Volume of random real algebraic submanifolds

Martin Puchol (Université Paris-Saclay)

Joint work with Thomas Letendre

Geometric an Topological Properties of Random Algebraic Varieties, Köln Oct. 4th 2023

Outline

Random real algebraic submanifolds

2 Expectation and variance of the volume

3 About the proofs of the main theorem

Random real algebraic submanifolds

Kostlan-Shub-Smale polynomials

Notations

For $\alpha = (\alpha_0, \dots, \alpha_n) \in \mathbb{N}^{n+1}$, we write:

•
$$|\alpha| = \alpha_0 + \dots + \alpha_n$$
,
• $\chi^{\alpha} = X_0^{\alpha_0} \cdots X_n^{\alpha_n}$,
• if $|\alpha| = d$, $\begin{pmatrix} d \\ \alpha \end{pmatrix} = \frac{d!}{\alpha!}$.

Definition

A Kostlan–Shub–Smale polynomial is a random $P \in \mathbb{R}^{hom}_d[X_0, \dots, X_n]$ that can be decomposed as:

$$P = \sum_{|\alpha|=d} a_{\alpha} \sqrt{\binom{d}{\alpha}} X^{\alpha},$$

where the $(a_{\alpha})_{|\alpha|=d}$ are i.i.d real variable with law $\mathcal{N}(0,1)$.

Algebraic submanifolds of \mathbb{S}^n

Let us fix d, n and $r \in \{1, \ldots, n\}$.

Definition

Let $P_1, \ldots, P_r \in \mathbb{R}^{hom}_d[X_0, \ldots, X_n]$ be independent Kostlan–Shub–Smale polynomials, we set:

$$Z_d = \left(\bigcap_{i=1}^r P_i^{-1}(0)\right) \cap \mathbb{S}^n.$$

Lemma

 Z_d is almost surely (empty or) a smooth submanifold of \mathbb{S}^n of codimension r.

Theorem (Kostlan, 1993)

For all n, r and d, we have: $\mathbb{E}[\operatorname{Vol}(Z_d)] = d^{\frac{r}{2}} \operatorname{Vol}(\mathbb{S}^{n-r}).$

General setting

 \mathcal{X} compact (complex) projective manifold of dimension *n*, $(\mathcal{E}, h^{\mathcal{E}}) \rightarrow \mathcal{X}$ rank *r* Hermitian vector bundle, $(\mathcal{L}, h^{\mathcal{L}}) \rightarrow \mathcal{X}$ positive Hermitian line bundle.

Assume \mathcal{X} , \mathcal{L} and \mathcal{E} are equipped with compatible real structures: $c_{\mathcal{X}}$, $c_{\mathcal{L}}$ and $c_{\mathcal{E}}$.

Let $\mathbb{R}H^0(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^d)$ denote the space of global holomorphic sections of $\mathcal{E} \otimes \mathcal{L}^d \to \mathcal{X}$ invariant with respect to the real structures, that is:

$$(c_{\mathcal{E}}\otimes c_{\mathcal{L}^d})\circ s\circ c_{\mathcal{X}}=s.$$

Let $M = Fix(c_{\mathcal{X}})$ denote the real locus of \mathcal{X} . We assume $M \neq \emptyset$. M is a smooth compact manifold without boundary of dimension n.

Zeros of random sections and random measures

 $\mathbb{R}H^0(\mathcal{X}, \mathcal{E}\otimes \mathcal{L}^d)$ is finite dimensional and equipped with a natural L^2 inner product.

Definition

Let $s_d \sim \mathcal{N}(0, \mathsf{Id})$ be a random section in $\mathbb{R}H^0(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^d)$, we set $Z_d = s_d^{-1}(0) \cap M$.

Lemma

For d large enough, Z_d is a.s. a codimension r smooth submanifold of M.

