

Functional central limit theorem for Betti numbers of Gaussian excursion sets

Christian Hirsch

joint work with R. Lachièze-Rey

Geometric and Topological Properties of Random Algebraic Varieties, Cologne, 6/10/23

Setup

- ho $F:=\{F(x)\}_{x\in\mathbb{R}^d}=$ centered Gaussian random field
- Stationarity $\leadsto F(\cdot + x) \stackrel{D}{=} F(\cdot), x \in \mathbb{R}^d$ $\leadsto (F(x_1), \dots, F(x_n))$ Gaussian random vector, $x_1, \dots, x_n \in \mathbb{R}^d$
- > Covariance function

$$C(x,y) := \mathsf{Cov}(F(x),F(y))$$

 $A(u;F) := \{x : F(x) \ge u\} =$ excursion set

Betti numbers

- $\beta_0, \beta_1, \beta_2$ = number of connected components, loops, cavities
- $\geqslant \beta_{q,n}(u) := \beta_q \big(A(u;F) \cap W_n \big) := \beta_q \big(A(u;F) \cap [0,n]^d \big)$

Dream goal. Functional central limit theorem (CLT)

$$|W_n|^{-1/2}(\beta_{q,n}(u) - \mathbb{E}[\beta_{q,n}(u)]) \xrightarrow{\mathcal{L}} \mathcal{N}(0,\sigma^2(u)).$$

as a stochastic process in u.

CLT for Betti numbers · October 06, 2023 · Page 2

Motivation from natural sciences

- Cosmic microwave background
- Materials science
- ▷ CLT used for hypothesis tests

(Estrade & León, '16)

- ▷ CLT for Euler characteristic
- More local than Betti number
- Malliavin calculus

(Beliaev, McAuley, Muirhead, '23+)

- ▷ CLT for component count
- Martingale CLT & stabilization
- Finite moments for critical points

Morse theory

- \rightarrow $\beta_{q,n}(u)$ only changes at values u of *critical points*
- → Marked point process of critical points of the field

$$Y(W \times I) := \{(x, F(x)) \in W \times I \colon \nabla F(x) = 0\}$$

https://bastian.rieck.me

Major problem. Notoriously difficult to get moments of critical points

- Progress by (Gass & Stecconi, '23) and (Ancona & Letendre)
- Restrict to subcritical level-set percolation

Gaussian fields assumptions

- ightarrow *Regularity.* F should be of class \mathcal{C}^4
- ightarrow Spectral regularity. $\operatorname{supp}(\hat{C})$ contains an open set
- ightharpoonup Correlation decay. C should decay at ∞ as $\|x\|^{-\beta}$ for some $\beta\gg 0$

 $\mathcal{C}(Q;A):=$ union of connected components of A hitting Q.

Percolation assumption

For Q compact, for some $u_c \in \mathbb{R}$ there is $\lambda > 0$ such that

$$\limsup_{m\uparrow\infty}\frac{\log\mathbb{P}(\mathrm{diam}(\mathcal{C}(Q;A(u_c)))\geqslant m)}{m^{\lambda}}<0.$$

Represent Betti numbers as

$$\beta(W,I) = \sum_{(x,v) \in Y(I)} \delta_x(W) + \text{(facet contributions)}$$

where $\delta_x = \mathbf{1}_{\{x \text{ ref. point of } C\}} \beta_q(C, I)$.

Theorem (Fixed-level CLT)

Let $u>u_c$. Then, for $\beta_n(u):=\beta(W_n,A(u;F))$,

$$\widetilde{\beta_n}(u) := |W_n|^{-1/2} (\beta_n(u) - \mathbb{E}[\beta_n(u)]) \Rightarrow \mathcal{N}(0, \sigma(u)^2).$$

If $\liminf_{n\uparrow\infty} |W_n|^{-1}\mathbb{E}[\beta_n(u)] > 0$, then $\sigma(u)^2 > 0$.

Theorem (FCLT for regular Betti numbers)

On any compact contained in $[u_c, \infty)$, it holds that $\tilde{\beta}_n \stackrel{d}{\Rightarrow} G$, for some centered Gaussian process G on $[u_c, \infty)$.

A $\it Gaussian \ white \ noise$ is a random signed measure $\it W$ such that

- ho $\mathcal{W}(A) \sim \mathcal{N}(0,|A|)$ for $A \subseteq \mathbb{R}^d$ measurable
- $\triangleright \ \mathcal{W}(A \cup B) = \mathcal{W}(A) + \mathcal{W}(B)$ for disjoints $A, B \subseteq \mathbb{R}^d$
- $ightarrow \, \mathcal{W}(A)$ and $\mathcal{W}(B)$ are independent for disjoint $A,B\subseteq \mathbb{R}^d$.

In particular for f_1, f_2 square integrable

$$\operatorname{Cov}\left(\int_{\mathbb{R}^d} f_1(x) \mathcal{W}(\mathrm{d}x), \int_{\mathbb{R}^d} f_2(x) \mathcal{W}(\mathrm{d}x)\right) = \int_{\mathbb{R}^d} f_1(x) f_2(x) \mathrm{d}x.$$

Let $g:\mathbb{R}\to\mathbb{R}$ be symmetric, square integrable and define $F(x):=g\star\mathcal{W}.$ Then,

$$g \star g = C =: \hat{\rho} = \widehat{\sqrt{\rho}} \star \widehat{\sqrt{\rho}}.$$

Therefore,

$$g=\widehat{\sqrt{\rho}}$$

- 1 Fixed-level CLT
- 2 Positivity of limiting variance
- 3 Functional CLT
- 4 Outlook

Idea. Martingale decomposition

For $B \subseteq \mathbb{R}^d$, define the *independent resampling* of \mathcal{W} in B, i.e.

$$\mathcal{W}^{(B)}(A) = \mathcal{W}(A \setminus B) + \mathcal{W}'(A \cap B)$$

where \mathcal{W}' is a white noise independent of \mathcal{W} .

