Introduction to the Atiyah-Singer index theory - Homework 4

Exercise 1.

[Irreducible representation of matrix algebra] Let $M_k(\mathbb{C})$ be the algebra of all $k \times k$ complex matrices. Let (V, ρ) be a representation of $M_k(\mathbb{C})$ over \mathbb{C} , that is, a morphism of algebras

$$\rho: M_k(\mathbb{C}) \to \operatorname{End}(V).$$

We say that (V, ρ) is irreducible if it does not contain any proper nontrivial subspace invariant by the action of $\rho(M_k(\mathbb{C}))$. Show that

- (1) Consider the matrix action of $M_k(\mathbb{C})$ on \mathbb{C}^k , then it defines an irreducible representation.
- (2) The only nonzero irreducible (complex) representation of $M_k(\mathbb{C})$ is above $V = \mathbb{C}^k$ with the matrix action.

Exercise 2.

[Supertrace of Clifford actions on spinors] Let $(V, \langle \cdot, \cdot \rangle)$ be a Euclidean space of dimension m = 2k, and let $J \in O(V)$ be a complex structure of V (that is, $J^2 = -\operatorname{Id}_V$). Associated with J, we have the splitting $V \otimes_{\mathbb{R}} \mathbb{C} = W \oplus \overline{W}$ and the spinor space

$$S = \Lambda^{\bullet} \overline{W}^*$$

Recall that $\operatorname{End}(S) = \operatorname{Cl}(V) \otimes_{\mathbb{R}} \mathbb{C}$, where $\operatorname{Cl}(V)$ is Clifford algebra of V. Show the following results:

(1) If $g \in O(V)$, then g acts on $\Lambda^{\bullet}V$, prove that

$$\det_V(1-g) = \operatorname{Tr}_{\mathrm{s}}^{\Lambda^{\bullet} V}[g].$$

(2) If $g \in SO(V)$, let g act on $\Lambda^{\bullet}V^*$ induced by $\alpha \in V^*$, $v \in V$, $(g\alpha, v) = (\alpha, g^{-1}v)$. Then we have

$$\det_V(1-g) = \operatorname{Tr}_{\mathrm{s}}^{\Lambda^{\bullet}V^*}[g].$$

(3) If $\{e^j\}_{j=1}^m$ is an ordered orthonormal basis of V, then we have

$$\operatorname{Tr}_{s}^{S}[\sqrt{-1}^{k}c(e_{1})c(e_{2})\cdots c(e_{m-1})c(e_{m})] = 2^{k}.$$

(4) If
$$a \in \operatorname{Cl}^{m-1}(V) := \operatorname{Im}(\bigoplus_{j \le m-1} V^{\otimes j} \to \operatorname{Cl}(V))$$
, then we have
 $\operatorname{Tr}_{s}^{S}[c(a)] = 0.$

(5) Let $\rho : \operatorname{Spin}(V) \to \operatorname{SO}(V)$ be the canonical Lie group morphism, and recall the symbol map $\sigma : \operatorname{Cl}(V) \to \Lambda^{\bullet}V^*$. For any $\alpha \in \Lambda^{\bullet}V^*$, let $[\alpha]^{\max} \in \mathbb{R}$ denote the coefficient of $e^1 \wedge \cdots \wedge e^m$ in α . Show that for $g \in \operatorname{Spin}(V)$, we have

$$([\sigma(g)]^{\max})^2 = 2^{-k} \det_V (1 - \rho(g)).$$

(6) Show that for any $g \in SO(V)$, the function det $_V(1 - g \exp(A))$ of $A \in \mathfrak{so}(V)$ has an analytic square root.

Exercise 3.

[Exterior differential and Cartan formula] Let (X, g^{TX}) be an oriented Riemannian manifold of dimension m, let $d : \Omega^{\bullet}(X) \to \Omega^{\bullet+1}(X)$ be the exterior differential acting on the forms. Show that

(1) The Levi-Civita connection ∇^{TX} associated with g^{TX} is determined by the following formula: for $U, V, W \in \mathscr{C}^{\infty}(X, TX)$,

$$\begin{split} \langle \nabla_U^{TX} V, W \rangle_{g^{TX}} \\ = & \frac{1}{2} \Big\{ U \langle V, W \rangle_{g^{TX}} + V \langle W, U \rangle_{g^{TX}} - W \langle U, V \rangle_{g^{TX}} \\ & + \langle [U, V], W \rangle_{g^{TX}} - \langle [V, W], U \rangle_{g^{TX}} - \langle [U, W], V \rangle_{g^{TX}} \Big\}. \end{split}$$

(2) Let $\nabla^{\Lambda^{\bullet}T^*X}$ denote connection on $\Lambda^{\bullet}T^*X$ induced by the Levi-Civita connection ∇^{TX} . If $\{e_j\}_{j=1}^m$ is a local orthonormal basis of (TX, g^{TX}) with the dual frame $\{e^j\}_{j=1}^m$ of T^*X , then we have

$$d = \sum_{j=1}^{m} e^j \wedge \nabla_{e_j}^{\Lambda^{\bullet} T^* X}.$$

(3) For $V \in \mathscr{C}^{\infty}(X, TX)$, let L_V denote the Lie derivative of V on $\Omega^{\bullet}(X)$ (by taking the derivative of the pull-back by the diffeomorphism $\exp(tV)$ on X). Then we have

$$L_V = [d, \iota_V] = d\iota_V + \iota_V d.$$

Exercise 4.

[Formal adjoint of exterior differential] Let (X, g^{TX}) be an oriented Riemannian manifold of dimension m, let $\langle \cdot, \cdot \rangle_{L^2}$ denote the L^2 -inner product on $\Omega^{\bullet}(X, \mathbb{R})$ induced by g^{TX} and the corresponding Riemannian volume form. Let $\nabla^{\Lambda^{\bullet}T^*X}$ denote connection on $\Lambda^{\bullet}T^*X$ induced by the Levi-Civita connection on X. Let $d: \Omega^{\bullet}(X) \to \Omega^{\bullet+1}(X)$ be the exterior differential, and let $d^*: \Omega^{\bullet}(X) \to \Omega^{\bullet-1}(X)$ be its formal adjoint of dwith respect to the L^2 -inner product, that is, for any $s_1, s_2 \in \Omega^{\bullet}_c(X)$,

$$\langle d^*s_1, s_2 \rangle_{L^2} = \langle s_1, ds_2 \rangle_{L^2}.$$

Prove that, if $\{e_j\}_{j=1}^m$ is a local orthonormal basis of (TX, g^{TX}) , then we have

$$d^* := -\sum_{j=1}^m \iota_{e_j} \nabla_{e_j}^{\Lambda^{\bullet} T^* X}.$$

Exercise 5.

[Principal symbol of Dirac operator] Let (X, g^{TX}) be an oriented Riemannian manifold of dimension m, and let (E, h^E) be a \mathbb{Z}_2 -graded Clifford module on X with a Hermitian Clifford connection ∇^E . Let $D^E := \sum_{j=1}^m c(e_j) \nabla^E_{e_j}$ be the associated Dirac operator. Show that for $f \in \mathscr{C}^{\infty}(X, \mathbb{R})$, we have

$$[D^E, f] = c(df^*),$$

where $df^* \in TX$ denote the metric dual of $df \in T^*X$ with respect to g^{TX} .