The generalized Lelong numbers and Intersection theory

Viêt-Anh Nguyên
Laboratoire Paul Painlevé, Université de Lille, France and VIASM, Hanoi, Vietnam

Conference "Geometric and Topological Properties of Random Algebraic Varieties"
Cologne, October 4-6, 2023
Day in honour of Prof. Dinh's birthday

Plan of the talk: (8 sections)

1. Preliminaries, notation and known results and motivations
2. New spaces of currents, strongly admissible maps and the generalized Lelong numbers
3. Statement of the first main results

Plan of the talk: (8 sections)

1. Preliminaries, notation and known results and motivations
2. New spaces of currents, strongly admissible maps and the generalized Lelong numbers
3. Statement of the first main results
4. Lelong-Jensen formula for holomorphic vector bundle
5. Sketchy proof
6. Horizontal dimension and Siu's upper-semicontinuity

Plan of the talk: (8 sections)

1. Preliminaries, notation and known results and motivations
2. New spaces of currents, strongly admissible maps and the generalized Lelong numbers
3. Statement of the first main results
4. Lelong-Jensen formula for holomorphic vector bundle
5. Sketchy proof
6. Horizontal dimension and Siu's upper-semicontinuity
7. Dinh-Sibony classes vs generalized Lelong numbers
8. Intersection theory and an effective criterion

1. Preliminaries, notation and known results and motivations

Basic notion and notation
X complex manifold, $\operatorname{dim} X=k$

1. Preliminaries, notation and known results and motivations

Basic notion and notation
X complex manifold, $\operatorname{dim} X=k$
T a (p, p)-current on X with $0 \leq p \leq k$ and φ a (q, q)-smooth test form with $q:=k-p$. So φ is of $\operatorname{bidim}(p, p)$.

1. Preliminaries, notation and known results and motivations

Basic notion and notation
X complex manifold, $\operatorname{dim} X=k$
T a (p, p)-current on X with $0 \leq p \leq k$ and φ a (q, q)-smooth test form with $q:=k-p$. So φ is of $\operatorname{bidim}(p, p)$.

- φ is called positive at a point x if, for every complex q-linear subspace H of \mathbb{C}^{k} passing through $x, \iota_{H}^{*} \varphi$ is a positive measure (i.e. a volume form) near x on H, where $\iota_{H}: H \rightarrow \mathbb{C}^{k}$ is the canonical injection.

1. Preliminaries, notation and known results and motivations

Basic notion and notation
X complex manifold, $\operatorname{dim} X=k$
T a (p, p)-current on X with $0 \leq p \leq k$ and φ a (q, q)-smooth test form with $q:=k-p$. So φ is of $\operatorname{bidim}(p, p)$.

- φ is called positive at a point x if, for every complex q-linear subspace H of \mathbb{C}^{k} passing through $x, \iota_{H}^{*} \varphi$ is a positive measure (i.e. a volume form) near x on H, where $\iota_{H}: H \rightarrow \mathbb{C}^{k}$ is the canonical injection.
- φ is called positive if it is positive at every point $x \in X$

1. Preliminaries, notation and known results and motivations

Basic notion and notation

X complex manifold, $\operatorname{dim} X=k$
T a (p, p)-current on X with $0 \leq p \leq k$ and φ a (q, q)-smooth test form with $q:=k-p$. So φ is of $\operatorname{bidim}(p, p)$.

- φ is called positive at a point x if, for every complex q-linear subspace H of \mathbb{C}^{k} passing through $x, \iota_{H}^{*} \varphi$ is a positive measure (i.e. a volume form) near x on H, where $\iota_{H}: H \rightarrow \mathbb{C}^{k}$ is the canonical injection.
- φ is called positive if it is positive at every point $x \in X$
- T is called positive and write $T \geq 0$ if $T \wedge \varphi:=\langle T, \varphi\rangle \geq 0$ for any smooth positive test form φ of $\operatorname{bidim}(p, p)$ [Lelong 1957]
Consider the differentiel operators acting on the space of currents on X :

$$
d=\partial+\bar{\partial}, \quad d^{c}=\frac{1}{2 \pi i}(\partial-\bar{\partial}), \quad d d^{c}=\frac{i}{\pi} \partial \bar{\partial}
$$

- T is called closed if $d T=0$. Write $T \in \mathrm{CL}^{p}$ if T is a positive closed (p, p)-current
- T is called closed if $d T=0$. Write $T \in \mathrm{CL}^{p}$ if T is a positive closed (p, p)-current
- T is called pluriharmonic if $d d^{c} T=0$. Write $T \in \mathrm{PH}^{p}$ if T is a positive pluriharmonic (p, p)-current
- T is called closed if $d T=0$. Write $T \in \mathrm{CL}^{p}$ if T is a positive closed (p, p)-current
- T is called pluriharmonic if $d d^{c} T=0$. Write $T \in \mathrm{PH}^{p}$ if T is a positive pluriharmonic (p, p)-current
- T is called plurisubharmonic if $d d^{c} T \geq 0$. Write $T \in \mathrm{SH}^{p}$ if T is a positive plurisubharmonic (p, p)-current
- T is called closed if $d T=0$. Write $T \in \mathrm{CL}^{p}$ if T is a positive closed (p, p)-current
- T is called pluriharmonic if $d d^{c} T=0$. Write $T \in \mathrm{PH}^{p}$ if T is a positive pluriharmonic (p, p)-current
- T is called plurisubharmonic if $d d^{c} T \geq 0$. Write $T \in \mathrm{SH}^{p}$ if T is a positive plurisubharmonic (p, p)-current
\{currents of integrations on complex subvarieties of $\operatorname{codim} p$ \}

$$
\subsetneq \mathrm{CL}^{p} \subsetneq \mathrm{PH}^{p} \subsetneq \mathrm{SH}^{p}
$$

Classical Lelong number and results of Lelong, Thie, Siu, Skoda

Classical Lelong number and results of Lelong, Thie, Siu, Skoda
[Lelong 1957]: $T \in \mathrm{CL}^{p}, x \in X$. Let z be a local holomorphic coordinate system near x such that $x=0$. Lelong number of T at x :
$\nu(T, x):=\lim _{r \rightarrow 0} \frac{\sigma_{T}(\mathbb{B}(0, r))}{(2 \pi)^{k-p} r^{2 k-2 p}}, \quad$ where $\quad \sigma_{T}:=\frac{1}{(k-p)!} T \wedge\left(\frac{i}{2} \partial \bar{\partial}\|z\|^{2}\right)^{k-p}$
is the trace measure of T. Then $\nu(T, x)$ exists and $\nu(T, x) \in \mathbb{R}^{+}$

Classical Lelong number and results of Lelong, Thie, Siu, Skoda
[Lelong 1957]: $T \in \mathrm{CL}^{p}, x \in X$. Let z be a local holomorphic coordinate system near x such that $x=0$. Lelong number of T at x :
$\nu(T, x):=\lim _{r \rightarrow 0} \frac{\sigma_{T}(\mathbb{B}(0, r))}{(2 \pi)^{k-p} r^{2 k-2 p}}, \quad$ where $\quad \sigma_{T}:=\frac{1}{(k-p)!} T \wedge\left(\frac{i}{2} \partial \bar{\partial}\|z\|^{2}\right)^{k-p}$
is the trace measure of T. Then $\nu(T, x)$ exists and $\nu(T, x) \in \mathbb{R}^{+}$

Figure: An illustrations of a ball $\mathbb{B}(x, r)$ with center $x=0$ and radius r in \mathbb{C}^{k}.
[Thie 1967]: If T is a current of integration on a complex analytic set Z of pure $\operatorname{codim} p$ (so $T \in \mathrm{CL}^{p}$), then $\nu(T, x)$ is equal to the multiplicity of Z at x
[Thie 1967]: If T is a current of integration on a complex analytic set Z of pure $\operatorname{codim} p$ (so $T \in \mathrm{CL}^{p}$), then $\nu(T, x)$ is equal to the multiplicity of Z at x
[Siu 1974]: For $T \in \mathrm{CL}^{p}, \nu(T, x)$ is independent of the choice of a local holomorphic coordinate system z
[Thie 1967]: If T is a current of integration on a complex analytic set Z of pure $\operatorname{codim} p$ (so $T \in \mathrm{CL}^{p}$), then $\nu(T, x)$ is equal to the multiplicity of Z at x
[Siu 1974]: For $T \in \mathrm{CL}^{p}, \nu(T, x)$ is independent of the choice of a local holomorphic coordinate system z
[Skoda 1982]: The result of [Lelong 1957] holds for $T \in \mathrm{SH}^{p}$

Logarithmic definition of Lelong number

If $T \in \mathrm{CL}^{p}, x \in X$ then
$\nu(T, x):=\lim _{r \rightarrow 0} I_{r}, \quad$ where $\quad I_{r}:=\int_{\mathbb{B}(0, r)} T(z) \wedge\left(d d^{c} \log \left(\|z\|^{2}\right)\right)^{k-p}$.

Logarithmic definition of Lelong number

If $T \in \mathrm{CL}^{p}, x \in X$ then
$\nu(T, x):=\lim _{r \rightarrow 0} I_{r}, \quad$ where $\quad I_{r}:=\int_{\mathbb{B}(0, r)} T(z) \wedge\left(d d^{c} \log \left(\|z\|^{2}\right)\right)^{k-p}$.
There are two interpretations of the RHS:

Logarithmic definition of Lelong number
If $T \in \mathrm{CL}^{p}, x \in X$ then

$$
\nu(T, x):=\lim _{r \rightarrow 0} I_{r}, \quad \text { where } \quad I_{r}:=\int_{\mathbb{B}(0, r)} T(z) \wedge\left(d d^{c} \log \left(\|z\|^{2}\right)\right)^{k-p} .
$$

There are two interpretations of the RHS:
First interpretation: to regularize the current T (e.g. a standard convolution), $\exists\left(T_{n}\right)_{n=1}^{\infty} \subset \mathrm{SH}^{p} \cap \mathcal{C}^{\infty}(\mathbb{B}(0, r+\epsilon))$ for some $\epsilon>0$ such that $T_{n} \rightarrow T$.

$$
I_{r}:=\lim _{n \rightarrow \infty} \int_{\mathbb{B}(0, r)} T_{n}(z) \wedge\left(d d^{c} \log \left(\|z\|^{2}\right)\right)^{k-p} .
$$

The integral on RHS is meaningful by Fornæss-Sibony, Demailly etc.

Second interpretation: to regularize the integral kernel $\left(d d^{c} \log \left(\|z\|^{2}\right)\right)^{k-p}$ in a canonical way:

$$
I_{r}:=\lim _{\epsilon \rightarrow 0} \int_{\mathbb{B}(0, r)} T(z) \wedge\left(d d^{c} \log \left(\|z\|^{2}+\epsilon^{2}\right)\right)^{k-p}
$$

Second interpretation: to regularize the integral kernel $\left(d d^{c} \log \left(\|z\|^{2}\right)\right)^{k-p}$ in a canonical way:

$$
I_{r}:=\lim _{\epsilon \rightarrow 0} \int_{\mathbb{B}(0, r)} T(z) \wedge\left(d d^{c} \log \left(\|z\|^{2}+\epsilon^{2}\right)\right)^{k-p}
$$

Definition of logarithmic pointed Lelong number
If $T \in \mathrm{CL}^{p}, x \in X$ then

$$
\lim _{r \rightarrow 0} I_{r}^{\bullet}=0, \quad \text { where } \quad I_{r}^{\bullet}:=\int_{\mathbb{B}(0, r) \backslash\{0\}} T(z) \wedge\left(d d^{c} \log \left(\|z\|^{2}\right)\right)^{k-p} .
$$

[Harvey 1975] 's geometric viewpoint: tangent currents
[Harvey 1975] 's geometric viewpoint: tangent currents
Let X be an open neighborhood of $x=0$ in \mathbb{C}^{k} and $T \in \mathrm{CL}^{p}(X)$
[Harvey 1975] 's geometric viewpoint: tangent currents
Let X be an open neighborhood of $x=0$ in \mathbb{C}^{k} and $T \in \mathrm{CL}^{p}(X)$ Let $A_{\lambda}: \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$ be defined by $A_{\lambda}(x):=\lambda x$ with $\lambda \in \mathbb{C}^{*}$.
[Harvey 1975] 's geometric viewpoint: tangent currents
Let X be an open neighborhood of $x=0$ in \mathbb{C}^{k} and $T \in \mathrm{CL}^{p}(X)$
Let $A_{\lambda}: \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$ be defined by $A_{\lambda}(x):=\lambda x$ with $\lambda \in \mathbb{C}^{*}$.
When λ goes to infinity, the domain of definition of the current $T_{\lambda}:=\left(A_{\lambda}\right)_{*}(T)$ converges to \mathbb{C}^{k}.

[Harvey 1975] 's geometric viewpoint: tangent currents

Let X be an open neighborhood of $x=0$ in \mathbb{C}^{k} and $T \in \mathrm{CL}^{p}(X)$
Let $A_{\lambda}: \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$ be defined by $A_{\lambda}(x):=\lambda x$ with $\lambda \in \mathbb{C}^{*}$.
When λ goes to infinity, the domain of definition of the current $T_{\lambda}:=\left(A_{\lambda}\right)_{*}(T)$ converges to \mathbb{C}^{k}.
This family of currents is relatively compact, and any limit current T_{∞} for $\lambda \rightarrow \infty$, is called a tangent current to T.

[Harvey 1975] 's geometric viewpoint: tangent currents

Let X be an open neighborhood of $x=0$ in \mathbb{C}^{k} and $T \in \mathrm{CL}^{p}(X)$ Let $A_{\lambda}: \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$ be defined by $A_{\lambda}(x):=\lambda x$ with $\lambda \in \mathbb{C}^{*}$.
When λ goes to infinity, the domain of definition of the current $T_{\lambda}:=\left(A_{\lambda}\right)_{*}(T)$ converges to \mathbb{C}^{k}.
This family of currents is relatively compact, and any limit current T_{∞} for $\lambda \rightarrow \infty$, is called a tangent current to T.
A tangent current T_{∞} is defined on the whole \mathbb{C}^{k}, and it is conic in the sense that $\left(A_{\lambda}\right)_{*} T_{\infty}=T_{\infty}$.

[Harvey 1975] 's geometric viewpoint: tangent currents

Let X be an open neighborhood of $x=0$ in \mathbb{C}^{k} and $T \in \mathrm{CL}^{p}(X)$
Let $A_{\lambda}: \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$ be defined by $A_{\lambda}(x):=\lambda x$ with $\lambda \in \mathbb{C}^{*}$.
When λ goes to infinity, the domain of definition of the current $T_{\lambda}:=\left(A_{\lambda}\right)_{*}(T)$ converges to \mathbb{C}^{k}.
This family of currents is relatively compact, and any limit current T_{∞} for $\lambda \rightarrow \infty$, is called a tangent current to T.
A tangent current T_{∞} is defined on the whole \mathbb{C}^{k}, and it is conic in the sense that $\left(A_{\lambda}\right)_{*} T_{\infty}=T_{\infty}$.
Given a tangent current T_{∞} to T, we can extend it to \mathbb{P}^{k} with zero mass on the hyperplane at infinity $\simeq \mathbb{P}^{k-1}$. Thus, there is a $\mathbb{T}_{\infty} \in \mathrm{CL}^{p}\left(\mathbb{P}^{k-1}\right)$ such that $T_{\infty}=\pi_{\infty}^{*}\left(\mathbb{T}_{\infty}\right)$. Here $\pi_{\infty}: \mathbb{P}^{k} \backslash\{0\} \rightarrow \mathbb{P}^{k-1}$ is the canonical central projection.

