Spaces of algebraic measure trees and triangulations of the circle

Anita Winter, University of Duisburg-Essen joint work with Wolfgang Löhr, Bulletin de la SMF (2021)

Workshop "Geometric and Topological Properties of Random Algebraic Varieties" Cologne, October 4th – 6th, 2023

From graph-theoretic trees to \mathbb{R} -trees

• Graph-theoretic trees have many applications from computer science to theoretical biology.

 \rightarrow How to define limit objects as the size of trees tend to infinity?

- Local structure approaches yield countably infinite graphs.
 - → Benjamini-Schramm approach: [BENJAMINI & SCHRAMM (2001)], [ALDOUS & LYONS (2007)]
- We here seek a *global structure approach*: metric spaces with rescaled distances lead to \mathbb{R} -trees: [TITS (1977)]
 - study of isometry groups of hyperbolic spaces [MORGAN & SHALEN (1982)],
 - study of the fundamental groups of one-dimensional spaces [MAYER, NIKIEL & OVERSTEEGEN (1992)]
 - characterization of the topological structure of one-dimensional spaces [FISHER & ZASTROV (2013)], [FABEL (2015)]

- → suitable state space for tree-valued stochastic processes that are continuum analogues of ...
 - the Aldous-Broder algorithm for sampling a uniform spanning tree
 - of the complete graph ([EVANS, PITMAN & W. (2006)] or
 - the high-dimensional torus [Angtuncio-Hernandez, Berzunza-Ojeda & W. (in progress)])
 - *subtree prune and regraft* algorithm used in reconstructing phylogenetic trees [EVANS & W. (2006)]
 - evolving genealogies in population genetics [(GREVEN, PFAFFELHUBER & W. (2013)), [GREVEN, SUN & W. (2016)]]
 - *pruning* procedures [ABRAHAM, DELMAS & VOISIN (2010)], [LÖHR, VOISIN & W. (2013)], [HE & WINKEL (2019)], [BERZUNZA & W. (2023)]
- \rightsquigarrow all these encode trees as $\mathbb{R}\text{-trees}$ and equip the tree space with Gromov-Hausdorff or Gromov-weak topology

 $\rightsquigarrow\,$ useful for several reasons

1 The state space of metric (measure) trees is not compact.

- Tightness for random metric (measure spaces) are often not easy to check, or
- some natural sequences of trees do not even converge as rescaled metric measure spaces, e.g. binary search tree
- The metric structure is often less canonical than the tree structure, e.g. in situations where edge lengths are not of the same order.
- Sertain *functionals* of the tree structure might *not* be *continuous*.
 - $\rightsquigarrow\,$ For example, the degree of a vertex.

From topological structure to tree structure

- $\rightsquigarrow\,$ ignore metric and focus on "tree-structure"
 - Unlike for metric spaces, for general topological spaces no useful notion of convergence is known.
 - For *tree spaces*, we can rely on the notion of a *branch point map* that sends any three points to a branch point.

 \rightarrow algebraic trees

• We can also use the branch point map to define convergence of algebraic (measure) trees.

What are continuum trees? R-trees

Definition ([TITS (1977)], [DRESS (1994)], [CHISWELL (2001)])

A metric space (T, d) is an \mathbb{R} -tree iff

- (*T*, *d*) is connected.
- (T, d) is 0-hyperbolic, i.e., $\forall x_1, x_2, x_3, x_4 \in T$,

 $d(x_1, x_2) + d(x_3, x_4) \le \max \{ d(x_1, x_3) + d(x_2, x_4), d(x_1, x_4) + d(x_2, x_3) \}.$

What are continuum trees? R-trees

Definition ([TITS (1977)], [DRESS (1994)], [CHISWELL (2001)])

A metric space (T, d) is an **R-tree** iff

- (*T*, *d*) is connected.
- (T, d) is 0-hyperbolic, i.e., $\forall x_1, x_2, x_3, x_4 \in T$,

 $d(x_1, x_2) + d(x_3, x_4) \le \max \left\{ d(x_1, x_3) + d(x_2, x_4), d(x_1, x_4) + d(x_2, x_3) \right\}.$

\rightsquigarrow Intrinsic property

For $x_1, x_2, x_3 \in T$ there exists a unique branch point $c(x_1, x_2, x_3) \in T$ with

$$[x_1, x_2] \cap [x_2, x_3] \cap [x_2, x_3] = \{c(x_1, x_2, x_3)\}.$$

Note that

$$[x,y] := \{x' \in T : d(x,y) = d(x,x') + d(x',y)\}$$

does not require the notion of *connectedness*.

