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1. Preliminaries, notation and known results and motivations

Basic notion and notation

X complex manifold, dim X = k

T a (p, p)-current on X with 0 ≤ p ≤ k and φ a (q, q)-smooth test form
with q := k − p. So φ is of bidim (p, p).

φ is called positive at a point x if, for every complex q-linear subspace
H of Ck passing through x , ι∗

Hφ is a positive measure (i.e. a volume
form) near x on H, where ιH : H → Ck is the canonical injection.
φ is called positive if it is positive at every point x ∈ X
T is called positive and write T ≥ 0 if T ∧ φ := ⟨T , φ⟩ ≥ 0 for any
smooth positive test form φ of bidim (p, p) [Lelong 1957]

Consider the differentiel operators acting on the space of currents on X :

d = ∂ + ∂ , dc = 1
2πi (∂ − ∂) , ddc = i

π ∂∂
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T is called closed if dT = 0. Write T ∈ CLp if T is a positive closed
(p, p)-current

T is called pluriharmonic if ddcT = 0. Write T ∈ PHp if T is a
positive pluriharmonic (p, p)-current
T is called plurisubharmonic if ddcT ≥ 0. Write T ∈ SHp if T is a
positive plurisubharmonic (p, p)-current

{currents of integrations on complex subvarieties of codim p}
⊊ CLp ⊊ PHp ⊊ SHp
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Classical Lelong number and results of Lelong, Thie, Siu, Skoda

[Lelong 1957]: T ∈ CLp, x ∈ X . Let z be a local holomorphic coordinate
system near x such that x = 0. Lelong number of T at x :

ν(T , x) := lim
r→0

σT (B(0, r))
(2π)k−pr2k−2p , where σT := 1

(k − p)! T∧( i
2∂∂∥z∥2)k−p

is the trace measure of T . Then ν(T , x) exists and ν(T , x) ∈ R+

r0

Figure: An illustrations of a ball B(x , r) with center x = 0 and radius r in Ck .
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[Thie 1967]: If T is a current of integration on a complex analytic set Z
of pure codim p (so T ∈ CLp), then ν(T , x) is equal to the multiplicity of
Z at x

[Siu 1974]: For T ∈ CLp, ν(T , x) is independent of the choice of a local
holomorphic coordinate system z

[Skoda 1982]: The result of [Lelong 1957] holds for T ∈ SHp
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Logarithmic definition of Lelong number

If T ∈ CLp, x ∈ X then

ν(T , x) := lim
r→0

Ir , where Ir :=
∫
B(0,r)

T (z) ∧ (ddc log (∥z∥2))k−p ·

There are two interpretations of the RHS:
First interpretation: to regularize the current T (e.g. a standard
convolution), ∃ (Tn)∞

n=1 ⊂ SHp ∩ C∞(B(0, r + ϵ)) for some ϵ > 0 such
that Tn → T .

Ir := lim
n→∞

∫
B(0,r)

Tn(z) ∧ (ddc log (∥z∥2))k−p ·

The integral on RHS is meaningful by Fornæss-Sibony, Demailly etc.
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Second interpretation: to regularize the integral kernel
(ddc log (∥z∥2))k−p in a canonical way:

Ir := lim
ϵ→0

∫
B(0,r)

T (z) ∧ (ddc log (∥z∥2 + ϵ2))k−p ·

Definition of logarithmic pointed Lelong number

If T ∈ CLp, x ∈ X then

lim
r→0

I•
r = 0, where I•

r :=
∫
B(0,r)\{0}

T (z) ∧ (ddc log (∥z∥2))k−p ·
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[Harvey 1975]’s geometric viewpoint: tangent currents

Let X be an open neighborhood of x = 0 in Ck and T ∈ CLp(X )

Let Aλ : Ck → Ck be defined by Aλ(x) := λx with λ ∈ C∗.
When λ goes to infinity, the domain of definition of the current
Tλ := (Aλ)∗(T ) converges to Ck .
This family of currents is relatively compact, and any limit current T∞ for
λ → ∞, is called a tangent current to T .
A tangent current T∞ is defined on the whole Ck , and it is conic in the
sense that (Aλ)∗T∞ = T∞.
Given a tangent current T∞ to T , we can extend it to Pk with zero mass
on the hyperplane at infinity ≃ Pk−1. Thus, there is a T∞ ∈ CLp(Pk−1)
such that T∞ = π∗

∞(T∞). Here π∞ : Pk \ {0} → Pk−1 is the canonical
central projection.
The class of T∞ (resp. of T∞) in the de Rham cohomology of Pk−1

(resp., of Pk) is equal to ν(T , x) times the class of a linear subspace.
[Kiselman 1991]: In general, the tangent current T∞ is not unique
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[Dinh–Sibony 2012, 2018] theory of tangent currents

X complex manifold, dim X = k, V ⊂ X submanifold, 1 ≤ dim V = l < k

Let E be the normal vector bundle to V in X and π : E → V the
canonical projection. Let π : E := P(E ⊕ C) → V be its canonical
compactification. Denote by Aλ : E → E the map induced by the
multiplication by λ on fibers of E with λ ∈ C∗. We identify V with the
zero section of E.

Basic difficulty: in general, no neighbourhood of V in X is biholomorphic
to a neighbourhood of V in E.
Dinh-Sibony’s idea: a softer notion: the admissible maps
Let τ be a diffeomorphism between a neighbourhood of V in X and a
neighbourhood of V in E whose restriction to V is identity. Assume that τ
is admissible in the sense that the endomorphism of E induced by the
differential of τ is the identity map from E to E.
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X

V

τ

admissible map τ

E

V

π

Figure: In the approach of Dinh and Sibony, admissible maps replace holomorphic
changes of coordinates.
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m := min(l , k − p) and m := max(0, l − p).
Theorem [Dinh–Sibony 2018]

(Dinh-Sibony context) Let T ∈ CLp(X ), X Kähler, supp(T ) ∩ V is
compact. Then:
(1) Tλ := (Aλ)∗τ∗(T ) is relatively compact and any limit current, for
λ → ∞, is a positive closed (p, p)-current on E whose trivial extension is a
positive closed (p, p)-current on E.