[Harvey 1975] 's geometric viewpoint: tangent currents

Let X be an open neighborhood of $x=0$ in \mathbb{C}^{k} and $T \in \mathrm{CL}^{p}(X)$
Let $A_{\lambda}: \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$ be defined by $A_{\lambda}(x):=\lambda x$ with $\lambda \in \mathbb{C}^{*}$.
When λ goes to infinity, the domain of definition of the current $T_{\lambda}:=\left(A_{\lambda}\right)_{*}(T)$ converges to \mathbb{C}^{k}.
This family of currents is relatively compact, and any limit current T_{∞} for $\lambda \rightarrow \infty$, is called a tangent current to T.
A tangent current T_{∞} is defined on the whole \mathbb{C}^{k}, and it is conic in the sense that $\left(A_{\lambda}\right)_{*} T_{\infty}=T_{\infty}$.
Given a tangent current T_{∞} to T, we can extend it to \mathbb{P}^{k} with zero mass on the hyperplane at infinity $\simeq \mathbb{P}^{k-1}$. Thus, there is a $\mathbb{T}_{\infty} \in \mathrm{CL}^{p}\left(\mathbb{P}^{k-1}\right)$ such that $T_{\infty}=\pi_{\infty}^{*}\left(\mathbb{T}_{\infty}\right)$. Here $\pi_{\infty}: \mathbb{P}^{k} \backslash\{0\} \rightarrow \mathbb{P}^{k-1}$ is the canonical central projection.
The class of \mathbb{T}_{∞} (resp. of T_{∞}) in the de Rham cohomology of \mathbb{P}^{k-1} (resp., of \mathbb{P}^{k}) is equal to $\nu(T, x)$ times the class of a linear subspace.
[Harvey 1975] 's geometric viewpoint: tangent currents
Let X be an open neighborhood of $x=0$ in \mathbb{C}^{k} and $T \in \mathrm{CL}^{p}(X)$
Let $A_{\lambda}: \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$ be defined by $A_{\lambda}(x):=\lambda x$ with $\lambda \in \mathbb{C}^{*}$.
When λ goes to infinity, the domain of definition of the current $T_{\lambda}:=\left(A_{\lambda}\right)_{*}(T)$ converges to \mathbb{C}^{k}.
This family of currents is relatively compact, and any limit current T_{∞} for $\lambda \rightarrow \infty$, is called a tangent current to T.
A tangent current T_{∞} is defined on the whole \mathbb{C}^{k}, and it is conic in the sense that $\left(A_{\lambda}\right)_{*} T_{\infty}=T_{\infty}$.
Given a tangent current T_{∞} to T, we can extend it to \mathbb{P}^{k} with zero mass on the hyperplane at infinity $\simeq \mathbb{P}^{k-1}$. Thus, there is a $\mathbb{T}_{\infty} \in \mathrm{CL}^{p}\left(\mathbb{P}^{k-1}\right)$ such that $T_{\infty}=\pi_{\infty}^{*}\left(\mathbb{T}_{\infty}\right)$. Here $\pi_{\infty}: \mathbb{P}^{k} \backslash\{0\} \rightarrow \mathbb{P}^{k-1}$ is the canonical central projection.
The class of \mathbb{T}_{∞} (resp. of T_{∞}) in the de Rham cohomology of \mathbb{P}^{k-1} (resp., of \mathbb{P}^{k}) is equal to $\nu(T, x)$ times the class of a linear subspace. [Kiselman 1991]: In general, the tangent current T_{∞} is not unique
[Dinh-Sibony 2012, 2018] theory of tangent currents
[Dinh-Sibony 2012, 2018] theory of tangent currents
X complex manifold, $\operatorname{dim} X=k, V \subset X$ submanifold, $1 \leq \operatorname{dim} V=I<k$
[Dinh-Sibony 2012, 2018] theory of tangent currents
X complex manifold, $\operatorname{dim} X=k, V \subset X$ submanifold, $1 \leq \operatorname{dim} V=I<k$
Let \mathbb{E} be the normal vector bundle to V in X and $\pi: \mathbb{E} \rightarrow V$ the canonical projection. Let $\bar{\pi}: \overline{\mathbb{E}}:=\mathbb{P}(\mathbb{E} \oplus \mathbb{C}) \rightarrow V$ be its canonical compactification. Denote by $A_{\lambda}: \mathbb{E} \rightarrow \mathbb{E}$ the map induced by the multiplication by λ on fibers of \mathbb{E} with $\lambda \in \mathbb{C}^{*}$. We identify V with the zero section of \mathbb{E}.
[Dinh-Sibony 2012, 2018] theory of tangent currents
X complex manifold, $\operatorname{dim} X=k, V \subset X$ submanifold, $1 \leq \operatorname{dim} V=I<k$
Let \mathbb{E} be the normal vector bundle to V in X and $\pi: \mathbb{E} \rightarrow V$ the canonical projection. Let $\bar{\pi}: \overline{\mathbb{E}}:=\mathbb{P}(\mathbb{E} \oplus \mathbb{C}) \rightarrow V$ be its canonical compactification. Denote by $A_{\lambda}: \mathbb{E} \rightarrow \mathbb{E}$ the map induced by the multiplication by λ on fibers of \mathbb{E} with $\lambda \in \mathbb{C}^{*}$. We identify V with the zero section of \mathbb{E}.

Basic difficulty: in general, no neighbourhood of V in X is biholomorphic to a neighbourhood of V in \mathbb{E}.
[Dinh-Sibony 2012, 2018] theory of tangent currents
X complex manifold, $\operatorname{dim} X=k, V \subset X$ submanifold, $1 \leq \operatorname{dim} V=I<k$ Let \mathbb{E} be the normal vector bundle to V in X and $\pi: \mathbb{E} \rightarrow V$ the canonical projection. Let $\bar{\pi}: \overline{\mathbb{E}}:=\mathbb{P}(\mathbb{E} \oplus \mathbb{C}) \rightarrow V$ be its canonical compactification. Denote by $A_{\lambda}: \mathbb{E} \rightarrow \mathbb{E}$ the map induced by the multiplication by λ on fibers of \mathbb{E} with $\lambda \in \mathbb{C}^{*}$. We identify V with the zero section of \mathbb{E}.

Basic difficulty: in general, no neighbourhood of V in X is biholomorphic to a neighbourhood of V in \mathbb{E}.
Dinh-Sibony's idea: a softer notion: the admissible maps
Let τ be a diffeomorphism between a neighbourhood of V in X and a neighbourhood of V in \mathbb{E} whose restriction to V is identity. Assume that τ is admissible in the sense that the endomorphism of \mathbb{E} induced by the differential of τ is the identity map from \mathbb{E} to \mathbb{E}.

Figure: In the approach of Dinh and Sibony, admissible maps replace holomorphic changes of coordinates.

$$
\overline{\mathrm{m}}:=\min (I, k-p) \quad \text { and } \quad \underline{\mathrm{m}}:=\max (0, I-p) .
$$

Theorem [Dinh-Sibony 2018]

$$
\overline{\mathrm{m}}:=\min (I, k-p) \quad \text { and } \quad \underline{\mathrm{m}}:=\max (0, I-p) .
$$

Theorem [Dinh-Sibony 2018]
(Dinh-Sibony context) Let $T \in \mathrm{CL}^{p}(X), X$ Kähler, $\operatorname{supp}(T) \cap V$ is compact. Then:

$$
\overline{\mathrm{m}}:=\min (I, k-p) \quad \text { and } \quad \underline{\mathrm{m}}:=\max (0, I-p) .
$$

Theorem [Dinh-Sibony 2018]
(Dinh-Sibony context) Let $T \in \mathrm{CL}^{p}(X), X$ Kähler, $\operatorname{supp}(T) \cap V$ is compact. Then:
(1) $T_{\lambda}:=\left(A_{\lambda}\right)_{*} \tau_{*}(T)$ is relatively compact and any limit current, for $\lambda \rightarrow \infty$, is a positive closed (p, p)-current on \mathbb{E} whose trivial extension is a positive closed (p, p)-current on $\overline{\mathbb{E}}$.

Such a limit current S is called a tangent current to T along V.

$$
\overline{\mathrm{m}}:=\min (I, k-p) \quad \text { and } \quad \underline{\mathrm{m}}:=\max (0, I-p) .
$$

Theorem [Dinh-Sibony 2018]
(Dinh-Sibony context) Let $T \in \mathrm{CL}^{p}(X), X$ Kähler, $\operatorname{supp}(T) \cap V$ is compact. Then:
(1) $T_{\lambda}:=\left(A_{\lambda}\right)_{*} \tau_{*}(T)$ is relatively compact and any limit current, for $\lambda \rightarrow \infty$, is a positive closed (p, p)-current on \mathbb{E} whose trivial extension is a positive closed (p, p)-current on $\overline{\mathbb{E}}$.

Such a limit current S is called a tangent current to T along V. (2) If S is a tangent current to T along V, then it is V-conic, i.e., invariant under $\left(A_{\lambda}\right)_{*}$, and its de Rham cohomology class $\{S\}$ in $H^{2 p}(\overline{\mathbb{E}}, \mathbb{C})$ does not depend on the choice of τ and S. We denote $\{S\}$ by $\mathbf{c}^{\text {DS }}(T)$, Dinh-Sibony (total) cohomology class of T along V.

$$
\overline{\mathrm{m}}:=\min (I, k-p) \quad \text { and } \quad \underline{\mathrm{m}}:=\max (0, I-p) .
$$

Theorem [Dinh-Sibony 2018]
(Dinh-Sibony context) Let $T \in \mathrm{CL}^{p}(X), X$ Kähler, $\operatorname{supp}(T) \cap V$ is compact. Then:
(1) $T_{\lambda}:=\left(A_{\lambda}\right)_{*} \tau_{*}(T)$ is relatively compact and any limit current, for $\lambda \rightarrow \infty$, is a positive closed (p, p)-current on \mathbb{E} whose trivial extension is a positive closed (p, p)-current on $\overline{\mathbb{E}}$.

Such a limit current S is called a tangent current to T along V. (2) If S is a tangent current to T along V, then it is V-conic, i.e., invariant under $\left(A_{\lambda}\right)_{*}$, and its de Rham cohomology class $\{S\}$ in $H^{2 p}(\overline{\mathbb{E}}, \mathbb{C})$ does not depend on the choice of τ and S. We denote $\{S\}$ by $\mathbf{c}^{\text {DS }}(T)$, Dinh-Sibony (total) cohomology class of T along V.
(3) Let $-h_{\overline{\mathbb{E}}}$ denote the tautological class of the bundle $\bar{\pi}: \overline{\mathbb{E}} \rightarrow V$. Then
$\left\{\mathbf{c}^{\mathrm{DS}}(T)\right\}=\sum_{j=\underline{\mathrm{m}}}^{\overline{\mathrm{m}}} \bar{\pi}^{*}\left(\mathbf{c}_{j}^{\mathrm{DS}}(T)\right) \smile h_{\overline{\mathbb{E}}}^{j-l+p}, \quad$ where $\quad \mathbf{c}_{j}^{\mathrm{DS}}(T) \in H_{c}^{2 /-2 j}(V, \mathbb{C})$.

Remark. When V has positive dimension $I \geq 1$, according to Dinh and Sibony, the notion of Lelong number of the current T at a single point should be replaced by the family of cohomology classes $\left\{\mathbf{c}_{j}^{\mathrm{DS}}(T): \underline{\mathrm{m}} \leq j \leq \overline{\mathrm{m}}\right\}$

Remark. When V has positive dimension $I \geq 1$, according to Dinh and Sibony, the notion of Lelong number of the current T at a single point should be replaced by the family of cohomology classes $\left\{\mathbf{c}_{j}^{\mathrm{DS}}(T): \underline{\mathrm{m}} \leq j \leq \overline{\mathrm{m}}\right\}$
[Vu 2021]: Condition (X, ω) Kähler (that is, $d \omega=0)$ can be relaxed to $d d^{c} \omega^{j}=0$ on V for all $1 \leq j \leq k-p-1$

Remark. When V has positive dimension $I \geq 1$, according to Dinh and Sibony, the notion of Lelong number of the current T at a single point should be replaced by the family of cohomology classes $\left\{\mathbf{c}_{j}^{\mathrm{DS}}(T): \underline{\mathrm{m}} \leq j \leq \overline{\mathrm{m}}\right\}$
[Vu 2021]: Condition (X, ω) Kähler (that is, $d \omega=0)$ can be relaxed to $d d^{c} \omega^{j}=0$ on V for all $1 \leq j \leq k-p-1$

Applications:

Remark. When V has positive dimension $I \geq 1$, according to Dinh and Sibony, the notion of Lelong number of the current T at a single point should be replaced by the family of cohomology classes $\left\{\mathbf{c}_{j}^{\mathrm{DS}}(T): \underline{\mathrm{m}} \leq j \leq \overline{\mathrm{m}}\right\}$
[Vu 2021]: Condition (X, ω) Kähler (that is, $d \omega=0)$ can be relaxed to $d d^{c} \omega^{j}=0$ on V for all $1 \leq j \leq k-p-1$

Applications:

Complex Dynamics: Dinh-Sibony, Dinh-Ng.-Truong, Dinh-Ng.-Vu, Vu etc.

Remark. When V has positive dimension $I \geq 1$, according to Dinh and Sibony, the notion of Lelong number of the current T at a single point should be replaced by the family of cohomology classes $\left\{\mathbf{c}_{j}^{\mathrm{DS}}(T): \underline{\mathrm{m}} \leq j \leq \overline{\mathrm{m}}\right\}$
[Vu 2021]: Condition (X, ω) Kähler (that is, $d \omega=0)$ can be relaxed to $d d^{c} \omega^{j}=0$ on V for all $1 \leq j \leq k-p-1$

Applications:

Complex Dynamics: Dinh-Sibony, Dinh-Ng.-Truong, Dinh-Ng.-Vu, Vu etc.
Singular holomorphic foliations: Dinh-Sibony, Dinh-Ng.-Sibony, Kaufmann etc.

Remark. When V has positive dimension $I \geq 1$, according to Dinh and Sibony, the notion of Lelong number of the current T at a single point should be replaced by the family of cohomology classes $\left\{\mathbf{c}_{j}^{\mathrm{DS}}(T): \underline{\mathrm{m}} \leq j \leq \overline{\mathrm{m}}\right\}$
[Vu 2021]: Condition (X, ω) Kähler (that is, $d \omega=0)$ can be relaxed to $d d^{c} \omega^{j}=0$ on V for all $1 \leq j \leq k-p-1$

Applications:

Complex Dynamics: Dinh-Sibony, Dinh-Ng.-Truong, Dinh-Ng.-Vu, Vu etc.
Singular holomorphic foliations: Dinh-Sibony, Dinh-Ng.-Sibony, Kaufmann etc.

