Volume of random real algebraic submanifolds

Martin Puchol (Université Paris-Saclay)
Joint work with Thomas Letendre

Geometric an Topological Properties of Random Algebraic Varieties, Köln
Oct. 4th 2023

Outline

(1) Random real algebraic submanifolds
(2) Expectation and variance of the volume
(3) About the proofs of the main theorem

Random real algebraic submanifolds

Kostlan-Shub-Smale polynomials

Notations

For $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n+1}$, we write:

- $|\alpha|=\alpha_{0}+\cdots+\alpha_{n}$,
- $\alpha!=\alpha_{0}!\cdots \alpha_{n}!$,
- $X^{\alpha}=X_{0}^{\alpha_{0}} \cdots X_{n}^{\alpha_{n}}$,
- if $|\alpha|=d,\binom{d}{\alpha}=\frac{d!}{\alpha!}$.

Definition

A Kostlan-Shub-Smale polynomial is a random $P \in \mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]$ that can be decomposed as:

$$
P=\sum_{|\alpha|=d} a_{\alpha} \sqrt{\binom{d}{\alpha}} X^{\alpha}
$$

where the $\left(a_{\alpha}\right)_{|\alpha|=d}$ are i.i.d real variable with law $\mathcal{N}(0,1)$.

Algebraic submanifolds of \mathbb{S}^{n}
Let us fix d, n and $r \in\{1, \ldots, n\}$.

Definition

Let $P_{1}, \ldots, P_{r} \in \mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]$ be independent Kostlan-Shub-Smale polynomials, we set:

$$
Z_{d}=\left(\bigcap_{i=1}^{r} P_{i}^{-1}(0)\right) \cap \mathbb{S}^{n} .
$$

Lemma

Z_{d} is almost surely (empty or) a smooth submanifold of \mathbb{S}^{n} of codimension r.

Theorem (Kostlan, 1993)
For all n, r and d, we have: $\mathbb{E}\left[\operatorname{Vol}\left(Z_{d}\right)\right]=d^{\frac{r}{2}} \operatorname{Vol}\left(\mathbb{S}^{n-r}\right)$.

General setting

\mathcal{X} compact (complex) projective manifold of dimension n, $\left(\mathcal{E}, h^{\mathcal{E}}\right) \rightarrow \mathcal{X}$ rank r Hermitian vector bundle, $\left(\mathcal{L}, h^{\mathcal{L}}\right) \rightarrow \mathcal{X}$ positive Hermitian line bundle.

Assume \mathcal{X}, \mathcal{L} and \mathcal{E} are equipped with compatible real structures: $c_{\mathcal{X}}, c_{\mathcal{L}}$ and $c_{\mathcal{E}}$.

Let $\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$ denote the space of global holomorphic sections of $\mathcal{E} \otimes \mathcal{L}^{d} \rightarrow \mathcal{X}$ invariant with respect to the real structures, that is:

$$
\left(c_{\mathcal{E}} \otimes c_{\mathcal{L}^{d}}\right) \circ s \circ c_{\mathcal{X}}=s
$$

Let $M=\operatorname{Fix}\left(c_{\mathcal{X}}\right)$ denote the real locus of \mathcal{X}. We assume $M \neq \emptyset$. M is a smooth compact manifold without boundary of dimension n.

Zeros of random sections and random measures

$\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$ is finite dimensional and equipped with a natural L^{2} inner product.

Definition

Let $s_{d} \sim \mathcal{N}(0$, Id $)$ be a random section in $\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$, we set $Z_{d}=s_{d}^{-1}(0) \cap M$.

Lemma

For d large enough, Z_{d} is a.s. a codimension r smooth submanifold of M.
Example : if $\mathcal{X}=\mathbb{C} \mathbb{P}^{n}, \mathcal{L}=\mathcal{O}(1)$ and \mathcal{E} is trivial, we get $M=\mathbb{R} \mathbb{P}^{n}$ and

$$
\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)=\left(\mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]\right)^{r} .
$$

Thus s_{d} corresponds to r independent Kostlan-Shub-Smale polynomials.