Such a limit current S is called a tangent current to T along V .

(2) If S is a tangent current to T along V , then it is V -conic, i.e.,
invariant under (Aλ)∗, and its de Rham cohomology class {S} in
H2p(E,C) does not depend on the choice of τ and S. We denote {S} by
cDS(T ), Dinh-Sibony (total) cohomology class of T along V .

(3) Let −hE denote the tautological class of the bundle π : E → V . Then

{cDS(T )} =
m∑

j=m
π∗(cDS

j (T )) ⌣ hj−l+p
E , where cDS

j (T ) ∈ H2l−2j
c (V ,C).
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Remark. When V has positive dimension l ≥ 1, according to Dinh and
Sibony, the notion of Lelong number of the current T at a single point
should be replaced by the family of cohomology classes
{cDS

j (T ) : m ≤ j ≤ m}

[Vu 2021]: Condition (X , ω) Kähler (that is, dω = 0) can be relaxed to
ddcωj = 0 on V for all 1 ≤ j ≤ k − p − 1

Applications:

Complex Dynamics: Dinh-Sibony, Dinh-Ng.-Truong, Dinh-Ng.-Vu, Vu etc.

Singular holomorphic foliations: Dinh-Sibony, Dinh-Ng.-Sibony, Kaufmann
etc.

Complex geometry, pluripotential theory: Dinh-Ng., Huynh-Vu,
Kaufmann-Vu, Huynh-Kaufmann-Vu, Vu etc.
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[Alessandrini–Bassanelli 1996] theory of the Lelong numbers

Theorem Consider X = Ck and V is a linear complex subspace of
dimension l . We use the coordinates (z , w) ∈ Ck−l × Cl so that
V = {z = 0}. Let 0 ≤ p < k − l and let T ∈ SHp on an open
neighborhood Ω of 0 in Ck .

1 Then, for every open ball B in V , B ⋐ Ω, the limit exists

νAB(T , B) := lim
r→0+

∫
Tube(B,r)

T (z , w)∧
(ddc∥z∥2

r2
)k−l−p∧(ddc∥w∥2)l ,

where the tube Tube(B, r) of radius r over B is given by

Tube(B, r) :=
{

(z , w) ∈ Ck−l × Cl : ∥z∥ < r , w ∈ B
}

.

νAB(T , B) is called Alessandrini–Bassanelli’s Lelong number of T
2 There exist an open neighborhood W of 0 in L, W ⊂ Ω, and a

nonnegative plurisubharmonic function f on W such that

νAB(T , B) =
∫

B
f (w)(ddc∥w∥2)l

for every open ball B in V with B ⋐ W .
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ρ

B
0

|z |

w2

w1

z = 0, w ∈ ∂B

|z | = r , w ∈ ∂B

w = (w1, w2)

r

Figure: An illustrations of a tube Tube(B, r) in C3 with coordinates
(z , w) ∈ C × C2, where the base B is a ball with center 0 ∈ C2 and radius ρ in
the plane V = {(0, w) : w = (w1, w2) ∈ C2} ≃ C2.

V.-A. Nguyên Lelong numbers and Intersection theory 05 October 2023 15 / 48



Theorem [Alessandrini–Bassanelli 1996] Under the assumption of the
previous theorem, νAB(T , B) has a geometric meaning in the sense of Siu:
There is a suitable blow-up model to a suitable Grassmannian manifold
Πp : Xp → Ck−l × Cl with center of blow-up V := {0} × Cl such that
νAB(T , B) is the mass of the cut-off current on the exceptional fiber of
the weak limit T∞ of the sequence Π∗

pTn, where (Tn) is a sequence of
approximating smooth forms of T . In other words,

νAB(T , B) = ∥1Π−1
p (V )T∞∥, where T∞ = lim

n→∞
Π∗

pTn.

When V is a single point x , we have

Theorem ([Siu 1974] for positive closed currents,
[Alessandrini–Bassanelli 1996] for positive plurisubharmonic currents)
Let F : Ω → Ω′ be a biholomorphic map between open subsets of Ck . If
T is a positive plurisubharmonic (p, p)-current on Ω and x ∈ Ω, then

ν(T , x) = ν(F∗T , F (x)).
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Motivations and purpose of the work

There are two concrere tasks:
1 To generalize the notion and the result of [Dinh–Sibony 2012, 2018]

on tangent and density currents
• for a very general and natural class of currents: the positive

plurisubharmonic currents;
for a general and natural context of a piecewise smooth open set
B ⊂ V : studying the tangent currents to T along B.

2 To generalize the notion and the result of [Alessandrini–Bassanelli
1996] on Lelong numbers, and the results of [Siu 1974] and of
[Alessandrini–Bassanelli 1996] on geometric characterizations of
Lelong numbers to the above contexts.
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2. New spaces of currents, strongly admissible maps and the
generalized Lelong numbers
New spaces of currents
Let m, m′ ∈ N with m ≥ m′. Let W ⊂ U ⊂ X be two open subsets. Let T
be a positive (p, p)-current defined on an open set containing U. Let
F ∈ {CL, PH, SH}.

