Introduction to the Atiyah-Singer index theory - Homework 3

Exercise 1.

[Chern–Weil theorem for superconnections] Let X be a manifold of dimension m. Let $E = E^+ \oplus E^-$ be a complex superbundle on X, and let A be a superconnection on E. Take $f(x) = \sum a_j x^j$ a formal power series with $a_j \in \mathbb{C}$. Give a detailed proof to the following statements (where φ denotes the normalization map $1/(2\pi\sqrt{-1})^{\text{degree}/2}$): (1). $\varphi \operatorname{Tr}_{s}[f(-A^2)] \in \Omega^{\text{even}}(X)$ is closed form; (2). Its cohomology class is independent of A, and

$$\left[\varphi \operatorname{Tr}_{\mathrm{s}}\left[f(-A^{2})\right]\right]_{\mathrm{dR}} = f_{\mathrm{a}}(E^{+}) - f_{\mathrm{a}}(E^{-}) \in H^{\bullet}(X).$$

Exercise 2.

[Chern character for a linear map] Let $D: E \to F$ be a linear map between two finite-dimensional vector spaces. Let h^E , h^F be Hermitian inner products on E, F respectively. Show the following results:

• There exists a unique linear operator $D^* : F \to E$ such that for $a \in E$, $b \in F$, we have

$$h^E(D^*b, a) = h^F(b, Da).$$

The operator D^* is called the adjoint of D with respect to h^E and h^F .

- Give a natural isomorphism between Ker D^* and Coker D := F/Image(D).
- Prove that

$$\lim_{t \to +\infty} \operatorname{Tr}^{E}[e^{-tD^{*}D}] = \dim \operatorname{Ker} D, \ \lim_{t \to +\infty} \operatorname{Tr}^{F}[e^{-tDD^{*}}] = \dim \operatorname{Coker} D.$$

Exercise 3.

[Clifford algebra and quaternion number field] Recall that the quaternion number field

$$\mathbb{H} = \mathbb{R} \oplus \mathbb{R}i \oplus \mathbb{R}j \oplus \mathbb{R}k$$

with $i^2 = j^2 = k^2 = -1$ and k = ij = -ji. Verify that the Clifford algebra $C(\mathbb{R}^2)$ is canonically isomorphic to the quaternion number field.

Exercise 4.

[Lie algebras of linear groups] For $n \ge 2$, consider the special orthogonal group

$$SO(n) := \{ A \in M(n, \mathbb{R}) : A^T = A^{-1}, \det A = 1 \}.$$

Show that

- SO(n) is a compact Lie group.
- Set $B \in M(n, \mathbb{R})$ with $B^T = -B$, then for any $t \in \mathbb{R}$,

$$\exp(tB) := \sum_{\ell=0}^{\infty} \frac{t^{\ell} B^{\ell}}{\ell!} \in \mathrm{SO}(n).$$

• For any $A \in SO(n)$, there exists $B \in M(n, \mathbb{R})$ with $B^T = -B$ such that $A = \exp(B)$. As a consequence, SO(n) is path-connected.

- $\mathbf{2}$
- The Lie algebra $\mathfrak{so}(n)$ of SO(n) is defined as the vector space of all leftinvariant vector field on SO(n) together with the Lie bracket of vector fields. Then the Lie algebra $\mathfrak{so}(n)$ is isomorphic to

$$\mathfrak{so}(n) = \{ B \in \mathcal{M}(n, \mathbb{R}) : B^T = -B \}$$

with Lie bracket

$$[B_1, B_2] = B_1 B_2 - B_2 B_1 \in \mathfrak{so}(n),$$

where B_1B_2 is the matrix multiplication of B_1 and B_2 . • Show that $\dim_{\mathbb{R}} SO(n) = \frac{n(n-1)}{2}$.

Exercise 5.

[Spin group Spin(3)] Let SU(2) denote the group of 2×2 complex unitary matrices with determinant 1. Let $\mathfrak{su}(2)$ be the Lie algebra of SU(2) which is the space of traceless skew-Hermitian matrices.

(a) Prove that the Lie algebra $\mathfrak{su}(2)$ has real dimension 3. For $u, v \in \mathfrak{su}(2)$, consider the bilinear form $\langle \cdot, \cdot \rangle$ on V

$$V \times V \ni (u, v) \mapsto \langle u, v \rangle := -\frac{1}{2} \Re(\operatorname{Tr}^{\mathbb{C}^2}[uv]) \in \mathbb{R},$$

where $\Re(\cdot)$ denotes the real part. Then $\langle \cdot, \cdot \rangle$ defines a Euclidean metric on $\mathfrak{su}(2).$

(b) Show that SU(2) acts on \mathbb{R}^3 via the adjoint representation:

$$\phi(g)(X) = gXg^{-1}, \text{ for } X \in \mathfrak{su}(2) \cong \mathbb{R}^3,$$

and this action preserves the Euclidean metric $\langle \cdot, \cdot \rangle$.

(c) Prove that this action induces a homomorphism $\phi : SU(2) \to SO(3)$. Then show that

$$\operatorname{Spin}(3) \simeq \operatorname{SU}(2).$$