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Abstract

These notes are for a master’s lecture titled Introduction to the Atiyah-Singer Index
Theorem given in the summer semester of 2025 at the University of Cologne.
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1 Introduction: Atiyah-Singer Index Theorem

The main goal of this lecture is to explain and prove the following theorem:

Theorem 1.1 (Atiyah-Singer, 1963).

Ind(D) = ⟨Â(TX)ch(E), [X]⟩ =
∫
X
Â(TX)ch(E) ∈ Z. (1.1)

In the left-hand side, D is a (twisted) Dirac operator, and its index is defined via the kernel
space and cokernel space of D, which is mainly concerned with the analysis of the manifold X.
The right-hand side is a characteristic number given as the integral of characteristic classes on
X, which has a topological nature. Basically, the above theorem gives a bridge between the
analysis and the topology of a given manifold.

Let us precise the geometric setting for the index theorem as in Theorem 1.1

• X is a compact smooth manifold.

• E,F are two (complex or real) vector bundles over X.

• P : C∞(X,E)→ C∞(X,F ) is an elliptic operator.

Theorem 1.1 is only for the case of some Dirac operator P = D associated with certain vector
bundles E and F .

The ellipticity of P implies that P is Fredholm, meaning ker(P ) and coker(P ) are finite-
dimensional vector space.

Definition 1.2 (Analytical index of P ).

Ind(P ) = dimker(P ) − dim coker(P ) ∈ Z.

The general index theorems state that Ind(P ) can be expressed as a topological (cohomo-
logical) formula involving the characteristic classes of X and the symbol of P .

Proposition 1.3 (Stability of index). If {Pt}t∈R is a continuous family of elliptic operators
of a given order, then Ind(Pt) is independent of t ∈ R.

Historical remarks:

(1) Gel’fand’s question (late 1950s–around 1960).
Gel’fand noticed the homotopy invariance of the index and asked if there was a purely
topological formula for the index of certain linear partial differential operators. This
question became: Find a topological formula for Ind(P ).

(2) Â-genus by Atiyah–Hirzebruch (1961).
In the early 1960s, Borel–Hirzebruch and Atiyah–Hirzebruch had proved the integrality of
the Â-genus (that is, the number given by ⟨Â(TX), [X]⟩ is an integer) of a spin manifold,
and Atiyah suggested that this integrality could be explained if it were the index of the
Dirac operator. By 1962, Atiyah and Singer attempted to provide a conceptual proof for
writing the Â-genus as the index of a certain elliptic operator.

(3) Dirac operator on spin manifolds by Atiyah–Singer (1963).
Atiyah and Singer constructed a first order geometric elliptic differential operator D on a
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spin manifold X, called Dirac operator, which is a Riemannian version of Dirac’s operator
in physics, and established that

Ind(D) = ⟨Â(TX), [X]⟩ =
∫
X
Â(TX).

Atiyah and Singer announced their results and the sketched proof in 1963.

(4) The general statement and extensions by Atiyah–Singer (1963, 1968–1971).
Atiyah and Singer (1963) actually obtained the index theorem for general elliptic operators,
if

P : C∞(X,E) −→ C∞(X,F )

is an elliptic operator on a compact manifold X, then

Ind(P ) =

∫
T ∗X

Â(TX)2 ch
(
σ(P )

)
,

where σ(P ) is the principal symbol of P (seen as an element of K-theory on T ∗X), ch is
the Chern character. This became known as the Atiyah–Singer Index Theorem, uniting
ideas from algebraic topology, differential geometry, and functional analysis. In a series
of influential papers, Atiyah and Singer (1968–1971) gave a study on the index of elliptic
operators in terms of a K-theoretical formulation and its extensions to manifolds with
boundary, the equivariant setting, and the family version, etc.

2 Preliminaries on smooth manifolds, vector bundles, and differ-
ential operators

2.1 Manifold and partition of unity

Definition 2.1 (Smooth manifold). A topological space X is called a smooth manifold of
dimension m if:

(1) X is Hausdorff.

(2) X has a countable base (i.e. it is second-countable).

(3) X is locally Euclidean of dimension m: there is an open cover {Uα}α∈A of X and for
each α, a homeomorphism

ψα : Uα −→ Vα ⊂ Rm

so that on overlaps Uα∩Uβ , the transition maps ψβ◦ψ−1
α : ψα(Uα∩Uβ)→ ψβ(Uα∩Uβ)

are smooth diffeomorphisms between open sets of Rm.

The triplet (Uα, Vα, ψα) is called a local chart or a local coordinate system for X.

Definition 2.2 (Smooth Functions). If X is a smooth manifold, a function f : X → R (or
C) is smooth if for every local chart (Uα, Vα, ψα), the composition

f ◦ ψ−1
α : Vα → R (or C)

is a smooth function on the open set Vα ⊂ Rm in the usual sense. We denote C∞(X,R or C)
the set of all smooth functions onX, and let C∞

c (X,R or C) ⊂ C∞(X,R or C) be the subset
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consisting of smooth functions with compact support in X. In a similar way, we define the
smooth maps between any two smooth manifolds.

Example 2.3. • Rm is a smooth manifold of dimension m.

• The m-sphere Sm ⊂ Rm+1 is a smooth manifold.

• Any open subset U ⊂ Rm is also a smooth manifold.

Exercise 2.1 (Local charts for m-sphere). We consider the m-sphere

Sm := {(x1, x2, . . . , xm+1) ∈ Rm+1 :

m+1∑
j=1

x2j = 1} ⊂ Rm+1.

Define the open sets

U1 := Sn \ {(0, 0, . . . , 0,−1)}, U2 := Sn \ {(0, 0, . . . , 0, 1)}.