(1) We say that T is approximable on U by Cm-smooth F-forms and write
T ∈ Fp;m(U) if there is a sequence of Cm-smooth (p, p)-forms
(Tn)∞

n=1 ⊂ F defined on U such that
(i) the masses ∥Tn∥ on U are uniformly bounded;
(ii) Tn converge weakly to T on U as n tends to infinity.
If moreover, the following condition is fulfilled:

(iii-a) the restrictions of the forms Tn on W are of uniformly bounded
Cm′-norm;

then we say that T is approximable on U by Cm-smooth F-forms with
Cm′-control on W , and write T ∈ Fp;m,m′(U, W ).
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Figure: The current T is defined on U ⊂ X (in blue) which is a neighborhood of
B (the outer closed curve in red) in the ambient manifold X (in black).
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If moreover, the following condition is fulfilled:
(iii-b) supp(Tn) ∩ W = ∅ for n ≥ 1;

then we say that T is approximable on U by Cm-smooth F-forms with
support outside W , and write T ∈ SHp;m(U, W , comp).

We say that (Tn)∞
n=1 is a sequence of approximating forms for T as an

element of Fp;m(U) in the first case (resp. as an element of
Fp;m,m′(U, W ) in the second case, resp. as an element of
Fp;m(U, W , comp) in the third case).

Let B ⊂ V be an open subset. We write T ∈ Fp;m(B) (resp.
T ∈ Fp;m,m′(B)) (resp. T ∈ Fp;m(B, comp)) if there is an open
neighborhood U of B in X such that T ∈ Fp;m(U) (resp. and there is an
open neighborhood W of ∂B in U such that T ∈ Fp;m,m′(U, W )) (resp.
such that T ∈ Fp;m(U, W , comp))

V.-A. Nguyên Lelong numbers and Intersection theory 05 October 2023 21 / 48



If moreover, the following condition is fulfilled:
(iii-b) supp(Tn) ∩ W = ∅ for n ≥ 1;

then we say that T is approximable on U by Cm-smooth F-forms with
support outside W , and write T ∈ SHp;m(U, W , comp).
We say that (Tn)∞

n=1 is a sequence of approximating forms for T as an
element of Fp;m(U) in the first case (resp. as an element of
Fp;m,m′(U, W ) in the second case, resp. as an element of
Fp;m(U, W , comp) in the third case).

Let B ⊂ V be an open subset. We write T ∈ Fp;m(B) (resp.
T ∈ Fp;m,m′(B)) (resp. T ∈ Fp;m(B, comp)) if there is an open
neighborhood U of B in X such that T ∈ Fp;m(U) (resp. and there is an
open neighborhood W of ∂B in U such that T ∈ Fp;m,m′(U, W )) (resp.
such that T ∈ Fp;m(U, W , comp))

V.-A. Nguyên Lelong numbers and Intersection theory 05 October 2023 21 / 48



If moreover, the following condition is fulfilled:
(iii-b) supp(Tn) ∩ W = ∅ for n ≥ 1;

then we say that T is approximable on U by Cm-smooth F-forms with
support outside W , and write T ∈ SHp;m(U, W , comp).
We say that (Tn)∞

n=1 is a sequence of approximating forms for T as an
element of Fp;m(U) in the first case (resp. as an element of
Fp;m,m′(U, W ) in the second case, resp. as an element of
Fp;m(U, W , comp) in the third case).

Let B ⊂ V be an open subset. We write T ∈ Fp;m(B) (resp.
T ∈ Fp;m,m′(B)) (resp. T ∈ Fp;m(B, comp)) if there is an open
neighborhood U of B in X such that T ∈ Fp;m(U) (resp. and there is an
open neighborhood W of ∂B in U such that T ∈ Fp;m,m′(U, W )) (resp.
such that T ∈ Fp;m(U, W , comp))

V.-A. Nguyên Lelong numbers and Intersection theory 05 October 2023 21 / 48



Strongly admissible maps [Dinh–Sibony 2018, Ng. 2021]
Definition

Let B be a relatively compact nonempty open subset of V . A strongly
admissible map along B is a C2-smooth diffeomorphism τ from an
open neighborhood U of B in X onto an open neighborhood of
V ∩ U in E such that for every point x ∈ V ∩ U, for every local chart
y = (z , w) ∈ Ck−l × Cl on a neighborhood W of x in U with
V ∩ W = {z = 0}, if we write τ(z , w) = (z ′, w ′) ∈ Ck−l × Cl , then

z ′ = z + zAzT + O(∥z∥3),
w ′ = w + Bz + O(∥z∥2),

where A is a (k − l) × (k − l)-matrix and B is a l × (k − l)-matrix
whose entries are C2-smooth functions in w , zT is the transpose of z ,

Remarks Holomorphic admissible maps are strongly admissible
When X is Kähler, there exists a strongly admissible map along B
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Function φ and forms α and β and tubes
Let B ⋐ V0 ⊂ V be open sets. Let π : E → V be the canonical
projection.

Consider a Hermitian metric h = ∥ · ∥ on the vector bundle Eπ−1(V0) and
let φ : Eπ−1(V0) → R+ be the function defined by

φ(y) := ∥y∥2 for y ∈ π−1(V0) ⊂ E.

Consider also the following closed (1, 1)-forms on π−1(V0) ⊂ E

α := ddc log φ and β := ddcφ.

So, for every x ∈ V0 ⊂ X the metric ∥ · ∥ on the fiber Ex ≃ Ck−l is an
Euclidean metric (in a suitable basis). In particular, we have

φ(λy) = |λ|2φ(y) for y ∈ π−1(V0) ⊂ E, λ ∈ C.

For r > 0 consider the following tube with base B and radius r
Tube(B, r) := {y ∈ E : π(y) ∈ B and ∥y∥ < r} .

For for all 0 ≤ s < r < ∞, define also the corona tube
Tube(B, s, r) := {y ∈ E : π(y) ∈ B and s < ∥y∥ < r} .
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Figure: An illustrations of a tube Tube(B, r) with base B and radius r .
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Figure: An illustrations of a corona tube Tube(B, s, r) with base B and smaller
radius s and bigger radius r .
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Recall that m := min(l , k − p) and m := max(0, l − p). Recall that ω is a
Hermitian form on V . Fix r > 0 small enough.
Ng. 2021 For 0 ≤ j ≤ m and 0 < r ≤ r, consider

(1) νj(T , B, ω, r , τ, h) := 1
r2(k−p−j)

∫
Tube(B,r)

(τ∗T ) ∧ π∗(ωj) ∧ βk−p−j .

