
Almost sure GOE fluctuations of 
energy levels for hyperbolic surfaces 

of high genus

Geometric and topological properties of  

random algebraic varieties

Köln, October 4th, 2023

Zeev Rudnick, Tel Aviv

Igor  Wigman, KCL



1. Motivation: Number 

variance of Laplace 

spectrum of compact 

surfaces



Spectrum of surfaces

 Goal: Understand eigenvalue statistics of Laplacian on 

(random) surfaces. 

 Today: Number variance (smooth statistics)

 (Ω,g) – Smooth closed surface (compact, no boundary)

 Δ = 𝑑𝑖𝑣 ∘ 𝑔𝑟𝑎𝑑 Laplacian (Laplace-Beltrami) on Ω

 Spectrum of −Δ (“spectrum of Ω”) – purely discrete

𝜆𝑗 𝑗≥1
:           Δ𝜑𝑗 + 𝜆𝑗 ∙ 𝜑𝑗 = 0

   Weyl’s law:   𝑁 𝜆 ≔ # 𝑗: 𝜆𝑗 ≤ 𝜆 ~
𝐴𝑟𝑒𝑎(Ω)

4𝜋
∙ 𝜆

                



Number variance

 Weyl’s law: 𝑁 𝜆 = 𝑁Ω 𝜆 ≔ # 𝑗: 𝜆𝑗 ≤ 𝜆 ~
𝐴𝑟𝑒𝑎(Ω)

4𝜋
∙ 𝜆

 ⟹ For 𝐿 > 0, “random” interval 

          length 𝐿 ≔
4𝜋

𝐴𝑟𝑒𝑎(Ω) 
∙ 𝐿      expect 𝐿 eigenvalues 

 Take intervals 𝑥, 𝑥 + 𝐿 ,    𝑥 ∈ 𝐸, 2𝐸  random uniform

   𝑛 𝐿; 𝑥 ≔ 𝑁 𝑥 + 𝐿 − 𝑁(𝑥)  (“expectation” 𝐿)

 Number variance 

                 Σ2 𝐿; 𝐸 ≔
1

𝐸
𝐸

2𝐸
𝑛 𝐿; 𝑥 − 𝐿 2𝑑𝑥 



Number variance (smooth)

 Number variance 

             Σ2 𝐿; 𝐸 ≔
1

𝐸
𝐸

2𝐸
𝑛 𝐿; 𝑥 − 𝐿 2𝑑𝑥 

 Smooth statistics: 𝑓: ℝ → ℝ smooth & rapidly 

decaying (e.g. compact support), unit mass

𝑛𝑓 𝐿; 𝑥 ≔ 

𝑗

𝑓
𝜆𝑗 − 𝑥

𝐿

 (Smooth) number variance

Σ𝑓
2 𝐿; 𝐸 ≔

1

𝐸
𝐸

2𝐸
𝑛𝑓 𝐿; 𝑥 − 𝐿

2
𝑑𝑥 



II. Random matrix theory 

as a model for number 

variance



Ensembles of random matrices

 Recall Σ𝑓
2 𝐿; 𝐸 ≔

1

𝐸
𝐸

2𝐸
𝑛𝑓 𝐿; 𝑥 − 𝐿

2
𝑑𝑥 surface

 Let 𝑀 = 𝑀𝑁 matrix belonging to a random 

ensemble of 𝑁 × 𝑁 matrices.    𝑁 ↭ 𝐸 

 Ensembles: GOE, GUE, Poisson

 GOE (Gaussian Orthogonal Ensemble) – symmetric 

matrix with i.i.d. standard Gaussian entries (save to 

diagonal & relations). 

 GUE (Gaussian Unitary Ensemble) – Hermitian matrix 

with Gaussian entries.

 Poisson – diagonal matrix with i.i.d. entries.



Number variance RMT
 𝑀 = 𝑀𝑁 random 𝑁 × 𝑁 matrix (GOE, GUE, Poisson).

 Take deterministic interval I = 𝐼𝑁 = 𝑎, 𝑎 + 𝐿 .