 $\mathcal{G}_j := \sigma$ -algebra generated by the restriction of \mathcal{W} to boxes $Q_i := i + [0,1]^d$ with $i \leq_{\text{lex}} j$ lexicographically

Then, with
$$B_{\Delta,j}^{(n)}(u) := \beta_n(u;F) - \beta_n(u;F^{(Q_j)}),$$

$$\beta_n(u) - \mathbb{E}[\beta_n(u)] = \sum_{j \in \mathbb{Z}^d} \mathbb{E}[B_{\Delta,j}^{(n)}(u) \mid \mathcal{G}_j] =: \sqrt{|W_n|} \sum_{j \in \mathbb{Z}^d} U_{j,n}$$

Conditions for martingale CLT (McLeish, '74); (BMM, '23+).

- **1.** $\sup_{j\in\mathbb{Z}^d}|U_{j,n}|\to 0$ in probability
- **2.** $\sup_{n\geqslant 1}\mathbb{E}\big[\sup_{j\in\mathbb{Z}^d}U_{j,n}\big]<\infty;$
- 3. $\sum_{j \in \mathbb{Z}^d} U_{j,n}^2 \xrightarrow{L^1} \sigma^2$ for some $\sigma^2 \geqslant 0$.
- **4.** $\mathbb{E}\Big[\sum_{j\in\mathbb{Z}^d}|U_{j,n}|\Big]<\infty$ for all $n\geqslant 1$;

Issue. How to check conditions in practice?

- Simplifications (Penrose & Yukich, '01); (BMM, '23+)
- → Reduction to a stabilization and a moment condition.

Proposition (Stabilization condition; Lemma 3.7 of (BMM, '23+))

The sequence $\{B_{\Delta,o}^{(n)}\}_n$ converges almost surely to some a.s. finite $B_{\Delta,o}^{(\infty)}$

Proof idea.

ightarrow Set $\gamma := eta/d - 1/2$ and consider the decomposition

$$B_{\Delta,j}^{(n)}(u) =: \sum_{i \in \bar{W}_n} B_{\Delta,i,j},$$

Key task.

$$\mathbb{P}(B_{\Delta,i,o} \neq 0) = |i|^{-\gamma + o(1)}$$

Borel-Cantelli \rightsquigarrow a.s. only finitely many of the $B_{\Delta,i,o}$ are different from 0.

Proposition (Moment conditions; Lemma 3.6 of (BMM, '23+))

For any sufficiently small $\varepsilon>0,$ it holds with $q=q(\varepsilon)=2+\varepsilon$ that

1.
$$\sup_{n\geqslant 1} \sup_{j\in\mathbb{Z}^d} \mathbb{E}[|B_{\Delta,j}^{(n)}|^q] < \infty;$$

2.

$$\sup_{n,k\geqslant 1} \frac{\sum_{j\in\mathbb{Z}^d\colon d_{j,n}>k} \mathbb{E}[|B_{\Delta,j}^{(n)}|^q]}{|W_n|^3k^{-\beta/3}(k^d+k|W_n|^{(d-1)/d})}<\infty;$$

3. $\sup_{n \ge 1} |W_n|^{-1} \sum_{j \in \mathbb{Z}^d} \mathbb{E}[|B_{\Delta,j}^{(n)}|^q] < \infty.$

Lemma (Moment bound on $B_{\Delta,j}^{(n)}$)

Let
$$3\leqslant m< q_0(1-1/\gamma)$$
 and $\mathbb{E}[Y(Q_o)^{q_0}]<\infty$. Then,
$$\mathbb{E}[|B^{(n)}_{\Delta,j}|^m]\in O\big(|W_n|^md_{j,n}^{-\gamma d(q_0-m)/q_0}(|W_n|\wedge d_{j,n}^d)\big).$$

Proof sketch. First,

$$\mathbb{E}[|B_{\Delta,j}^{(n)}|^m] \leqslant |\bar{W}_n|^m \mathbb{E}[\max_{i \in \bar{W}_n} |B_{\Delta,i,j}^{(n)}|^m] \leqslant |\bar{W}_n|^m \sum_{i \in \bar{W}_n} \mathbb{E}[B_{\Delta,i,j}^m].$$

By Hölder with
$$q'=q_0/m$$
 and $p'=q_0/(q_0-m)$,

$$\mathbb{E}[B_{\Delta,i,j}^m] \leqslant \mathbb{E}[B_{\Delta,i,j}^{q_0}]^{1/q'} \mathbb{P}(B_{\Delta,i,j} \neq 0)^{1/p'} = |i-j|^{-\gamma d/p' + o(1)}$$