What are limit trees? metric trees

I am not a tree :-(

I am a tree :-)

Definition ([ATHREYA, LÖHR, W. (2016)])

A metric space (T, d) is a *metric tree* if it is (isometric to) a subset of an \mathbb{R} -tree with $c(x, y, z) \in T$ for all $x, y, z \in T$.

In both cases we can conclude

- Symmetry of c(x, y, z) in x, y, z.
- (2-point condition) c(x, y, y) = y, and
- (3-point condition) c(x, y, c(x, y, z)) = c(x, y, z)
- (4-point condition) $c(x, y, z) \in \{c(x, y, w), c(x, z, w), c(y, z, w)\}.$

characterize trees by map that sends three vertices to their branch point

Definition (algebraic trees; [LÖHR, W.])

(T, c) is an algebraic tree with branch point map $c = c_T \colon T^3 \to T$ if

- c is symmetric: c(x, y, z) = c(y, x, z) = c(x, z, y), for all $x, y, z \in T$.
- 2-point condition: $c(x, y, y) = y, x, y \in T$.
- 3-point condition: c(x, y, c(x, y, z)) = c(x, y, z), for all $x, y, z \in T$.
- 4-point condition: For all $x, y, z, w \in T$.

$$c(x, y, z) \in \big\{c(x, y, w), c(x, z, w), c(y, z, w)\big\}.$$

 $\rightsquigarrow\,$ Finite algebraic trees correspond to finite graph-theoretic trees.

Axioms are sufficient to capture the tree-structure

Let (T, c) be an algebraic tree.

• The *path* between $x_1, x_2 \in T$ is given by

$$[x_1, x_2] := \{z \in T : z = c(x_1, x_2, z)\}.$$

Then for all $x, y, z \in T$,

 $[x, y] \cap [x, z] \cap [y, z] = \{c(x, y, z)\}.$

- $\{x_1, x_2\}$ is an *edge* if $[x_1, x_2] := \{x_1, x_2\}.$
- $A \subseteq T$ is a subtree if $c(A^3) \subseteq A$.
- Similarly, we can define branch points, leaves, ...

Morphisms of algebraic trees

→ Like any decent algebraic structure, algebraic trees come with the notion of a structure-preserving morphism.

Let (T, c) and (T', c') be algebraic trees.

- A map $f: T \to T'$ is called a *tree homomorphism*, if for all $x, y, z \in T$, f(c(x, y, z)) = c(f(x), f(y), f(z)).
- 2 Equivalently, for all $x, y \in T$, $f([x, y]) \subseteq [f(x), f(y)]$.

Morphisms of algebraic trees

→ Like any decent algebraic structure, algebraic trees come with the notion of a structure-preserving morphism.

Let (T, c) and (T', c') be algebraic trees.

- A map $f: T \to T'$ is called a *tree homomorphism*, if for all $x, y, z \in T$, f(c(x, y, z)) = c(f(x), f(y), f(z)).
- 2 Equivalently, for all $x, y \in T$, $f([x, y]) \subseteq [f(x), f(y)]$.

If a homomorphism $f : T \to T'$ is bijective, we refer to it as *isomorphism*.

- Let (T, c) be an algebraic tree.
 - \rightsquigarrow What is a good notion of open sets?
 - Taking away $x \in T$, T decomposes into subtree components.

Let (T, c) be an algebraic tree.

 \rightsquigarrow What is a good notion of open sets?

Let (T, c) be an algebraic tree.

 \rightsquigarrow What is a good notion of open sets?

Let (T, c) be an algebraic tree.

 \rightsquigarrow What is a good notion of open sets?

Let (T, c) be an algebraic tree.

 \rightsquigarrow What is a good notion of open sets?

•
$$\tau := \tau(\{\mathcal{S}_x(y); x \neq y \in T\}).$$

Let (T, c) be an algebraic tree.

 \rightsquigarrow What is a good notion of open sets?

• Taking away $x \in T$, T decomposes into subtree components.