Let 0 ≤ j ≤ m. For 0 < s < r ≤ r, consider

(2) κj(T , B, ω, s, r , τ, h) :=
∫

Tube(B,s,r)
(τ∗T ) ∧ π∗(ωj) ∧ αk−p−j .

We also consider

κj(T , B, ω, r , τ, h) :=
∫

Tube(B,r)
(τ∗T ) ∧ π∗(ωj) ∧ αk−p−j ,

κ•
j (T , B, ω, r , τ, h) :=

∫
Tube(B,0,r)

(τ∗T ) ∧ π∗(ωj) ∧ αk−p−j .
(3)

Remark. We can replace ωj by an arbitrary closed smooth (j , j)-form ω(j)

on V0 in order to obtain ν(T , B, ω(j), r , τ, h), κ(T , B, ω(j), r , τ, h) . . .
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First interpretation: assume that T = T + − T − in an open
neighborhood of B in X and T ± ∈ Fm,m′(B) for a suitable
F ∈ {CLp, PHp, SHp} and for suitable m, m′ ∈ N. Let (T ±

n ) be a
sequence of approximating forms for T ±. Then the RHS of (3) is

lim
n→∞

κj(T +
n , B, r , τ, h) − lim

n→∞
κj(T −

n , B, r , τ, h).

Second interpretation: the RHS of (3) is

lim
ϵ→0+

∫
Tube(B,r)

(τ∗T ) ∧ π∗(ωj) ∧ αk−p−j
ϵ .

Here, αϵ is the smooth form on E defined by

αϵ := ddcφϵ and φϵ := φ + ϵ2.
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Euclidean setting ([Alessandrini–Bassanelli 1996] for top degree)

Let T be a (p, p)-current of order 0 defined on an open neighborhood U
of 0 in Ck . We use the coordinates (z , w) ∈ Ck−l × Cl . We may assume
that U has the form U = U ′ × U ′′. So V = {z = 0} = U ′′ and let r > 0
such that {∥z∥ < r} × B ⋐ U. Consider the trivial vector bundle
π : E → U ′′. For λ ∈ C∗, let aλ : E → E be the multiplication by λ on
fibers, that is, aλ(z , w) := (λz , w) for (z , w) ∈ E. Admissible map τ is the
identity id, ∥ · ∥ is Euclidean metric.
Consider the positive closed (1, 1)-forms:

β = ωz := ddc∥z∥2, ω = ωw := ddc∥w∥2, α = Υz := ddc log ∥z∥2.

Let m ≤ j ≤ m. For 0 < r < r, consider the quantity

(4) νj(T , B, r , id, ∥ · ∥) := 1
r2(k−p−j)

∫
∥z∥<r , w∈B

T ∧ ωj
w ∧ ωk−p−j

z .

For 0 < s < r ≤ r, consider

(5) κj(T , B, s, r , id, ∥ · ∥) :=
∫

s<∥z∥<r , w∈B
T ∧ ωj

w ∧ Υk−p−j
z .
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Tangent Theorem I (for SH and PH currents) [Ng. 2021, 2023]

Let X , V be as above and suppose that (V , ω) is Kähler, and that B is a
piecewise C2-smooth open subset of V and that there exists a strongly
admissible map for B. Let T be a positive plurisubharmonic (p, p)-current
on a neighborhood of B in X such that T = T + − T − for some
T ± ∈ SHp;3,3(B). Then, the following assertions hold.

1 For every m ≤ j ≤ m, the following limit exists and is finite

ν(T , B, ω(j)) := lim
r→0+

ν(T , B, ω(j), r , τ, h)

for all strongly admissible maps τ for B and for all metrics h on E.
2 The real numbers ν(T , B, ω(j)) are totally intrinsic, that is, they are

independent of the choice of both τ and h.
3 The following equalities hold

lim
r→0+

κ(T , B, ω(j), r , τ, h) = ν(T , B, ω(j)),

lim
r→0+

κ•(T , B, ω(j), r , τ, h) = 0.
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5 νm(T , B, ω) is nonnegative and has a geometric meaning in the sense
of Siu and Alessandrini–Bassanelli.

6 There exists tangent currents to T along B, and all tangent currents
T∞ are positive plurisubharmonic on π−1(B) ⊂ E. Moreover, T∞ are
partially V -conic pluriharmonic on π−1(B) ⊂ E in the sense that the
current T∞ ∧ π∗(ωm) is V -conic pluriharmonic on π−1(B) ⊂ E.

7 If instead of the above assumption on T , we assume that T is a
positive pluriharmonic (p, p)-current on a neighborhood of B in X
such that T = T + − T − for some T ± ∈ PHp;2,2(B), then all the
above assertions still hold and moreover every tangent current T∞ is
also V -conic pluriharmonic on π−1(B) ⊂ E.
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Tangent Theorem II (for CL currents) [Ng. 2021, 2023]

Let X , V be as above. Assume that there is a Hermitian metric ω on V
for which ddcωj = 0 for 1 ≤ j ≤ m − 1. Assume also that B is a piecewise
C2-smooth open subset of V and that there exists a strongly admissible
map for B. Let T be a positive closed (p, p)-current on a neighborhood of
B in X such that T = T + − T − for some T ± ∈ CLp;2,2(B). Then, the
following assertions hold.