Example : if $\mathcal{X} = \mathbb{CP}^n$, $\mathcal{L} = \mathcal{O}(1)$ and \mathcal{E} is trivial, we get $M = \mathbb{RP}^n$ and

$$\mathbb{R}H^0(\mathcal{X},\mathcal{E}\otimes\mathcal{L}^d)=\left(\mathbb{R}_d^{\mathsf{hom}}[X_0,\ldots,X_n]\right)^r.$$

Thus s_d corresponds to r independent Kostlan–Shub–Smale polynomials.

Random Radon measures

 $\mathcal{L}
ightarrow \mathcal{X}$ induces a Riemannian metric on \mathcal{X} , hence on M and Z_d .

Let $|dV_M|$ be the Riemannian volume measure on MLet $|dV_d|$ be the Riemannian volume measure on Z_d .

 Z_d can also be viewed as a continuous linear form on $(\mathcal{C}^0(M), \|\cdot\|_\infty)$ by:

$$\forall \phi \in \mathcal{C}^{0}(M), \qquad (Z_{d}, \phi) = \int_{Z_{d}} \phi |\mathsf{d} V_{d}|.$$

Example: If
$$\phi \equiv 1$$
, $(Z_d, \phi) = \operatorname{Vol}(Z_d)$.

General question

What can be said about Z_d ?

Here we cannot hope to have result for all d, we will instead take $d \to \infty$. **Example :** Gayet-Welschinger, Ancona, have studied topological properties of Z_d .

Expectation and variance of the volume

Expected volume

Let $s_d \sim \mathcal{N}(0, \mathsf{Id})$ in $\mathbb{R}H^0(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^d)$ and let Z_d denote its real zero set.

Theorem (Letendre)

For all $\phi \in C^0(M)$ we have:

$$\mathbb{E}[(Z_d,\phi)] = d^{\frac{r}{2}} \left(\int_M \phi \left| \mathsf{d} V_M \right| \right) \frac{\operatorname{Vol}\left(\mathbb{S}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{S}^n\right)} + \left\| \phi \right\|_{\infty} O\left(d^{\frac{r}{2}-1}\right),$$

where the error term does not depend on ϕ .

Corollary (Equidistribution of the mean)

We have:

$$d^{-\frac{r}{2}}\mathbb{E}[Z_d] \xrightarrow[d \to +\infty]{} \frac{\operatorname{Vol}\left(\mathbb{S}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{S}^n\right)} \left| \mathsf{d} V_M \right|$$

as continuous linear forms.

Variance of the volume

Theorem (Letendre-P.)

• For all $\phi \in C^0(M)$ we have:

$$\mathsf{Var}((Z_d,\phi)) = d^{r-\frac{n}{2}} \left(\int_M \phi^2 \left| \mathsf{d} V_M \right| \right) \mathcal{C}_{n,r} + o\left(d^{r-\frac{n}{2}} \right),$$

where $C_{n,r}$ is an explicit constant depending only on n and r, and $0 \leq C_{n,r} < +\infty$.

2 In fact $C_{n,r} > 0$.

Corollary 1 (concentration in probability)

If $1 \leq r < n$ and $\frac{n}{2} + \alpha > 0$, then for all $\phi \in C^0(M)$ we have:

$$\mathbb{P}\left(d^{-\frac{r}{2}}\left|\langle Z_d - \mathbb{E}[Z_d], \phi\rangle\right| \ge d^{\frac{\alpha}{2}}\right) = O\left(d^{-\left(\frac{n}{2} + \alpha\right)}\right)$$

Equidistribution results

Corollary 2 (asymptotic density in probability) If $1 \le r < n$, then for any open subset $U \subset M$ we have:

$$\mathbb{P}\left(Z_d\cap U=\emptyset\right)=O\!\left(d^{-\frac{n}{2}}\right).$$

Corollary 3 (almost sure equidistribution)