Complex geometry, pluripotential theory: Dinh-Ng., Huynh-Vu, Kaufmann-Vu, Huynh-Kaufmann-Vu, Vu etc.
[Alessandrini-Bassanelli 1996] theory of the Lelong numbers
[Alessandrini-Bassanelli 1996] theory of the Lelong numbers Theorem Consider $X=\mathbb{C}^{k}$ and V is a linear complex subspace of dimension I. We use the coordinates $(z, w) \in \mathbb{C}^{k-l} \times \mathbb{C}^{\prime}$ so that $V=\{z=0\}$. Let $0 \leq p<k-l$ and let $T \in \mathrm{SH}^{p}$ on an open neighborhood Ω of 0 in \mathbb{C}^{k}.
[Alessandrini-Bassanelli 1996] theory of the Lelong numbers Theorem Consider $X=\mathbb{C}^{k}$ and V is a linear complex subspace of dimension I. We use the coordinates $(z, w) \in \mathbb{C}^{k-1} \times \mathbb{C}^{\prime}$ so that $V=\{z=0\}$. Let $0 \leq p<k-I$ and let $T \in \mathrm{SH}^{p}$ on an open neighborhood Ω of 0 in \mathbb{C}^{k}.
(1) Then, for every open ball B in $V, B \Subset \Omega$, the limit exists

$$
\nu_{\mathrm{AB}}(T, B):=\lim _{r \rightarrow 0+} \int_{\operatorname{Tube}(B, r)} T(z, w) \wedge\left(\frac{d d^{c}\|z\|^{2}}{r^{2}}\right)^{k-l-p} \wedge\left(d d^{c}\|w\|^{2}\right)^{\prime}
$$

where the tube Tube (B, r) of radius r over B is given by

$$
\operatorname{Tube}(B, r):=\left\{(z, w) \in \mathbb{C}^{k-1} \times \mathbb{C}^{\prime}:\|z\|<r, w \in B\right\}
$$

$\nu_{\mathrm{AB}}(T, B)$ is called Alessandrini-Bassanelli's Lelong number of T
[Alessandrini-Bassanelli 1996] theory of the Lelong numbers Theorem Consider $X=\mathbb{C}^{k}$ and V is a linear complex subspace of dimension I. We use the coordinates $(z, w) \in \mathbb{C}^{k-l} \times \mathbb{C}^{\prime}$ so that $V=\{z=0\}$. Let $0 \leq p<k-I$ and let $T \in \mathrm{SH}^{p}$ on an open neighborhood Ω of 0 in \mathbb{C}^{k}.
(1) Then, for every open ball B in $V, B \Subset \Omega$, the limit exists

$$
\nu_{\mathrm{AB}}(T, B):=\lim _{r \rightarrow 0+} \int_{\operatorname{Tube}(B, r)} T(z, w) \wedge\left(\frac{d d^{c}\|z\|^{2}}{r^{2}}\right)^{k-l-p} \wedge\left(d d^{c}\|w\|^{2}\right)^{\prime}
$$

where the tube Tube (B, r) of radius r over B is given by

$$
\operatorname{Tube}(B, r):=\left\{(z, w) \in \mathbb{C}^{k-1} \times \mathbb{C}^{\prime}:\|z\|<r, w \in B\right\}
$$

$\nu_{\mathrm{AB}}(T, B)$ is called Alessandrini-Bassanelli's Lelong number of T
(2) There exist an open neighborhood W of 0 in $L, W \subset \Omega$, and a nonnegative plurisubharmonic function f on W such that

$$
\nu_{\mathrm{AB}}(T, B)=\int_{B} f(w)\left(d d^{c}\|w\|^{2}\right)^{\prime}
$$

for every open ball B in V with $B \Subset W$.

Figure: An illustrations of a tube Tube (B, r) in \mathbb{C}^{3} with coordinates $(z, w) \in \mathbb{C} \times \mathbb{C}^{2}$, where the base B is a ball with center $0 \in \mathbb{C}^{2}$ and radius ρ in the plane $V=\left\{(0, w): w=\left(w_{1}, w_{2}\right) \in \mathbb{C}^{2}\right\} \simeq \mathbb{C}^{2}$.

Theorem [Alessandrini-Bassanelli 1996] Under the assumption of the previous theorem, $\nu_{\mathrm{AB}}(T, B)$ has a geometric meaning in the sense of Siu: There is a suitable blow-up model to a suitable Grassmannian manifold $\Pi_{p}: \mathbb{X}_{p} \rightarrow \mathbb{C}^{k-1} \times \mathbb{C}^{\prime}$ with center of blow-up $V:=\{0\} \times \mathbb{C}^{\prime}$ such that $\nu_{\mathrm{AB}}(T, B)$ is the mass of the cut-off current on the exceptional fiber of the weak limit T_{∞} of the sequence $\Pi_{p}^{*} T_{n}$, where $\left(T_{n}\right)$ is a sequence of approximating smooth forms of T. In other words,

$$
\nu_{\mathrm{AB}}(T, B)=\left\|\mathbf{1}_{\Pi_{p}^{-1}(V)} T_{\infty}\right\|, \quad \text { where } \quad T_{\infty}=\lim _{n \rightarrow \infty} \Pi_{p}^{*} T_{n}
$$

Theorem [Alessandrini-Bassanelli 1996] Under the assumption of the previous theorem, $\nu_{\mathrm{AB}}(T, B)$ has a geometric meaning in the sense of Siu: There is a suitable blow-up model to a suitable Grassmannian manifold $\Pi_{p}: \mathbb{X}_{p} \rightarrow \mathbb{C}^{k-1} \times \mathbb{C}^{\prime}$ with center of blow-up $V:=\{0\} \times \mathbb{C}^{\prime}$ such that $\nu_{\mathrm{AB}}(T, B)$ is the mass of the cut-off current on the exceptional fiber of the weak limit T_{∞} of the sequence $\Pi_{p}^{*} T_{n}$, where $\left(T_{n}\right)$ is a sequence of approximating smooth forms of T. In other words,

$$
\nu_{\mathrm{AB}}(T, B)=\left\|\mathbf{1}_{\Pi_{p}^{-1}(V)} T_{\infty}\right\|, \quad \text { where } \quad T_{\infty}=\lim _{n \rightarrow \infty} \Pi_{p}^{*} T_{n}
$$

When V is a single point x, we have

Theorem [Alessandrini-Bassanelli 1996] Under the assumption of the previous theorem, $\nu_{\mathrm{AB}}(T, B)$ has a geometric meaning in the sense of Siu: There is a suitable blow-up model to a suitable Grassmannian manifold $\Pi_{p}: \mathbb{X}_{p} \rightarrow \mathbb{C}^{k-1} \times \mathbb{C}^{\prime}$ with center of blow-up $V:=\{0\} \times \mathbb{C}^{\prime}$ such that $\nu_{\mathrm{AB}}(T, B)$ is the mass of the cut-off current on the exceptional fiber of the weak limit T_{∞} of the sequence $\Pi_{p}^{*} T_{n}$, where $\left(T_{n}\right)$ is a sequence of approximating smooth forms of T. In other words,

$$
\nu_{\mathrm{AB}}(T, B)=\left\|\mathbf{1}_{\Pi_{p}^{-1}(V)} T_{\infty}\right\|, \quad \text { where } \quad T_{\infty}=\lim _{n \rightarrow \infty} \Pi_{p}^{*} T_{n}
$$

When V is a single point x, we have
Theorem ([Siu 1974] for positive closed currents, [Alessandrini-Bassanelli 1996] for positive plurisubharmonic currents) Let $F: \Omega \rightarrow \Omega^{\prime}$ be a biholomorphic map between open subsets of \mathbb{C}^{k}. If T is a positive plurisubharmonic (p, p)-current on Ω and $x \in \Omega$, then

$$
\nu(T, x)=\nu\left(F_{*} T, F(x)\right) .
$$

V.-A. Nguyên

Lelong numbers and Intersection theory

Motivations and purpose of the work

Motivations and purpose of the work
There are two concrere tasks:

Motivations and purpose of the work

There are two concrere tasks:
(1) To generalize the notion and the result of [Dinh-Sibony 2012, 2018] on tangent and density currents

Motivations and purpose of the work

There are two concrere tasks:
(1) To generalize the notion and the result of [Dinh-Sibony 2012, 2018] on tangent and density currents

- for a very general and natural class of currents: the positive plurisubharmonic currents;

Motivations and purpose of the work

There are two concrere tasks:
(1) To generalize the notion and the result of [Dinh-Sibony 2012, 2018] on tangent and density currents

- for a very general and natural class of currents: the positive plurisubharmonic currents;
- for a general and natural context of a piecewise smooth open set $B \subset V$: studying the tangent currents to T along B.

Motivations and purpose of the work
There are two concrere tasks:
(1) To generalize the notion and the result of [Dinh-Sibony 2012, 2018] on tangent and density currents

- for a very general and natural class of currents: the positive plurisubharmonic currents;
- for a general and natural context of a piecewise smooth open set $B \subset V$: studying the tangent currents to T along B.
(2) To generalize the notion and the result of [Alessandrini-Bassanelli 1996] on Lelong numbers, and the results of [Siu 1974] and of [Alessandrini-Bassanelli 1996] on geometric characterizations of Lelong numbers to the above contexts.

2. New spaces of currents, strongly admissible maps and the generalized Lelong numbers

New spaces of currents
Let $m, m^{\prime} \in \mathbb{N}$ with $m \geq m^{\prime}$. Let $W \subset U \subset X$ be two open subsets. Let T be a positive (p, p)-current defined on an open set containing U. Let $\mathcal{F} \in\{\mathrm{CL}, \mathrm{PH}, \mathrm{SH}\}$.

2. New spaces of currents, strongly admissible maps and the generalized Lelong numbers

New spaces of currents
Let $m, m^{\prime} \in \mathbb{N}$ with $m \geq m^{\prime}$. Let $W \subset U \subset X$ be two open subsets. Let T be a positive (p, p)-current defined on an open set containing U. Let $\mathcal{F} \in\{\mathrm{CL}, \mathrm{PH}, \mathrm{SH}\}$.
(1) We say that T is approximable on U by \mathcal{C}^{m}-smooth \mathcal{F}-forms and write
$T \in \mathcal{F}^{p ; m}(U)$ if there is a sequence of \mathcal{C}^{m}-smooth (p, p)-forms
$\left(T_{n}\right)_{n=1}^{\infty} \subset \mathcal{F}$ defined on U such that

2. New spaces of currents, strongly admissible maps and the generalized Lelong numbers

New spaces of currents
Let $m, m^{\prime} \in \mathbb{N}$ with $m \geq m^{\prime}$. Let $W \subset U \subset X$ be two open subsets. Let T be a positive (p, p)-current defined on an open set containing U. Let $\mathcal{F} \in\{\mathrm{CL}, \mathrm{PH}, \mathrm{SH}\}$.
(1) We say that T is approximable on U by \mathcal{C}^{m}-smooth \mathcal{F}-forms and write
$T \in \mathcal{F}^{p ; m}(U)$ if there is a sequence of \mathcal{C}^{m}-smooth (p, p)-forms
$\left(T_{n}\right)_{n=1}^{\infty} \subset \mathcal{F}$ defined on U such that
(i) the masses $\left\|T_{n}\right\|$ on U are uniformly bounded;

2. New spaces of currents, strongly admissible maps and the generalized Lelong numbers

New spaces of currents
Let $m, m^{\prime} \in \mathbb{N}$ with $m \geq m^{\prime}$. Let $W \subset U \subset X$ be two open subsets. Let T be a positive (p, p)-current defined on an open set containing U. Let $\mathcal{F} \in\{\mathrm{CL}, \mathrm{PH}, \mathrm{SH}\}$.
(1) We say that T is approximable on U by \mathcal{C}^{m}-smooth \mathcal{F}-forms and write
$T \in \mathcal{F}^{p ; m}(U)$ if there is a sequence of \mathcal{C}^{m}-smooth (p, p)-forms
$\left(T_{n}\right)_{n=1}^{\infty} \subset \mathcal{F}$ defined on U such that
(i) the masses $\left\|T_{n}\right\|$ on U are uniformly bounded;
(ii) T_{n} converge weakly to T on U as n tends to infinity.

2. New spaces of currents, strongly admissible maps and the generalized Lelong numbers

New spaces of currents
Let $m, m^{\prime} \in \mathbb{N}$ with $m \geq m^{\prime}$. Let $W \subset U \subset X$ be two open subsets. Let T be a positive (p, p)-current defined on an open set containing U. Let $\mathcal{F} \in\{\mathrm{CL}, \mathrm{PH}, \mathrm{SH}\}$.
(1) We say that T is approximable on U by \mathcal{C}^{m}-smooth \mathcal{F}-forms and write
$T \in \mathcal{F}^{p ; m}(U)$ if there is a sequence of \mathcal{C}^{m}-smooth (p, p)-forms
$\left(T_{n}\right)_{n=1}^{\infty} \subset \mathcal{F}$ defined on U such that
(i) the masses $\left\|T_{n}\right\|$ on U are uniformly bounded;
(ii) T_{n} converge weakly to T on U as n tends to infinity.

If moreover, the following condition is fulfilled:
(iii-a) the restrictions of the forms T_{n} on W are of uniformly bounded $\mathcal{C}^{m^{\prime}}$-norm;
then we say that T is approximable on U by ${ }^{m}{ }^{m}$-smooth \mathcal{F}-forms with $\mathcal{C}^{m^{\prime}}$-control on W, and write $T \in \mathcal{F}^{p ; m, m^{\prime}}(U, W)$.

Figure: The current T is defined on $U \subset X$ (in blue) which is a neighborhood of \bar{B} (the outer closed curve in red) in the ambient manifold X (in black).

If moreover, the following condition is fulfilled:
(iii-b) $\operatorname{supp}\left(T_{n}\right) \cap W=\varnothing$ for $n \geq 1$;
then we say that T is approximable on U by \mathfrak{C}^{m}-smooth \mathcal{F}-forms with support outside W, and write $T \in \mathrm{SH}^{p ; m}(U, W$, comp).

If moreover, the following condition is fulfilled:
(iii-b) $\operatorname{supp}\left(T_{n}\right) \cap W=\varnothing$ for $n \geq 1$;
then we say that T is approximable on U by ${ }^{m}{ }^{m}$-smooth \mathcal{F}-forms with support outside W, and write $T \in \mathrm{SH}^{p ; m}(U, W$, comp).
We say that $\left(T_{n}\right)_{n=1}^{\infty}$ is a sequence of approximating forms for T as an element of $\mathcal{F}^{p ; m}(U)$ in the first case (resp. as an element of $\mathcal{F}^{p ; m, m^{\prime}}(U, W)$ in the second case, resp. as an element of $\mathcal{F}^{p ; m}(U, W$, comp $)$ in the third case $)$.

If moreover, the following condition is fulfilled:
(iii-b) $\operatorname{supp}\left(T_{n}\right) \cap W=\varnothing$ for $n \geq 1$;
then we say that T is approximable on U by ${ }^{m}{ }^{m}$-smooth \mathcal{F}-forms with support outside W, and write $T \in \mathrm{SH}^{p ; m}(U, W$, comp).
We say that $\left(T_{n}\right)_{n=1}^{\infty}$ is a sequence of approximating forms for T as an element of $\mathcal{F}^{p ; m}(U)$ in the first case (resp. as an element of $\mathcal{F}^{p ; m, m^{\prime}}(U, W)$ in the second case, resp. as an element of $\mathcal{F}^{p ; m}(U, W$, comp $)$ in the third case $)$.