These sets cover Sn since every point on the sphere has xn+1 ̸= 1 or xn+1 ̸= −1. We consider
the standard stereographic projections:

ψ1 : U1 → Rm, ψ1(x1, x2, . . . , xm+1) =

(
x1

1 + xm+1
,

x2
1 + xm+1

, . . . ,
xn

1 + xm+1

)
,

ψ2 : U2 → Rm, ψ2(x1, x2, . . . , xm+1) =

(
x1

1− xm+1
,

x2
1− xm+1

, . . . ,
xm

1− xm+1

)
.

Prove that ψ1 and ψ2 are homeomorphisms, and write down explicit local charts for Sm
using U1 and U2, and determine the corresponding transition function.

Remark 2.4. In these notes, manifolds are assumed to be smooth and have no boundary.

Definition 2.5. • An open cover {Uα}α∈A of X is called locally finite if for each x ∈ X,
there exists open subset Vx ⊂ X such that

x ∈ Vx, #{α ∈ A : Uα ∩ Vx ̸= ∅} <∞.

• Given an open cover {Uα}α∈A of X, another open cover {U ′
β}β∈B of X is called a

refinement of {Uα}α∈A if for each β ∈ B, there exists α ∈ A such that U ′
β ⊂ Uα.

Definition 2.6 (Paracompactness). A topological space X is paracompact if every open
cover admits a locally finite refinement.

Exercise 2.2 (Paracompactness). Prove that if X is a topological space which is Hausdorff,
second-countable and locally compact, then X is paracompact. Therefore, every manifold
is paracompact.

The above exercise shows that every manifold is paracompact.
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Proposition 2.7 (Partition of Unity). Let X be a smooth manifold and let {Uα}α∈A be an
open cover of X.

(a) If the open cover {Uα} is locally finite, then there exists a smooth partition of unity
{ρα}α∈A subordinate to {Uα}, i.e.,

supp(ρα) ⊂ Uα, and
∑
α∈A

ρα(x) = 1 for all x ∈ X.

(b) In general (i.e. without assuming the cover is locally finite) there exists a collection
of smooth functions

{ρβ}β∈B ⊂ C∞(X, [0, 1])

with the property that

• For each β ∈ B, there exists α ∈ A such that supp(ρβ) ⊂ Uα;

• The sum
∑
β∈B

ρβ(x) is locally finite and equals 1 for all x ∈ X, that is

∑
β∈B

ρβ(x) = 1.

Exercise 2.3. Prove the partition of unity in Proposition 2.7.

Remark 2.8. The following result is useful: let X be a smooth manifold and let U ⊂ X be an
open subset, then

• for any x ∈ U , there exists a smooth function f ∈ C∞
c (X,R) (real smooth function with

compact support) such that supp(f) ⊂ U , and f ≥ 0, f(x) > 0.

• (bump function) for any open subset W ⊂ U such that W ⊂ U is compact, there exists a
function f ∈ C∞

c (X,R) such that supp(f) ⊂ U , and 0 ≤ f ≤ 1, f |W = 1.

For a proof, we refer to [1, Lemma 1.2.3 and Theorem 1.4.1].

Remark 2.9. Partition of unity is crucial to globalize local constructions on a manifold. We
will see such techniques in the sequel, to define objects or prove properties in the local charts
(hence on an open subset of Rm), and then apply the partition of unity to obtain the global
ones.

Definition 2.10 (Submanifold). Let X be a smooth manifold of dimension m, let Y be a
subset of X and let i : Y ↪→ X denote the inclusion map.

• We call Y an immersed submanifold ofX if Y itself is a smooth manifold of dimension
k ( k ≤ m ), and for each point y ∈ Y , there exists a local chart (Uy, Vy ⊂ Rk, ψy) of Y
and a local chart (U, V ⊂ Rm, ψ) of X near y such that the inclusion i is represented
by i : Vy ∋ (x1, . . . , xk) 7→ (x1, . . . , xk, 0, . . . , 0) ∈ V ⊂ Rm.

• We call Y an embedded submanifold of X if Y is a smooth manifold of dimension
k ( k ≤ m ) such that for each point y ∈ Y , there exists a local chart (U, V ⊂ Rm, ψ)
of X near y such that (U ∩ Y, V ∩Rk, ψ|U∩Y ) is a local chart for Y near y, where we
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identify Rk with a k-subspace of Rm.

Remark 2.11. We can have a general definition for an immersed submanifold Y of X: if
Y = f(N) for a smooth immersion f : N → X. Here we do not require f to be injective,
this means we allow the self-intersection for Y . So the narrow definition in Definition 2.10
corresponds to injective immersions.

When Y is an (injective) immersed submanifold of X and the submanifold topology of Y
agrees with the induced topology of Y as a subspace of X, then Y becomes an embedded
submanifold.

For an example of an immersed submanifold which is not embedded, one can consider the
irrational lines inside a 2-torus.

Exercise 2.4 (Submanifolds). Let f : N →M be a smooth map between smooth manifolds.
We say that f is an immersion at a point p ∈ N if the differential

dfp : TpN → Tf(p)M

is injective. The map f is called an immersion if it is an immersion at every point p ∈ N .
Now let f : N →M be a smooth injective immersion:

(a) Prove that the image f(N) is an immersed submanifold of M .
Hint: Use the local immersion property of f and the constant rank theorem to show
that around each point of N , there exist coordinate charts in which f is given by an
inclusion.

(b) Suppose that f is a topological embedding (i.e. f is a homeomorphism onto its image).
Prove that in this case, f(N) is an embedded submanifold of M .
Hint: Show that the original topology on N and the subspace topology induced from
M agree via f , so that the local charts provided by part (a) actually define a smooth
structure on f(N) as a subset of M .