•
$$\tau := \tau(\{\mathcal{S}_x(y); x \neq y \in T\}).$$

• This component topology is a Hausdorff topology.

Let (T, c) be an algebraic tree.

 \rightsquigarrow What is a good notion of open sets?

- $\tau := \tau(\{\mathcal{S}_x(y); x \neq y \in T\}).$
- This component topology is a Hausdorff topology.
- The branch point map is continuous with respect to the component topology.

On separability

\rightsquigarrow Intervals are closed sets.

Indeed, with $\mathcal{S}_u(v)$ subtree component of $T \setminus \{u\}$ that contains v

$$\mathbb{G}[x,y] = \{\mathcal{S}_u(v): u \in [x,y], v \in \mathcal{T}, \mathcal{S}_u(v) \cap [x,y] = \emptyset\} \in \tau(\mathcal{C}).$$

Proposition (Löhr & W. (2021))

Let (T, c) be an algebraic tree. Then the following are equivalent:

- The topological space (T, τ) is separable, and has only countably many edges.
- **2** There exists a countable set D such that for all $x, y \in T$ with $x \neq y$,

$$D\cap[x,y)\neq\emptyset.$$

In what follows, we refer to (T, c) as (order) separable iff the topological space (T, c) is separable and (T, c) has at most countably many edges.

Metric representation of order separable algebraic trees

- → Any separable metric tree (T, r) defines an order separable algebraic tree $(T, c_{(T,r)})$ by letting $c_{(T,r)}$ send any triple $x, y, z \in T$ to its branch point in (T, r).
- \sim On the contrary, if (T, c) is an order separable algebraic tree and ν is a measure on $\mathcal{B}(T, c)$, then

 $r_{\nu}(x,y) :=
u([x,y]) - \frac{1}{2}
u(\{x\}) - \frac{1}{2}
u(\{y\}), \quad x,y \in T$

defines a *pseudo-metric* with $c = c_{(T,r_{\nu})}$.

 $\sim r_{\nu}$ is a metric, if $\nu([x, y]) > 0$ for all $x, y \in T$. Such a measure always exists if (T, c) is order separable. Take e.g. a probability measure supported on a countable set D such that for all $x, y \in T$,

 $D\cap [x,y)\neq \emptyset.$

Definition

An algebraic measure tree (T, c, μ) consists of an *(order)* separable algebraic tree (T, c) and a *probability measure* μ on $(T, \mathcal{B}(T, c))$.

Call two algebraic measure trees (T, c, μ) and (T', c', μ') equivalent iff $\operatorname{supp}(\mu)$ and $\operatorname{supp}(\mu')$ are subtrees, and there is an *isomorphism* $\varphi : \operatorname{supp}(\mu) \to \operatorname{supp}(\mu')$ such that

• for all $x, y, z \in T$, $\varphi(c(x, y, z)) = c(\varphi(x), \varphi(y), \varphi(z))$, and

•
$$\mu \circ \varphi^{-1} = \mu'.$$

 $\mathbb{T}:=\mbox{ space of all equivalence classes of algebraic measure trees.}$

Definition

An algebraic measure tree (T, c, μ) consists of an *(order)* separable algebraic tree (T, c) and a *probability measure* μ on $(T, \mathcal{B}(T, c))$.

Call two algebraic measure trees (T, c, μ) and (T', c', μ') equivalent iff $\operatorname{supp}(\mu)$ and $\operatorname{supp}(\mu')$ are subtrees, and there is an *isomorphism* $\varphi : \operatorname{supp}(\mu) \to \operatorname{supp}(\mu')$ such that

• for all $x, y, z \in T$, $\varphi(c(x, y, z)) = c(\varphi(x), \varphi(y), \varphi(z))$, and

•
$$\mu \circ \varphi^{-1} = \mu'.$$

 $\mathbb{T}:=\mbox{ space of all equivalence classes of algebraic measure trees.}$

- $\rightsquigarrow\,$ Related approaches to continuum trees:
 - didendritic systems; [Evans, Grübel & Wakolbinger (2017)]
 - interval partition trees; exchangeable hierarchies [FORMAN (2020)]

Definition

An algebraic measure tree (T, c, μ) consists of an *(order)* separable algebraic tree (T, c) and a *probability measure* μ on $(T, \mathcal{B}(T, c))$.