Random Radon measures

$\mathcal{L} \rightarrow \mathcal{X}$ induces a Riemannian metric on \mathcal{X}, hence on M and Z_{d}.
Let $\left|\mathrm{d} V_{M}\right|$ be the Riemannian volume measure on M
Let $\left|\mathrm{d} V_{d}\right|$ be the Riemannian volume measure on Z_{d}.
Z_{d} can also be viewed as a continuous linear form on $\left(\mathcal{C}^{0}(M),\|\cdot\|_{\infty}\right)$ by:

$$
\forall \phi \in \mathcal{C}^{0}(M), \quad\left(Z_{d}, \phi\right)=\int_{Z_{d}} \phi\left|\mathrm{~d} V_{d}\right|
$$

Example: If $\phi \equiv 1,\left(Z_{d}, \phi\right)=\operatorname{Vol}\left(Z_{d}\right)$.

General question

What can be said about Z_{d} ?
Here we cannot hope to have result for all d, we will instead take $d \rightarrow \infty$.
Example : Gayet-Welschinger, Ancona, have studied topological properties of Z_{d}.

Expectation and variance of the volume

Expected volume

Let $s_{d} \sim \mathcal{N}(0$, Id $)$ in $\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$ and let Z_{d} denote its real zero set.
Theorem (Letendre)
For all $\phi \in \mathcal{C}^{0}(M)$ we have:

$$
\mathbb{E}\left[\left(Z_{d}, \phi\right)\right]=d^{\frac{r}{2}}\left(\int_{M} \phi\left|\mathrm{~d} V_{M}\right|\right) \frac{\operatorname{Vol}\left(\mathbb{S}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{S}^{n}\right)}+\|\phi\|_{\infty} O\left(d^{\frac{r}{2}-1}\right)
$$

where the error term does not depend on ϕ.

Corollary (Equidistribution of the mean)

We have:

$$
d^{-\frac{r}{2}} \mathbb{E}\left[Z_{d}\right] \xrightarrow[d \rightarrow+\infty]{ } \frac{\operatorname{Vol}\left(\mathbb{S}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{S}^{n}\right)}\left|\mathrm{d} V_{M}\right|
$$

as continuous linear forms.

Variance of the volume

Theorem (Letendre-P.)

(1) For all $\phi \in \mathcal{C}^{0}(M)$ we have:

$$
\operatorname{Var}\left(\left(Z_{d}, \phi\right)\right)=d^{r-\frac{n}{2}}\left(\int_{M} \phi^{2}\left|\mathrm{~d} V_{M}\right|\right) \mathcal{C}_{n, r}+o\left(d^{r-\frac{n}{2}}\right)
$$

where $\mathcal{C}_{n, r}$ is an explicit constant depending only on n and r, and $0 \leqslant \mathcal{C}_{n, r}<+\infty$.
(2) In fact $\mathcal{C}_{n, r}>0$.

Corollary 1 (concentration in probability)

If $1 \leqslant r<n$ and $\frac{n}{2}+\alpha>0$, then for all $\phi \in \mathcal{C}^{0}(M)$ we have:

$$
\mathbb{P}\left(d^{-\frac{r}{2}}\left|\left\langle Z_{d}-\mathbb{E}\left[Z_{d}\right], \phi\right\rangle\right| \geqslant d^{\frac{\alpha}{2}}\right)=O\left(d^{-\left(\frac{n}{2}+\alpha\right)}\right) .
$$

Equidistribution results

Corollary 2 (asymptotic density in probability)
If $1 \leqslant r<n$, then for any open subset $U \subset M$ we have:

$$
\mathbb{P}\left(Z_{d} \cap U=\emptyset\right)=O\left(d^{-\frac{n}{2}}\right) .
$$

Corollary 3 (almost sure equidistribution)
If $n \geqslant 3$, then for almost every random sequence $\left(P_{d}\right)_{d \geqslant 1}$ we have:

$$
\forall \phi \in \mathcal{C}^{0}(M), \quad \frac{1}{\sqrt{d}}\left\langle Z_{P_{d}}, \phi\right\rangle \underset{d \rightarrow+\infty}{ } \frac{\operatorname{Vol}\left(\mathbb{S}^{n-1}\right)}{\operatorname{Vol}\left(\mathbb{S}^{n}\right)} \int_{M} \phi\left|\mathrm{~d} V_{M}\right|
$$