Now,

$$\sum_{i \in \bar{W}_n} |i - j|^{-\gamma d/p'} \leqslant C \sum_{k \geqslant d_{j,n}} g_{j,n}(k) k^{-\gamma d/p'}$$
$$\in O\left((|W_n| \wedge d_{j,n}^d) d_{j,n}^{-\gamma d/p'}\right),$$

where

$$g_{j,n}(k) := \left| \left\{ i \in \bar{W}_n \colon |i - j| = k \right\} \right| \in O(k^{d-1} \wedge n^{d-1}).$$

Proof of Proposition. Putting $\sigma := q/q_0$, we note that for $k \geqslant n$,

$$\sum_{j: d_{j,n} \geqslant k} \mathbb{E}[|B_{\Delta,j}^{(n)}|^q] \leqslant C \sum_{\ell \geqslant k} g_{\ell}^{(n)} |W_n|^{q+1} \ell^{-\gamma d(1-\sigma)},$$

where $g_\ell^{(n)}:=|\{i\in\mathbb{Z}^d\colon \operatorname{dist}(i,W_n)=\ell\}|$. Since $g_\ell^{(n)}\in O\bigl(\ell^{d-1}\bigr)$, this is of order $O\bigl(|W_n|^{q+1}k^{d-\gamma d(1-\sigma)}\bigr)$.

 $\#\{j\colon d_{j,n}\leqslant n\}\in O(|W_n|)\leadsto$ suffices to consider $d_{j,n}\geqslant n.$ Then, by the previous result with k=n,

$$|W_n|^{-1} \sum_{j: d_{j,n} \geqslant n} \mathbb{E}[|B_{\Delta,j}^{(n)}|^q] \in O(|W_n|^{q+1-\gamma(1-\sigma)}).$$

Part (2). For $k \geqslant n$,

$$|W_n|^{-1} \sum_{j: d_{i,n} \geqslant k} \mathbb{E}[|B_{\Delta,j}^{(n)}|^q] \in O(|W_n|^{q+1} k^{d-\gamma(q_0-\sigma))d}).$$

In particular,

$$\frac{|W_n|^{q+1}k^{(1-\gamma(1-\sigma))d}}{|W_n|^3k^{d-\beta/3}} = |W_n|^{q-2}k^{(1/6-\gamma(2/3-\sigma))d} \in O(1).$$

Goal. Show $\mathbb{P}(B_{\Delta,i,o} \neq 0) = |i|^{-\gamma d + o(1)}$

- $> \operatorname{Set} \Delta_B(x) := F(x) F^{(B)}(x) := F(x) g \star \mathcal{W}^{(B)}(x)$
- ightharpoonup Need: topology of $\{F\geqslant u\}\cap \mathcal{C}_i$ is the same as $\{F+\Delta\geqslant u\}\cap \mathcal{C}_i$ if no "topological event" occurs in the evolution $t\to F_t:=F+t\Delta$.

Lemma (Deterministic topological lemma)

Assume that

- 1. There is no critical point in ∂C_i (i.e. such that $\nabla F_t(x) = 0, F_t(x) = u$)
- **2.** No $x \in Q_i$ shall lose (or gain) the "reference point" status

Then,

$$B_{\Delta,i,j} = 0$$

Proof idea.

- Lemma 4.1 in (BMM, '23+)
- Morse-type theory; homotopy extension theorem

Question. How to bound probabilities of topological events?

Why are they unlikely?

Idea. "More equations than unknowns"

$${\rm \, For \, } (x,\hat{y})=(x,(y_2,\ldots,y_d))\in \mathbb{R}^{2d-1}, {\rm denote \, by \, } \tilde{y}=(x_1,y_2,\ldots,y_d).$$

$$\qquad \qquad \vdash \text{ Let } A = (x, \hat{y}) \in Q \times \mathbb{R}^{d-1} : \tilde{y} \in Q.$$

$$ightharpoonup$$
 Define the operator $D^2F(x,\hat{y}):=\|x-\tilde{y}\|^{-1}(\nabla F(x)-\nabla F(\tilde{y})).$

ightharpoonup Relevant event. $\exists t \in [0, 1]$:

$$\nabla F(x) + t \nabla \Delta(x) = \nabla F(\tilde{y}) + t \nabla \Delta(\tilde{y}) = 0.$$

or, equivalently

$$\nabla F(x) + t\nabla \Delta(x) = D^2 F(x, \hat{y}) + tD^2 \Delta(x, \hat{y}) = 0.$$

In particular,

$$\|\nabla F(x)\| < \|\nabla \Delta(x)\|, \|D^2 F(x, \hat{y})\| < \|D^2 \Delta(x, \hat{y})\|.$$

Lemma (Bulinskaya)

Let

- $\Rightarrow A \subseteq \mathbb{R}^{m'}$ compact with m' < m.
- $(f_1(x), \dots, f_m(x)), x \in A$: non-degenerate centred Gaussian field.

Then,

$$\limsup_{\tau \to 0} \frac{\log \mathbb{P}(\inf_{x \in A} \max_{i \leqslant m} |f_i(x)| \leqslant \tau)}{\log \tau} \leqslant -1.$$

Sketch.

 $\qquad \qquad | \text{ If for some } x \in A, \, \max_{i \leqslant m} |f_i(x)| < \tau, \, \text{then for } y \in B(x,\tau), \\$

$$\max_{i \leq m} |f_i(y)| \leqslant \tau (1 + \|\nabla f\|_{B(x,\tau)}).$$

Let
$$\mu \in (0,1)$$
, and $X := \int_A \prod_{i \leq m} |f_i(x)|^{-\mu} dx$.