If $n \ge 3$, then for almost every random sequence $(P_d)_{d \ge 1}$ we have:

$$\forall \phi \in \mathcal{C}^{0}(M), \qquad \frac{1}{\sqrt{d}} \left\langle Z_{P_{d}}, \phi \right\rangle \xrightarrow[d \to +\infty]{} \frac{\operatorname{Vol}\left(\mathbb{S}^{n-1}\right)}{\operatorname{Vol}\left(\mathbb{S}^{n}\right)} \int_{M} \phi \left| \mathsf{d} V_{M} \right|.$$

Related works

- Kostlan: n = r = 1;
- Letendre: point 1 of Theorem for r < n;
- Dalmao: CLT for roots of KSS polynomials for n = r = 1;
- Dalmao, Armentano-Azaïs-Dalmao-Leon: point 2 of Theorem for n = r;
- Letendre-Ancona: for n = r = 1, computation of the higher moments of Z_d and CLT for linear statistics;

• ...

About the proofs of the main theorem

Correlation function

A random section $s_d \in \mathbb{R}H^0(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^d)$ defines a centered Gaussian process $(s_d(x))_{x \in M}$ with correlation function $e_d : (x, y) \mapsto \mathbb{E}[s_d(x)s_d(y)]$.

Remark

Taking partial derivatives, we get: $\frac{\partial e_d}{\partial x_i}(x, y) = \mathbb{E}\left[\frac{\partial s_d}{\partial x_i}(x)s_d(y)\right]$.

For instance, for KSS polynomials,

$$e_d(x,y) = \sum_{|\alpha|=d=|\beta|} \mathbb{E}[a_{\alpha}a_{\beta}] \sqrt{\binom{d}{\alpha}} \sqrt{\binom{d}{\beta}} x^{\alpha} y^{\beta}$$
$$= \sum_{|\alpha|=d} \binom{d}{\alpha} x^{\alpha} y^{\alpha} = (\langle x, y \rangle)^d$$
$$= \cos(\rho(x,y))^d,$$

where ρ is the geodesic distance on \mathbb{S}^n .

The Bergman kernel

Fact: e_d is the restriction on $M \times M$ of Bergman kernel of $\mathcal{E} \otimes \mathcal{L}^d$, which is the Schwatrz kernel of the projection $\mathcal{C}^{\infty}(\mathcal{X}, \mathcal{L}^d \otimes \mathcal{E}) \to H^0(\mathcal{X}, \mathcal{L}^d \otimes \mathcal{E})$.

Theorem (Dai–Liu–Ma)

The Bergman kernel e_d has a universal scaling limit:

$$e_d(x,y) \simeq \exp\left(-\frac{d}{2} \|x-y\|^2\right),$$

uniformly for (x, y) such that $\rho(x, y) \leq K \frac{\log d}{\sqrt{d}}$.

Theorem (Ma–Marinescu)

There exists C > 0 such that, for any $k \in \mathbb{N}$, uniformly on $M \times M$

$$\|e_d(x,y)\|_{\mathcal{C}^k} = O\left(d^{\frac{k}{2}}\exp\left(-C\sqrt{d}\rho(x,y)\right)\right).$$

Kac-Rice formula

Kac-Rice formula For any $\phi \in C^0(M)$, we have:

$$\mathbb{E}\left[\int_{Z_d} \phi \left| \mathsf{d} V_d \right|\right] = \frac{1}{\sqrt{2\pi}} \int_{x \in M} \phi(x) \frac{\mathbb{E}\left[\left\| d_x P \right\| \, \left| \, P(x) = 0 \right]}{\sqrt{e_d(x, x)}} \left| \mathsf{d} V_M \right|.$$

Note that by the above results, $x \mapsto e_d(x, x)$ does not vanish for d large enough.

We need to estimate
$$rac{\mathbb{E}\Big[\|d_x s_d\| \left| s_d(x) = 0
ight]}{\sqrt{e_d(x,x)}}$$
 for a given $x \in M$.