(c) Provide an example of a smooth immersion f : N → M that is not an embedding.
Explain why it is an immersion and point out which property fails for it to be an
embedding.

2.2 Vector bundle and Hermitian metric

LetX be a (smooth) manifold. Recall the general linear groups GL(r,C) and GL(r,R) are canon-
ically smooth manifolds, with the group structure, they are actually Lie groups.

Definition 2.12 (Complex vector bundle). Let π : E → X be a map between smooth
manifolds E and X. We say E is a complex vector bundle of rank r ∈ N≥1 over X if:

(1) E → X is a smooth surjection.

(2) There is an open cover {Uα}α∈A of X such that for each α ∈ A we have a local
trivialization: a diffeomorphism Gα : π−1(Uα) −→ Uα × Cr such that the following
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diagram holds
E ⊃ π−1(Uα) Uα × Cr

X ⊃ Uα

π

Gα

pr1 ,

where pr1 denotes the projection of the first factor.

(3) Moreover, if Uα ∩ Uβ ̸= ∅, we have smooth map, also called a transition function,
Gβα : Uα ∩ Uβ −→ GL(r,C) (invertible matrices of size r × r) such that

π−1(Uα ∩ Uβ)

Uα ∩ Uβ × Cr Uα ∩ Uβ × Cr

Gα Gβ

Gβ◦G−1
α

,

where Gβ ◦G−1
α is given by Uα ∩ Uβ × Cr ∋ (x, v) 7→ (x,Gβα(x) · v) ∈ Uα ∩ Uβ × Cr,

and Gβα(x) acts on Cr by matrix multiplication.

In this case, for each x ∈ X, the fiber at x is a vector space

Ex := π−1(x) ∼= Cr.

Remark 2.13 (Real vector bundle). We can define real vector bundles in a similar fashion by
using Rr and transition functions valued in GL(r,R).

Remark 2.14. (1) Roughly speaking, a vector bundle E =
⊔

x∈X Ex is a smooth family of
vector spaces.
(2) Note that Gαα is the constant map given by the identity matrix Idr on Uα, and on Uα ∩Uβ ,
we have

Gαβ = G−1
βα (matrix inverse). (2.1)

If Uα ∩ Uβ ∩ Uγ ̸= ∅, then on this intersection.

Gαβ(x)Gβγ(x) = Gαγ(x). (2.2)

For a system of transition functions {Gαβ ∈ C∞(Uα ∩ Uβ,GL(r,C))}α,β∈A, if (2.1) and (2.2)
hold, then we call that it verify the cocycle condition (cf. Čech cohomology theory).

Proposition 2.15 (Constructing E from cocycle). Given a system of transition functions
{Gαβ}α,β∈A verifying the cocycle condition, define

E =
⊔
α

(
Uα × Cr

)/
∼

where (x, v) in Uα ×Cr is identified with (x,Gβα(x) · v) in Uβ ×Cr whenever x ∈ Uα ∩Uβ.
Then E is itself a smooth manifold of real dimension dimX + 2r, and the projection π :
E → X is induced by (x, v) 7→ x on each local piece gives a smooth vector bundle on X of
rank r.

Example 2.16. • (Trivial vector bundle) A trivial vector bundle of rank r is given by:

π : X × Rr → X, π(x, v) = x.
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or
π : X × Cr → X, π(x, v) = x.

The transition functions are simply the identity: Gαβ = Idr.

• (Tangent and cotangent bundles) Let X be a smooth manifold of dimension m. The
tangent bundle TX assigns to each point x ∈ X its tangent space TxX, and similarly T ∗X
is the cotangent bundle.

Given a local chart Uα ⊂ X, with coordinates (x1, . . . , xm) ∈ Vα ⊂ Rm, we obtain a local
trivialization:

TX|Uα
∼= Uα × Rm, T ∗X|Uα

∼= Uα × Rm,

where

– The tangent frame associated to the chart is given by:(
∂

∂x1
, . . . ,

∂

∂xm

)
,

which forms a basis of tangent space at each point of Uα .

– The cotangent frame is the dual frame:

(dx1, . . . , dxm),

which spans T ∗X over Uα and satisfies:

dxℓ
(

∂

∂xj

)
= δℓj .

To see the transition functions for TX and T ∗X, let Uβ be a local chart with local co-
ordinates (y1, . . . , ym) ∈ Vβ ⊂ Rm that intersects Uα. The transition function ψβα maps
(x1, . . . , xm) to (y1, . . . , ym), that is, ψβα,ℓ(x) = yℓ, for ℓ = 1, . . . ,m. Then we have

∂

∂xj
=

m∑
ℓ=1

∂ψβα,ℓ

∂xj

∂

∂yℓ
,

and the transition function for TX is given as

Gtan
βα (x) =

(
∂ψβα,ℓ

∂xj

)
ℓj

∈ GL(r,R).

It is easy to verify that {Gtan
βα }α,β satisfies the cocycle condition so that it defines a real

vector bundle.

Analogously, we have

dyℓ =
m∑
ℓ=1

∂ψβα,ℓ

∂xj
dxj ,

we obtain the transition functions for T ∗X given by

Gcotan
βα (x) = T (Gtan

βα (x)
−1),

where T · denote the matrix transpose.
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Definition 2.17 (Constructing new vector bundles out of old). Let π : E → X be a complex
vector bundle with local trivializations and transition functions {Gαβ : Uα∩Uβ → GL(r,C)}.

We can define new bundles via:

• Dual bundle: E∗ =
⊔

x∈X E∗
x, where E∗

x := HomC(Ex,C), has transition functions
G

(E∗)
αβ (x) := T (Gαβ(x)

−1).

