Introduction to the Atiyah-Singer index theory - Homework 5

Exercise 1.

[SO(m)-principal bundle] Let (X, q^{TX}) be an oriented Riemannian manifold of dimension m. Define

 $SO(X) := \{(x, f) : x \in X, f : (T_x X, g_x^{TX}) \to (\mathbb{R}^m, g_{Eucl}) \text{ oriented linear isometrie } \}.$

Then

• Prove that SO(X) has a smooth structure such that the map

$$p: \mathrm{SO}(X) \to X, \quad (x, f) \mapsto x$$

is a smooth submersion.

- Verify that $p: SO(X) \to X$ is a SO(m)-principal bundle on X.
- Prove that $E := \mathrm{SO}(X) \times_{\mathrm{SO}(m)} \mathbb{R}^m$ defines an orientable vector bundle over X, and g_{Eucl} on \mathbb{R}^m induces a Euclidean metric g^E on E.
- Prove that there is a canonical isomorphism of vector bundles on X

$$E = \mathrm{SO}(X) \times_{\mathrm{SO}(m)} \mathbb{R}^m \simeq TX$$

• Prove that the above isomorphism identify q^E with q^{TX} .

Exercise 2.

[Connection on G-pincipal bundle] Let (X, q^{TX}) be an oriented Riemannian manifold of dimension m. Let G be a connected Lie group with Lie algebra \mathfrak{g} , and let p: $P_G \to X$ be a *G*-principal bundle on *X*.

• If (E, ρ^E) is a representation of G, set

$$F := P_G \times_G E$$

where $(p, v) \sim (pg, \rho^E(g^{-1})v)$ for any $p \times P_G, v \in E, g \in G$. Show that F is a vector bundle on X.

• Let $\mathscr{C}^{\infty}(P_G, E)^G$ denote the set of all smooth map $s: P_G \to E$ such that $s(pq) = \rho^E(q^{-1})s(p)$. Show that there exists a natural identification between

$$\mathscr{C}^{\infty}(X,F) \simeq \mathscr{C}^{\infty}(P_G,E)^G.$$

For a compact Lie group, we have an important property: for each nonzero vector $A \in \mathfrak{g}$, there exists a unique 1-dimensional subgroup $\{\gamma(t) := \exp(tA), t \in \mathbb{R}\} \subset G$ with the property $\gamma(t)\gamma(s) = \gamma(t+s), \ \gamma(0) = 1 \in G \text{ and } \gamma'(0) = A$. We need a bit recap on the adjoint action:

• For $q \in G$, $A \in \mathfrak{g}$, define

$$\operatorname{Ad}(g)A := \frac{\partial}{\partial t}|_{t=0}g\exp(tA)g^{-1}.$$

Show that Ad : $G \to \operatorname{GL}(\mathfrak{g})$ gives a representation of G. This is called adjoint representation of G.

• Show that for $g \in G$, $A \in \mathfrak{g}$, we have

$$g \exp(tA)g^{-1} = \exp(t\operatorname{Ad}(g)A), \ t \in \mathbb{R}.$$

A connection 1-form on P_G is an element $\omega \in \Omega^1(P_G, \mathfrak{g})$ satisfying:

(1) $\omega(A_P) = A$ for all $A \in \mathfrak{g}$, where A_P is the smooth vector field on P_G defined by

$$A_P(p) := \frac{\partial}{\partial t}|_{t=0} p \exp(tA).$$

(2) $R_g^*\omega = \operatorname{Ad}_{g^{-1}}\omega$ for all $g \in G$, where R_g is the right action of g on P_G , and $\operatorname{Ad}(g^{-1})$ is the adjoint action of g^{-1} on \mathfrak{g} .