Let $B \subset V$ be an open subset. We write $T \in \mathcal{F}^{p ; m}(B)$ (resp. $T \in \mathcal{F}^{p ; m, m^{\prime}}(B)$) (resp. $T \in \mathcal{F}^{p ; m}(B$, comp $)$) if there is an open neighborhood U of \bar{B} in X such that $T \in \mathcal{F}^{p ; m}(U)$ (resp. and there is an open neighborhood W of ∂B in U such that $T \in \mathcal{F}^{p ; m, m^{\prime}}(U, W)$) (resp. such that $T \in \mathcal{F}^{p ; m}(U, W$, comp $\left.)\right)$

Strongly admissible maps [Dinh-Sibony 2018, Ng. 2021]

- Definition

Strongly admissible maps [Dinh-Sibony 2018, Ng. 2021]

- Definition

Let B be a relatively compact nonempty open subset of V. A strongly admissible map along B is a \mathcal{C}^{2}-smooth diffeomorphism τ from an open neighborhood U of \bar{B} in X onto an open neighborhood of $V \cap U$ in \mathbb{E} such that for every point $x \in V \cap U$, for every local chart $y=(z, w) \in \mathbb{C}^{k-l} \times \mathbb{C}^{\prime}$ on a neighborhood W of x in U with $V \cap W=\{z=0\}$, if we write $\tau(z, w)=\left(z^{\prime}, w^{\prime}\right) \in \mathbb{C}^{k-I} \times \mathbb{C}^{\prime}$, then

Strongly admissible maps [Dinh-Sibony 2018, Ng. 2021]

- Definition

Let B be a relatively compact nonempty open subset of V. A strongly admissible map along B is a \mathcal{C}^{2}-smooth diffeomorphism τ from an open neighborhood U of \bar{B} in X onto an open neighborhood of $V \cap U$ in \mathbb{E} such that for every point $x \in V \cap U$, for every local chart $y=(z, w) \in \mathbb{C}^{k-1} \times \mathbb{C}^{\prime}$ on a neighborhood W of x in U with $V \cap W=\{z=0\}$, if we write $\tau(z, w)=\left(z^{\prime}, w^{\prime}\right) \in \mathbb{C}^{k-l} \times \mathbb{C}^{\prime}$, then

$$
\begin{aligned}
z^{\prime} & =z+z A z^{T}+O\left(\|z\|^{3}\right) \\
w^{\prime} & =w+B z+O\left(\|z\|^{2}\right)
\end{aligned}
$$

where A is a $(k-I) \times(k-l)$-matrix and B is a $I \times(k-l)$-matrix whose entries are \mathcal{C}^{2}-smooth functions in w, z^{\top} is the transpose of z,

Strongly admissible maps [Dinh-Sibony 2018, Ng. 2021]

- Definition

Let B be a relatively compact nonempty open subset of V. A strongly admissible map along B is a \mathcal{C}^{2}-smooth diffeomorphism τ from an open neighborhood U of \bar{B} in X onto an open neighborhood of $V \cap U$ in \mathbb{E} such that for every point $x \in V \cap U$, for every local chart $y=(z, w) \in \mathbb{C}^{k-1} \times \mathbb{C}^{\prime}$ on a neighborhood W of x in U with $V \cap W=\{z=0\}$, if we write $\tau(z, w)=\left(z^{\prime}, w^{\prime}\right) \in \mathbb{C}^{k-l} \times \mathbb{C}^{\prime}$, then

$$
\begin{aligned}
z^{\prime} & =z+z A z^{T}+O\left(\|z\|^{3}\right) \\
w^{\prime} & =w+B z+O\left(\|z\|^{2}\right)
\end{aligned}
$$

where A is a $(k-I) \times(k-I)$-matrix and B is a $I \times(k-I)$-matrix whose entries are \mathfrak{C}^{2}-smooth functions in w, z^{T} is the transpose of z,

- Remarks Holomorphic admissible maps are strongly admissible When X is Kähler, there exists a strongly admissible map along B

Function φ and forms α and β and tubes
Let $B \Subset V_{0} \subset V$ be open sets. Let $\pi: \mathbb{E} \rightarrow V$ be the canonical projection.

Function φ and forms α and β and tubes

Let $B \Subset V_{0} \subset V$ be open sets. Let $\pi: \mathbb{E} \rightarrow V$ be the canonical projection.
Consider a Hermitian metric $h=\|\cdot\|$ on the vector bundle $\mathbb{E}_{\pi^{-1}\left(V_{0}\right)}$ and let $\varphi: \mathbb{E}_{\pi^{-1}\left(V_{0}\right)} \rightarrow \mathbb{R}^{+}$be the function defined by

$$
\varphi(y):=\|y\|^{2} \quad \text { for } \quad y \in \pi^{-1}\left(V_{0}\right) \subset \mathbb{E} .
$$

Function φ and forms α and β and tubes

Let $B \Subset V_{0} \subset V$ be open sets. Let $\pi: \mathbb{E} \rightarrow V$ be the canonical projection.
Consider a Hermitian metric $h=\|\cdot\|$ on the vector bundle $\mathbb{E}_{\pi^{-1}\left(V_{0}\right)}$ and let $\varphi: \mathbb{E}_{\pi^{-1}\left(V_{0}\right)} \rightarrow \mathbb{R}^{+}$be the function defined by

$$
\varphi(y):=\|y\|^{2} \quad \text { for } \quad y \in \pi^{-1}\left(V_{0}\right) \subset \mathbb{E} .
$$

Consider also the following closed $(1,1)$-forms on $\pi^{-1}\left(V_{0}\right) \subset \mathbb{E}$

$$
\alpha:=d d^{c} \log \varphi \quad \text { and } \quad \beta:=d d^{c} \varphi .
$$

Function φ and forms α and β and tubes

Let $B \Subset V_{0} \subset V$ be open sets. Let $\pi: \mathbb{E} \rightarrow V$ be the canonical projection.
Consider a Hermitian metric $h=\|\cdot\|$ on the vector bundle $\mathbb{E}_{\pi^{-1}\left(V_{0}\right)}$ and let $\varphi: \mathbb{E}_{\pi^{-1}\left(V_{0}\right)} \rightarrow \mathbb{R}^{+}$be the function defined by

$$
\varphi(y):=\|y\|^{2} \quad \text { for } \quad y \in \pi^{-1}\left(V_{0}\right) \subset \mathbb{E} .
$$

Consider also the following closed $(1,1)$-forms on $\pi^{-1}\left(V_{0}\right) \subset \mathbb{E}$

$$
\alpha:=d d^{c} \log \varphi \quad \text { and } \quad \beta:=d d^{c} \varphi .
$$

So, for every $x \in V_{0} \subset X$ the metric $\|\cdot\|$ on the fiber $\mathbb{E}_{x} \simeq \mathbb{C}^{k-l}$ is an Euclidean metric (in a suitable basis). In particular, we have

$$
\varphi(\lambda y)=|\lambda|^{2} \varphi(y) \quad \text { for } \quad y \in \pi^{-1}\left(V_{0}\right) \subset \mathbb{E}, \quad \lambda \in \mathbb{C} .
$$

Function φ and forms α and β and tubes

Let $B \Subset V_{0} \subset V$ be open sets. Let $\pi: \mathbb{E} \rightarrow V$ be the canonical projection.
Consider a Hermitian metric $h=\|\cdot\|$ on the vector bundle $\mathbb{E}_{\pi^{-1}\left(V_{0}\right)}$ and let $\varphi: \mathbb{E}_{\pi^{-1}\left(V_{0}\right)} \rightarrow \mathbb{R}^{+}$be the function defined by

$$
\varphi(y):=\|y\|^{2} \quad \text { for } \quad y \in \pi^{-1}\left(V_{0}\right) \subset \mathbb{E} .
$$

Consider also the following closed $(1,1)$-forms on $\pi^{-1}\left(V_{0}\right) \subset \mathbb{E}$

$$
\alpha:=d d^{c} \log \varphi \quad \text { and } \quad \beta:=d d^{c} \varphi .
$$

So, for every $x \in V_{0} \subset X$ the metric $\|\cdot\|$ on the fiber $\mathbb{E}_{x} \simeq \mathbb{C}^{k-l}$ is an Euclidean metric (in a suitable basis). In particular, we have

$$
\varphi(\lambda y)=|\lambda|^{2} \varphi(y) \quad \text { for } \quad y \in \pi^{-1}\left(V_{0}\right) \subset \mathbb{E}, \quad \lambda \in \mathbb{C} .
$$

For $r>0$ consider the following tube with base B and radius r

$$
\operatorname{Tube}(B, r):=\{y \in \mathbb{E}: \pi(y) \in B \quad \text { and } \quad\|y\|<r\}
$$

Function φ and forms α and β and tubes

Let $B \Subset V_{0} \subset V$ be open sets. Let $\pi: \mathbb{E} \rightarrow V$ be the canonical projection.
Consider a Hermitian metric $h=\|\cdot\|$ on the vector bundle $\mathbb{E}_{\pi^{-1}\left(V_{0}\right)}$ and let $\varphi: \mathbb{E}_{\pi^{-1}\left(V_{0}\right)} \rightarrow \mathbb{R}^{+}$be the function defined by

$$
\varphi(y):=\|y\|^{2} \quad \text { for } \quad y \in \pi^{-1}\left(V_{0}\right) \subset \mathbb{E} .
$$

Consider also the following closed $(1,1)$-forms on $\pi^{-1}\left(V_{0}\right) \subset \mathbb{E}$

$$
\alpha:=d d^{c} \log \varphi \quad \text { and } \quad \beta:=d d^{c} \varphi .
$$

So, for every $x \in V_{0} \subset X$ the metric $\|\cdot\|$ on the fiber $\mathbb{E}_{x} \simeq \mathbb{C}^{k-l}$ is an Euclidean metric (in a suitable basis). In particular, we have

$$
\varphi(\lambda y)=|\lambda|^{2} \varphi(y) \quad \text { for } \quad y \in \pi^{-1}\left(V_{0}\right) \subset \mathbb{E}, \quad \lambda \in \mathbb{C} .
$$

For $r>0$ consider the following tube with base B and radius r

$$
\operatorname{Tube}(B, r):=\{y \in \mathbb{E}: \pi(y) \in B \quad \text { and } \quad\|y\|<r\}
$$

For for all $0 \leq s<r<\infty$, define also the corona tube

$$
\underset{\text { V.-A. Nguyên }}{\operatorname{Tube}}(B, s, r):=\left\{y \in \mathbb{E}: \pi(y) \in B \quad \text { and } \square s<\left\|_{\text {Lelong numbers and Intersection theory }}^{\| y}\right\|_{\text {October 2023 }}<r\right\}
$$

Figure: An illustrations of a tube Tube (B, r) with base B and radius r.

Figure: An illustrations of a corona tube Tube (B, s, r) with base B and smaller radius s and bigger radius r.

Recall that $\overline{\mathrm{m}}:=\min (I, k-p)$ and $\underline{\mathrm{m}}:=\max (0, I-p)$. Recall that ω is a Hermitian form on V. Fix $\mathbf{r}>0$ small enough.
Ng. 2021 For $0 \leq j \leq \overline{\mathrm{m}}$ and $0<r \leq \mathbf{r}$, consider
(1) $\nu_{j}(T, B, \omega, r, \tau, h):=\frac{1}{r^{2(k-p-j)}} \int_{\operatorname{Tube}(B, r)}\left(\tau_{*} T\right) \wedge \pi^{*}\left(\omega^{j}\right) \wedge \beta^{k-p-j}$.

Let $0 \leq j \leq \overline{\mathrm{m}}$. For $0<s<r \leq \mathbf{r}$, consider
(2) $\kappa_{j}(T, B, \omega, s, r, \tau, h):=\int_{\operatorname{Tube}(B, s, r)}\left(\tau_{*} T\right) \wedge \pi^{*}\left(\omega^{j}\right) \wedge \alpha^{k-p-j}$.

Recall that $\overline{\mathrm{m}}:=\min (I, k-p)$ and $\underline{\mathrm{m}}:=\max (0, I-p)$. Recall that ω is a Hermitian form on V. Fix $\mathbf{r}>0$ small enough.
Ng. 2021 For $0 \leq j \leq \overline{\mathrm{m}}$ and $0<r \leq \mathbf{r}$, consider
(1) $\nu_{j}(T, B, \omega, r, \tau, h):=\frac{1}{r^{2(k-p-j)}} \int_{\operatorname{Tube}(B, r)}\left(\tau_{*} T\right) \wedge \pi^{*}\left(\omega^{j}\right) \wedge \beta^{k-p-j}$.

Let $0 \leq j \leq \overline{\mathrm{m}}$. For $0<s<r \leq \mathbf{r}$, consider
(2) $\kappa_{j}(T, B, \omega, s, r, \tau, h):=\int_{\operatorname{Tube}(B, s, r)}\left(\tau_{*} T\right) \wedge \pi^{*}\left(\omega^{j}\right) \wedge \alpha^{k-p-j}$.

We also consider
(3)

$$
\kappa_{j}(T, B, \omega, r, \tau, h):=\int_{\text {Tube }(B, r)}\left(\tau_{*} T\right) \wedge \pi^{*}\left(\omega^{j}\right) \wedge \alpha^{k-p-j}
$$

$$
\kappa_{j}^{\bullet}(T, B, \omega, r, \tau, h):=\int_{\operatorname{Tube}(B, 0, r)}\left(\tau_{*} T\right) \wedge \pi^{*}\left(\omega^{j}\right) \wedge \alpha^{k-p-j}
$$

Recall that $\overline{\mathrm{m}}:=\min (I, k-p)$ and $\underline{\mathrm{m}}:=\max (0, I-p)$. Recall that ω is a Hermitian form on V. Fix $\mathbf{r}>0$ small enough.
Ng. 2021 For $0 \leq j \leq \overline{\mathrm{m}}$ and $0<r \leq \mathbf{r}$, consider
(1) $\nu_{j}(T, B, \omega, r, \tau, h):=\frac{1}{r^{2(k-p-j)}} \int_{\operatorname{Tube}(B, r)}\left(\tau_{*} T\right) \wedge \pi^{*}\left(\omega^{j}\right) \wedge \beta^{k-p-j}$.

Let $0 \leq j \leq \overline{\mathrm{m}}$. For $0<s<r \leq \mathbf{r}$, consider
(2) $\kappa_{j}(T, B, \omega, s, r, \tau, h):=\int_{\operatorname{Tube}(B, s, r)}\left(\tau_{*} T\right) \wedge \pi^{*}\left(\omega^{j}\right) \wedge \alpha^{k-p-j}$.

We also consider
(3)

$$
\kappa_{j}(T, B, \omega, r, \tau, h):=\int_{\text {Tube }(B, r)}\left(\tau_{*} T\right) \wedge \pi^{*}\left(\omega^{j}\right) \wedge \alpha^{k-p-j}
$$

$$
\kappa_{j}^{\bullet}(T, B, \omega, r, \tau, h):=\int_{\operatorname{Tube}(B, 0, r)}\left(\tau_{*} T\right) \wedge \pi^{*}\left(\omega^{j}\right) \wedge \alpha^{k-p-j}
$$

Remark. We can replace ω^{j} by an arbitrary closed smooth (j, j)-form $\omega^{(j)}$ on V_{0} in order to obtain $\nu\left(T, B, \omega^{(j)}, r, \tau, h\right), \kappa\left(T, B, \omega^{(j)}, r, \tau, h\right)$

- First interpretation: assume that $T=T^{+}-T^{-}$in an open neighborhood of \bar{B} in X and $T^{ \pm} \in \mathcal{F}^{m, m^{\prime}}(B)$ for a suitable $\mathcal{F} \in\left\{\mathrm{CL}^{p}, \mathrm{PH}^{p}, \mathrm{SH}^{p}\right\}$ and for suitable $m, m^{\prime} \in \mathbb{N}$. Let $\left(T_{n}^{ \pm}\right)$be a sequence of approximating forms for $T^{ \pm}$. Then the RHS of (3) is

$$
\lim _{n \rightarrow \infty} \kappa_{j}\left(T_{n}^{+}, B, r, \tau, h\right)-\lim _{n \rightarrow \infty} \kappa_{j}\left(T_{n}^{-}, B, r, \tau, h\right)
$$

- Second interpretation: the RHS of (3) is

$$
\lim _{\epsilon \rightarrow 0+} \int_{\text {Tube }(B, r)}\left(\tau_{*} T\right) \wedge \pi^{*}\left(\omega^{j}\right) \wedge \alpha_{\epsilon}^{k-p-j}
$$

Here, α_{ϵ} is the smooth form on \mathbb{E} defined by

$$
\alpha_{\epsilon}:=d d^{c} \varphi_{\epsilon} \quad \text { and } \quad \varphi_{\epsilon}:=\varphi+\epsilon^{2} .
$$

Euclidean setting ([Alessandrini-Bassanelli 1996] for top degree)

Euclidean setting ([Alessandrini-Bassanelli 1996] for top degree)

Let T be a (p, p)-current of order 0 defined on an open neighborhood U of 0 in \mathbb{C}^{k}. We use the coordinates $(z, w) \in \mathbb{C}^{k-l} \times \mathbb{C}^{\prime}$. We may assume that U has the form $U=U^{\prime} \times U^{\prime \prime}$. So $V=\{z=0\}=U^{\prime \prime}$ and let $\mathbf{r}>0$ such that $\{\|z\|<\mathbf{r}\} \times B \Subset U$. Consider the trivial vector bundle $\pi: \mathbb{E} \rightarrow U^{\prime \prime}$. For $\lambda \in \mathbb{C}^{*}$, let $a_{\lambda}: \mathbb{E} \rightarrow \mathbb{E}$ be the multiplication by λ on fibers, that is, $a_{\lambda}(z, w):=(\lambda z, w)$ for $(z, w) \in \mathbb{E}$. Admissible map τ is the identity id, $\|\cdot\|$ is Euclidean metric.