1 For every m ≤ j ≤ m, the following limit exists and is finite
ν(T , B, ω(j)) := lim

r→0+
ν(T , B, ω(j), r , τ, h)

for all strongly admissible maps τ for B and for all metrics h on E.
2 The real numbers νj(T , B, ω) are totally intrinsic, that is, they are

independent of the choice of both τ and h.
3 The following equality holds

lim
r→0+

κ(T , B, ω(j), r , τ, h) = ν(T , B, ω(j)),

lim
r→0+

κ•(T , B, ω(j), r , τ, h) = 0.
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5 νm(T , B, ω) is nonnegative has a geometric meaning in the sense of
Siu and Alessandrini–Bassanelli.

6 There exist tangent currents to T along B and all tangent currents
T∞ are V -conic positive closed on π−1(B) ⊂ E.

7 If instead of the above assumption on ω and T , we assume that the
form ω is Kähler and T is a positive closed (p, p)-current on a
neighborhood of B in X such that T = T + − T − for some
T ± ∈ CLp;1,1(B), then all the above assertions still hold.
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The case where supp(T ) ∩ V is compact in V

We can choose any piecewise smooth open neighborhood B of
supp(T ) ∩ V in V and define simply

(6) νj(T , V , ω) := νj(T , B, ω).

Remark: [Vu 2019]’s condition: there is a Hermitian metric ω̂ on X for
which ddc ω̂j = 0 on V for 1 ≤ j ≤ k − p − 1.
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Existence of strongly admissible maps and approximability of SH,
PH, CL-currents

Theorem 3 [Ng. 2021]
Let X , V be as above. Assume that X is Kähler. Then, for every relatively
compact open set B ⊂ V , the following assertions hold.

1 There is a strongly admissible map for B [Dinh–Sibony 2018]
2 Let m, m′ ∈ N with m ≥ m′. Let T be a positive plurisubharmonic

(resp. positive pluriharmonic, resp. positive closed) (p, p)-current on
X which satisfies the following conditions (i)–(ii):

(i) T is of class Cm′ near ∂B;
(ii) There is a relatively compact open subset Ω of X with B ⋐ Ω and dT

is of class C0 near ∂Ω.

Then T can be written in an open neighborhood of B in X as
T = T + − T − for some T ± ∈ SHp;m,m′(B) (resp.
T ± ∈ PHp;m,m′(B), T ± ∈ CLp;m,m′(B)).
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4. Lelong-Jensen formula for holomorphic vector bundle [Ng. 2021]

Let V be a complex manifold of dimension l . Let E be a holomorphic
bundle of rank k − l over V . So E is a complex manifold of dimension k.
Denote by π : E → V the canonical projection. Let B be a relatively
compact open set of V with piecewice C2-smooth boundary. Let U be an
open neighborhood of B in E. Let r ∈ R+

∗ ∪ {∞} and 0 ≤ r0 < r. Let
φ : U → [0, ∞) be a C2-smooth function such that

φ(y) = r2
0 for y ∈ U ∩ V and φ(y) > r2

0 for y ∈ U \ V ;
for every r ∈ (r0, r], the set {y ∈ U : φ(y) = r2} is a connected
nonsingular real hypersurface of U which intersects the real
hypersurface π−1(∂B) ⊂ E transversally.

Consider also the following closed (1, 1)-forms on U

(7) α := ddc log φ and β := ddcφ.
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Let r > 0 and B ⋐ V an open set. Consider the following tube with base
B and radius r

(8) Tube(B, r) :=
{

y ∈ E : φ(y) < r2
}

.

For all r0 ≤ r < s ≤ r, define

(9) Tube(B, r , s) :=
{

y ∈ E : π(y) ∈ B and r2 < φ(y) < s2
}

.

Note that the boundary ∂Tube(B, r) can be decomposed as the disjoint
union of the vertical boundary ∂verTube(B, r) and the horizontal boundary
∂horTube(B, r), where

∂verTube(B, r) :=
{

y ∈ E : π(y) ∈ ∂B and φ(y) ≤ r2
}

,

∂horTube(B, r) :=
{

y ∈ E : π(y) ∈ B and φ(y) = r2
}

.

Under the above assumption on φ, we see that Tube(B, r) is a manifold
with piecewise C2-smooth boundary for every r ∈ [r0, r]. When ∂B = ∅,
we have ∂verTube(B, r) = ∅.
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Figure: Illustrations of a Tube Tube(B, r) with base B and radius r , its horizontal
boundary ∂horTube(B, r) and its vertical boundary ∂verTube(B, r).
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Theorem 4 [Ng. 2021]

Let r ∈ (r0, r] and B ⋐ V a relatively compact open set with piecewice
C2-smooth boundary. Let S be a real current of dimension 2q and of order
0 on a neighborhood of Tube(B, r) such that S is suitably approximable
by C2-smooth forms. Then, for all r1, r2 ∈ (r0, r ] with r1 < r2 except for a
countable set of values, we have that

1
r2q
2

∫
Tube(B,r2)

S ∧ βq − 1
r2q
1

∫
Tube(B,r1)

S ∧ βq = V(S, r1, r2)

+
∫

Tube(B,r1,r2)
S ∧ αq +

∫ r2

r1

( 1
t2q − 1

r2q
2

)
2tdt

∫
Tube(B,t)

ddcS ∧ βq−1

+
( 1
r2q
1

− 1
r2q
2

) ∫ r1

r0
2tdt

∫
Tube(B,t)

ddcS ∧ βq−1.

V.-A. Nguyên Lelong numbers and Intersection theory 05 October 2023 38 / 48



Theorem 4 [Ng. 2021]

Let r ∈ (r0, r] and B ⋐ V a relatively compact open set with piecewice
C2-smooth boundary. Let S be a real current of dimension 2q and of order
0 on a neighborhood of Tube(B, r) such that S is suitably approximable
by C2-smooth forms. Then, for all r1, r2 ∈ (r0, r ] with r1 < r2 except for a
countable set of values, we have that

1
r2q
2

∫
Tube(B,r2)

S ∧ βq − 1
r2q
1

∫
Tube(B,r1)

S ∧ βq = V(S, r1, r2)

+
∫

Tube(B,r1,r2)
S ∧ αq +

∫ r2

r1

( 1
t2q − 1

r2q
2

)
2tdt

∫
Tube(B,t)

ddcS ∧ βq−1

+
( 1
r2q
1

− 1
r2q
2

) ∫ r1

r0
2tdt

∫
Tube(B,t)

ddcS ∧ βq−1.