Call two algebraic measure trees (T, c, μ) and (T', c', μ') equivalent iff $\operatorname{supp}(\mu)$ and $\operatorname{supp}(\mu')$ are subtrees, and there is an *isomorphism* $\varphi : \operatorname{supp}(\mu) \to \operatorname{supp}(\mu')$ such that

- for all $x, y, z \in T$, $\varphi(c(x, y, z)) = c(\varphi(x), \varphi(y), \varphi(z))$, and
- $\mu \circ \varphi^{-1} = \mu'$.

 $\mathbb{T}:=\mbox{ space of all equivalence classes of algebraic measure trees.}$

- \rightsquigarrow Three strategies for a notion of convergence in $\mathbb{T}.$
- 1 rely on Gromov-weak topology
- 2 use combinatorial notion of convergence
- I rely on convergence of subtree component masses

mm-space (X, d, μ) = a Polish space (X, d) + a probability measure μ on B(X)

- *mm-space* (X, d, μ) = a Polish space (X, d) + a probability measure μ on B(X)
- Two metric measure spaces (X, d, μ) and (X', d', μ') equivalent if there exists an isometry ψ : supp(μ) → supp(μ') with μ' = μ ∘ ψ⁻¹.

 $\mathbb{H} :=$ equivalence classes of mm-trees.

- *mm-space* (X, d, μ) = a Polish space (X, d) + a probability measure μ on B(X)
- Two metric measure spaces (X, d, μ) and (X', d', μ') equivalent if there exists an isometry ψ : supp(μ) → supp(μ') with μ' = μ ∘ ψ⁻¹.

 $\mathbb{H} :=$ equivalence classes of mm-trees.

• We evaluate elements in \mathbb{H} with sample distance polynomials, i.e.,

$$\Phi^{m,\phi}(T,d,\mu) := \int \mu^{\otimes m}(\mathrm{d}\underline{x}) \,\phi\Big(\big(d(x_i,x_j)\big)_{1 \leq i < j \leq m}\Big)$$

where $m \in \mathbb{N}$, $\phi \in \mathcal{C}_b(\mathbb{R}^{\binom{m}{2}}_+)$.

- *mm-space* (X, d, μ) = a Polish space (X, d) + a probability measure μ on B(X)
- Two metric measure spaces (X, d, μ) and (X', d', μ') equivalent if there exists an isometry ψ : supp(μ) → supp(μ') with μ' = μ ∘ ψ⁻¹.

 $\mathbb{H} :=$ equivalence classes of mm-trees.

 \bullet We evaluate elements in $\mathbb H$ with sample distance polynomials, i.e.,

$$\Phi^{m,\phi}(\mathsf{T},\mathsf{d},\mu) := \int \mu^{\otimes m}(\mathrm{d}\underline{x}) \, \phi\Big(ig(\mathsf{d}(\mathsf{x}_i,\mathsf{x}_j)ig)_{1 \leq i < j \leq m}\Big)$$

where $m \in \mathbb{N}$, $\phi \in \mathcal{C}_b(\mathbb{R}^{\binom{m}{2}}_+)$.

• (Vershik's reconstruction theorem) If $x_1, x_2 \in \mathbb{H}$ such that $\Phi(x_1) = \Phi(x_2)$ for all sample distance polynomial then $x_1 = x_2$.

Gromov-weak topology Sample distance matrix convergence

[GREVEN, PFAFFELHUBER & W. (2009)]

Definition (Gromov-weak topology)

A sequence $(x_n)_{n \in \mathbb{N}}$ converges *Gromov-weakly* to x in \mathbb{H} iff

 $\Phi(x_n) \longrightarrow \Phi(x)$ for all sample distance polynomials Φ .

Gromov-weak topology Sample distance matrix convergence

[GREVEN, PFAFFELHUBER & W. (2009)]

Definition (Gromov-weak topology)

A sequence $(x_n)_{n \in \mathbb{N}}$ converges *Gromov-weakly* to x in \mathbb{H} iff

 $\Phi(x_n) \longrightarrow \Phi(x)$ for all sample distance polynomials Φ .