• Conjugate bundle: E =
⊔

x∈X Ex, where Ex is the same as Ex as real vector
spaces but the scalar multiplication by λ ∈ C is given by λ, has transition functions
G

(E)
αβ (x) := Gαβ(x).

If F is another complex vector bundle on X:

• Direct sum: E ⊕ F =
⊔

x∈X Ex ⊕ Fx has transition functions G(E)
αβ ⊕G

(F )
αβ .

• Tensor product: E ⊗ F =
⊔

x∈X Ex ⊗ Fx has transition functions G(E)
αβ ⊗G

(F )
αβ .

• Homomorphism: Hom(E,F ) = E∗ ⊗ F has transition functions G(E∗)
αβ ⊗G(F )

αβ .

• Tensor powers: E⊗k has transition functions Gαβ ⊗ . . .⊗Gαβ︸ ︷︷ ︸
k times

.

• Symmetric powers: Symk(E) ( or SkE ) has transition functions Symk(Gαβ) in-
duced from the ones of E⊗k.

• Exterior powers: Λk(E) ( or ΛkE ) has transition functions Λk(Gαβ) induced from
the ones of E⊗k.

• Pullback bundle: If f : Y → X is smooth, the pull-back bundle f∗E on Y is given
as

f∗E =
⊔
y∈Y

Ef(y)

with the transition functions Gαβ ◦ f over f−1(Uα ∩ Uβ).

We also have the definition of subbundle of a given vector bundle E.

Definition 2.18 (Subbundle). Let π : E → X be (complex) vector bundle of rank r. A
subbundle F ⊂ E is a subset satisfying:

1. F is an embedded submanifold of E

2. For each x ∈ X, the fiber Fx := F ∩ Ex is a vector subspace of Ex

3. The restriction π|F : F → X forms a vector bundle with the induced smooth structure

We call F a subbundle of rank k if dimFx = k for all x ∈ X.

An equivalent characterizations for a subbundle is as follows: for each x ∈ X, there exists a
local neighbourhood Ux where both E and F can be trivialized such that

(π|F )−1(Ux) π−1(Ux)

Ux × Ck Ux × Cr

≃

incl

≃

I
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where I = (IdUx , i) with an injective linear map i : Ck ↪→ Cr.
Moreover, when we properly take an open cover of X, we can write the transition functions

{G(E)
αβ } of E as :

G
(E)
αβ =

(
G

(F )
αβ ∗
0 Kαβ

)

where G(F )
αβ are k × k transition functions for F .

Exercise 2.5 (Quotient vector bundles). Let π : E → X be a vector bundle over a smooth
manifold X, and let F ⊂ E be a subbundle. Work out a system of transition functions for
the quotient vector bundle E/F over X.

Definition 2.19. Given two vector bundles E,F over X, a morphism of vector bundles
φ : E → F is a smooth map satisfying:

• The diagram commutes:
E F

X X

φ

πE πF

• For each x ∈ X, the restriction φx : Ex → Fx is linear

Example 2.20. • For any smooth map f : Y → X between manifolds, the tangent map
dfy : TyY → Tf(y)X gives a morphism of tangent bundles.

• The inclusion i : F ↪→ E of a subbundle and the quotient map q : E → E/F are canonical
bundle morphisms.

Remark 2.21. For a vector bundle homomorphism φ : E → F ,

• kerφ :=
⊔

x kerφx is a subbundle of E if rankφx is constant on X.

• Imφ :=
⊔

x Imφx is a subbundle of F under the same condition.

Definition 2.22. The space of (global) smooth sections is:

C∞(X,E) := {s : X → E smooth |π ◦ s = idX}

Sometimes, we also use the notation Γ(E) for the C∞(X,E) when the manifold X is clear.
This forms a vector space under pointwise operations:

• (s+ s′)(x) = s(x) + s′(x) ∈ Ex;

• (fs)(x) = f(x)s(x) for f ∈ C∞(X).

The support of a section s ∈ Γ(E) is:

supp(s) = {x ∈ X : s(x) ̸= 0 in Ex} ⊂ X.

Let C∞
c (X,E) ⊂ C∞(X,E) be the subspace consisting of smooth sections with compact

support.
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Remark 2.23. Locally, sections correspond to tuples of smooth functions:

s ∈ C∞(X,E) ⇐⇒ sα ∈ C∞(Uα,Cr) on trivializing charts Uα of E,

such that Gβαsα = sβ on Uα ∩ Uβ .

Definition 2.24 (Hermitian metrics). A Hermitian metric hE on E is a smooth section
of E∗ ⊗ E∗ such that each hEx is a Hermitian inner product on Ex. The pair (E, hE) is
called a Hermitian vector bundle.

Theorem 2.25. Every vector bundle admits a Hermitian metric.

Proof. Let {Uα} be a locally finite open cover of X such that E is trivial over each Uα, with
trivializations

Gα : π−1(Uα)→ Uα × Cr.

Define a Hermitian metric hα on E|Uα by pulling back the standard Hermitian inner product on
Cr via Gα.

Choose a smooth partition of unity {ρα} subordinate to the cover {Uα}. Then define a global
Hermitian metric hE on E by:

hE(x)(v, w) :=
∑
α

ρα(x)hα(x)(v, w), for all v, w ∈ Ex.

This sum is finite at each x ∈ X due to local finiteness. The function hE is smooth and defines
a Hermitian inner product on each fiber, as required.

Remark 2.26. When E is a real vector bundle, then we have the Euclidean metric gE on E.
In the case E = TX, then Γ(TX) is the space of all smooth vector fields on X, and a Euclidean
metric gTX is called a Riemannian metric on X.