V.-A. Nguyên Lelong numbers and Intersection theory 05 October 2023 38 / 48



Theorem 4 [Ng. 2021]

Let r ∈ (r0, r] and B ⋐ V a relatively compact open set with piecewice
C2-smooth boundary. Let S be a real current of dimension 2q and of order
0 on a neighborhood of Tube(B, r) such that S is suitably approximable
by C2-smooth forms. Then, for all r1, r2 ∈ (r0, r ] with r1 < r2 except for a
countable set of values, we have that

1
r2q
2

∫
Tube(B,r2)

S ∧ βq − 1
r2q
1

∫
Tube(B,r1)

S ∧ βq = V(S, r1, r2)

+
∫

Tube(B,r1,r2)
S ∧ αq +

∫ r2

r1

( 1
t2q − 1

r2q
2

)
2tdt

∫
Tube(B,t)

ddcS ∧ βq−1

+
( 1
r2q
1

− 1
r2q
2

) ∫ r1

r0
2tdt

∫
Tube(B,t)

ddcS ∧ βq−1.

V.-A. Nguyên Lelong numbers and Intersection theory 05 October 2023 38 / 48



Here the vertical boundary term V(S, r1, r2) is given by the following
formula where S♯ denotes the component of bidimension (q, q) of the
current S :

V(S, r1, r2) := −
∫ r2

r1

( 1
t2q − 1

r2q
2

)
2tdt

∫
∂verTube(B,t)

dcS♯ ∧ βq−1

−
( 1
r2q
1

− 1
r2q
2

) ∫ r1

r0
2tdt

∫
∂verTube(B,t)

dcS♯ ∧ βq−1

+ 1
r2q
2

∫
∂verTube(B,r2)

dcφ ∧ S♯ ∧ βq−1 − 1
r2q
1

∫
∂verTube(B,r1)

dcφ ∧ S♯ ∧ βq−1

−
∫

∂verTube(B,r1,r2)
dc log φ ∧ S♯ ∧ αq−1.
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Remarks
The vertical boundary term V(S, r1, r2) vanishes

The classical Lelong–Jensen formula correponds to the particular
context: V = {a single point}, E = Ck , φ := ∥ · ∥2

in the context of [Alessandrini–Bassanelli 1996] for top degree:
V = B ⊂ Cl , E = V × Ck−l , p < k − l ,
write y = (z , w) ∈ Cl × Ck−l , φ(z) = ∥w∥2 Euclidean metric on
Ck−l , S is full in bidegree {dw , dw̄}. This assumption of fullness is
essential for their method.
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5. Sketchy proof of Tangent Theorem I for the case ω(j) := ωj :

Initial idea:
We apply the Lelong–Jensen formulas for vector bundles to the
currents S := τ∗T ∧ π∗(ωj) for m ≤ j ≤ m
We use the closedness and the positivity (when possible) of the basic
(1, 1)-forms π∗ω, α and β on E

Initital difficulty:
1 Since τ is not holomorphic, ddc(τ∗T ) ̸= τ∗(ddcT ).
2 Both α and β are in general not positive.
3 We need to control the boundary vertical terms appearing in the

Lelong–Jensen formulas for vector bundles
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Next idea:

1 Since τ is strongly admissible, we develop a technique which permits us
to control ⟨ddc(τ∗T ) − τ∗(ddcT ), Φ⟩ efficiently. Here, Φ is a test form
built from α, β, π∗ω.

2 We localize the problem using a finite collection of holomorphic
admissible maps τℓ : Uℓ → Uℓ = τℓ(Uℓ) for 1 ≤ ℓ ≤ ℓ0. Here, (Uℓ) is a
finite open cover of U.

3 α̂′ := α + cπ∗ω and β̂ := β + cφπ∗ω are positive near the zero section
V in E.

4 We impose a uniform boundedness of C3-norms of the approximating
forms T ±

n for T ±. Recall that T = T + − T −.

Next difficulty: We need to have some positivity of τ∗(α̂′), τ∗(β̂)
and τ∗(π∗ω). Observe that these 2-forms are in general not of
bidegree (1, 1).
Final idea:
We develop a technique to control the positivity of the main parts of
τ̃∗

ℓ (α̂′), τ̃∗
ℓ (β̂) and τ̃∗

ℓ (π∗ω). We make an essential use of the strong
admissibility of τ. Here, τ̃ℓ := τ ◦ τ−1

ℓ : Uℓ → τ(Uℓ).
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6. Horizontal dimension and Siu’s upper-semicontinuity

Let T ∈ CLp(X ), (X , ω) Kähler, supp(T ) ∩ V is compact. Let T∞ be a
tangent current to T along V , that is, T∞ = limn→∞ Tλn for some
(λn) ↗ ∞, where Tλ := (Aλ)∗τ∗(T ). Recall that m := min(l , k − p) and
m := max(0, l − p).
Definition. The horizontal dimension ℏ of T along V is the largest
integer j ∈ [m, m] such that T∞ ∧ π∗ωj ̸= 0 if it exists, otherwise ℏ := m.
Theorem [Dinh–Sibony 2018]
Let T be as above. Then:

The horizontal dimension ℏ of T along V is also the largest integer
j ∈ [m, m] such that cDS

j (T ) ̸= 0 if it exists, otherwise ℏ := m.