 𝑛 𝐼  number of eigenvalues in I

 𝐿 = 𝑁 ∙ 𝐿 = 𝔼𝑁 𝑛 𝐼 , allowed to grow with 𝑁. 

 Number variance Σ2 𝐿; 𝑁 ≔ 𝔼𝑁 𝑛 𝐼 − 𝐿 2  

“ensemble average”.

 Fact: Σ2 𝐿; 𝑁 ~ ൞

2

𝜋2 log 𝐿  𝐺𝑂𝐸

1

𝜋2 log 𝐿  𝐺𝑈𝐸

(Dyson-Mehta, 1963)



Number variance RMT (cont.)

 Fact (Dyson-Mehta):  Σ2 𝐿; 𝑁 ~ ൞

2

𝜋2 log 𝐿  𝐺𝑂𝐸

1

𝜋2 log 𝐿  𝐺𝑈𝐸
  

 Can define σ𝑓
2 𝐿; 𝑁 analogously

     σ𝑓
2 𝐿; 𝑁 ~ ቐ

σ𝐺𝑂𝐸
2 𝑓  𝐺𝑂𝐸

1

2
σ𝐺𝑂𝐸

2 𝑓  𝐺𝑈𝐸

σ𝐺𝑂𝐸
2 𝑓 ≔ 2 ℝ

𝑥 ∙ መ𝑓 𝑥 2𝑑𝑥 constant

 Variance small 𝑓 ↭very rigid structure

 Σ𝑃𝑜𝑖𝑠𝑠𝑜𝑛
2 ~𝐿 – “easy” exercise



RMT predictions (Berry)
 Conjecture(Berry 1985):Generic chaotic Ω:

ΣΩ
2 𝐿; 𝐸 ~ ൝

Σ𝐺𝑂𝐸
2 𝐿; 𝑁  𝑡𝑖𝑚𝑒 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦

Σ𝐺𝑈𝐸
2 𝐿; 𝑁  𝑡𝑖𝑚𝑒 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 

              1 ≪ 𝐿 ≪ 𝐸 ;     N = N E = E Weyl’s law

Completely integrable systems – Poisson.

 Time reversal violated e.g. by a magnetic field.

 Goal: study the number variance for hyperbolic 

surfaces – ensemble average & window average.

 Not a single positive example to date (numerics

support).



Negative examples 
 Recall Berry ΣΩ

2 𝐿; 𝐸 ~
2

𝜋2 log 𝐿        𝐿 ≪ 𝐸, 𝐿 → ∞

 Selberg 1975: Found a special “arithmetic” surface s.t.

ΣΩ
2 𝐿; 𝐸 ≫

𝐸

log(𝐸)2 large

 Families of arithmetic (hyperbolic) surfaces violating 

GOE by physicists 1985-1990 Bohigas-Giannoni-Schmit, 

Bogomolny-Georgeot-Giannoni-Schmit, Aurich-Steiner.

 Luo-Sarnak (1994): For all arithmetic surfaces Ω = Γ\ℍ2

ΣΩ
2 𝐿; 𝐸 ≫

𝐿

log(𝐿)2 inconsistent to GOE.

 Results consistent with Poisson completely integrable. 

E.g. Bleher-Lebowitz (1995) flat Diophantine torus.



III. Weil-Petterson

model random genus 

g hyperbolic surfaces



Take-home message

Random hyperbolic surfaces

 Definition: Ω is hyperbolic, if it is a smooth surface 

of constant negative curvature (≡ −1).

 For 𝑔 ≥ 2 a moduli space ℳ𝑔 of surfaces.

   X ∈ ℳ𝑔 is smooth closed hyperbolic, genus g 

 Two equivalent ways:

    1. Different hyperbolic surfaces

    2. Endow fixed surface different hyperbolic metrics

  Finite measure on ℳ𝑔  “Weil-Petterson” (WP).