Proposition 2.27. Let E,F be vector bundles over X. Let D : C∞(X,E) → C∞(X,F )
be a C-linear operator commuting with multiplication by functions, that is, for any s ∈
C∞(X,E) and f ∈ C∞(X),

[D, f ]s := D(fs)− f(Ds) = 0.

Then D is given by a smooth section A ∈ C∞(X,Hom(E,F )), that is, for s ∈ C∞(X,E),
we have

(Ds)(x) = A(s)s(x) ∈ Fx.

Proof. The proof proceeds in three main steps:
Step 1: Locality of D or D is locally defined.

We prove that for any x ∈ X, if two sections s1, s2 ∈ C∞(X,E) agree on a neighborhood Ux

of x, then Ds1 and Ds2 agree on a possibly smaller neighborhood Vx ⊂ Ux. In fact,

• Take a bump function f ∈ C∞
c (Ux,R) with:

f |Vx ≡ 1 and supp(f) ⊂ Ux.

• Since s1 ≡ s2 on Ux, we have fs1 = fs2 globally on X.
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• By the commutation property:

fDs1 = D(fs1) = D(fs2) = fDs2.

• On Vx where f ≡ 1, this implies Ds1|Vx = Ds2|Vx .

Step 2: Prove the conclusion on local charts.
On a trivializing chart Uα where:

E|Uα
∼= Uα × Cr1 and F |Uα

∼= Uα × Cr2 ;

the operator restricts to:
D|Uα : C∞(Uα,Cr1)→ C∞(Uα,Cr2).

• For constant sections {ei} (standard basis of Cr1) and {vj} (dual basis for Cr2), define:

Aα(x) =
(
⟨D|Uαei, vj⟩

)
i,j
∈ Hom(Cr1 ,Cr2)

• The commutation relation implies

(D|Uαs)(x) = Aα(x) · s(x).

Step 3: Global patching.
Let {ρα} be a partition of unity subordinate to a trivializing cover {Uα}α that is locally

finite.

• For any section s ∈ C∞(X,E), write:

s =
∑
α

ραs.

• Apply D and use locality:

Ds =
∑
α

D(ραs) =
∑
α

D|Uα(ραs) =
∑
α

Aα · (ραs).

• This defines a global section A ∈ C∞(X,Hom(E,F )) by:

A(x) :=
∑
α

Aα(x)ρα(x),

since each Aα(x)ρα(x) ∈ C∞
c (Uα,Hom(E,F )) ⊂ C∞(X,Hom(E,F )) with (Ds)(x) =

A(x)s(x) as required.

2.3 Differential forms and de Rham cohomology groups

Definition 2.28 (Differential forms). Let X be a smooth manifold of dimension m.

• The exterior algebra bundle:

Λ•T ∗X =
m⊕
k=0

ΛkT ∗X with rank
(
m

k

)

• Spaces of differential forms:

Ω•(X) = C∞(X,Λ•T ∗X),

Ωk(X) = C∞(X,ΛkT ∗X).
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In particular, we have Ω0(X) = C∞(X,R). We will call elements in Ωk(X) differential
k-forms or simply k-forms.

• The wedge product ∧ : Ωk(X) × Ωℓ(X) → Ωk+ℓ(X) is given as (α, β) 7→ α ∧ β.
Note that it satisfies:

α ∧ β = (−1)kℓβ ∧ α.

Definition 2.29. A differential k-form ω ∈ Ωk(X) has compact support if supp(ω) ⊂ X is
compact. We denote this space by Ωk

c (X).

Remark 2.30. When X is compact, Ω•(X) = Ω•
c(X).

Proposition 2.31. There exists a unique R-linear operator d : Ωk(X) → Ωk+1(X) such
that:

1. For all f ∈ C∞(X,R) = Ω0(X), df ∈ Ω1(X) is the classical differential of f .

2. d ◦ d ≡ 0 (i.e., d2 = 0).

3. For all α ∈ Ωk(X) and β ∈ Ωℓ(X), the Leibniz rule holds:

d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ dβ.

Recall that the classical differential of a function f is defined as follows: for f ∈ C∞(X,R)
and a local chart (Uα, Vα, ψα), the cotangent bundle T ∗X is spanned by dx1, . . . , dxn. The local
representation of f is:

fα = f |Uα ◦ ψ−1
α : Vα → R (smooth).

The differential df on Uα is given by:

dfα =
∑
j

∂fα
∂xj

dxj .

It is easy to verify that {dfα} patches together to a global section df ∈ Ω1(X).
For a general k-form s ∈ Ωk(X), its restriction to Uα can be written as:

s|Uα =
∑
|I|=k

fαI dx
I ,

where fαI ∈ C∞(Uα,R) and dxI = dxi1 ∧ · · · ∧ dxik and I = (i1 < · · · < ik).

Proof of Proposition 2.31. Let {Uα} be a locally finite open cover by coordinate charts, with
{ρα} a subordinate partition of unity. For any differential form s ∈ Ωk(X), we write locally on
Uα:

s|Uα =
∑
|I|=k

fαI dx
I (multi-index notation)

Uniqueness:

13



The key diagram shows how properties 1–3 in the propostion determine d:

ds = d

(∑
α

ραs

)

=
∑
α

d

(
ρα
∑
I

fαI dx
I

)
=
∑
α,I

d(ραf
α
I )︸ ︷︷ ︸

Property 1

∧ dxI︸︷︷︸
Property 3

+ ραf
α
I︸ ︷︷ ︸ d(dxI)︸ ︷︷ ︸

Property 2

=
∑
α,I

∑
j

∂(ραf
α
I )

∂xj
dxj

 ∧ dxI .
This computation shows d must have this form if it satisfies the properties 1–3 in the proposition.