Related works

- Kostlan: $n=r=1$;
- Letendre: point 1 of Theorem for $r<n$;
- Dalmao: CLT for roots of KSS polynomials for $n=r=1$;
- Dalmao, Armentano-Azaïs-Dalmao-Leon: point 2 of Theorem for $n=r$;
- Letendre-Ancona: for $n=r=1$, computation of the higher moments of Z_{d} and CLT for linear statistics;

About the proofs of the main theorem

Correlation function

A random section $s_{d} \in \mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$ defines a centered Gaussian process $\left(s_{d}(x)\right)_{x \in M}$ with correlation function $e_{d}:(x, y) \mapsto \mathbb{E}\left[s_{d}(x) s_{d}(y)\right]$.

Remark

Taking partial derivatives, we get: $\frac{\partial e_{d}}{\partial x_{i}}(x, y)=\mathbb{E}\left[\frac{\partial s_{d}}{\partial x_{i}}(x) s_{d}(y)\right]$.
For instance, for KSS polynomials,

$$
\begin{aligned}
e_{d}(x, y) & =\sum_{|\alpha|=d=|\beta|} \mathbb{E}\left[a_{\alpha} a_{\beta}\right] \sqrt{\binom{d}{\alpha}} \sqrt{\binom{d}{\beta}} x^{\alpha} y^{\beta} \\
& =\sum_{|\alpha|=d}\binom{d}{\alpha} x^{\alpha} y^{\alpha}=(\langle x, y\rangle)^{d} \\
& =\cos (\rho(x, y))^{d},
\end{aligned}
$$

where ρ is the geodesic distance on \mathbb{S}^{n}.

The Bergman kernel

Fact: e_{d} is the restriction on $M \times M$ of Bergman kernel of $\mathcal{E} \otimes \mathcal{L}^{d}$, which is the Schwatrz kernel of the projection $\mathcal{C}^{\infty}\left(\mathcal{X}, \mathcal{L}^{d} \otimes \mathcal{E}\right) \rightarrow H^{0}\left(\mathcal{X}, \mathcal{L}^{d} \otimes \mathcal{E}\right)$.

Theorem (Dai-Liu-Ma)
The Bergman kernel e_{d} has a universal scaling limit:

$$
e_{d}(x, y) \simeq \exp \left(-\frac{d}{2}\|x-y\|^{2}\right)
$$

uniformly for (x, y) such that $\rho(x, y) \leqslant K \frac{\log d}{\sqrt{d}}$.

Theorem (Ma-Marinescu)

There exists $C>0$ such that, for any $k \in \mathbb{N}$, uniformly on $M \times M$

$$
\left\|e_{d}(x, y)\right\|_{\mathcal{C}^{k}}=O\left(d^{\frac{k}{2}} \exp (-C \sqrt{d} \rho(x, y))\right)
$$

Kac-Rice formula

Kac-Rice formula

For any $\phi \in \mathcal{C}^{0}(M)$, we have:

$$
\mathbb{E}\left[\int_{Z_{d}} \phi\left|\mathrm{~d} V_{d}\right|\right]=\frac{1}{\sqrt{2 \pi}} \int_{x \in M} \phi(x) \frac{\mathbb{E}\left[\left\|d_{x} P\right\| \mid P(x)=0\right]}{\sqrt{e_{d}(x, x)}}\left|\mathrm{d} V_{M}\right|
$$

Note that by the above results, $x \mapsto e_{d}(x, x)$ does not vanish for d large enough.

We need to estimate $\frac{\mathbb{E}\left[\left\|d_{x} s_{d}\right\| \mid s_{d}(x)=0\right]}{\sqrt{e_{d}(x, x)}}$ for a given $x \in M$.