Euclidean setting ([Alessandrini-Bassanelli 1996] for top degree)

Let T be a (p, p)-current of order 0 defined on an open neighborhood U of 0 in \mathbb{C}^{k}. We use the coordinates $(z, w) \in \mathbb{C}^{k-l} \times \mathbb{C}^{\prime}$. We may assume that U has the form $U=U^{\prime} \times U^{\prime \prime}$. So $V=\{z=0\}=U^{\prime \prime}$ and let $\mathbf{r}>0$ such that $\{\|z\|<\mathbf{r}\} \times B \Subset U$. Consider the trivial vector bundle $\pi: \mathbb{E} \rightarrow U^{\prime \prime}$. For $\lambda \in \mathbb{C}^{*}$, let $a_{\lambda}: \mathbb{E} \rightarrow \mathbb{E}$ be the multiplication by λ on fibers, that is, $a_{\lambda}(z, w):=(\lambda z, w)$ for $(z, w) \in \mathbb{E}$. Admissible map τ is the identity id, $\|\cdot\|$ is Euclidean metric.
Consider the positive closed (1,1)-forms:

$$
\beta=\omega_{z}:=d d^{c}\|z\|^{2}, \quad \omega=\omega_{w}:=d d^{c}\|w\|^{2}, \quad \alpha=\Upsilon_{z}:=d d^{c} \log \|z\|^{2} .
$$

Euclidean setting ([Alessandrini-Bassanelli 1996] for top degree)

Let T be a (p, p)-current of order 0 defined on an open neighborhood U of 0 in \mathbb{C}^{k}. We use the coordinates $(z, w) \in \mathbb{C}^{k-I} \times \mathbb{C}^{\prime}$. We may assume that U has the form $U=U^{\prime} \times U^{\prime \prime}$. So $V=\{z=0\}=U^{\prime \prime}$ and let $\mathbf{r}>0$ such that $\{\|z\|<\mathbf{r}\} \times B \Subset U$. Consider the trivial vector bundle $\pi: \mathbb{E} \rightarrow U^{\prime \prime}$. For $\lambda \in \mathbb{C}^{*}$, let $a_{\lambda}: \mathbb{E} \rightarrow \mathbb{E}$ be the multiplication by λ on fibers, that is, $a_{\lambda}(z, w):=(\lambda z, w)$ for $(z, w) \in \mathbb{E}$. Admissible map τ is the identity id, $\|\cdot\|$ is Euclidean metric.
Consider the positive closed (1,1)-forms:

$$
\beta=\omega_{z}:=d d^{c}\|z\|^{2}, \quad \omega=\omega_{w}:=d d^{c}\|w\|^{2}, \quad \alpha=\Upsilon_{z}:=d d^{c} \log \|z\|^{2} .
$$

Let $\underline{\mathrm{m}} \leq j \leq \overline{\mathrm{m}}$. For $0<r<\mathbf{r}$, consider the quantity
(4) $\quad \nu_{j}(T, B, r, \mathrm{id},\|\cdot\|):=\frac{1}{r^{2(k-p-j)}} \int_{\|z\|<r, w \in B} T \wedge \omega_{w}^{j} \wedge \omega_{z}^{k-p-j}$.

For $0<s<r \leq \mathbf{r}$, consider

$$
\begin{equation*}
\kappa_{j}(T, B, s, r, \operatorname{id},\|\cdot\|):=\int_{s<\|z\|<r, w \in B} T \wedge \omega_{w}^{j} \wedge \Upsilon_{z}^{k-p-j} \tag{5}
\end{equation*}
$$

Tangent Theorem I (for SH and PH currents) [$\mathrm{Ng} .2021,2023$]

Tangent Theorem I (for SH and PH currents) [Ng. 2021, 2023]

Let X, V be as above and suppose that (V, ω) is Kähler, and that B is a piecewise \mathcal{C}^{2}-smooth open subset of V and that there exists a strongly admissible map for B. Let T be a positive plurisubharmonic (p, p)-current on a neighborhood of \bar{B} in X such that $T=T^{+}-T^{-}$for some $T^{ \pm} \in \mathrm{SH}^{p ; 3,3}(B)$. Then, the following assertions hold.

Tangent Theorem I (for SH and PH currents) [$\mathrm{Ng} .2021,2023$]

Let X, V be as above and suppose that (V, ω) is Kähler, and that B is a piecewise \mathcal{C}^{2}-smooth open subset of V and that there exists a strongly admissible map for B. Let T be a positive plurisubharmonic (p, p)-current on a neighborhood of \bar{B} in X such that $T=T^{+}-T^{-}$for some $T^{ \pm} \in \mathrm{SH}^{p ; 3,3}(B)$. Then, the following assertions hold.
(1) For every $\underline{\mathrm{m}} \leq j \leq \overline{\mathrm{m}}$, the following limit exists and is finite

$$
\nu\left(T, B, \omega^{(j)}\right):=\lim _{r \rightarrow 0+} \nu\left(T, B, \omega^{(j)}, r, \tau, h\right)
$$

for all strongly admissible maps τ for B and for all metrics h on \mathbb{E}.

Tangent Theorem I (for SH and PH currents) [$\mathrm{Ng} .2021,2023$]

Let X, V be as above and suppose that (V, ω) is Kähler, and that B is a piecewise \mathcal{C}^{2}-smooth open subset of V and that there exists a strongly admissible map for B. Let T be a positive plurisubharmonic (p, p)-current on a neighborhood of \bar{B} in X such that $T=T^{+}-T^{-}$for some $T^{ \pm} \in \mathrm{SH}^{p ; 3,3}(B)$. Then, the following assertions hold.
(1) For every $\underline{m} \leq j \leq \bar{m}$, the following limit exists and is finite

$$
\nu\left(T, B, \omega^{(j)}\right):=\lim _{r \rightarrow 0+} \nu\left(T, B, \omega^{(j)}, r, \tau, h\right)
$$

for all strongly admissible maps τ for B and for all metrics h on \mathbb{E}.
(2) The real numbers $\nu\left(T, B, \omega^{(j)}\right)$ are totally intrinsic, that is, they are independent of the choice of both τ and h.

Tangent Theorem I (for SH and PH currents) [Ng. 2021, 2023]

Let X, V be as above and suppose that (V, ω) is Kähler, and that B is a piecewise \mathcal{C}^{2}-smooth open subset of V and that there exists a strongly admissible map for B. Let T be a positive plurisubharmonic (p, p)-current on a neighborhood of \bar{B} in X such that $T=T^{+}-T^{-}$for some
$T^{ \pm} \in \mathrm{SH}^{p ; 3,3}(B)$. Then, the following assertions hold.
(1) For every $\underline{\mathrm{m}} \leq j \leq \overline{\mathrm{m}}$, the following limit exists and is finite

$$
\nu\left(T, B, \omega^{(j)}\right):=\lim _{r \rightarrow 0+} \nu\left(T, B, \omega^{(j)}, r, \tau, h\right)
$$

for all strongly admissible maps τ for B and for all metrics h on \mathbb{E}.
(2) The real numbers $\nu\left(T, B, \omega^{(j)}\right)$ are totally intrinsic, that is, they are independent of the choice of both τ and h.
(3) The following equalities hold

$$
\begin{aligned}
\lim _{r \rightarrow 0+} \kappa\left(T, B, \omega^{(j)}, r, \tau, h\right) & =\nu\left(T, B, \omega^{(j)}\right) \\
\lim _{r \rightarrow 0+} \kappa^{\bullet}\left(T, B, \omega^{(j)}, r, \tau, h\right) & =0
\end{aligned}
$$

(6) $\nu_{\overline{\mathrm{m}}}(T, B, \omega)$ is nonnegative and has a geometric meaning in the sense of Siu and Alessandrini-Bassanelli.
(6) $\nu_{\mathrm{m}}(T, B, \omega)$ is nonnegative and has a geometric meaning in the sense of Siu and Alessandrini-Bassanelli.
(0) There exists tangent currents to T along B, and all tangent currents T_{∞} are positive plurisubharmonic on $\pi^{-1}(B) \subset \mathbb{E}$. Moreover, T_{∞} are partially V-conic pluriharmonic on $\pi^{-1}(B) \subset \mathbb{E}$ in the sense that the current $T_{\infty} \wedge \pi^{*}\left(\omega^{\underline{\mathrm{m}}}\right)$ is V-conic pluriharmonic on $\pi^{-1}(B) \subset \mathbb{E}$.
(6) $\nu_{\bar{m}}(T, B, \omega)$ is nonnegative and has a geometric meaning in the sense of Siu and Alessandrini-Bassanelli.
(0) There exists tangent currents to T along B, and all tangent currents T_{∞} are positive plurisubharmonic on $\pi^{-1}(B) \subset \mathbb{E}$. Moreover, T_{∞} are partially V-conic pluriharmonic on $\pi^{-1}(B) \subset \mathbb{E}$ in the sense that the current $T_{\infty} \wedge \pi^{*}\left(\omega^{\mathrm{m}}\right)$ is V-conic pluriharmonic on $\pi^{-1}(B) \subset \mathbb{E}$.
(1) If instead of the above assumption on T, we assume that T is a positive pluriharmonic (p, p)-current on a neighborhood of \bar{B} in X such that $T=T^{+}-T^{-}$for some $T^{ \pm} \in \mathrm{PH}^{p ; 2,2}(B)$, then all the above assertions still hold and moreover every tangent current T_{∞} is also V-conic pluriharmonic on $\pi^{-1}(B) \subset \mathbb{E}$.

Tangent Theorem II (for CL currents) [Ng. 2021, 2023]

Tangent Theorem II (for CL currents) [Ng. 2021, 2023]

Let X, V be as above. Assume that there is a Hermitian metric ω on V for which $d d^{c} \omega^{j}=0$ for $1 \leq j \leq \overline{\mathrm{m}}-1$. Assume also that B is a piecewise \mathcal{C}^{2}-smooth open subset of V and that there exists a strongly admissible map for B. Let T be a positive closed (p, p)-current on a neighborhood of \bar{B} in X such that $T=T^{+}-T^{-}$for some $T^{ \pm} \in \mathrm{CL}^{p ; 2,2}(B)$. Then, the following assertions hold.

Tangent Theorem II (for CL currents) [Ng. 2021, 2023]

Let X, V be as above. Assume that there is a Hermitian metric ω on V for which $d d^{c} \omega^{j}=0$ for $1 \leq j \leq \overline{\mathrm{m}}-1$. Assume also that B is a piecewise \mathcal{C}^{2}-smooth open subset of V and that there exists a strongly admissible map for B. Let T be a positive closed (p, p)-current on a neighborhood of \bar{B} in X such that $T=T^{+}-T^{-}$for some $T^{ \pm} \in \mathrm{CL}^{p ; 2,2}(B)$. Then, the following assertions hold.
(1) For every $\underline{\mathrm{m}} \leq j \leq \overline{\mathrm{m}}$, the following limit exists and is finite

$$
\nu\left(T, B, \omega^{(j)}\right):=\lim _{r \rightarrow 0+} \nu\left(T, B, \omega^{(j)}, r, \tau, h\right)
$$

for all strongly admissible maps τ for B and for all metrics h on \mathbb{E}.

Tangent Theorem II (for CL currents) [Ng. 2021, 2023]

Let X, V be as above. Assume that there is a Hermitian metric ω on V for which $d d^{c} \omega^{j}=0$ for $1 \leq j \leq \overline{\mathrm{m}}-1$. Assume also that B is a piecewise \mathcal{C}^{2}-smooth open subset of V and that there exists a strongly admissible map for B. Let T be a positive closed (p, p)-current on a neighborhood of \bar{B} in X such that $T=T^{+}-T^{-}$for some $T^{ \pm} \in \mathrm{CL}^{p ; 2,2}(B)$. Then, the following assertions hold.
(1) For every $\underline{\mathrm{m}} \leq j \leq \overline{\mathrm{m}}$, the following limit exists and is finite

$$
\nu\left(T, B, \omega^{(j)}\right):=\lim _{r \rightarrow 0+} \nu\left(T, B, \omega^{(j)}, r, \tau, h\right)
$$

for all strongly admissible maps τ for B and for all metrics h on \mathbb{E}.
(2) The real numbers $\nu_{j}(T, B, \omega)$ are totally intrinsic, that is, they are independent of the choice of both τ and h.

Tangent Theorem II (for CL currents) [Ng. 2021, 2023]

Let X, V be as above. Assume that there is a Hermitian metric ω on V for which $d d^{c} \omega^{j}=0$ for $1 \leq j \leq \overline{\mathrm{m}}-1$. Assume also that B is a piecewise \mathcal{C}^{2}-smooth open subset of V and that there exists a strongly admissible map for B. Let T be a positive closed (p, p)-current on a neighborhood of \bar{B} in X such that $T=T^{+}-T^{-}$for some $T^{ \pm} \in \mathrm{CL}^{p ; 2,2}(B)$. Then, the following assertions hold.
(1) For every $\underline{\mathrm{m}} \leq j \leq \overline{\mathrm{m}}$, the following limit exists and is finite

$$
\nu\left(T, B, \omega^{(j)}\right):=\lim _{r \rightarrow 0+} \nu\left(T, B, \omega^{(j)}, r, \tau, h\right)
$$

for all strongly admissible maps τ for B and for all metrics h on \mathbb{E}.
(2) The real numbers $\nu_{j}(T, B, \omega)$ are totally intrinsic, that is, they are independent of the choice of both τ and h.
(3) The following equality holds

$$
\begin{aligned}
\lim _{r \rightarrow 0+} \kappa\left(T, B, \omega^{(j)}, r, \tau, h\right) & =\nu\left(T, B, \omega^{(j)}\right) \\
\lim _{r \rightarrow 0+} k^{\bullet}\left(T, B, \omega^{(j)}, r, \tau, h\right) & =0
\end{aligned}
$$

(5) $\nu_{\mathrm{m}}(T, B, \omega)$ is nonnegative has a geometric meaning in the sense of Siu and Alessandrini-Bassanelli.
(5) $\nu_{\overline{\mathrm{m}}}(T, B, \omega)$ is nonnegative has a geometric meaning in the sense of Siu and Alessandrini-Bassanelli.
(0) There exist tangent currents to T along B and all tangent currents T_{∞} are V-conic positive closed on $\pi^{-1}(B) \subset \mathbb{E}$.
(5) $\nu_{\overline{\mathrm{m}}}(T, B, \omega)$ is nonnegative has a geometric meaning in the sense of Siu and Alessandrini-Bassanelli.
(0) There exist tangent currents to T along B and all tangent currents T_{∞} are V-conic positive closed on $\pi^{-1}(B) \subset \mathbb{E}$.
(1) If instead of the above assumption on ω and T, we assume that the form ω is Kähler and T is a positive closed (p, p)-current on a neighborhood of \bar{B} in X such that $T=T^{+}-T^{-}$for some $T^{ \pm} \in \mathrm{CL}^{p ; 1,1}(B)$, then all the above assertions still hold.

The case where $\operatorname{supp}(T) \cap V$ is compact in V

The case where $\operatorname{supp}(T) \cap V$ is compact in V We can choose any piecewise smooth open neighborhood B of $\operatorname{supp}(T) \cap V$ in V and define simply
(6)

$$
\nu_{j}(T, V, \omega):=\nu_{j}(T, B, \omega)
$$

The case where $\operatorname{supp}(T) \cap V$ is compact in V We can choose any piecewise smooth open neighborhood B of $\operatorname{supp}(T) \cap V$ in V and define simply

$$
\begin{equation*}
\nu_{j}(T, V, \omega):=\nu_{j}(T, B, \omega) \tag{6}
\end{equation*}
$$

Remark: [Vu 2019]'s condition: there is a Hermitian metric $\hat{\omega}$ on X for which $d d^{c} \hat{\omega}^{j}=0$ on V for $1 \leq j \leq k-p-1$.

Existence of strongly admissible maps and approximability of SH , PH, CL-currents

Existence of strongly admissible maps and approximability of SH , PH, CL-currents
Theorem 3 [Ng .2021]
Let X, V be as above. Assume that X is Kähler. Then, for every relatively compact open set $B \subset V$, the following assertions hold.