Existence: Define d by the formula:

(ds)|Uα :=
∑
|I|=k

 n∑
j=1

∂fαI
∂xj

dxj

 ∧ dxI
On overlaps Uα ∩ Uβ , the transition formulas for fαI and dxI guarantee consistency

Axiom verification:

1. For f ∈ C∞(X), reduces to classical differential.

2. d2 = 0 follows from equality of mixed partials.

3. Leibniz rule holds via the construction.

Remark 2.32. The differential d is determined by d|Ω0 and d|Ω1 through the Leibniz rule.

Exercise 2.6 (Exterior differential on manifold). Let X be a smooth manifold. Recall that
on a local chart (Uα, Vα ⊂ Rm, ψα) of X, for a 1-form

β(x) =
m∑
j=1

βj(x)dx
j , with βj ∈ C∞(Vα)

the action of differential d on β is defined as

dβ =
m∑
j=1

dβj ∧ dxj .

Recall that for two (tangent) vector fields U, V ∈ Γ(TX), the Lie bracket [U, V ] ∈ Γ(TX)
is the vector field such that for any f ∈ C∞(X),

[U, V ]f := U(V (f))− V (U(f)).

Prove that:

(a) For β ∈ Ω1(X), the 2-form dβ ∈ Ω2(X) satisfies that for U, V ∈ TX,

(dβ)(U, V ) = U(β(V ))− V (β(U))− β([U, V ]).

14



(b) In general, for β ∈ Ωk(X), and V0, V1, . . . , Vk ∈ TX, we have

(dβ)(V0, V1, . . . , Vk) =
m∑
j=0

(−1)jVj(β(V0, . . . , V̂j , . . . , Vk))

+
∑

0≤j<ℓ≤m

(−1)j+ℓβ([Vj , Vℓ], V0, . . . , V̂j , . . . , V̂ℓ, . . . , Vk)),

where the notation V̂j means that the vector Vj is removed.

(c) Verify the Jacobi identity: for V1, V2, V3 ∈ TX,

[V1, [V2, V3]] + [V2, [V3, V1]] + [V3, [V1, V2]] = 0.

(d) Prove that d2 = 0 using the formula in (b).

Proposition 2.33. Let f : X → Y be a smooth map between two manifolds, we define the
pull-back map f∗ : Ωk(Y )→ Ωk(X) as follows: for α ∈ Ω1(Y ), x ∈ X, v ∈ TxX,

(f∗α)x(vx) := αf(x)(dfxv).

Then we have
dX ◦ f∗ = f∗ ◦ dY .

The de Rham complex is the sequence:

0→ Ω0(X)
d−−−−→ Ω1(X)

d−−−−→ · · · d−−−−→ Ωm(X)→ 0.

Since d2 = 0, the above sequence forms a complex, in particular, we have

Im d|Ωk−1 ⊂ ker d|Ωk .

Similarly, the de Rham complex with compact support is defined as

0→ Ω0
c(X)

d−−−−→ Ω1
c(X)

d−−−−→ · · · d−−−−→ Ωm
c (X)→ 0.

Definition 2.34. The k-th de Rham cohomology is defined as the quotient vector space

Hk
dR(X) :=

ker d|Ωk

Im d|Ωk−1

.

The de Rham cohomology with compact support is defined as

Hk
dR,c(X) :=

ker d|Ωk
c

Im d|Ωk−1
c

.

We will denote
H•

dR(X) := ⊕kH
k
dR(X), H•

dR,c(X) := ⊕kH
k
dR,c(X).

If we want to emphasize the number fields R or C, we will put the corresponding notation
inside.

A differential form α ∈ Ω•(X) is called closed or d-closed if dα = 0. Any closed form α
defines a cohomological class [α] ∈ H•

dR(X). A differential form α ∈ Ω•(X) is called exact or
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d-exact if there exists a form β ∈ Ω•(X) such that α = dβ. Two closed forms α and α′ are
called cohomologous if α− α′ is exact.

Remark 2.35. When X is compact, we always have

dimH•
dR(X) <∞.

Definition 2.36 (Orientability). (1) Let E → X be a real vector bundle of rank r, then
E is called orientable if there is a collection of transition functions {Gαβ ∈ C∞(Uα ∩
Uβ,GL(r,R))}α,β which defines E such that Gαβ ∈ GL+(r,R) (that is, detGαβ(x) > 0).

(2) A manifold X is orientable if its tangent bundle TX is an orientable vector bundle.

Proposition 2.37. If X is a connected manifold of dimension m, then X is orientable if
and only if ΛmT ∗X is isomorphic to the trivial bundle R. An orientation o(X) is a choice
of a nonvanishing section of ΛmT ∗X up to multiplication of a function f > 0.

We call X an oriented manifold when X is orientable and an orientation o(X) is given
(implicitly). If we want to emphasise the orientation, we write (X, o(X)).

Let X be an oriented manifold. An oriented local charts (Uα, ψα) with ψα : Uα → Vα ⊆ Rm

means that we have
ψ∗
α(dx1 ∧ · · · ∧ dxm)/ωo > 0,

where ωo is the section of ΛmT ∗X that represents the orientation o(X).
For s ∈ Ωm(X) and oriented chart (Uα, ψα):

s|Uα = fα dx1 ∧ · · · ∧ dxm

where dx1 ∧ · · · ∧ dxm is oriented according to o(X). Define:∫
Uα

s :=

∫
Vα

fα ◦ ψ−1
α dx1 · · · dxm

as a Lebesgue integral on Rm.