[LÖHR (2013)]

Corollary (Convergence determining)

If $(x_N)_{N \in \mathbb{N}}$ and x are \mathbb{H} -valued random variables with

 $\mathbb{E}\big[\Phi(\mathcal{X}_N)\big] \mathop{\longrightarrow}_{N \to \infty} \mathbb{E}\big[\Phi(\mathcal{X})\big]$

for all sample distance polynomials. Then

$$\mathcal{L}(\chi_N) \underset{N \to \infty}{\Longrightarrow} \mathcal{L}(\chi).$$

The branch point distribution distance

 \rightsquigarrow for an order separable tree (*T*, *c*) there are many metric representations

Question. Is there an intrinsic choice?

The branch point distribution distance

 \sim for an order separable tree (*T*, *c*) there are many metric representations

Question. Is there an intrinsic choice?

Definition (Branch point distribution distance)

Let (T, c, μ) be an algebraic measure tree. The probability measure

$$\nu_{(\mathcal{T},c,\mu)} := \mu^{\otimes 3} \circ c^{-1}$$

is called the *branch point distribution*. and the associated metric r_{ν} the *branch point distribution distance*.

We say that a sequence $(x_N)_{\mathbb{N}}$ converges *globally* to in x in \mathbb{T} , if $(x_N)_{\mathbb{N}}$ converges *Gromov-weakly* to x in \mathbb{T} with respect to the branch point distribution distance.

A combinatorial notion of convergence

 $\rightsquigarrow\,$ In many applications trees are binary.

 $\mathbb{T}_2 := \{ \text{binary algebraic measure trees with atoms only at leaves} \}$

An *m-cladogram* is a combinatorial

- un-rooted, binary tree
- leaf-labeled, i.e., there is a surjective labeling map ℓ : {1...m} to the set of leaves.

Two *m*-cladograms (C_1, c_1, ℓ_1) and (C_2, c_2, ℓ_2) are **equivalent** if they are *label invariant isomorphic*.

 $\rightsquigarrow\,$ encode the shape of a sampled subtree as $\mathit{cladogram}$

Definition (tree shape)

Fix $(T, c_T) \in \mathbb{T}_2$, $m \in \mathbb{N}$, and non-branch points $u_1, ..., u_m \in T$. The **tree shape** $\mathfrak{s}_T(u_1, ..., u_m)$ is the unique (up to isomorphism) *m*-cladogram with

- (*sh1*) leaf set {*u*₁,...,*u_m*},
- (sh2) u_i gets label i for all i = 1, ..., m, and such that
- (sh3) the identity on the leave set extends to a tree homomorphism from $\mathfrak{s}_{\mathcal{T}}(u_1, ..., u_m)$ onto $c_{\mathcal{T}}(\{u_1, ..., u_m\}^3)$.

 \sim (sh3) tells us what to do when there are 3 points on a path.

Sample shape distribution

Consider sample shape polynomials, i.e. functions $\Phi:\mathbb{T}_2\to\mathbb{R}$ of the form

$$\Phi(\boldsymbol{x}) = \int \mu^{\otimes m}(\mathrm{d}\underline{x})\phi\big(\mathfrak{s}_{\mathcal{T}}(\underline{x})\big)$$

for some $m \in \mathbb{N}$ and $\phi : \mathcal{C}_m \to \mathbb{R}_+$.

Sample shape distribution

Consider sample shape polynomials, i.e. functions $\Phi:\mathbb{T}_2\to\mathbb{R}$ of the form

$$\Phi(\boldsymbol{x}) = \int \mu^{\otimes m}(\mathrm{d}\underline{x})\phi(\mathfrak{s}_{\mathcal{T}}(\underline{x}))$$

for some $m \in \mathbb{N}$ and $\phi : \mathcal{C}_m \to \mathbb{R}_+$.

Proposition (Löhr & W. (2021))

For each $m \in \mathbb{N}$ and $\varphi \in \mathcal{C}(\mathbb{R}^{\binom{m}{2}})$, the sample distance polynomial

$$\Phi(x) = \int \mu^{\otimes m}(\mathrm{d}\underline{x})\phi\big((r_{\nu}(x_i, x_j))_{1 \leq i < j \leq m}\big)$$

can be approximated uniformly by sample shape polynomials.