 ⇒ random WP hyperbolic surfaces genus g



Illustration of hyperbolic surfaces

Genus 2

Pseudosphere

 Not compact

Hyperbolic plane 

Poincaré disk model

Quotient by discrete group 

of  isometries



Moduli space ℳ𝑔

 For 𝑔 ≥ 0 let Φ𝑔 be the (unique) genus 𝑔 closed surface 

(compact, no boundary, topology).  E.g. 𝑔 = 1 ⇝ torus. 

 Fact: For 𝑔 ≥ 2 (assumed), Φ𝑔 could be endowed with 

(many) hyperbolic metrics: i.e. Φ𝑔 hyperbolic surface.

 By Gauss-Bonnet 𝐴𝑟𝑒𝑎 Ω = 4𝜋 𝑔 − 1 , any Ω.

                    𝑔 → ∞ ⟺ 𝐴𝑟𝑒𝑎 Ω  → ∞

 ⇒Weyl’s law # 𝑗: 𝜆𝑗 ≤ 𝜆 ~(𝑔 − 1) ∙ 𝜆,   𝑔 fixed

 Take into account for number variance

Φ𝑔 



WP measure on ℳ𝑔
 Definition: a pair of pants is a hyperbolic surface of 

signature (0,3) – sphere with 3 punctures. 

 Fact: Given 𝑙1, 𝑙2, 𝑙3 ∈ ℝ≥0
3 exists unique (up to 

isometry) pair of pants with these boundary lengths.

 Can glue along equal lengths. Can twist equal pair by 𝛼

 E.g. glue along (𝛾, 𝛾′) get surface signature (0,4), every 𝛼

𝑙1

𝑙2

𝑙3

𝑙2

𝑙3′

𝑙′1

𝛾 𝛾′



Gluing pairs of pants
 When 𝑙1, 𝑙2, 𝑙3  and 𝑙1′, 𝑙2′, 𝑙3′  are pairwise equal can 

glue 2 pants into a genus-2 closed surface. 

 6 parameters: lengths 𝑙1, 𝑙2, 𝑙3 twists 𝛼1, 𝛼2, 𝛼3

𝑙1, 𝑙2, 𝑙3 = 𝑙1′, 𝑙2′, 𝑙3′𝑙1, 𝑙2, 𝑙3 = 𝑙2 , (𝑙1, 𝑙2
′ , 𝑙3

′ = 𝑙2′)



WP measure

 More generally 𝑔 ≥ 2 take

2𝑔 − 2 pants ⇒ 6𝑔 − 6 boundary curves⇒ 3𝑔 − 3 pairs

 Can glue (combinatorial) to closed Φ𝑔 genus 𝑔 surface

 Φ𝑔 serves as “marking”

 Fenchel-Nielsen coordinates 𝑙1, … , 𝑙3𝑔−3 ; 𝛼1, … , 𝛼3𝑔−3

 𝒯𝑔 – Teichmuller, not Moduli

 Euclidean manifold of dimension 6𝑔 − 6.

 Admits Natural infinite measure WP (Wolpert) 

𝑑𝑙1 ∙ ⋯ ∙ 𝑑𝑙3𝑔−3 ∙ 𝑑𝛼1 ∙ ⋯ ∙ 𝑑𝛼3𝑔−3 on 𝒯𝑔



Moduli space ℳ𝑔 and WP measure

 Φ𝑔 is (unique) genus 𝑔 smooth “marking” surface.

 Teichmuller space 𝒯𝑔 = 𝒯 Φ𝑔 - hyperbolic metrics Φ𝑔.

 Let 𝜑: Φ𝑔 → Φ𝑔, 𝜌 be a self-homeomorphism of Φ𝑔

 Induces (another) metric on Φ𝑔.  Identified within ℳ𝑔. 

 Mapping class group MCG Φ𝑔 ,  WP measure invariant.

 ℳ𝑔 = MCG Φ𝑔 \ 𝒯𝑔 orbifold dimension 6𝑔 − 6

 Induce WP probability measure 𝒫𝑔 on ℳ𝑔.

 (WP) random hyperbolic surface genus 𝑔

 Study initiated by Maryam Mirzakhani (2010s).



Moduli space ℳ𝑔 - summary

 Φ𝑔 genus 𝑔 surface, serves as “marking”.