Let Tn, T ∈ CLp(X ), Tn → T . Let ℏ be the horizontal dimension of
T along V . Then

1 If j > ℏ, then cDS
j (Tn) → 0.

2 If cℏ is a limit class of cDS
ℏ (Tn), then cℏ and cDS

ℏ (T ) − cℏ are
pseudo-effective.
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Let T ∈ SHp;3,3(B), (V , ω) Kähler. Let T∞ be a tangent current to T
along V , that is, T∞ = limn→∞ Tλn for some (λn) ↗ ∞, where
Tλ := (Aλ)∗τ∗(T ). By Theorem 1, T∞ ∧ π∗ωm is V -conic pluriharmonic.

Definition. The horizontal dimension ℏ of T along V is the largest
integer j ∈ [m, m] such that T∞ ∧ π∗ωj ̸= 0 if it exists, otherwise ℏ := m.

Theorem 5 [Ng. 2023]
Let T be as above. Then:

The horizontal dimension ℏ of T along V is also the smallest integer
j ∈ [m, m] such that νq(T , B, ω) = 0 for j < q ≤ m.

Let Tn, T ∈ SHp;3,3(B), Tn → T . Let ℏ be the horizontal dimension
of T along V . Then

1 If j > ℏ, then νj(Tn, B, ω) → 0.
2 lim infn→∞ νℏ(Tn, B, ω) ≥ 0 and

νℏ(T , B, ω) − lim supn→∞ νℏ(Tn, B, ω) ≥ 0.
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7. Dinh-Sibony classes vs generalized Lelong numbers

Theorem 6 [Ng. 2023]
Let (X , ω) compact Kähler and T ∈ CLp(X ).
Recall that m := min(l , k − p) and m := max(0, l − p).
For m ≤ j ≤ m, let ω(j) be a closed smooth (j , j)-form on V0, e.g.
ω(j) = ωj |V0 .
Then:

ν(T , V , ω(j)) = cDS
j (T ) ⌣ {ω(j)}, ∀m ≤ j ≤ m.

Corollary 7 [Ng. 2023]
In the context of Dinh-Sibony, knowing Dinh-Sibony cohomology classes
of T is equivalent to knowing the generalized Lelong numbers of T .

Indeed, we use, for m ≤ j ≤ m, several forms ω
(j)
s such that the classes

{ω
(j)
s }’s span H j,j(V ).
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8. Intersection theory and an effective criterion
Let (X , ω) compact Kähler and Tj ∈ CLpj (X ) for 1 ≤ j ≤ m with
p := p1 + . . . + pm ≤ k = dim(X ).
Consider T := T1 ⊗ . . . ⊗ Tm ∈ CLp(Xm).
Let ∆ := {(x , . . . , x) : x ∈ X} be the diagonal of Xm.
Let π : E → ∆ be the normal bundle to ∆ in Xm

Theorem [Dinh–Sibony 2018]
Suppose that

1 There exists a unique tangent current T∞ to T along ∆;
2 The horizontal dimension of T along ∆ is minimal, i.e. ℏ = k − p.

Then there exists a unique S ∈ CLp(∆) such that T∞ = π∗S.
Remarks.

Identifying ∆ to X , [Dinh–Sibony 2018] define T1 ⋏ . . . ⋏ Tm := S.
Classical wedge-product of (1, 1)-currents: [Bedford-Taylor 1987],
[Fornæss-Sibony 1995], [Demailly 1990s] etc. More recent ones:
[Dinh-Sibony 2009, 2010], algebraic flavor [Andersson-Wulcan 2014].
[Huynh-Kaufmann-Vu 2019, 2023] prove that Dinh–Sibony

wedge-product holds in many interesting situations.

V.-A. Nguyên Lelong numbers and Intersection theory 05 October 2023 46 / 48



8. Intersection theory and an effective criterion
Let (X , ω) compact Kähler and Tj ∈ CLpj (X ) for 1 ≤ j ≤ m with
p := p1 + . . . + pm ≤ k = dim(X ).
Consider T := T1 ⊗ . . . ⊗ Tm ∈ CLp(Xm).
Let ∆ := {(x , . . . , x) : x ∈ X} be the diagonal of Xm.
Let π : E → ∆ be the normal bundle to ∆ in Xm

Theorem [Dinh–Sibony 2018]
Suppose that

1 There exists a unique tangent current T∞ to T along ∆;
2 The horizontal dimension of T along ∆ is minimal, i.e. ℏ = k − p.

Then there exists a unique S ∈ CLp(∆) such that T∞ = π∗S.

Remarks.
Identifying ∆ to X , [Dinh–Sibony 2018] define T1 ⋏ . . . ⋏ Tm := S.
Classical wedge-product of (1, 1)-currents: [Bedford-Taylor 1987],
[Fornæss-Sibony 1995], [Demailly 1990s] etc. More recent ones:
[Dinh-Sibony 2009, 2010], algebraic flavor [Andersson-Wulcan 2014].
[Huynh-Kaufmann-Vu 2019, 2023] prove that Dinh–Sibony

wedge-product holds in many interesting situations.

V.-A. Nguyên Lelong numbers and Intersection theory 05 October 2023 46 / 48



8. Intersection theory and an effective criterion
Let (X , ω) compact Kähler and Tj ∈ CLpj (X ) for 1 ≤ j ≤ m with
p := p1 + . . . + pm ≤ k = dim(X ).
Consider T := T1 ⊗ . . . ⊗ Tm ∈ CLp(Xm).
Let ∆ := {(x , . . . , x) : x ∈ X} be the diagonal of Xm.
Let π : E → ∆ be the normal bundle to ∆ in Xm

Theorem [Dinh–Sibony 2018]
Suppose that

1 There exists a unique tangent current T∞ to T along ∆;
2 The horizontal dimension of T along ∆ is minimal, i.e. ℏ = k − p.

Then there exists a unique S ∈ CLp(∆) such that T∞ = π∗S.
Remarks.