Work from now under the event $\Omega := \{\inf_{x \in A} \max_{i \leq m} |f_i(x)| \leq \tau \}$

$$X \geqslant \prod_{i \leqslant m} |f_i(x)|^{-\mu} \geqslant \tau^{m'} \prod_{i \leqslant m} \frac{1}{\tau (1 + \|\nabla f\|_{B(x,\tau)})} =: \tau^{m' - m\mu} \frac{1}{B},$$

Hence, by Jensen's inequality,

$$\begin{split} \mathbb{P}(\Omega) \leqslant & \tau^{m\mu-m'} \mathbb{E}[BX] = \tau^{m\mu-m'} \mathbb{E}[B^q]^{\frac{1}{q}} \mathbb{E}\Big[\Big(\int_A \prod_{i \leqslant m} |f_i(x)|^{-\mu} dx\Big)^p\Big]^{1/p} \\ \leqslant & c\tau^{m\mu-m'} |A| \mathbb{E}\Big[\int_A \prod_{i \leqslant m} |f_i(x)|^{-\mu p} \frac{dx}{|A|}\Big]^{1/p}. \end{split}$$

- ightharpoonup Choose μ such that $m\mu-m'=1-\varepsilon$ and set $p:=(1-\varepsilon)/\mu$.
- > As the field is non-degenerate, it is uniformly comparable with an iid vector, and

$$\sup_{x \in A} \mathbb{E} \Big[\prod_{i} |f_i(x)|^{-\mu p} \Big] < \infty.$$

Corollary

Let φ, ψ two centred Gaussian fields $\mathbb{R}^{m'} \to \mathbb{R}^m$. Then

$$\mathbb{P}(\inf_{x}\|\varphi(x)\|/\|\psi(x)\|<1)\leqslant \inf_{\tau}\left(c\tau^{\alpha}+\exp(-\tau\sup_{x\in A}\mathsf{Var}(\psi(x))^{-1})\right)$$

Apply this result to the field

$$\varphi(x, \hat{y}) = (\nabla F(x), D^2 F(x, \hat{y})) \in \mathbb{R}^{2d},$$

$$\psi(x, \hat{y}) = (\nabla \Delta(x), D^2 \Delta(x, \hat{y}))$$

on
$$A=\{(x,y)\colon x_1=y_1\}\subseteq \mathbb{R}^{2d-1}$$
. Then,

$$\|\varphi\| \le \|d^{\le 2}F\|, \|\psi\| \le \|d^{\le 2}\Delta\|.$$

Proposition (Non-degeneracy of partial derivatives)

For all x, the derivatives $\partial^{\alpha} F(x)$ form a non-degenerate Gaussian vector.

Sketch. By continuity, if $\sum_i \lambda_i \partial^{\alpha_i} F(0) = 0$ a.s. Then, for some polynomial P,

$$0 = \operatorname{Var}(\sum_{i} \lambda_{i} \partial^{\alpha_{i}} F(0)) = \int P(\lambda_{1}, \dots, \lambda_{d}) \rho(\lambda) d\lambda$$

- \leadsto supp $(\rho) \subseteq \{\lambda \colon P(\lambda) = 0\}$
- $\leadsto \{\lambda \colon P(\lambda) = 0\}$ contains an open set
- ightharpoonup P vanishes in a neighbourhood of some point

Remains to bound the derivatives

Define

$$\Delta_B(x) := F(x) - F^{(B)}(x) := F(x) - g \star W^{(B)}(x)$$

Proposition

Let $|\alpha|\leqslant 3.$ If for some $\beta>d,$ $|\partial_{\alpha}g(x)|\in Oig((1+|x|)^{-\beta}ig),$ for $A\subseteq\mathbb{R}^d$

$$\sup_{A} |\partial_{\alpha} \Delta_{B}(x)| \leqslant c(\log(\operatorname{diam}(A)) + U_{A})d(A, B)^{-\gamma d}).$$

where U_A has a Gaussian tail.

First, by the Borell-TIS inequality and the entropy bound we have the following result

Proposition

Given any continuous centered Gaussian field G on some domain $A \subseteq \mathbb{R}^d$,

$$\|G\|_A := \sup_{x \in A} |G(x)| \leqslant (U_A + c(1 + \log(\operatorname{diam}(A) + 1))) \sup_A \sqrt{\operatorname{Var}(G(x))}$$

where
$$\mathbb{P}(U_A \geqslant s) \in O(\exp(-cs^2))$$

Proof idea.

Let $\sigma = d(A, B)$. Then,

$$\operatorname{Var}(\Delta_B(x)) = 2 \int_B |g(x-y)|^2 dy \leqslant \int_{B(0,\sigma)^c} (1 + ||x-y||)^{-2\beta} dy \leqslant c\sigma^{-2\gamma d}.$$

Hence, the maximum over some A behaves as

$$\|\Delta_B\|_A \in O((\log(1 + \operatorname{diam}(A)) + U_A)(1 + \rho)^{-\gamma d})$$

where U_A has Gaussian tails.