 Abstract definition:  For 𝑔 ≥ 2:

1. Teichmuller space 𝒯𝑔 = 𝒯 Φ𝑔 - hyperbolic metrics Φ𝑔

  2. Mapping class group MCG Φ𝑔  acts on 𝒯𝑔: 𝜑 ∈ 𝒯𝑔              

𝜑: Φ𝑔 → Φ𝑔, 𝜌  by pullback the metric 𝜌. 

  3. Moduli space ℳ𝑔 = MCG Φ𝑔 \ 𝒯𝑔 is the genuinely 

different hyperbolic metrics on Φ𝑔.

4. Inherits WP probability measure from 𝒯𝑔

Φ𝑔 



IV. Statement of 

main results



Number variance random WP surfaces

 Recall 𝑛𝑓 𝑋; 𝐿, 𝑦 ≔ σ𝑗 𝑓
𝜆𝑗−𝑦

𝐿
𝑋 ∈ ℳ𝑔

 Recall σ𝐺𝑂𝐸
2 𝑓 = 2 ℝ

𝑥 ∙ መ𝑓 𝑥 2𝑑𝑥  number 

 Rudnick `22: GOE statistics high genus: 𝑓 even smooth, s.t.
መ𝑓 is compactly supported.

 Explicated result.

 Ensemble average. Valid for individual (“typical”) 𝑋 ∈ ℳ𝑔?

 CLT (Rudnick-W `23) same regime; another work

lim
𝐿,𝑦→∞

𝐿=𝑜 𝑦

lim
𝑔→∞

𝑉𝑎𝑟𝑔
𝑊𝑃 𝑛𝑓 𝑋; 𝐿, 𝑦 = σ𝐺𝑂𝐸

2 𝑓lim
𝐿,𝑦→∞

𝐿=𝑜 𝑦

𝑉𝑎𝑟𝑔
𝑊𝑃 𝑛𝑓 𝑋; 𝐿, 𝑦 = σ𝐺𝑂𝐸

2 𝑓



GOE fluctuations for typical surfaces

 Rudnick-W 23’: GOE variance individual 𝑋 ∈ ℳ𝑔, high 

probability 𝑔 → ∞. 

 Stronger assumptions on 𝐿, 𝑦: Assume 

𝐸

log(𝐸)
≪ 𝐿 = 𝑜 𝐸

 Consider 𝒱𝐸;𝐿 𝑋 ≔
1

𝐸
𝐸

2𝐸
𝑛𝑓 𝑋; 𝐿, 𝑦 − 𝐿

2
𝑑𝑦 r.v.

𝑋 ∈ ℳ𝑔 random w.r.t.WP measure. 

 𝐿 = 𝐿 𝐿 = 𝐿(𝐸)- parameter.  As 𝑦 ∈ 𝐸, 2E expectation 

𝔼𝑔
𝑊𝑃 𝑛𝑓 𝑋; 𝐿, 𝑦 grows. Dominates fluctuations. 

 ෨𝑉𝐸;𝐿 𝑋 unbiased version. 



GOE fluctuations for typical surfaces

 Recall 𝒱𝐸;𝐿 𝑋 ≔
1

𝐸
𝐸

2𝐸
𝑛𝑓 𝑋; 𝐿, 𝑦 − 𝐿

2
𝑑𝑦  r.v.

 ෨𝑉𝐸;𝐿 𝑋 unbiased version. 

 σ𝐺𝑂𝐸
2 𝑓 = 2 ℝ

𝑥 ∙ መ𝑓 𝑥 2𝑑𝑥

 Assume 
𝐸

log(𝐸)
≪ 𝐿 = 𝑜 𝐸 (LE)

 Statement Rudnick-W (23’):  For every 𝜀 > 0

   For all 𝐿, 𝐸 sufficiently large (depend on 𝜀) subject to (LE)

   For all 𝑔 sufficiently large (depending on 𝐿, 𝐸): 

   One has ෨𝑉𝐸;𝐿 𝑋 − Σ𝐺𝑂𝐸
2 𝑓 < 𝜀 almost full probability.