Asymptotic of the expectation

Fact: $(s_d(x), d_x s_d)$ is a centered Gaussian vector with variance

$$\Lambda = \begin{pmatrix} e_d(x,x) & \partial_{y_1} e_d(x,x) & \cdots & \partial_{y_n} e_d(x,x) \\ \partial_{x_1} e_d(x,x) & \partial_{x_1} \partial_{y_1} e_d(x,x) & \cdots & \partial_{x_1} \partial_{y_n} e_d(x,x) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_n} e_d(x,x) & \partial_{x_n} \partial_{y_1} e_d(x,x) & \cdots & \partial_{x_n} \partial_{y_n} e_d(x,x) \end{pmatrix}$$

The distribution of $d_x s_d$ given that $s_d(x) = 0$ is thus also a centered Gaussian and its variance only depends on e_d and its derivatives at (x, x).

We get a universal asymptotic for
$$\frac{\mathbb{E}\left[\|d_x s_d\| \mid s_d(x) = 0\right]}{\sqrt{e_d(x,x)}}$$
, using the results

of Dai-Liu-Ma and Ma-Marinescu.

A formula for the variance

$$\begin{aligned} \mathsf{Var}((Z_d,\phi)) &= \mathbb{E}\left[(Z_d,\phi)^2\right] - \mathbb{E}\left[(Z_d,\phi)\right]^2 \\ &= \mathbb{E}\left[\int_{x,y\in Z_d} \phi(x)\phi(y) \left|\mathsf{d} V_d\right|^2\right] - \mathbb{E}\left[\int_{x\in Z_d} \phi(x) \left|\mathsf{d} V_d\right|\right]^2 \end{aligned}$$

By Kac-Rice type formulas, we get:

$$\operatorname{Var}((Z_d,\phi)) = \int_{x,y \in M} \phi(x)\phi(y)\mathcal{D}_d(x,y) \left| \mathrm{d} V_M \right|^2,$$

where $\mathcal{D}_d(x, y)$ only depends on e_d and its derivatives at (x, x), (x, y), (y, x) and (y, y).

Main problem

 \mathcal{D}_d is singular on the diagonal in $M \times M$.

Behaviour of the density \mathcal{D}_d

Far from the diagonal

For a good choice of K > 0, we have $\mathcal{D}_d(x, y) = O(d^{r-\frac{n}{2}-1})$ uniformly on:

$$\left\{(x,y)\in M\times M\;\middle|\;\rho(x,y)\geqslant K\frac{\log d}{\sqrt{d}}\right\}.$$

Near the diagonal

On $\left\{ (x, y) \in M \times M \mid \rho(x, y) < K \frac{\log d}{\sqrt{d}} \right\}$, we have the following universal scaling limit:

$$\mathcal{D}_d\left(x, x + rac{z}{\sqrt{d}}
ight) \simeq d^r \mathcal{D}(\|z\|),$$

where $||z|| < K \log d$.

Asymptotic of the variance

$$\begin{aligned} \operatorname{Var}((Z_d,\phi)) &\simeq \int_{x \in M} \int_{y \in B(x,K \frac{\log d}{\sqrt{d}})} \phi(x)\phi(y)\mathcal{D}_d(x,y) \left| \mathrm{d}V_M \right|^2 \\ &\simeq d^{-\frac{n}{2}} \int_{x \in M} \left(\int_{\|z\| < K \log d} \phi(x)\phi\left(x + \frac{z}{\sqrt{d}}\right) \mathcal{D}_d\left(x, x + \frac{z}{\sqrt{d}}\right) \mathrm{d}z \right) \left| \mathrm{d}V_M \right| \\ &\simeq d^{r-\frac{n}{2}} \left(\int_{x \in M} \phi(x)^2 \left| \mathrm{d}V_M \right| \right) \left(\int_{\mathbb{R}^n} \mathcal{D}(\|z\|) \, \mathrm{d}z \right). \end{aligned}$$

The end

Thank you for your attention!