Asymptotic of the expectation

Fact: $\left(s_{d}(x), d_{x} s_{d}\right)$ is a centered Gaussian vector with variance

$$
\Lambda=\left(\begin{array}{cccc}
e_{d}(x, x) & \partial_{y_{1}} e_{d}(x, x) & \cdots & \partial_{y_{n}} e_{d}(x, x) \\
\partial_{x_{1}} e_{d}(x, x) & \partial_{x_{1}} \partial_{y_{1}} e_{d}(x, x) & \cdots & \partial_{x_{1}} \partial_{y_{n}} e_{d}(x, x) \\
\vdots & \vdots & \ddots & \vdots \\
\partial_{x_{n}} e_{d}(x, x) & \partial_{x_{n}} \partial_{y_{1}} e_{d}(x, x) & \cdots & \partial_{x_{n}} \partial_{y_{n}} e_{d}(x, x)
\end{array}\right) .
$$

The distribution of $d_{x} s_{d}$ given that $s_{d}(x)=0$ is thus also a centered Gaussian and its variance only depends on e_{d} and its derivatives at (x, x).

We get a universal asymptotic for $\frac{\mathbb{E}\left[\left\|d_{x} s_{d}\right\| \mid s_{d}(x)=0\right]}{\sqrt{e_{d}(x, x)}}$, using the results of Dai-Liu-Ma and Ma-Marinescu.

A formula for the variance

$$
\begin{aligned}
\operatorname{Var}\left(\left(Z_{d}, \phi\right)\right) & =\mathbb{E}\left[\left(Z_{d}, \phi\right)^{2}\right]-\mathbb{E}\left[\left(Z_{d}, \phi\right)\right]^{2} \\
& =\mathbb{E}\left[\int_{x, y \in Z_{d}} \phi(x) \phi(y)\left|\mathrm{d} V_{d}\right|^{2}\right]-\mathbb{E}\left[\int_{x \in Z_{d}} \phi(x)\left|\mathrm{d} V_{d}\right|\right]^{2} .
\end{aligned}
$$

By Kac-Rice type formulas, we get:

$$
\operatorname{Var}\left(\left(Z_{d}, \phi\right)\right)=\int_{x, y \in M} \phi(x) \phi(y) \mathcal{D}_{d}(x, y)\left|\mathrm{d} V_{M}\right|^{2},
$$

where $\mathcal{D}_{d}(x, y)$ only depends on e_{d} and its derivatives at $(x, x),(x, y)$, (y, x) and (y, y).

Main problem

\mathcal{D}_{d} is singular on the diagonal in $M \times M$.

Behaviour of the density \mathcal{D}_{d}

Far from the diagonal

For a good choice of $K>0$, we have $\mathcal{D}_{d}(x, y)=O\left(d^{r-\frac{n}{2}-1}\right)$ uniformly on:

$$
\left\{(x, y) \in M \times M \left\lvert\, \rho(x, y) \geqslant K \frac{\log d}{\sqrt{d}}\right.\right\} .
$$

Near the diagonal

On $\left\{(x, y) \in M \times M \left\lvert\, \rho(x, y)<K \frac{\log d}{\sqrt{d}}\right.\right\}$, we have the following universal scaling limit:

$$
\mathcal{D}_{d}\left(x, x+\frac{z}{\sqrt{d}}\right) \simeq d^{r} \mathcal{D}(\|z\|),
$$

where $\|z\|<K \log d$.

Asymptotic of the variance

$$
\begin{aligned}
& \operatorname{Var}\left(\left(Z_{d}, \phi\right)\right) \simeq \int_{x \in M} \int_{y \in B\left(x, K \frac{\log d}{\sqrt{d}}\right)} \phi(x) \phi(y) \mathcal{D}_{d}(x, y)\left|\mathrm{d} V_{M}\right|^{2} \\
\simeq & d^{-\frac{n}{2}} \int_{x \in M}\left(\int_{\|z\|<K \log d} \phi(x) \phi\left(x+\frac{z}{\sqrt{d}}\right) \mathcal{D}_{d}\left(x, x+\frac{z}{\sqrt{d}}\right) \mathrm{d} z\right)\left|\mathrm{d} V_{M}\right| \\
\simeq & d^{r-\frac{n}{2}}\left(\int_{x \in M} \phi(x)^{2}\left|\mathrm{~d} V_{M}\right|\right)\left(\int_{\mathbb{R}^{n}} \mathcal{D}(\|z\|) \mathrm{d} z\right) .
\end{aligned}
$$

The end

Thank you for your attention!