Existence of strongly admissible maps and approximability of SH , PH, CL-currents
Theorem 3 [Ng .2021]
Let X, V be as above. Assume that X is Kähler. Then, for every relatively compact open set $B \subset V$, the following assertions hold.
(1) There is a strongly admissible map for B [Dinh-Sibony 2018]

Existence of strongly admissible maps and approximability of SH , PH, CL-currents
Theorem 3 [Ng .2021]
Let X, V be as above. Assume that X is Kähler. Then, for every relatively compact open set $B \subset V$, the following assertions hold.
(1) There is a strongly admissible map for B [Dinh-Sibony 2018]
(2) Let $m, m^{\prime} \in \mathbb{N}$ with $m \geq m^{\prime}$. Let T be a positive plurisubharmonic (resp. positive pluriharmonic, resp. positive closed) (p, p)-current on X which satisfies the following conditions (i)-(ii):

Existence of strongly admissible maps and approximability of SH , PH, CL-currents
Theorem 3 [Ng .2021]
Let X, V be as above. Assume that X is Kähler. Then, for every relatively compact open set $B \subset V$, the following assertions hold.
(1) There is a strongly admissible map for B [Dinh-Sibony 2018]
(2) Let $m, m^{\prime} \in \mathbb{N}$ with $m \geq m^{\prime}$. Let T be a positive plurisubharmonic (resp. positive pluriharmonic, resp. positive closed) (p, p)-current on X which satisfies the following conditions (i)-(ii):
(i) T is of class $\mathcal{C}^{m^{\prime}}$ near ∂B;
(ii) There is a relatively compact open subset Ω of X with $B \Subset \Omega$ and $d T$ is of class \mathcal{C}^{0} near $\partial \Omega$.

Existence of strongly admissible maps and approximability of SH , PH, CL-currents

Theorem 3 [Ng .2021]
Let X, V be as above. Assume that X is Kähler. Then, for every relatively compact open set $B \subset V$, the following assertions hold.
(1) There is a strongly admissible map for B [Dinh-Sibony 2018]
(2) Let $m, m^{\prime} \in \mathbb{N}$ with $m \geq m^{\prime}$. Let T be a positive plurisubharmonic (resp. positive pluriharmonic, resp. positive closed) (p, p)-current on X which satisfies the following conditions (i)-(ii):
(i) T is of class $\mathcal{C}^{m^{\prime}}$ near ∂B;
(ii) There is a relatively compact open subset Ω of X with $B \Subset \Omega$ and $d T$ is of class \mathcal{C}^{0} near $\partial \Omega$.
Then T can be written in an open neighborhood of \bar{B} in X as $T=T^{+}-T^{-}$for some $T^{ \pm} \in \mathrm{SH}^{p ; m, m^{\prime}}(B)$ (resp. $\left.T^{ \pm} \in \mathrm{PH}^{p ; m, m^{\prime}}(\bar{B}), T^{ \pm} \in \mathrm{CL}^{p ; m, m^{\prime}}(B)\right)$.
4. Lelong-Jensen formula for holomorphic vector bundle [Ng. 2021]
4. Lelong-Jensen formula for holomorphic vector bundle [Ng. 2021]

Let V be a complex manifold of dimension I. Let \mathbb{E} be a holomorphic bundle of rank $k-l$ over V. So \mathbb{E} is a complex manifold of dimension k. Denote by $\pi: \mathbb{E} \rightarrow V$ the canonical projection. Let B be a relatively compact open set of V with piecewice \mathcal{C}^{2}-smooth boundary. Let \mathbb{U} be an open neighborhood of \bar{B} in \mathbb{E}.
4. Lelong-Jensen formula for holomorphic vector bundle [Ng. 2021]

Let V be a complex manifold of dimension I. Let \mathbb{E} be a holomorphic bundle of rank $k-l$ over V. So \mathbb{E} is a complex manifold of dimension k. Denote by $\pi: \mathbb{E} \rightarrow V$ the canonical projection. Let B be a relatively compact open set of V with piecewice \mathfrak{C}^{2}-smooth boundary. Let \mathbb{U} be an open neighborhood of \bar{B} in \mathbb{E}. Let $\mathbf{r} \in \mathbb{R}_{*}^{+} \cup\{\infty\}$ and $0 \leq r_{0}<\mathbf{r}$. Let $\varphi: \mathbb{U} \rightarrow[0, \infty)$ be a \mathcal{C}^{2}-smooth function such that

- $\varphi(y)=r_{0}^{2}$ for $y \in \mathbb{U} \cap V$ and $\varphi(y)>r_{0}^{2}$ for $y \in \mathbb{U} \backslash V$;
- for every $r \in\left(r_{0}, \mathbf{r}\right]$, the set $\left\{y \in \mathbb{U}: \varphi(y)=r^{2}\right\}$ is a connected nonsingular real hypersurface of \mathbb{U} which intersects the real hypersurface $\pi^{-1}(\partial B) \subset \mathbb{E}$ transversally.

4. Lelong-Jensen formula for holomorphic vector bundle [Ng. 2021]

Let V be a complex manifold of dimension I. Let \mathbb{E} be a holomorphic bundle of rank $k-l$ over V. So \mathbb{E} is a complex manifold of dimension k. Denote by $\pi: \mathbb{E} \rightarrow V$ the canonical projection. Let B be a relatively compact open set of V with piecewice \mathfrak{C}^{2}-smooth boundary. Let \mathbb{U} be an open neighborhood of \bar{B} in \mathbb{E}. Let $\mathbf{r} \in \mathbb{R}_{*}^{+} \cup\{\infty\}$ and $0 \leq r_{0}<\mathbf{r}$. Let $\varphi: \mathbb{U} \rightarrow[0, \infty)$ be a \mathcal{C}^{2}-smooth function such that

- $\varphi(y)=r_{0}^{2}$ for $y \in \mathbb{U} \cap V$ and $\varphi(y)>r_{0}^{2}$ for $y \in \mathbb{U} \backslash V$;
- for every $r \in\left(r_{0}, \mathbf{r}\right]$, the set $\left\{y \in \mathbb{U}: \varphi(y)=r^{2}\right\}$ is a connected nonsingular real hypersurface of \mathbb{U} which intersects the real hypersurface $\pi^{-1}(\partial B) \subset \mathbb{E}$ transversally.
Consider also the following closed (1,1)-forms on \mathbb{U}

$$
\begin{equation*}
\alpha:=d d^{c} \log \varphi \quad \text { and } \quad \beta:=d d^{c} \varphi \tag{7}
\end{equation*}
$$

Let $r>0$ and $B \Subset V$ an open set. Consider the following tube with base B and radius r
(8)

$$
\text { Tube }(B, r):=\left\{y \in \mathbb{E}: \varphi(y)<r^{2}\right\} .
$$

Let $r>0$ and $B \Subset V$ an open set. Consider the following tube with base B and radius r

$$
\begin{equation*}
\text { Tube }(B, r):=\left\{y \in \mathbb{E}: \varphi(y)<r^{2}\right\} . \tag{8}
\end{equation*}
$$

For all $r_{0} \leq r<s \leq \mathbf{r}$, define
(9) $\operatorname{Tube}(B, r, s):=\left\{y \in \mathbb{E}: \pi(y) \in B \quad\right.$ and $\left.\quad r^{2}<\varphi(y)<s^{2}\right\}$.

Let $r>0$ and $B \Subset V$ an open set. Consider the following tube with base B and radius r

$$
\begin{equation*}
\operatorname{Tube}(B, r):=\left\{y \in \mathbb{E}: \varphi(y)<r^{2}\right\} . \tag{8}
\end{equation*}
$$

For all $r_{0} \leq r<s \leq \mathbf{r}$, define
(9) Tube $(B, r, s):=\left\{y \in \mathbb{E}: \pi(y) \in B \quad\right.$ and $\left.\quad r^{2}<\varphi(y)<s^{2}\right\}$.

Note that the boundary $\partial \operatorname{Tube}(B, r)$ can be decomposed as the disjoint union of the vertical boundary $\partial_{\mathrm{ver}} \operatorname{Tube}(B, r)$ and the horizontal boundary $\partial_{\text {hor }} \operatorname{Tube}(B, r)$, where

$$
\begin{aligned}
& \partial_{\mathrm{ver}} \operatorname{Tube}(B, r):=\left\{y \in \mathbb{E}: \pi(y) \in \partial B \quad \text { and } \quad \varphi(y) \leq r^{2}\right\}, \\
& \partial_{\mathrm{hor}} \operatorname{Tube}(B, r):=\left\{y \in \mathbb{E}: \pi(y) \in B \quad \text { and } \quad \varphi(y)=r^{2}\right\} .
\end{aligned}
$$

Under the above assumption on φ, we see that $\operatorname{Tube}(B, r)$ is a manifold with piecewise \mathcal{C}^{2}-smooth boundary for every $r \in\left[r_{0}, \mathbf{r}\right]$. When $\partial B=\varnothing$, we have $\partial_{\mathrm{ver}} \operatorname{Tube}(B, r)=\varnothing$.

Figure: Illustrations of a Tube Tube (B, r) with base B and radius r, its horizontal boundary ∂_{hor} Tube (B, r) and its vertical boundary ∂_{ver} Tube (B, r).

Theorem 4 [Ng. 2021]

Theorem 4 [Ng. 2021]

Let $r \in\left(r_{0}, r\right]$ and $B \Subset V$ a relatively compact open set with piecewice \mathcal{C}^{2}-smooth boundary. Let S be a real current of dimension $2 q$ and of order 0 on a neighborhood of $\overline{\operatorname{Tube}}(B, r)$ such that S is suitably approximable by \mathcal{C}^{2}-smooth forms. Then, for all $r_{1}, r_{2} \in\left(r_{0}, r\right]$ with $r_{1}<r_{2}$ except for a countable set of values, we have that

Theorem 4 [Ng .2021]

Let $r \in\left(r_{0}, r\right]$ and $B \Subset V$ a relatively compact open set with piecewice \mathcal{C}^{2}-smooth boundary. Let S be a real current of dimension $2 q$ and of order 0 on a neighborhood of $\overline{\text { Tube }}(B, r)$ such that S is suitably approximable by \mathcal{C}^{2}-smooth forms. Then, for all $r_{1}, r_{2} \in\left(r_{0}, r\right]$ with $r_{1}<r_{2}$ except for a countable set of values, we have that

$$
\begin{aligned}
& \frac{1}{r_{2}^{2 q}} \int_{\text {Tube }\left(B, r_{2}\right)} S \wedge \beta^{q}-\frac{1}{r_{1}^{2 q}} \int_{\text {Tube }\left(B, r_{1}\right)} S \wedge \beta^{q}=\mathcal{V}\left(S, r_{1}, r_{2}\right) \\
& +\int_{\operatorname{Tube}\left(B, r_{1}, r_{2}\right)} S \wedge \alpha^{q}
\end{aligned}+\int_{r_{1}}^{r_{2}}\left(\frac{1}{t^{2 q}}-\frac{1}{r_{2}^{2 q}}\right) 2 t d t \int_{\operatorname{Tube}(B, t)} d d^{c} S \wedge \beta^{q-1} .
$$

Here the vertical boundary term $\mathcal{V}\left(S, r_{1}, r_{2}\right)$ is given by the following formula where S^{\sharp} denotes the component of bidimension (q, q) of the current S :

Here the vertical boundary term $\mathcal{V}\left(S, r_{1}, r_{2}\right)$ is given by the following formula where S^{\sharp} denotes the component of bidimension (q, q) of the current S :

$$
\begin{aligned}
& \mathcal{V}\left(S, r_{1}, r_{2}\right):=-\int_{r_{1}}^{r_{2}}\left(\frac{1}{t^{2 q}}-\frac{1}{r_{2}^{2 q}}\right) 2 t d t \int_{\partial_{\mathrm{ver}} \operatorname{Tube}(B, t)} d^{c} S^{\sharp} \wedge \beta^{q-1} \\
&-\left(\frac{1}{r_{1}^{2 q}}-\frac{1}{r_{2}^{2 q}}\right) \int_{r_{0}}^{r_{1}} 2 t d t \int_{\partial_{\mathrm{ver}} \operatorname{Tube}(B, t)} d^{c} S^{\sharp} \wedge \beta^{q-1} \\
&+\frac{1}{r_{2}^{2 q}} \int_{\partial_{\mathrm{ver}} \operatorname{Tube}\left(B, r_{2}\right)} d^{c} \varphi \wedge S^{\sharp} \wedge \beta^{q-1}-\frac{1}{r_{1}^{2 q}} \int_{\partial_{\mathrm{ver}} \operatorname{Tube}\left(B, r_{1}\right)} d^{c} \varphi \wedge S^{\sharp} \wedge \beta^{q-1} \\
&-\int_{\partial_{\mathrm{ver}} \operatorname{Tube}\left(B, r_{1}, r_{2}\right)} d^{c} \log \varphi \wedge S^{\sharp} \wedge \alpha^{q-1} .
\end{aligned}
$$

Remarks
 The vertical boundary term $\mathcal{V}\left(S, r_{1}, r_{2}\right)$ vanishes

Remarks
The vertical boundary term $\mathcal{V}\left(S, r_{1}, r_{2}\right)$ vanishes

- The classical Lelong-Jensen formula correponds to the particular context: $V=\{$ a single point $\}, \mathbb{E}=\mathbb{C}^{k}, \varphi:=\|\cdot\|^{2}$

Remarks

The vertical boundary term $\mathcal{V}\left(S, r_{1}, r_{2}\right)$ vanishes

- The classical Lelong-Jensen formula correponds to the particular context: $V=\{$ a single point $\}, \mathbb{E}=\mathbb{C}^{k}, \varphi:=\|\cdot\|^{2}$
- in the context of [Alessandrini-Bassanelli 1996] for top degree: $V=B \subset \mathbb{C}^{\prime}, \mathbb{E}=V \times \mathbb{C}^{k-1}, p<k-I$, write $y=(z, w) \in \mathbb{C}^{\prime} \times \mathbb{C}^{k-1}, \varphi(z)=\|w\|^{2}$ Euclidean metric on \mathbb{C}^{k-1}, S is full in bidegree $\{d w, d \bar{w}\}$. This assumption of fullness is essential for their method.

5. Sketchy proof of Tangent Theorem I for the case $\omega^{(j)}:=\omega^{j}$:

5. Sketchy proof of Tangent Theorem I for the case $\omega^{(j)}:=\omega^{j}$:

- Initial idea:
- We apply the Lelong-Jensen formulas for vector bundles to the currents $S:=\tau_{*} T \wedge \pi^{*}\left(\omega^{j}\right)$ for $\underline{m} \leq j \leq \overline{\mathrm{m}}$
- We use the closedness and the positivity (when possible) of the basic $(1,1)$-forms $\pi^{*} \omega, \alpha$ and β on \mathbb{E}

5. Sketchy proof of Tangent Theorem I for the case $\omega^{(j)}:=\omega^{j}$:

- Initial idea:
- We apply the Lelong-Jensen formulas for vector bundles to the currents $S:=\tau_{*} T \wedge \pi^{*}\left(\omega^{j}\right)$ for $\underline{m} \leq j \leq \bar{m}$
- We use the closedness and the positivity (when possible) of the basic $(1,1)$-forms $\pi^{*} \omega, \alpha$ and β on \mathbb{E}
- Initital difficulty:
(1) Since τ is not holomorphic, $d d^{c}\left(\tau_{*} T\right) \neq \tau_{*}\left(d d^{c} T\right)$.
(2) Both α and β are in general not positive.
(3) We need to control the boundary vertical terms appearing in the Lelong-Jensen formulas for vector bundles

- Next idea:

- Next idea:

(1) Since τ is strongly admissible, we develop a technique which permits us to control $\left\langle d d^{c}\left(\tau_{*} T\right)-\tau_{*}\left(d d^{c} T\right), \Phi\right\rangle$ efficiently. Here, Φ is a test form built from $\alpha, \beta, \pi^{*} \omega$.