- 1 Fixed-level CLT
- 2 Positivity of limiting variance
- 3 Functional CLT
- 4 Outlook

Idea. By martingale CLT,

$$\sigma(u)^2 = \mathbb{E}\big[\mathbb{E}[B_{\Delta,o}^{(\infty)} \mid \mathcal{F}_0]\big],$$

where
$$\mathcal{F}_0 := \sigma(\mathcal{W} \cap Q_i \colon Q_i \prec Q_1)$$

Key step. Expected Betti numbers decrease after perturbation

Lemma (Reduction of expected Betti number by perturbation)

There exists $m\geqslant 1$ and an open set $S\subseteq\mathbb{R}$ such that

$$\sup_{s \in S} \lim_{n \uparrow \infty} \left(\mathbb{E}[\beta_n(F + s(g \star \mathbb{1}_{mQ_0}), u)] - \mathbb{E}[\beta_n(F, u)] \right) < 0$$

For $w \in \mathcal{C}^4$, we set

$$D(w) := \lim_{n \to \infty} \left(\beta_n(F + w; u) - \beta_n(F^{(Q_1)}; u) \right).$$

In particular, $D(0) = B_{\Delta,o}^{(\infty)}$.

Positivity of the limiting variance (sketch).

- In the proof, we rely on a variant $B_{\Delta,0;m}^{(\infty)}$ of $B_{\Delta,o}^{(\infty)}$, where instead of a partition into side-length 1 boxes, we use boxes of side length $m \geqslant 1$.
- Decompose the white noise \mathcal{W} on mQ_0 into $Z_0\mathbb{1}_{mQ_0}(\cdot)$ and an orthogonal part, where Z_0 is a standard normal random variable.
- $\qquad \qquad \text{Consider } G(z) := \mathbb{E}[B_{\Delta,0;m}^{(\infty)} \,|\, Z_0 = z]. \text{ Then,} \\ \mathbb{E}[G(Z_0 + s)] = \mathbb{E}[D(s(g \star \mathbb{1}_{mO_0}))], \text{ so that } \mathbb{E}[G(Z_0)] = 0.$
- $ightharpoonup \operatorname{Reduction lemma} \leadsto \inf_{s \in \mathbb{R}} \mathbb{E}[G(Z_0 + s)] < 0.$
- ▶ Jensen's inequality $\leadsto \sigma^2 \geqslant \text{Var}(G(Z_0)) > 0$.

Key observation. $\lim_{u \uparrow \infty} \mu(u) = 0$.

Reduction lemma $\leadsto \exists \zeta>0$ and $S\subseteq \mathbb{R}^d$ open such that $\sup_{s\in S}\mu(u-s)-\mu(u)<-7\zeta$

$$\leadsto \mathbb{E}\big[\beta\big(B(k),F+s\big)\big] - \mathbb{E}\big[\beta\big(B(k),F\big)\big] < -6\zeta k^d.$$

Four steps, valid for n>m, $k:=m-\sqrt{m},$ $s\in S$ and where we set $w:=w_{s,m}:=sg\star \mathbb{1}_{mQ_0}$:

- 1. $\mathbb{E}[|\beta(B(n), F) \beta(B(k), F) \beta(B(n) \setminus B(k), F)|] \leq \zeta m^d$
- 2. $\mathbb{E}\left[\left|\beta\left(B(n),F+w\right)-\beta\left(B(k),F+w\right)-\beta\left(B(n)\setminus B(k),F+w\right)\right|\right]\leqslant \zeta m^d$
- 3. $\mathbb{E}[|\beta(B(n)\setminus B(k), F+w) \beta(B(n)\setminus B(k), F)|] \leqslant \zeta m^d$
- **4.** $\mathbb{E}[|\beta(B(k), F + w) \beta(B(k), F + s)|] \leq \zeta m^d$.

$$\leadsto \sup_{s \in S} \lim_{n \uparrow \infty} \left(\mathbb{E}[\beta_n(F + s(g \star \mathbb{1}_{mQ_0}))] - \mathbb{E}[\beta_n(F)] \right) \leqslant -\zeta m^d,$$

Expression I.

Betti numbers of components contained in B(k) are taken into account in $\beta(B(n),F)$. Also the Betti numbers of components contained in $B(n)\setminus B(k)$ are accounted for in $\beta(B(n),F)$.

- \leadsto deviations come from components intersecting $\partial B(k)$.
 - ightarrow Stationarity ightsquigarrow suffices to show that $\mathbb{E} igl[eta(\mathcal{C}(B(1)))igr] < \infty$.
 - ▶ Let

$$\Omega_m:=\{m\geqslant 1 \text{ is minimal such that all components} \\$$
 hitting $B(1)$ are contained in $B(m)\}.$

Then, by stationarity and Cauchy-Schwarz,

$$\begin{split} \mathbb{E}\big[\beta\big(\mathcal{C}(B(1))\big)\big] &\leqslant \sum_{m\geqslant 1} \mathbb{E}\big[Y(B(m))\mathbb{1}\{\Omega_m\}\big] \\ &\leqslant \sqrt{\mathbb{E}\big[Y(B(1))^2\big]} \sum_{m\geqslant 1} |B(m)|\sqrt{\mathbb{P}(\Omega_m)} < \infty. \end{split}$$

First, decompose

$$\beta(B(k), F + w) =: \sum_{j \in B(k) \cap \mathbb{Z}^d} B_j(F + w).$$

Next,

$$\sup_{x\in\mathbb{R}^d}|w(x)|\leqslant |s|\sup_{x\in\mathbb{R}^d}\int_{B(m)}|g(x-y)|\mathrm{d}y\leqslant |s|\sup_{x\in\mathbb{R}^d}\int_{\mathbb{R}^d}|g(x-y)|\mathrm{d}y<\infty,$$

and similarly for the derivatives.