Theorem 2.38 (Integration of m-forms). Let {Uα} be a locally finite oriented atlas and
{ρα} a subordinate partition of unity. For s ∈ Ωm

c (X):∫
X
s :=

∑
α

∫
Uα

ραs

is independent of the choices of {Uα} and {ρα}.

Proof. We just explain the key steps:

(a) Chart transition: On Uα ∩ Uβ , the Jacobian Jψβα satisfies:

dxβ = Jψβαdx
α with Jψβα > 0,

where dxβ , dxα denote the Lebesgue measure on Vβ , Vα respectively. Thus:∫
Uα∩Uβ

fαdx
α =

∫
Uα∩Uβ

fβdx
β since Jψβαfβ = fα
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(b) Partition independence: For another partition {ρ̃β}:∑
α

∫
ραs =

∑
α,β

∫
ραρ̃βs =

∑
β

∫
ρ̃βs,

where the sum is locally finite, so that we can exchange the order of summations.

Remark 2.39 (Orientation Reversal). For −X = (X,−o(X)) denoting X with opposite orien-
tation: ∫

−X
s = −

∫
X
s

Remark 2.40. If f : Y → X is an orientation-preserving diffeomorphism:∫
Y
f∗s =

∫
X
s.

Definition 2.41. We define the linear functional:∫
X

: Ω•
c(X)→ R

by
∫
X s :=

∫
X s[m], where s[m] denote the degree-m component of s.

Theorem 2.42. If X is an oriented compact manifold, then for all s ∈ Ω•(X),∫
X
ds = 0.

Then it induces a linear functional ∫
X

: H•(X)→ R.

2.4 Differential operator and principal symbol

Definition 2.43 (Differential Operator). Let E,F be vector bundles over X of ranks r1, r2
respectively. A linear operator:

P : C∞(X,E)→ C∞(X,F )

is a differential operator of order k if locally on trivializing charts Uα where

E|Uα ≃ Uα × Cr1 , F |Uα ≃ Uα × Cr2

we have the local expression of P as

Pα =
∑
|I|≤k

aIα(x)

(
∂

∂x

)I

(2.3)
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where aIα ∈ C∞(Uα,Hom(Cr1 ,Cr2)), and our multi-index notation in (2.3) is given as: for

I = (i1, . . . , im) ∈ Nm
0 , we put

(
∂
∂x

)I
= Πm

ℓ=1

(
∂

∂xℓ

)iℓ
, and |I| :=

∑m
ℓ=1 iℓ.

In particular, if s = {sα}α ∈ C∞(X,E), then {Pαsα}α patches together as a global
section of F .

Example 2.44. • Any P ∈ C∞(X,Hom(E,F )) is a differential operator of order zero.

• A vector field V ∈ Γ(TX) acting on C∞(X) is a first-order differential operator.

• The exterior differential d : Ω•(X)→ Ω•+1(X) is a first-order differential operator.

The following proposition is an extension of Proposition 2.27 to differential operators.

Proposition 2.45. Let P be a differential operator on X. If for f ∈ C∞(X), [P, f ] :=
Pf − fP is a differential operator of order k − 1, then P is a differential operator of order
k.

One key step to prove the above proposition is show that P is locally defined: for any x ∈ X,
if s1, s2 ∈ Γ(E) coincide in an open neighbourhood Ux of x, then Ps1 and Ps2 also coincide in
a possibly smaller open neighbourhood Vx of x. To see this, we may take any Vx ⋐ Ux, and
a bump function ρ ∈ C∞

c (Ux, [0, 1]) such that ρ|Vx ≡ 1, then ρs1 = ρs2 on whole X by our
assumption, we get

ρPs1 = P (ρs1)− [P, ρ]s1 = P (ρs2)− [P, ρ]s1 = ρPs2 + [P, ρ]s2 − [P, ρ]s1.

Now we need to compare [P, ρ]s2 and [P, ρ]s1, while [P, ρ] is a differential operator of order k−1,
so we can apply the induction on the orders.

Exercise 2.7 (Differential operators). Let X be a smooth manifold and let E,F be two
vector bundles over X. Consider a differential operator

P : C∞(X,E)→ C∞(X,F ).

Prove the following assertions:

(a) If P is a differential operator of order k, then for any smooth function f ∈ C∞(X),
the commutator

[P, f ] : s 7→ P (fs)− f P (s)

is a differential operator of order k − 1.

(b) Prove that every differential operator is locally defined.

(c) In the case where X is an open subset U of Rn and E,F are trivial vector bundles,
prove the following assertion: if P is a differential operator on U such that for any
f ∈ C∞(U), [P, f ] is a differential operator of order k−1 on U , then P is a differential
operator of order k.

(d) Use a partition of unity to extend the above assertion to the general case.

Definition 2.46 (Local total symbol). On local chart Uα, we can define the total symbol
of P as

σtotal(Pα)(x, ξ) =
∑
|I|≤k

aIα(x)(
√
−1ξ)I ∈ Hom(Ex, Fx).
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So that σtotal(Pα) ∈ C∞(Uα,Poly
≤k(T ∗X) ⊗ Hom(E,F )), where Poly≤k(T ∗X) denotes

the bundle of polynomials functions along the fiber of T ∗X of degree ≤ k. In general,
{σtotal(Pα)}α does not give a global section on X.

Note that, by the (fibrewise) duality between TX and T ∗X, as a vector bundle,

Poly≤k(T ∗X) ≃ S≤k(TX) := ⊕k
j=0S

j(TX).

Remark 2.47. Note if we write ξ =
∑

j ξjdx
j , then the notation (

√
−1ξ)I with I = (i1, . . . , i)means

From the differential operator to its symbol, it is roughly replacing ∂
∂xj

by
√
−1ξj , this can be

explained by the Fourier transform on Rm.