- Next idea:

(1) Since τ is strongly admissible, we develop a technique which permits us to control $\left\langle d d^{c}\left(\tau_{*} T\right)-\tau_{*}\left(d d^{c} T\right), \Phi\right\rangle$ efficiently. Here, Φ is a test form built from $\alpha, \beta, \pi^{*} \omega$.
(2) We localize the problem using a finite collection of holomorphic admissible maps $\tau_{\ell}: U_{\ell} \rightarrow \mathbb{U}_{\ell}=\tau_{\ell}\left(U_{\ell}\right)$ for $1 \leq \ell \leq \ell_{0}$. Here, $\left(U_{\ell}\right)$ is a finite open cover of U.

- Next idea:

(1) Since τ is strongly admissible, we develop a technique which permits us to control $\left\langle d d^{c}\left(\tau_{*} T\right)-\tau_{*}\left(d d^{c} T\right), \Phi\right\rangle$ efficiently. Here, Φ is a test form built from $\alpha, \beta, \pi^{*} \omega$.
(2) We localize the problem using a finite collection of holomorphic admissible maps $\tau_{\ell}: U_{\ell} \rightarrow \mathbb{U}_{\ell}=\tau_{\ell}\left(U_{\ell}\right)$ for $1 \leq \ell \leq \ell_{0}$. Here, $\left(U_{\ell}\right)$ is a finite open cover of U.
(3) $\hat{\alpha}^{\prime}:=\alpha+c \pi^{*} \omega$ and $\hat{\beta}:=\beta+c \varphi \pi^{*} \omega$ are positive near the zero section V in \mathbb{E}.

- Next idea:

(1) Since τ is strongly admissible, we develop a technique which permits us to control $\left\langle d d^{c}\left(\tau_{*} T\right)-\tau_{*}\left(d d^{c} T\right), \Phi\right\rangle$ efficiently. Here, Φ is a test form built from $\alpha, \beta, \pi^{*} \omega$.
(2) We localize the problem using a finite collection of holomorphic admissible maps $\tau_{\ell}: U_{\ell} \rightarrow \mathbb{U}_{\ell}=\tau_{\ell}\left(U_{\ell}\right)$ for $1 \leq \ell \leq \ell_{0}$. Here, $\left(U_{\ell}\right)$ is a finite open cover of U.
(3) $\hat{\alpha}^{\prime}:=\alpha+c \pi^{*} \omega$ and $\hat{\beta}:=\beta+c \varphi \pi^{*} \omega$ are positive near the zero section V in \mathbb{E}.
(9) We impose a uniform boundedness of \mathcal{C}^{3}-norms of the approximating forms $T_{n}^{ \pm}$for $T^{ \pm}$. Recall that $T=T^{+}-T^{-}$.

- Next idea:

(1) Since τ is strongly admissible, we develop a technique which permits us to control $\left\langle d d^{c}\left(\tau_{*} T\right)-\tau_{*}\left(d d^{c} T\right), \Phi\right\rangle$ efficiently. Here, Φ is a test form built from $\alpha, \beta, \pi^{*} \omega$.
(2) We localize the problem using a finite collection of holomorphic admissible maps $\tau_{\ell}: U_{\ell} \rightarrow \mathbb{U}_{\ell}=\tau_{\ell}\left(U_{\ell}\right)$ for $1 \leq \ell \leq \ell_{0}$. Here, $\left(U_{\ell}\right)$ is a finite open cover of U.
(3) $\hat{\alpha}^{\prime}:=\alpha+c \pi^{*} \omega$ and $\hat{\beta}:=\beta+c \varphi \pi^{*} \omega$ are positive near the zero section V in \mathbb{E}.
(9) We impose a uniform boundedness of \mathcal{C}^{3}-norms of the approximating forms $T_{n}^{ \pm}$for $T^{ \pm}$. Recall that $T=T^{+}-T^{-}$.

- Next difficulty: We need to have some positivity of $\tau^{*}\left(\hat{\alpha}^{\prime}\right), \tau^{*}(\hat{\beta})$ and $\tau^{*}\left(\pi^{*} \omega\right)$. Observe that these 2 -forms are in general not of bidegree $(1,1)$.

- Next idea:

(1) Since τ is strongly admissible, we develop a technique which permits us to control $\left\langle d d^{c}\left(\tau_{*} T\right)-\tau_{*}\left(d d^{c} T\right), \Phi\right\rangle$ efficiently. Here, Φ is a test form built from $\alpha, \beta, \pi^{*} \omega$.
(2) We localize the problem using a finite collection of holomorphic admissible maps $\tau_{\ell}: U_{\ell} \rightarrow \mathbb{U}_{\ell}=\tau_{\ell}\left(U_{\ell}\right)$ for $1 \leq \ell \leq \ell_{0}$. Here, $\left(U_{\ell}\right)$ is a finite open cover of U.
(3) $\hat{\alpha}^{\prime}:=\alpha+c \pi^{*} \omega$ and $\hat{\beta}:=\beta+c \varphi \pi^{*} \omega$ are positive near the zero section V in \mathbb{E}.
(9) We impose a uniform boundedness of \mathcal{C}^{3}-norms of the approximating forms $T_{n}^{ \pm}$for $T^{ \pm}$. Recall that $T=T^{+}-T^{-}$.

- Next difficulty: We need to have some positivity of $\tau^{*}\left(\hat{\alpha}^{\prime}\right), \tau^{*}(\hat{\beta})$ and $\tau^{*}\left(\pi^{*} \omega\right)$. Observe that these 2 -forms are in general not of bidegree $(1,1)$.

- Final idea:

We develop a technique to control the positivity of the main parts of $\tilde{\tau}_{\ell}^{*}\left(\hat{\alpha}^{\prime}\right), \tilde{\tau}_{\ell}^{*}(\hat{\beta})$ and $\tilde{\tau}_{\ell}^{*}\left(\pi^{*} \omega\right)$. We make an essential use of the strong admissibility of τ. Here, $\tilde{\tau}_{\ell}:=\tau \circ \tau_{\ell}^{-1}: \mathbb{U}_{\ell} \rightarrow \tau\left(U_{\ell}\right)$.

6. Horizontal dimension and Siu's upper-semicontinuity

6. Horizontal dimension and Siu's upper-semicontinuity

Let $T \in \mathrm{CL}^{p}(X),(X, \omega)$ Kähler, $\operatorname{supp}(T) \cap V$ is compact. Let T_{∞} be a tangent current to T along V, that is, $T_{\infty}=\lim _{n \rightarrow \infty} T_{\lambda_{n}}$ for some $\left(\lambda_{n}\right) \nearrow \infty$, where $T_{\lambda}:=\left(A_{\lambda}\right)_{*} \tau_{*}(T)$. Recall that $\overline{\mathrm{m}}:=\min (I, k-p)$ and $\underline{\mathrm{m}}:=\max (0, I-p)$.

6. Horizontal dimension and Siu's upper-semicontinuity

 Let $T \in \mathrm{CL}^{p}(X),(X, \omega)$ Kähler, $\operatorname{supp}(T) \cap V$ is compact. Let T_{∞} be a tangent current to T along V, that is, $T_{\infty}=\lim _{n \rightarrow \infty} T_{\lambda_{n}}$ for some $\left(\lambda_{n}\right) \nearrow \infty$, where $T_{\lambda}:=\left(A_{\lambda}\right)_{*} \tau_{*}(T)$. Recall that $\overline{\mathrm{m}}:=\min (I, k-p)$ and $\underline{\mathrm{m}}:=\max (0, I-p)$.Definition. The horizontal dimension \hbar of T along V is the largest integer $j \in[\underline{\mathrm{~m}}, \overline{\mathrm{~m}}]$ such that $T_{\infty} \wedge \pi^{*} \omega^{j} \neq 0$ if it exists, otherwise $\hbar:=\underline{\mathrm{m}}$.

6. Horizontal dimension and Siu's upper-semicontinuity

 Let $T \in \mathrm{CL}^{p}(X),(X, \omega)$ Kähler, $\operatorname{supp}(T) \cap V$ is compact. Let T_{∞} be a tangent current to T along V, that is, $T_{\infty}=\lim _{n \rightarrow \infty} T_{\lambda_{n}}$ for some $\left(\lambda_{n}\right) \nearrow \infty$, where $T_{\lambda}:=\left(A_{\lambda}\right)_{*} \tau_{*}(T)$. Recall that $\overline{\mathrm{m}}:=\min (I, k-p)$ and $\underline{\mathrm{m}}:=\max (0, I-p)$.Definition. The horizontal dimension \hbar of T along V is the largest integer $j \in[\underline{\mathrm{~m}}, \overline{\mathrm{~m}}]$ such that $T_{\infty} \wedge \pi^{*} \omega^{j} \neq 0$ if it exists, otherwise $\hbar:=\underline{\mathrm{m}}$. Theorem [Dinh-Sibony 2018]
Let T be as above. Then:

6. Horizontal dimension and Siu's upper-semicontinuity

 Let $T \in \mathrm{CL}^{p}(X),(X, \omega)$ Kähler, $\operatorname{supp}(T) \cap V$ is compact. Let T_{∞} be a tangent current to T along V, that is, $T_{\infty}=\lim _{n \rightarrow \infty} T_{\lambda_{n}}$ for some $\left(\lambda_{n}\right) \nearrow \infty$, where $T_{\lambda}:=\left(A_{\lambda}\right)_{*} \tau_{*}(T)$. Recall that $\overline{\mathrm{m}}:=\min (I, k-p)$ and $\underline{\mathrm{m}}:=\max (0, I-p)$.Definition. The horizontal dimension \hbar of T along V is the largest integer $j \in[\underline{\mathrm{~m}}, \overline{\mathrm{~m}}]$ such that $T_{\infty} \wedge \pi^{*} \omega^{j} \neq 0$ if it exists, otherwise $\hbar:=\underline{\mathrm{m}}$. Theorem [Dinh-Sibony 2018] Let T be as above. Then:

- The horizontal dimension \hbar of T along V is also the largest integer $j \in[\underline{\mathrm{~m}}, \overline{\mathrm{~m}}]$ such that $\mathbf{c}_{j}^{\mathrm{DS}}(T) \neq 0$ if it exists, otherwise $\hbar:=\underline{\mathrm{m}}$.

6. Horizontal dimension and Siu's upper-semicontinuity

 Let $T \in \mathrm{CL}^{p}(X),(X, \omega)$ Kähler, $\operatorname{supp}(T) \cap V$ is compact. Let T_{∞} be a tangent current to T along V, that is, $T_{\infty}=\lim _{n \rightarrow \infty} T_{\lambda_{n}}$ for some $\left(\lambda_{n}\right) \nearrow \infty$, where $T_{\lambda}:=\left(A_{\lambda}\right)_{*} \tau_{*}(T)$. Recall that $\overline{\mathrm{m}}:=\min (I, k-p)$ and $\underline{m}:=\max (0, I-p)$.Definition. The horizontal dimension \hbar of T along V is the largest integer $j \in[\underline{\mathrm{~m}}, \overline{\mathrm{~m}}]$ such that $T_{\infty} \wedge \pi^{*} \omega^{j} \neq 0$ if it exists, otherwise $\hbar:=\underline{\mathrm{m}}$. Theorem [Dinh-Sibony 2018] Let T be as above. Then:

- The horizontal dimension \hbar of T along V is also the largest integer $j \in[\underline{\mathrm{~m}}, \overline{\mathrm{~m}}]$ such that $\mathbf{c}_{j}^{\mathrm{DS}}(T) \neq 0$ if it exists, otherwise $\hbar:=\underline{\mathrm{m}}$.
- Let $T_{n}, T \in \mathrm{CL}^{p}(X), T_{n} \rightarrow T$. Let \hbar be the horizontal dimension of T along V. Then
(1) If $j>\hbar$, then $\mathbf{c}_{j}^{\mathrm{DS}}\left(T_{n}\right) \rightarrow 0$.
(2) If \mathbf{c}_{\hbar} is a limit class of $\mathbf{c}_{\hbar}^{\mathrm{DS}}\left(T_{n}\right)$, then \mathbf{c}_{\hbar} and $\mathbf{c}_{\hbar}^{\mathrm{DS}}(T)-\mathbf{c}_{\hbar}$ are pseudo-effective.

Let $T \in \mathrm{SH}^{p ; 3,3}(B),(V, \omega)$ Kähler. Let T_{∞} be a tangent current to T along V, that is, $T_{\infty}=\lim _{n \rightarrow \infty} T_{\lambda_{n}}$ for some $\left(\lambda_{n}\right) \nearrow \infty$, where $T_{\lambda}:=\left(A_{\lambda}\right)_{*} \tau_{*}(T)$. By Theorem 1, $T_{\infty} \wedge \pi^{*} \omega \underline{\underline{\mathrm{~m}}}$ is V-conic pluriharmonic.

Let $T \in \mathrm{SH}^{p ; 3,3}(B),(V, \omega)$ Kähler. Let T_{∞} be a tangent current to T along V, that is, $T_{\infty}=\lim _{n \rightarrow \infty} T_{\lambda_{n}}$ for some $\left(\lambda_{n}\right) \nearrow \infty$, where $T_{\lambda}:=\left(A_{\lambda}\right)_{*} \tau_{*}(T)$. By Theorem 1, $T_{\infty} \wedge \pi^{*} \omega^{\underline{\mathrm{m}}}$ is V-conic pluriharmonic. Definition. The horizontal dimension \hbar of T along V is the largest integer $j \in[\underline{m}, \bar{m}]$ such that $T_{\infty} \wedge \pi^{*} \omega^{j} \neq 0$ if it exists, otherwise $\hbar:=\underline{m}$.

Let $T \in \mathrm{SH}^{p ; 3,3}(B),(V, \omega)$ Kähler. Let T_{∞} be a tangent current to T along V, that is, $T_{\infty}=\lim _{n \rightarrow \infty} T_{\lambda_{n}}$ for some $\left(\lambda_{n}\right) \nearrow \infty$, where $T_{\lambda}:=\left(A_{\lambda}\right)_{*} \tau_{*}(T)$. By Theorem 1, $T_{\infty} \wedge \pi^{*} \omega^{\underline{\mathrm{m}}}$ is V-conic pluriharmonic. Definition. The horizontal dimension \hbar of T along V is the largest integer $j \in[\underline{\mathrm{~m}}, \overline{\mathrm{~m}}]$ such that $T_{\infty} \wedge \pi^{*} \omega^{j} \neq 0$ if it exists, otherwise $\hbar:=\underline{\mathrm{m}}$.

Theorem 5 [Ng .2023]
Let T be as above. Then:

Let $T \in \mathrm{SH}^{p ; 3,3}(B),(V, \omega)$ Kähler. Let T_{∞} be a tangent current to T along V, that is, $T_{\infty}=\lim _{n \rightarrow \infty} T_{\lambda_{n}}$ for some $\left(\lambda_{n}\right) \nearrow \infty$, where $T_{\lambda}:=\left(A_{\lambda}\right)_{*} \tau_{*}(T)$. By Theorem 1, $T_{\infty} \wedge \pi^{*} \omega \underline{\underline{m}}$ is V-conic pluriharmonic. Definition. The horizontal dimension \hbar of T along V is the largest integer $j \in[\underline{\mathrm{~m}}, \overline{\mathrm{~m}}]$ such that $T_{\infty} \wedge \pi^{*} \omega^{j} \neq 0$ if it exists, otherwise $\hbar:=\underline{\mathrm{m}}$.

Theorem 5 [Ng .2023]
Let T be as above. Then:

- The horizontal dimension \hbar of T along V is also the smallest integer $j \in[\underline{\mathrm{~m}}, \overline{\mathrm{~m}}]$ such that $\nu_{q}(T, B, \omega)=0$ for $j<q \leq \overline{\mathrm{m}}$.