GOE fluctuations for typical surfaces

 ෨𝑉𝐸;𝐿 𝑋 unbiased version of smooth number variance. 

 σ𝐺𝑂𝐸
2 𝑓 = 2 ℝ

𝑥 ∙ መ𝑓 𝑥 2𝑑𝑥

 Assume 
𝐸

log(𝐸)
≪ 𝐿 = 𝑜 𝐸 (LE)

 Then ∀𝜀 > 0

   For all 𝐿, 𝐸 sufficiently large (depend on 𝜀) subject to (LE)

   For all 𝑔 sufficiently large (depending on 𝐿, 𝐸): 

   One has ෨𝑉𝐸;𝐿 𝑋 − Σ𝐺𝑂𝐸
2 𝑓 < 𝜀 almost full probability.

 Restatement, limit subject to (LE) 

lim
𝐸→∞
𝐿→∞

lim𝑠𝑢𝑝
𝑔→∞

𝒫𝑔
𝑊𝑃 ෨𝑉𝐸;𝐿 𝑋 − Σ𝐺𝑂𝐸

2 𝑓 > 𝜀 = 0



V. On the proofs



Length spectra of hyperbolic surfaces

 Length spectrum (primitive) ℒ𝑋
𝑔
of 𝑋 ∈ ℳ𝑔: (discrete) set 

of lengths of distinct (primitive) closed geodesics in 𝑋.

 Fact (Huber): Spectrum of 𝑋 ↭ ℒ𝑋
𝑔

(determine).

 Careful: Neither determines 𝑋 (isometry class). Almost.

 Selberg’s trace formula express 𝑛𝑓 𝑋; 𝐿, 𝑦 = 𝜑 ℒ𝑋
𝑔

,   

𝜑 = 𝜑𝑓;𝐿,𝑦: 𝒩 → ℝ functional, 𝒩 discrete measures ℝ≥0.

 ෨𝑉𝐸;𝐿 𝑋 = 𝜓 ℒ𝑋
𝑔

.  𝜑, 𝜓 continuous 𝒩 (vague topology)

 ℒ𝑋
𝑔

is random. Think as point-process. Limit 𝑔 → ∞?

 Geodesics are simple or non-simple (self-intersecting).



(Random) Length spectra

 ℒ𝑋
𝑔

is random. Think as point-process. Limit 𝑔 → ∞?

 Geodesics are simple or non-simple (self-intersecting).

 For 𝑋 fixed, total number of geodesics of length ≤ 𝑀
exponential (Geodesic Prime Number Theorem).

 Number of simple geodesics of length ≤ 𝑀 – polynomial 

(degree 6𝑔 − 6) 𝑀 → ∞, 𝑋 fixed (𝑔 fixed). 

 ⇒ Most geodesics are self-intersecting.

 “Mirzakhani’s integration formula” – a way to average 

functionals on ℳ𝑔 of simple length spectrum. 

 Too bad.



Simple vs. self-intersecting

Simple

Self-intersecting



Length spectra as point process

 Situation changes drastically regime as 𝑔 → ∞ (𝑀 fixed).

 Here most geodesics are simple. 

 Number of (simple primitive) geodesics of length ≤ 𝑀
converges to Poisson r.v., with certain parameter.

 Mirzakhani-Petri (`17) proved (simple/total) ℒ𝑋
𝑔

⇒ 𝑃𝑃𝑃

intensity 
2sinh(𝑥)2

𝑥
, denote ℒ∞. 

 Mirzakhani’s integration formula ⟺ Poisson correlations.

 Recall ෨𝑉𝐸;𝐿 𝑋 = 𝜓 ℒ𝑋
𝑔

, 𝜓 = 𝜓𝐸;𝐿 continuous.

 Then ෨𝑉𝐸;𝐿 𝑋 ⇒ 𝜓 ℒ∞ . Can perform computations 

within PPP. Evaluate expectation Σ𝐺𝑂𝐸
2 𝑓 , variance vanish.



Thanks!
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