Identifying ∆ to X , [Dinh–Sibony 2018] define T1 ⋏ . . . ⋏ Tm := S.
Classical wedge-product of (1, 1)-currents: [Bedford-Taylor 1987],
[Fornæss-Sibony 1995], [Demailly 1990s] etc. More recent ones:
[Dinh-Sibony 2009, 2010], algebraic flavor [Andersson-Wulcan 2014].
[Huynh-Kaufmann-Vu 2019, 2023] prove that Dinh–Sibony

wedge-product holds in many interesting situations.

V.-A. Nguyên Lelong numbers and Intersection theory 05 October 2023 46 / 48



8. Intersection theory and an effective criterion
Let (X , ω) compact Kähler and Tj ∈ CLpj (X ) for 1 ≤ j ≤ m with
p := p1 + . . . + pm ≤ k = dim(X ).
Consider T := T1 ⊗ . . . ⊗ Tm ∈ CLp(Xm).
Let ∆ := {(x , . . . , x) : x ∈ X} be the diagonal of Xm.
Let π : E → ∆ be the normal bundle to ∆ in Xm

Theorem [Dinh–Sibony 2018]
Suppose that

1 There exists a unique tangent current T∞ to T along ∆;
2 The horizontal dimension of T along ∆ is minimal, i.e. ℏ = k − p.

Then there exists a unique S ∈ CLp(∆) such that T∞ = π∗S.
Remarks.

Identifying ∆ to X , [Dinh–Sibony 2018] define T1 ⋏ . . . ⋏ Tm := S.

Classical wedge-product of (1, 1)-currents: [Bedford-Taylor 1987],
[Fornæss-Sibony 1995], [Demailly 1990s] etc. More recent ones:
[Dinh-Sibony 2009, 2010], algebraic flavor [Andersson-Wulcan 2014].
[Huynh-Kaufmann-Vu 2019, 2023] prove that Dinh–Sibony

wedge-product holds in many interesting situations.

V.-A. Nguyên Lelong numbers and Intersection theory 05 October 2023 46 / 48



8. Intersection theory and an effective criterion
Let (X , ω) compact Kähler and Tj ∈ CLpj (X ) for 1 ≤ j ≤ m with
p := p1 + . . . + pm ≤ k = dim(X ).
Consider T := T1 ⊗ . . . ⊗ Tm ∈ CLp(Xm).
Let ∆ := {(x , . . . , x) : x ∈ X} be the diagonal of Xm.
Let π : E → ∆ be the normal bundle to ∆ in Xm

Theorem [Dinh–Sibony 2018]
Suppose that

1 There exists a unique tangent current T∞ to T along ∆;
2 The horizontal dimension of T along ∆ is minimal, i.e. ℏ = k − p.

Then there exists a unique S ∈ CLp(∆) such that T∞ = π∗S.
Remarks.

Identifying ∆ to X , [Dinh–Sibony 2018] define T1 ⋏ . . . ⋏ Tm := S.
Classical wedge-product of (1, 1)-currents: [Bedford-Taylor 1987],
[Fornæss-Sibony 1995], [Demailly 1990s] etc. More recent ones:
[Dinh-Sibony 2009, 2010], algebraic flavor [Andersson-Wulcan 2014].

[Huynh-Kaufmann-Vu 2019, 2023] prove that Dinh–Sibony
wedge-product holds in many interesting situations.

V.-A. Nguyên Lelong numbers and Intersection theory 05 October 2023 46 / 48



8. Intersection theory and an effective criterion
Let (X , ω) compact Kähler and Tj ∈ CLpj (X ) for 1 ≤ j ≤ m with
p := p1 + . . . + pm ≤ k = dim(X ).
Consider T := T1 ⊗ . . . ⊗ Tm ∈ CLp(Xm).
Let ∆ := {(x , . . . , x) : x ∈ X} be the diagonal of Xm.
Let π : E → ∆ be the normal bundle to ∆ in Xm

Theorem [Dinh–Sibony 2018]
Suppose that

1 There exists a unique tangent current T∞ to T along ∆;
2 The horizontal dimension of T along ∆ is minimal, i.e. ℏ = k − p.

Then there exists a unique S ∈ CLp(∆) such that T∞ = π∗S.
Remarks.

Identifying ∆ to X , [Dinh–Sibony 2018] define T1 ⋏ . . . ⋏ Tm := S.
Classical wedge-product of (1, 1)-currents: [Bedford-Taylor 1987],
[Fornæss-Sibony 1995], [Demailly 1990s] etc. More recent ones:
[Dinh-Sibony 2009, 2010], algebraic flavor [Andersson-Wulcan 2014].
[Huynh-Kaufmann-Vu 2019, 2023] prove that Dinh–Sibony

wedge-product holds in many interesting situations.
V.-A. Nguyên Lelong numbers and Intersection theory 05 October 2023 46 / 48



Let h be a Hermitian metric on E.
Let dist(x, ∆) be the distance from a point x ∈ Xm to ∆.
We may assume that dist(·, ∆) ≤ 1/2. So − log dist(·, ∆) · T is a positive
(p, p)-current on Xm.

Theorem 8 [Ng. 2023]
Suppose that

1 κ•
j (− log dist(·, ∆) · T, ∆, r, h) < ∞ for some r > 0 and for all

k − p ≤ j ≤ k − max1≤i≤m pi ;
2 νj(T, ∆) = 0 for all k − p < j ≤ k − max1≤i≤m pi .

Then T1 ⋏ . . . ⋏ Tm exists in the sense of Dinh-Sibony.
Remarks.

The assumption can be checked using a finite cover of ∆ by local
holomorphic charts.
[Dinh-Ng.-Vu 2018] for m = 2: If the superpotential of T1 is
continuous, then T1 ⋏ T2 exists in the sense of Dinh-Sibony for all
T2 ∈ CL(X )
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Thank you !
***

I wish Tien-Cuong a very successful and
happy life !
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