Sample shape distribution

Main steps in proof:

() Recall that $\nu = c_* \mu^{\otimes 3}$ and

$$r_{\nu}(x,y) = \nu([x,y]) - \frac{1}{2}\nu(\{x\}) - \frac{1}{2}\nu(\{y\}).$$

2 Approximate ν by empirical branch point distributions,

$$\nu_{n,\underline{u}} := \frac{1}{n} \sum_{i=0}^{n-1} \delta_{c(u_{3i+1}, u_{3i+2}, u_{3i+3})},$$

and note that $\Phi(x) := \int \mu^{\otimes 3m}(\mathrm{d}\underline{u})\phi((r_{\nu_{n,\underline{u}}}(u_i, u_j))_{1 \le i < j \le 3m})$ is a sample shape polynomial because whether or not $u_i \in [u_k, u_l]$ depends on $\mathfrak{s}_{\mathcal{T}}(\underline{u})$.

3 Use the uniform upper bound ([VAPNIK & CHERVONENKIS (1971)])

$$\mathbb{E}\Big[\sup_{x,y\in T} \big|\nu([x,y]) - \nu_{n,u}([x,y])\big|\Big] \le 96\sqrt{\frac{\dim_{VC}(\{[x,y];x,y\in T\})}{n}},$$

and note that $\dim_{VC}(\{[x, y]; x, y \in T\}) = 2.$

Sample shape distribution

Consider sample shape polynomials, i.e. functions $\Phi:\mathbb{T}_2\to\mathbb{R}$ of the form

$$\Phi(\boldsymbol{x}) = \int \mu^{\otimes m}(\mathrm{d}\underline{x})\phi(\mathfrak{s}_{\mathcal{T}}(\underline{x}))$$

for some $m \in \mathbb{N}$ and $\phi : \mathcal{C}_m \to \mathbb{R}_+$.

Proposition (Löhr & W. (2021))

For each $m \in \mathbb{N}$ and $\varphi \in \mathcal{C}(\mathbb{R}^{\binom{m}{2}})$, the sample distance polynomial

$$\Phi(x) = \int \mu^{\otimes m}(\mathrm{d}\underline{x})\phi\big((r_{\nu}(x_i, x_j))_{1 \leq i < j \leq m}\big)$$

can be approximated uniformly by sample shape polynomials.

Sample shape convergence

Distance polynomials can be approximated uniformly by shape polynomials.

Consequently, if $x, x' \in \mathbb{T}_2$ then

x = x' iff $\Phi^{m,\phi}(x) = \Phi^{m,\phi}(x'), \forall m \in \mathbb{N}, \phi : \mathfrak{C}_m \to \mathbb{R}.$

Sample shape convergence

Distance polynomials can be approximated uniformly by shape polynomials.

Consequently, if $x, x' \in \mathbb{T}_2$ then

x = x' iff $\Phi^{m,\phi}(x) = \Phi^{m,\phi}(x'), \forall m \in \mathbb{N}, \phi : \mathfrak{C}_m \to \mathbb{R}.$

Definition (Sample shape convergence)

We say that a sequence $(x_n)_{n \in \mathbb{N}}$ converges in sample shape to x in \mathbb{T}_2 if all sample shape polynomials converge.

Sample shape convergence

Distance polynomials can be approximated uniformly by shape polynomials.

Consequently, if $x, x' \in \mathbb{T}_2$ then

x = x' iff $\Phi^{m,\phi}(x) = \Phi^{m,\phi}(x'), \forall m \in \mathbb{N}, \phi : \mathfrak{C}_m \to \mathbb{R}.$

Definition (Sample shape convergence)

We say that a sequence $(x_n)_{n \in \mathbb{N}}$ converges in sample shape to x in \mathbb{T}_2 if all sample shape polynomials converge.

 \sim For example, the *comb tree* with *N* leaves and uniform distribution on the leaves *converges in sample shape to a line segment* with a continuous mass distribution.

$$\frac{1}{N} \xrightarrow{1}{N} \xrightarrow{1}$$

 \rightsquigarrow yet another notion of convergence -:)

 \rightsquigarrow yet another notion of convergence -:)

- Consider the subtree $S_{(T,c)}(U_1, ..., U_m)$, and label the generated branch points according to the order of their appearance.
- Evaluate the masses of the subtrees branching off.

 \rightsquigarrow yet another notion of convergence -:)

- Consider the subtree $S_{(T,c)}(U_1, ..., U_m)$, and label the generated branch points according to the order of their appearance.
- Evaluate the masses of the subtrees branching off.