ightharpoonup Now, by Hölder, bound $\mathbb{E}[|B_{i}(F+w)-B_{i}(F)|]$ by

$$\mathbb{P}(B_j(F) \neq B_j(F+w))^{1/p} \underbrace{\left(\mathbb{E}[|B_j(F)|^q]\right)^{1/q}}_{<\infty} + \underbrace{\mathbb{E}[|B_j(F+w)|^q]}_{<\infty}^{1/q}.$$

$$\mathbb{E}[\left|\beta(B(n)\setminus B(k), F+w) - \beta(B(n)\setminus B(k), F)\right|]$$

$$\leq \sum_{j: k<|j|\leq m} \mathbb{E}[\left|B_{j}(F+w) - B_{j}(F)\right|] + \sum_{j: |j|\geqslant m+\sqrt{m}} \mathbb{E}[\left|B_{j}(F+w) - B_{j}(F)\right|]$$

Hence, need to show that

$$\max_{j \colon k < |j| \le m} \mathbb{P}(B_j(F+w) \neq B_j(F)) \in o(1),$$

$$\sum_{j \colon |j| \ge m + \sqrt{m}} \mathbb{P}(B_j(F+w) \neq B_j(F))^{1/p} \in o(m^d).$$

Here, we consider the perturbations $F^{(t)}:=F+tw.$ Then, for $x\in B(m)^c$,

$$|w(x)| = \Big| \int_{B(m)} \!\!\! g(x-u) \mathrm{d}u \Big| \leqslant \int_{|u| > \mathsf{dist}(x,B(m))} \!\!\!\! |g(u)| \mathrm{d}u \in O(\mathsf{dist}(x,B(m))^{d-\beta}).$$

Thus, by Bulinskaya, $\mathbb{P}(B_j(F+w)\neq B_j(F))=\operatorname{dist}(x,B(m))^{d-\beta+o(1)}$. Also,

$$\sum_{j\colon |j|\geqslant m+\sqrt{m}} \operatorname{dist}(j,B(m))^{-(\beta-d)/q_{\mathbb{M}}}\leqslant c_3 \sum_{i\geqslant m+\sqrt{m}} i^{d-1} (i-m)^{-(\beta-d)/q_{\mathbb{M}}} \in O(m^{d-1/2}),$$

- 1 Fixed-level CLT
- 2 Positivity of limiting variance
- 3 Functional CLT
- 4 Outlook

We prove tightness by verifying the Chentsov condition,

$$\mathbb{E}\big[\tilde{\beta}_n(I)^4\big]\leqslant cn^{2d}|I|^{5/4},$$

where
$$\tilde{\beta}_n([u_-,u_+]) := \tilde{\beta}_n(u_+) - \tilde{\beta}_n(u_-)$$

Cumulant expansion

$$\mathbb{E}\big[\tilde{\beta}_n(I)^4\big] = 3\mathsf{Var}\big(\tilde{\beta}_n(I)\big)^2 + c_4\big(\tilde{\beta}_n(I)\big).$$

Key step. Show that

$$\sup_{n\geqslant 1} \sup_{I \text{ is } n\text{-big}} |W_n|^{-1} |I|^{-5/8} \mathrm{Var}(\beta_n(I)) + |W_n|^{-7/6} c_4 \big(\beta_n(I)\big) < \infty,$$

where I is n-**big** if $|I| \geqslant |W_n|^{-2/3}$ and to show that

Proof of tightness. Note that

$$\mathbb{E}\big[\tilde{\beta}_n(I)^4\big] \leqslant 3c|W_n|^2|I|^{5/4} + c|W_n|^{7/6}.$$

Then, $|W_n|^{7/6}\leqslant |W_n|^2|I|^{5/4}$ because |I| is n-big.

Lemma (Moment bounds)

Let
$$M\geqslant 1$$
. Then, $\mathbb{E}\big[Y(\mathcal{C}_0 imes\mathbb{R})^M\big]<\infty$ and

$$\sup_{I\subseteq I_{\rm b}}\sup_{i\in\mathbb{Z}^d}|I|^{-31/32}\mathbb{E}\big[Y(\mathcal{C}_i\times I)^M\big]<\infty \text{ for every compact }I_{\rm b}\subseteq\mathbb{R}$$

Part (1). Let $K \geqslant 1$ be minimal with $C_0 \subseteq B(0, K)$.

Then, by Cauchy-Schwarz and stationarity,

$$\mathbb{E}\big[Y(\mathcal{C}_0 \times \mathbb{R})^M\big] \leqslant \sum_{k \geqslant 1} \mathbb{E}\big[Y(B(0,k) \times \mathbb{R})^M \mathbb{1}\{K = k\}\big]$$

$$\leqslant \sum_{k \geqslant 1} \sqrt{\mathbb{E}\big[Y(B(0,k) \times \mathbb{R})^{2M}\big]} \sqrt{\mathbb{P}(K = k)}$$

$$\leqslant \sqrt{\mathbb{E}\big[Y(B(0,1) \times \mathbb{R})^{2M}\big]} \sum_{k > 1} (2k)^{M+1} \sqrt{\mathbb{P}(K = k)}.$$