Then

• For $s \in \mathscr{C}^{\infty}(P_G, E)^G$, prove that

$$ds + \rho^E(\omega)s \in \mathscr{C}^{\infty}(P_G, T^*P_G \otimes E)^G,$$

where $\mathscr{C}^{\infty}(P_G, T^*P_G \otimes E)^G$ is the space of invariant sections $\beta \in \Omega^1(P_G) \otimes E$ such that for all $g \in G$, $(R_g^* \otimes \rho^E(g))\beta = \beta$.

- Show that if $\beta \in \mathscr{C}^{\infty}(P_G, T^*P_G \otimes E)^G$ is such that for any $A \in \mathfrak{g}, \beta(A_P) = 0$, then β defines uniquely a smooth section of $F := P_G \times_G E$ on X.
- Show that from the connection 1-form ω , we can define a connection ∇^F on the vector bundle $F \to X$ via the formula

$$ds + \rho^E(\omega)s.$$

- Prove that for any connection ∇^F on a vector bundle $F \to X$ of rank r, we can find a unique connection 1-form on frame bundle (GL(r)-principal bundle) GL(F) $\to X$.
- Explain when X is spin, we can define a connection on spinor bundle from the Levi-Civita connection on TX.

Exercise 3.

[Clifford connection] Let (X, g^{TX}) be an even-dimensional oriented spin Riemannian manifold with spinor bundle S^{TX} , and let E be a \mathbb{Z}_2 -graded Clifford module on Xwith Clifford connection ∇^E . Recall that we have the identification of Clifford module

$$E \simeq S^{TX} \otimes W$$

with a vector bundle

$$W_x := \operatorname{Hom}_{C(TX)_x \otimes_{\mathbb{R}} \mathbb{C}}(S_x^{TX}, E_x)$$

Let ∇^{TX} be the Clifford connection on S^{TX} induced from Levi-Civita connection on (TX, g^{TX}) . For $s \in \mathscr{C}^{\infty}(X, S^{TX}), w \in \mathscr{C}^{\infty}(X, W)$, show that

- $w \otimes s$ is naturally a smooth section of E on X.
- Define $\nabla^W : \mathscr{C}^{\infty}(X, W) \to \Omega^1(X, W)$ by

$$(\nabla^W w) \otimes s := \nabla^E (w \otimes s) - w \otimes (\nabla^{S^{TX}} s),$$

then ∇^W is a well-defined connection on vector bundle W.

Exercise 4.

[Dirac operator and Laplacian]

(1). Let $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ be the circle with coordinate $t \in \mathbb{R}/\mathbb{Z}$, and the standard Riemannian metric induced from \mathbb{R} . Consider the de Rham complex $(\Omega^{\bullet}(\mathbb{S}^1, \mathbb{R}), d)$ and the L^2 -inner product on the differential forms.

- Write down the formal adjoint d^* in coordinate t.
- Write down the Levi-Civita connection in coordinate t and verify that

$$D = d + d^*$$

is a Dirac operator.

• Compute a formula for the Hodge Laplacian

$$\Box = D^2.$$

• Work out the spectrum of \Box acting on $\Omega^{\bullet}(\mathbb{S}^1, \mathbb{R})$, in particular, finding the eigenvalues and eigensections.

(2). Let $\mathbb{H} = \{z = x + \sqrt{-1}y \in \mathbb{C} : y > 0\}$ be upper half-plane equipped with the hyperbolic metric

$$ds^2 = \frac{dx^2 + dy^2}{y^2}$$

Consider the de Rham complex $(\Omega^{\bullet}(\mathbb{H}, \mathbb{R}), d)$ and the L^2 -inner product on the differential forms.

- Write down the formal adjoint d^* in coordinate (x, y).
- Write down the Levi-Civita connection in coordinate (x, y) and verify that

$$D = d + d^*$$

is a Dirac operator.

• Compute a formula for the Hodge Laplacian

$$\Box = D^2.$$

• Is 𝔄 a spin manifold? If yes, work out a spin structure (that is, Spin(2)-principal bundle which gives a double cover of SO(𝔄))