 \rightsquigarrow yet another notion of convergence -:)

- Consider the subtree $S_{(T,c)}(U_1, ..., U_m)$, and label the generated branch points according to the order of their appearance.
- Evaluate the masses of the subtrees branching off.

 \rightsquigarrow yet another notion of convergence -:)

- Consider the subtree $S_{(T,c)}(U_1, ..., U_m)$, and label the generated branch points according to the order of their appearance.
- Evaluate the masses of the subtrees branching off.

 \rightsquigarrow yet another notion of convergence -:)

- Consider the subtree $S_{(T,c)}(U_1, ..., U_m)$, and label the generated branch points according to the order of their appearance.
- Evaluate the masses of the subtrees branching off.

 \rightsquigarrow yet another notion of convergence -:)

- Consider the subtree $S_{(T,c)}(U_1, ..., U_m)$, and label the generated branch points according to the order of their appearance.
- Evaluate the masses of the subtrees branching off.

 \rightsquigarrow yet another notion of convergence -:)

- Consider the subtree $S_{(T,c)}(U_1, ..., U_m)$, and label the generated branch points according to the order of their appearance.
- Evaluate the masses of the subtrees branching off.

 \rightsquigarrow yet another notion of convergence -:)

given $(T, c, \mu) \in \mathbb{T}_2$, pick U_1 , U_2 , ... i.i.d. $\sim \mu$

- Consider the subtree $S_{(T,c)}(U_1, ..., U_m)$, and label the generated branch points according to the order of their appearance.
- Evaluate the masses of the subtrees branching off.

Definition (Subtree mass convergence)

 (T_n, c_n, μ_n) converges to (T, c, μ) in the sense of *convergence of sample subtree masses* if for every $m \in \mathbb{N}$ the vectors of masses branching off the branch points in the subtree spanned by a sample of size m converge.

Main result

Obvious inclusions

- Sample shape convergence and sample subtree masses convergence imply global convergence.
- Sample shape convergence implies sample subtree masses convergence.

Theorem (Löhr & W. (2021))

- **(**) All three notions of convergence are equivalent on \mathbb{T}_2 .
- **2** \mathbb{T}_2 is compact.
- \sim Proof uses correspondence to (sub-)triangulations of the circle.

Triangulations of polygons and finite trees

[Aldous'94]

- branch points = (open) triangles edges connecting two vertices = separating side of the triangles leaves = sides of the polygon
- → Continuum limits (= triangulations of the circle) encode binary algebraic trees (without the measure); [CURIEN AND LE GALL (2011)],[CURIEN, HAAS, AND KORTCHEMSKI (2015)],...

Sub-triangulations of the circle

 $\rightsquigarrow\,$ encode also the measure and unify discrete and continuum trees

Definition ((sub-)triangulations; Aldous (1994), Löhr & W. (2021))

A closed subset $C \neq \emptyset$ of the closed disc \mathbb{D} is called **a sub-triangulation** of the circle if and only if the following two conditions hold:

(T1) $\operatorname{conv}(C) \setminus C$ is the disjoint union of open interiors of triangles.

(T2) *C* is the union of non-crossing (non-intersecting except at endpoints), (possibly degenerated) closed straight line segments with endpoints in the circle $\mathbb{S} := \partial \mathbb{D}$.

Definition ((sub-)triangulations; Aldous (1994), Löhr & W. (2021))

A closed subset $C \neq \emptyset$ of the closed disc \mathbb{D} is called a sub-triangulation of the circle if and only if the following two conditions hold:

(T1) $\operatorname{conv}(C) \setminus C$ is the disjoint union of open interiors of triangles.

(T2) *C* is the union of non-crossing (non-intersecting except at endpoints), (possibly degenerated) closed straight line segments with endpoints in the circle $\mathbb{S} := \partial \mathbb{D}$.

→ Aldous' original definition missed (T2) which can be shown to be equivalent for branch points to exist.

Remember: I am not a tree

Sub-triangulations of the circle

Definition ((sub-)triangulations; Aldous (1994), Löhr & W. (2021))

A closed subset $C \neq \emptyset$ of the closed disc \mathbb{D} is called a sub-triangulation of the circle if and only if the following two conditions hold:

(T1) $\operatorname{conv}(C) \setminus C$ is the disjoint union of open interiors of triangles.