Part (2). Proceed similarly as in the proof of part (1). Moreover,

$$\mathbb{E}\big[Y(B(0,1)\times I)^{pM}\big] \leqslant \mathbb{E}[Y(B(0,1)\times \mathbb{R})^{pM^2}]^{1/M}\,\mathbb{E}[Y(B(0,1)\times I)]^{1/p}\,.$$

Idea. Consider the approach from (Davydov, '96)

- $\qquad \qquad \text{Write } \beta_n \text{ as } \beta_n(u) = \beta_n^+(u) \beta_n^-(u) \text{ with } \beta_n^+(u) \text{ and } \beta_n^-(u) \text{ decreasing in } u.$
- \rightarrow may assume that β_n is decreasing (sum of tight processes is tight)

Need to check that $\mathbb{E}[\beta_n(I)] \in o(\sqrt{|W_n|})$ for n-small I

$$\mathbb{E}\big[\beta_n(I)\big] \leqslant \sum_{j \in \bar{W}_n} \mathbb{E}\big[Y\big(Q_j \times I\big)\big] = |\bar{W}_n|\mathbb{E}\big[Y\big(Q_o \times I\big)\big] \in O\big(|W_n||I|^{7/8}\big).$$

Proof of cumulant bound. Martingale decomposition

 $otin \mathcal{G}_j := \sigma$ -algebra generated by the restriction of \mathcal{W} to boxes of the form Q_i with i preceding j in the lexicographic order \leqslant_{lex} .

Then, with
$$B_{\Delta,j}^{(n)}(I):=\beta_n(I;F)-\beta_n(I;F^{(Q_j)}),$$

$$\beta_n(I) - \mathbb{E}[\beta_n(I)] = \sum_{j \in \mathbb{Z}^d} \mathbb{E}[B_{\Delta,j}^{(n)}(I) \mid \mathcal{G}_j]$$

First, since $\{B^{(n)}_{\Delta,i}\}_{i\in\mathbb{Z}^d}$ is a martingale-difference sequence,

$$\operatorname{Var}(\beta_n(I)) = \sum_{j \in \mathbb{Z}^d} \operatorname{Var} \bigl(\mathbb{E}[B_{\Delta,j}^{(n)}(I) \, | \, \mathcal{G}_j] \bigr) \leqslant \sum_{j \in \mathbb{Z}^d} \mathbb{E} \bigl[B_{\Delta,j}^{(n)}(I)^2 \bigr]$$

Now,
$$\mathbb{E}[B_{\Delta,i,j}(I)^2] \leqslant \mathbb{E}[B_{\Delta,i,j}(I)^{2M}]^{1/M} \mathbb{P}(B_{\Delta,i,j}(I) \neq 0)^{1/p'}$$
 where
$$\mathbb{P}(B_{\Delta,i,j}(I) \neq 0) = |i-j|^{-\gamma d/5 + o(1)} |I|^{4/5}$$
 $\leadsto \mathbb{E}[B_{\Delta,i,j}^{(n)}(I)^2]^{1/2} \leqslant \sum \mathbb{E}[B_{\Delta,i,j}(I)^2]^{1/2} \leqslant c \sum |i-j|^{-\gamma d/8} |I|^{3/8}.$

$$i\in \bar{W}_n$$
 $i\in \bar{W}_n$

$$| \text{If } d_{j,n} := \operatorname{dist}(j,W_n) \leqslant n, \text{ then } \mathbb{E}\big[B_{\Delta,j}^{(n)}(I)^2\big] \in O(|I|^{3/4}).$$

$$ightharpoonup$$
 If $\operatorname{dist}(j,W_n)\geqslant n$, then

$$\mathbb{E}\left[B_{\Delta,j}^{(n)}(I)^2\right] \in O(d_{j,n}^{2(1-\gamma/8)d}|I|^{3/4}).$$

Finally,

$$\sum_{j: \, \text{dist}(j, W_n) \geqslant n} d_{j,n}^{2(1-\gamma/8)d} \in O(|W_n|^{3-\gamma/4}).$$

First, by multilinearity of cumulants,

$$c_4(\tilde{\beta}_n(I)) = \sum_{i,j,k,\ell \in \mathbb{Z}^d} a_{i,j,k,\ell} c_4(B_{\Delta,i}^{(n)}, B_{\Delta,j}^{(n)}, B_{\Delta,k}^{(n)}, B_{\Delta,\ell}^{(n)}),$$

where each summand is bounded as

$$\left| c_4(B_{\Delta,i}^{(n)}, B_{\Delta,j}^{(n)}, B_{\Delta,k}^{(n)}, B_{\Delta,\ell}^{(n)}) \right| \in O\left(\prod_{m \in \{i,j,k,\ell\}} \mathbb{E}[(B_{\Delta,m}^{(n)})^4]^{1/4}\right).$$

We now distinguish indices in $\mathcal{I}:=\{i\colon d_{i,n}\leqslant n\}$ and those outside $\mathcal{I}.$ First, $\mathbb{E}[|B_{\Delta,i}^{(n)}|^4]=|W_n|^5d_{i,n}^{-\gamma d+o(1)}.$ In particular,

$$\sum_{i:\ d_{i,n}\geqslant n}\mathbb{E}[|B_{\Delta,i}^{(n)}|^4]^{1/4}=|W_n|^{1+5/4-\gamma/4+o(1)},$$

so that

$$\sum_{\tau_c} |c_4(B_{\Delta,i}^{(n)}, B_{\Delta,j}^{(n)}, B_{\Delta,k}^{(n)}, B_{\Delta,\ell}^{(n)})| = |W_n|^{4+5/4-\gamma/4+o(1)}.$$