Let $T \in \mathrm{SH}^{p ; 3,3}(B),(V, \omega)$ Kähler. Let T_{∞} be a tangent current to T along V, that is, $T_{\infty}=\lim _{n \rightarrow \infty} T_{\lambda_{n}}$ for some $\left(\lambda_{n}\right) \nearrow \infty$, where $T_{\lambda}:=\left(A_{\lambda}\right)_{*} \tau_{*}(T)$. By Theorem 1, $T_{\infty} \wedge \pi^{*} \omega \underline{\underline{m}}$ is V-conic pluriharmonic. Definition. The horizontal dimension \hbar of T along V is the largest integer $j \in[\underline{\mathrm{~m}}, \overline{\mathrm{~m}}]$ such that $T_{\infty} \wedge \pi^{*} \omega^{j} \neq 0$ if it exists, otherwise $\hbar:=\underline{\mathrm{m}}$.

Theorem 5 [Ng .2023]
Let T be as above. Then:

- The horizontal dimension \hbar of T along V is also the smallest integer $j \in[\underline{\mathrm{~m}}, \overline{\mathrm{~m}}]$ such that $\nu_{q}(T, B, \omega)=0$ for $j<q \leq \overline{\mathrm{m}}$.
- Let $T_{n}, T \in \mathrm{SH}^{p ; 3,3}(B), T_{n} \rightarrow T$. Let \hbar be the horizontal dimension of T along V. Then
(1) If $j>\hbar$, then $\nu_{j}\left(T_{n}, B, \omega\right) \rightarrow 0$.
(2) $\lim \inf _{n \rightarrow \infty} \nu_{\hbar}\left(T_{n}, B, \omega\right) \geq 0$ and

$$
\nu_{\hbar}(T, B, \omega)-\lim \sup _{n \rightarrow \infty} \nu_{\hbar}\left(T_{n}, B, \omega\right) \geq 0
$$

7. Dinh-Sibony classes vs generalized Lelong numbers

7. Dinh-Sibony classes vs generalized Lelong numbers

 Theorem 6 [Ng. 2023]Let (X, ω) compact Kähler and $T \in \mathrm{CL}^{p}(X)$.
Recall that $\overline{\mathrm{m}}:=\min (I, k-p)$ and $\underline{\mathrm{m}}:=\max (0, I-p)$.
For $\underline{m} \leq j \leq \bar{m}$, let $\omega^{(j)}$ be a closed smooth (j, j)-form on V_{0}, e.g. $\omega^{(j)}=\omega^{j} \mid v_{0}$.

7. Dinh-Sibony classes vs generalized Lelong numbers

Theorem 6 [Ng. 2023]

Let (X, ω) compact Kähler and $T \in \operatorname{CL}^{p}(X)$.
Recall that $\overline{\mathrm{m}}:=\min (I, k-p)$ and $\underline{\mathrm{m}}:=\max (0, I-p)$.
For $\underline{m} \leq j \leq \bar{m}$, let $\omega^{(j)}$ be a closed smooth (j, j)-form on V_{0}, e.g.
$\omega^{(j)}=\omega^{j} \mid v_{0}$.
Then:

$$
\nu\left(T, V, \omega^{(j)}\right)=\mathbf{c}_{j}^{\mathrm{DS}}(T) \smile\left\{\omega^{(j)}\right\}, \quad \forall \underline{\mathrm{m}} \leq j \leq \overline{\mathrm{m}} .
$$

7. Dinh-Sibony classes vs generalized Lelong numbers

Theorem 6 [Ng. 2023]

Let (X, ω) compact Kähler and $T \in \mathrm{CL}^{p}(X)$.
Recall that $\overline{\mathrm{m}}:=\min (I, k-p)$ and $\underline{\mathrm{m}}:=\max (0, I-p)$.
For $\underline{\mathrm{m}} \leq j \leq \overline{\mathrm{m}}$, let $\omega^{(j)}$ be a closed smooth (j, j)-form on V_{0}, e.g.
$\omega^{(j)}=\omega^{j} \mid v_{0}$.
Then:

$$
\nu\left(T, V, \omega^{(j)}\right)=\mathbf{c}_{j}^{\mathrm{DS}}(T) \smile\left\{\omega^{(j)}\right\}, \quad \forall \underline{\mathrm{m}} \leq j \leq \overline{\mathrm{m}} .
$$

Corollary 7 [Ng. 2023]
In the context of Dinh-Sibony, knowing Dinh-Sibony cohomology classes of T is equivalent to knowing the generalized Lelong numbers of T. Indeed, we use, for $\underline{\mathrm{m}} \leq j \leq \overline{\mathrm{m}}$, several forms $\omega_{s}^{(j)}$ such that the classes $\left\{\omega_{s}^{(j)}\right\}^{\prime}$ s span $H^{j, j}(V)$.

8. Intersection theory and an effective criterion

Let (X, ω) compact Kähler and $T_{j} \in \mathrm{CL}^{p_{j}}(X)$ for $1 \leq j \leq m$ with $p:=p_{1}+\ldots+p_{m} \leq k=\operatorname{dim}(X)$.
Consider $\mathbb{T}:=T_{1} \otimes \ldots \otimes T_{m} \in \mathrm{CL}^{p}\left(X^{m}\right)$.
Let $\Delta:=\{(x, \ldots, x): x \in X\}$ be the diagonal of X^{m}.
Let $\pi: \mathbb{E} \rightarrow \Delta$ be the normal bundle to Δ in X^{m}

8. Intersection theory and an effective criterion

Let (X, ω) compact Kähler and $T_{j} \in \mathrm{CL}^{p_{j}}(X)$ for $1 \leq j \leq m$ with $p:=p_{1}+\ldots+p_{m} \leq k=\operatorname{dim}(X)$.
Consider $\mathbb{T}:=T_{1} \otimes \ldots \otimes T_{m} \in \mathrm{CL}^{p}\left(X^{m}\right)$.
Let $\Delta:=\{(x, \ldots, x): x \in X\}$ be the diagonal of X^{m}.
Let $\pi: \mathbb{E} \rightarrow \Delta$ be the normal bundle to Δ in X^{m}
Theorem [Dinh-Sibony 2018]
Suppose that
(1) There exists a unique tangent current \mathbb{T}_{∞} to \mathbb{T} along Δ;
(2) The horizontal dimension of \mathbb{T} along Δ is minimal, i.e. $\hbar=k-p$.

Then there exists a unique $S \in \mathrm{CL}^{p}(\Delta)$ such that $\mathbb{T}_{\infty}=\pi^{*} S$.

8. Intersection theory and an effective criterion

Let (X, ω) compact Kähler and $T_{j} \in \mathrm{CL}^{p_{j}}(X)$ for $1 \leq j \leq m$ with $p:=p_{1}+\ldots+p_{m} \leq k=\operatorname{dim}(X)$.
Consider $\mathbb{T}:=T_{1} \otimes \ldots \otimes T_{m} \in \mathrm{CL}^{p}\left(X^{m}\right)$.
Let $\Delta:=\{(x, \ldots, x): x \in X\}$ be the diagonal of X^{m}.
Let $\pi: \mathbb{E} \rightarrow \Delta$ be the normal bundle to Δ in X^{m}
Theorem [Dinh-Sibony 2018]
Suppose that
(1) There exists a unique tangent current \mathbb{T}_{∞} to \mathbb{T} along Δ;
(2) The horizontal dimension of \mathbb{T} along Δ is minimal, i.e. $\hbar=k-p$.

Then there exists a unique $S \in \mathrm{CL}^{p}(\Delta)$ such that $\mathbb{T}_{\infty}=\pi^{*} S$. Remarks.

8. Intersection theory and an effective criterion

Let (X, ω) compact Kähler and $T_{j} \in \mathrm{CL}^{p_{j}}(X)$ for $1 \leq j \leq m$ with $p:=p_{1}+\ldots+p_{m} \leq k=\operatorname{dim}(X)$.
Consider $\mathbb{T}:=T_{1} \otimes \ldots \otimes T_{m} \in \mathrm{CL}^{p}\left(X^{m}\right)$.
Let $\Delta:=\{(x, \ldots, x): x \in X\}$ be the diagonal of X^{m}.
Let $\pi: \mathbb{E} \rightarrow \Delta$ be the normal bundle to Δ in X^{m}
Theorem [Dinh-Sibony 2018]
Suppose that
(1) There exists a unique tangent current \mathbb{T}_{∞} to \mathbb{T} along Δ;
(2) The horizontal dimension of \mathbb{T} along Δ is minimal, i.e. $\hbar=k-p$.

Then there exists a unique $S \in \mathrm{CL}^{p}(\Delta)$ such that $\mathbb{T}_{\infty}=\pi^{*} S$. Remarks.

- Identifying Δ to X, [Dinh-Sibony 2018] define $T_{1} \curlywedge \ldots \curlywedge T_{m}:=S$.

8. Intersection theory and an effective criterion

Let (X, ω) compact Kähler and $T_{j} \in \mathrm{CL}^{p_{j}}(X)$ for $1 \leq j \leq m$ with $p:=p_{1}+\ldots+p_{m} \leq k=\operatorname{dim}(X)$.
Consider $\mathbb{T}:=T_{1} \otimes \ldots \otimes T_{m} \in \mathrm{CL}^{p}\left(X^{m}\right)$.
Let $\Delta:=\{(x, \ldots, x): x \in X\}$ be the diagonal of X^{m}.
Let $\pi: \mathbb{E} \rightarrow \Delta$ be the normal bundle to Δ in X^{m}
Theorem [Dinh-Sibony 2018]
Suppose that
(1) There exists a unique tangent current \mathbb{T}_{∞} to \mathbb{T} along Δ;
(2) The horizontal dimension of \mathbb{T} along Δ is minimal, i.e. $\hbar=k-p$.

Then there exists a unique $S \in \mathrm{CL}^{p}(\Delta)$ such that $\mathbb{T}_{\infty}=\pi^{*} S$.
Remarks.

- Identifying Δ to X, [Dinh-Sibony 2018] define $T_{1} \curlywedge \ldots \curlywedge T_{m}:=S$.
- Classical wedge-product of (1,1)-currents: [Bedford-Taylor 1987], [Fornæss-Sibony 1995], [Demailly 1990s] etc. More recent ones: [Dinh-Sibony 2009, 2010], algebraic flavor [Andersson-Wulcan 2014].

8. Intersection theory and an effective criterion

Let (X, ω) compact Kähler and $T_{j} \in \mathrm{CL}^{p_{j}}(X)$ for $1 \leq j \leq m$ with $p:=p_{1}+\ldots+p_{m} \leq k=\operatorname{dim}(X)$.
Consider $\mathbb{T}:=T_{1} \otimes \ldots \otimes T_{m} \in \operatorname{CL}^{p}\left(X^{m}\right)$.
Let $\Delta:=\{(x, \ldots, x): x \in X\}$ be the diagonal of X^{m}.
Let $\pi: \mathbb{E} \rightarrow \Delta$ be the normal bundle to Δ in X^{m}
Theorem [Dinh-Sibony 2018]
Suppose that
(1) There exists a unique tangent current \mathbb{T}_{∞} to \mathbb{T} along Δ;
(2) The horizontal dimension of \mathbb{T} along Δ is minimal, i.e. $\hbar=k-p$.

Then there exists a unique $S \in \mathrm{CL}^{p}(\Delta)$ such that $\mathbb{T}_{\infty}=\pi^{*} S$.
Remarks.

- Identifying Δ to X, [Dinh-Sibony 2018] define $T_{1} \curlywedge \ldots \curlywedge T_{m}:=S$.
- Classical wedge-product of (1,1)-currents: [Bedford-Taylor 1987], [Fornæss-Sibony 1995], [Demailly 1990s] etc. More recent ones: [Dinh-Sibony 2009, 2010], algebraic flavor [Andersson-Wulcan 2014].
- [Huynh-Kaufmann-Vu 2019, 2023] prove that Dinh-Sibony wedge-product holds in many interesting situations,

Let h be a Hermitian metric on \mathbb{E}.
Let $\operatorname{dist}(\mathbf{x}, \Delta)$ be the distance from a point $\mathbf{x} \in X^{m}$ to Δ.
We may assume that $\operatorname{dist}(\cdot, \Delta) \leq 1 / 2$. So $-\log \operatorname{dist}(\cdot, \Delta) \cdot \mathbb{T}$ is a positive (p, p)-current on X^{m}.

Let h be a Hermitian metric on \mathbb{E}.
Let $\operatorname{dist}(\mathbf{x}, \Delta)$ be the distance from a point $\mathbf{x} \in X^{m}$ to Δ.
We may assume that $\operatorname{dist}(\cdot, \Delta) \leq 1 / 2$. So $-\log \operatorname{dist}(\cdot, \Delta) \cdot \mathbb{T}$ is a positive (p, p)-current on X^{m}.
Theorem 8 [Ng .2023]
Suppose that
(1) $\kappa_{j}^{\bullet}(-\log \operatorname{dist}(\cdot, \Delta) \cdot \mathbb{T}, \Delta, \boldsymbol{r}, h)<\infty$ for some $\boldsymbol{r}>0$ and for all $k-p \leq j \leq k-\max _{1 \leq i \leq m} p_{i} ;$
(2) $\nu_{j}(\mathbb{T}, \Delta)=0$ for all $k-p<j \leq k-\max _{1 \leq i \leq m} p_{i}$.

Then $T_{1} \curlywedge \ldots \curlywedge T_{m}$ exists in the sense of Dinh-Sibony. Remarks.

Let h be a Hermitian metric on \mathbb{E}.
Let $\operatorname{dist}(\mathbf{x}, \Delta)$ be the distance from a point $\mathbf{x} \in X^{m}$ to Δ.
We may assume that $\operatorname{dist}(\cdot, \Delta) \leq 1 / 2$. So $-\log \operatorname{dist}(\cdot, \Delta) \cdot \mathbb{T}$ is a positive (p, p)-current on X^{m}.
Theorem 8 [Ng .2023]
Suppose that
(1) $\kappa_{j}^{\bullet}(-\log \operatorname{dist}(\cdot, \Delta) \cdot \mathbb{T}, \Delta, \boldsymbol{r}, h)<\infty$ for some $\boldsymbol{r}>0$ and for all $k-p \leq j \leq k-\max _{1 \leq i \leq m} p_{i} ;$
(2) $\nu_{j}(\mathbb{T}, \Delta)=0$ for all $k-p<j \leq k-\max _{1 \leq i \leq m} p_{i}$.

Then $T_{1} \curlywedge \ldots \curlywedge T_{m}$ exists in the sense of Dinh-Sibony. Remarks.

- The assumption can be checked using a finite cover of Δ by local holomorphic charts.

Let h be a Hermitian metric on \mathbb{E}.
Let $\operatorname{dist}(\mathbf{x}, \Delta)$ be the distance from a point $\mathbf{x} \in X^{m}$ to Δ.
We may assume that $\operatorname{dist}(\cdot, \Delta) \leq 1 / 2$. So $-\log \operatorname{dist}(\cdot, \Delta) \cdot \mathbb{T}$ is a positive (p, p)-current on X^{m}.
Theorem 8 [Ng. 2023]
Suppose that
(1) $\kappa_{j}^{\bullet}(-\log \operatorname{dist}(\cdot, \Delta) \cdot \mathbb{T}, \Delta, \boldsymbol{r}, h)<\infty$ for some $\boldsymbol{r}>0$ and for all $k-p \leq j \leq k-\max _{1 \leq i \leq m} p_{i} ;$
(2) $\nu_{j}(\mathbb{T}, \Delta)=0$ for all $k-p<j \leq k-\max _{1 \leq i \leq m} p_{i}$.

Then $T_{1} \curlywedge \ldots \curlywedge T_{m}$ exists in the sense of Dinh-Sibony.

Remarks.

- The assumption can be checked using a finite cover of Δ by local holomorphic charts.
- [Dinh-Ng.-Vu 2018] for $m=2$: If the superpotential of T_{1} is continuous, then $T_{1} \curlywedge T_{2}$ exists in the sense of Dinh-Sibony for all $T_{2} \in \mathrm{CL}(X)$

Thank you !

I wish Tien-Cuong a very successful and happy life!

