k} \tilde{B}_{\Delta, j^{\prime}, j} \tilde{B}_{\Delta, \ell^{\prime}, \ell}\right)^{1 / p^{\prime}} \\
& \quad \times \mathbb{E}\left[\left|B_{\Delta, i^{\prime}, i}\right|^{4 M}\right]^{1 /(4 M)}=\mathfrak{d}(z)^{-\gamma+o(1)}
\end{aligned}
$$

1 Fixed-level CLT

2 Positivity of limiting variance

3 Functional CLT

4 Outlook
\triangleright CLTs for excursion set of Gaussian sets

- Functional in the level \checkmark
\triangleright Level sets!
\triangleright Shot-noise fields!
\triangleright Critical/Super-critical regime!
\triangleright Persistent Betti numbers!

Literature

[1] C. A. N. Biscio, N. Chenavier, C. Hirsch, and A. M. Svane.
Testing goodness of fit for point processes via topological data analysis.
Electron. J. Stat., 14(1):1024-1074, 2020.
[2] C. A. N. Biscio and A. M. Svane.
A functional central limit theorem for the empirical Ripley's K-function.
Electron. J. Stat., 16(1):3060-3098, 2022.
[3] L. H. Y. Chen, A. Röllin, and A. Xia.
Palm theory, random measures and Stein couplings.
Ann. Appl. Probab., 31 (6):2881-2923, 2021.
[4] A. D. Christoffersen, J. Møller, and H. S. Christensen.
Modelling columnarity of pyramidal cells in the human cerebral cortex.
Aust. N. Z. J. Stat., 63(1):33-54, 2021.
[5] T. Cong and A. Xia.
Convergence rate for geometric statistics of point processes with fast decay dependence.
arXiv preprint arXiv:2205.13211, 2022.
[6] C. Hirsch, J. Krebs, and C. Redenbach.
Persistent homology based goodness-of-fit tests for spatial tessellations.
arXiv preprint arXiv:2209.13151, 2022.
[7] J. Møller and R. P. Waagepetersen.
Statistical Inference and Simulation for Spatial Point Processes.
CRC, Boca Raton, 2004.