Remains to deal with indices in \mathcal{I} . Here, partition the sum into $\Sigma_1 + \Sigma_2$.

$$ho \ \mathfrak{d}(\{i, j, k, \ell\}) := \max_{\{S, T\} \prec \{i, j, k, \ell\}} \mathsf{dist}(\{s\}_{s \in S}, \{t\}_{t \in T})$$

- ho Σ_1 contains indices with $\mathfrak{d}(\{i,j,k,\ell\}) \leqslant |W_n|^{o(1)}$
- ightarrow Σ_2 contains rest
- $\triangleright \Sigma_1 \leadsto O(|W_n|^{1+o(1)})$ summands; each in O(1)
- $\triangleright \Sigma_2 \leadsto O(|W_n|^4)$ summands.

Key step. Show that each of the Σ_2 -factors decays at speed $|W_n|^{-\gamma/d+o(1)}$

Lemma (Spatial decorrelation)

It holds that

$$\left| c_4 \left(B_{\Delta,i}^{(n)}, B_{\Delta,j}^{(n)}, B_{\Delta,k}^{(n)}, B_{\Delta,\ell}^{(n)} \right) \right| = \mathfrak{d}(\{i,j,k,\ell\})^{-\gamma + o(1)}.$$

Idea. Cluster-decomposition of the cumulant derived in (Penrose & Yukich, 2001).

Consider $k_0 := \mathfrak{d}(\boldsymbol{z}) := \mathsf{dist} \big(\{i,k\},\{j,\ell\}\big)$. Then, need to bound

$$\mathsf{Cov}\big(B_{\Delta,i}^{(n)}B_{\Delta,j}^{(n)},B_{\Delta,k}^{(n)}B_{\Delta,\ell}^{(n)}\big) = \sum_{\mathbf{z}'}\mathsf{Cov}\big(B_{\Delta,i',i}B_{\Delta,k',k},B_{\Delta,j',j}B_{\Delta,\ell',\ell}\big).$$

Now, use a resampling representation

For $B_{\Delta,i',i}$ resample in half-space of points closer to i than to j.

$$\begin{split} & \leadsto \left| \mathsf{Cov} \big(B_{\Delta,i',i} B_{\Delta,k',k}, B_{\Delta,j',j} B_{\Delta,\ell',\ell} \big) \right| \\ & = \left| \mathbb{E} \Big[B_{\Delta,i',i} B_{\Delta,k',k} B_{\Delta,j',j} B_{\Delta,\ell',\ell} - \tilde{B}_{\Delta,i',i} \tilde{B}_{\Delta,k',k} \tilde{B}_{\Delta,j',j} \tilde{B}_{\Delta,\ell',\ell} \Big] \right|, \end{split}$$

Then, by Hölder,

$$\begin{split} & \left| \mathsf{Cov} \big(B_{\Delta,i',i} B_{\Delta,k',k}, B_{\Delta,j',j} B_{\Delta,\ell',\ell} \big) \right| \\ & \leqslant 2 \mathbb{P} \big(B_{\Delta,i',i} B_{\Delta,k',k} B_{\Delta,j',j} B_{\Delta,\ell',\ell} \neq \tilde{B}_{\Delta,i',i} \tilde{B}_{\Delta,k',k} \tilde{B}_{\Delta,j',j} \tilde{B}_{\Delta,\ell',\ell} \big)^{1/p'} \\ & \times \mathbb{E} \big[\left| B_{\Delta,i',i} \right|^{4M} \big]^{1/(4M)} = \mathfrak{d}(z)^{-\gamma + o(1)}. \end{split}$$

- 1 Fixed-level CLT
- 2 Positivity of limiting variance
- 3 Functional CLT
- 4 Outlook

- CLTs for excursion set of Gaussian sets
 - Functional in the level ✓
- ▶ Level sets !
- Shot-noise fields !
- Critical/Super-critical regime !
- Persistent Betti numbers !

Literature

[1] C. A. N. Biscio, N. Chenavier, C. Hirsch, and A. M. Svane.

Testing goodness of fit for point processes via topological data analysis. *Electron. J. Stat.*, 14(1):1024–1074, 2020.

[2] C. A. N. Biscio and A. M. Svane.

A functional central limit theorem for the empirical Ripley's K-function.

Electron. J. Stat., 16(1):3060-3098, 2022.

[3] L. H. Y. Chen, A. Röllin, and A. Xia.

Palm theory, random measures and Stein couplings. *Ann. Appl. Probab.*, 31(6):2881–2923, 2021.

[4] A. D. Christoffersen, J. Møller, and H. S. Christensen.

Modelling columnarity of pyramidal cells in the human cerebral cortex.

Aust. N. Z. J. Stat., 63(1):33-54, 2021.

[5] T. Cong and A. Xia.

Convergence rate for geometric statistics of point processes with fast decay dependence. arXiv preprint arXiv:2205.13211, 2022.

[6] C. Hirsch, J. Krebs, and C. Redenbach.

Persistent homology based goodness-of-fit tests for spatial tessellations.

arXiv preprint arXiv:2209.13151, 2022.

[7] J. Møller and R. P. Waagepetersen.

Statistical Inference and Simulation for Spatial Point Processes.

CRC, Boca Raton, 2004.