(T2) *C* is the union of non-crossing (non-intersecting except at endpoints), (possibly degenerated) closed straight line segments with endpoints in the circle $\mathbb{S} := \partial \mathbb{D}$.

 $\mathcal{T}:= \text{ set of all subtriangulations of the circle}$

 $\mathcal{T}^{\operatorname{cont}} := \left\{ \mathcal{C} \in \mathcal{T} : \, \mathbb{S} \subseteq \mathcal{C} \right\}$

Sub-triangulations of the circle

Definition ((sub-)triangulations; Aldous (1994), Löhr & W. (2021))

A closed subset $C \neq \emptyset$ of the closed disc \mathbb{D} is called a sub-triangulation of the circle if and only if the following two conditions hold:

(T1) $\operatorname{conv}(C) \setminus C$ is the disjoint union of open interiors of triangles.

(T2) *C* is the union of non-crossing (non-intersecting except at endpoints), (possibly degenerated) closed straight line segments with endpoints in the circle $\mathbb{S} := \partial \mathbb{D}$.

 $\mathcal{T}:= \text{ set of all subtriangulations of the circle}$

 $\mathcal{T}^{\operatorname{cont}} := \left\{ \mathcal{C} \in \mathcal{T} : \, \mathbb{S} \subseteq \mathcal{C} \right\}$

Proposition (Löhr & W. (2021))

 \mathcal{T} and \mathcal{T}^{cont} are closed in the space of all closed subsets of \mathbb{D} with respect to the Hausdorff metric and therefore compact.

From sub-triangulations to algebraic measure trees (2021)

edges	=	(open) triangles sides of triangles lie on circle
Measure can be also encoded.		

mass on leave = length on circle

Proposition (Löhr & W.)

There is a surjective map $\tau : \mathcal{T} \to \mathbb{T}_2$, which is continuous when \mathbb{T}_2 is equipped with the sample shape topology.

 \rightsquigarrow From here one can conclude equivalence of the notions of convergence, compactness and metrizability of \mathbb{T}_2 .

Corollary

The sets of sample shape polynomials and of sample subtree mass polynomials are convergence determining for probability measures on \mathbb{T}_2 .

 \sim Stone-Weierstrass theorem; polynomials closed under multiplication

Why is the result of interest?

- Using global convergence allows to exploit well-known results about Gromov-weak convergence.
- Showing convergence of graph theoretic tree-valued MCs as the number of vertices tends to infinity simplifies if we have *compact state space*:
 - [LÖHR, MYTNIK & W., "Aldous chain on cladograms in the diffusion limit", (2020)]
 - [NUSSBAUMER & W., "The algebraic α-Ford tree under evolution", (ArXIV2022)]
 - [GAMBELIN, "The stable algebraic measure tree diffusion", PART OF HIS PHD THESIS]
- The convergence of sample subtree mass tensor distributions allows to analyse the limit processes with stochastic analysis methods.
- → Approach is already generalized to two-level algebraic measure trees: [NUSSBAUMER, TRAN VIET & W. (ARXIV2022)]

Many thanks!

References

- Dress; "Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces", Adv. in Math. (1984)
- Greven, Pfaffelhuber and Winter; Convergence of mm-spaces, PTRF, (2009)
- Evans, Grübel & Wakolbinger; "Doob-Martin boundary of Rémy tree growth chain", (2017)
- Fabel; "A topological characterization of the underlying spaces of complete *R*-trees", Michigan Math. J.(2015)
- Fisher & Zastrov; "Combinatorial ℝ-trees as generalized Cayley graphs for fundamental groups of one-dimensional spaces", Geom. Dedicata, (2013)
- Forman; "Exchangeable hierarchies and mass-structure of weighted real trees", EJP, (2020)
- Löhr; Equivalence of Gromov-Prohorov- and Gromov's □_λ-metric on the space of metric measure spaces, ECP, (2013)
- Löhr and Winter; Algebraic measure trees and triangulations of the circle, Bullein SFM (2021)
- Tits; "A theorem of Lie-Kolchin for trees", (1977)
- Vapnik and Chervonenkis; On the uniform convergence of relative frequencies of events to their probabilities, Theor. Probability Appl. (1971)