Theorem 2.48 (Definition of principal symbol). If P is differential operator of order k,
the local principal symbol σk(Pα) on chart Uα is given by the highest-order terms:

σk(Pα)(x, ξ) =
∑
|I|=k

aIα(x)(
√
−1ξ)I .

Then {σk(Pα)} defines a global section σk(P ) ∈ C∞(X,Sk(TX) ⊗ Hom(E,F )), which is
called the principal symbol of P . Moreover, it is determined by the following limit:

σk(P )(x, ξ) = lim
t→+∞

1

tk
e−

√
−1tfPe

√
−1tf ∈ Hom(Ex, Fx),

where f ∈ C∞(X,R) and df(x) = ξ ∈ T ∗
xX. Sometimes, we denote the principal symbol

simply by σ(P ).

Proof. On the local chart Uα, by (2.3) , we compute

e−
√
−1tfPαe

√
−1tf = e−

√
−1tf

∑
|I|≤k

aIα(x)

(
∂

∂x

)I

e
√
−1tf

= tk
∑
|I|≤k

aIα(x)
(√
−1df

)I
+ terms in lower power of t.

Let Diff≤k(E,F ) (or Diff≤k
X (E,F )) denote the space of differential operators on X from E

to F of order ≤ k. By definition, we have

Diff0(E,F ) = C∞(X,Hom(E,F )).

Proposition 2.49 (Symbol sequence). There is an exact sequence for differential operators:

0→ Diff≤k−1(E,F )
i

↪−−−−→ Diff≤k(E,F )
σk−−−−−→ C∞(X,Sk(TX)⊗Hom(E,F ))→ 0

where:

• i denotes the natural inclusion, and σk extracts the principal symbol.

• Im(i) = kerσk.

• σk is surjective.
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Exercise 2.8. Prove Proposition 2.49. To prove that σk is surjective, construct it on local
charts and then patch them together using a partition of unity.

Definition 2.50 (Elliptic operator). A differential operator P of order k is elliptic if for
all x ∈ X and ξ ∈ T ∗

xX \ {0}:

σk(P )(x, ξ) : Ex → Fx is invertible

This definition implies that rank(E) = rank(F ).

Example 2.51. The Laplacians are elliptic. On Rm, we consider

∆ =
m∑
j=1

∂2

∂x2j
.

Its principal symbol is: σ2(∆)(x, ξ) = −∥ξ∥2.

Remark 2.52. Here the principal symbol of a differential operator is always homogeneous
polynomial functions along the cotangent space T ∗X, that is why we regard it as elements in
Sk(TX). In general, we can define the principal symbol σk(P ) ∈ C∞(T ∗X,π∗Hom(E,F ))
where π : T ∗X → X. This way, we can consider the non-polynomial symbols, that correspond
to the pseudodifferential operators.

2.5 Atiyah–Singer index theorem and its applications

With the above preliminaries, we can give more explanations for the Atiyah–Singer index theo-
rem.

Theorem 2.53 (Atiyah–Singer, 1963). Let X be a compact manifold of dimension m, and
let E,F be two complex vector bundles on X. Let P : Γ(E)→ Γ(F ) be an elliptic differential
operator. Then

• ker(P ) and coker(P ) are finite dimensional, then

Ind(P ) := dimker(P )− dim coker(P ) ∈ Z

is well-defined.

• If m is odd, then we have Ind(P ) = 0.

• If m is even, then

Ind(P ) =

∫
T ∗X

π∗(Â(TX)2) ch(σ(P )), (2.4)

where π : T ∗X → X, the manifold T ∗X is canonically oriented, and Â(TX) =
1 + · · · ∈ Ω•(X) is a closed form, and ch(σ(P )) ∈ Ω•(T ∗X) is a closed form that is
integrable (in fact, every component is integrable on the non-compact manifold T ∗X).

Roughly speaking, an approach to prove the above general theorem is: at first, construct
a Dirac operator D, a certain first-order differential operator, on a new manifold, such that
Ind(P ) = Ind(D); then prove (2.4) for D, that is (1.1) . In this Lecture, we focus on (1.1) and
we will cover the following topics:
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(a) Define the characteristic classes and characteristic forms, in particular, define Â(TX) and
ch(σ(P )).

(b) Dirac operator D and spin manifold.

(c) Heat kernel approach for Atiyah–Singer index theorem: local index theorem.

(d) Geometric applications of Atiyah–Singer index theorem.

Let’s mention three important geometric applications of the Atiyah–Singer index theorem,
specially the formula (1.1) for Dirac operator. They were proven by different methods before
the Atiyah–Singer index theorem (1963) was established, but now we can treat them uniformly.

(i) (Gauss-Bonnet-Chern theorem) For an even-dimensional oriented compact manifold, we
have

Eul(X) =
dimX∑
j=0

(−1)j dimHj
dR(X) =

∫
X
e(TX),

where Eul(X) =
∑dimX

j=0 (−1)j dimHj
dR(X) is the Euler number of X, and e(TX) ∈

HdimX
dR (X) is the Euler class of X.

(ii) (Hirzebruch signature theorem) IfX is an oriented compact manifold of dimensionm = 4k.
We can define a symmetric bilinear form

η : H2k
dR(X)×H2k

dR(X)→ R

by

η(α, β) :=

∫
X
α ∧ β.

By Poincaré duality, we know that η is a non-degenerate bilinear form. The signature of η
equals the number of positive eigenvalues of η minus the number of negative eigenvalues.
Then Hirzebruch signature theorem says that

sign(η) =

∫
X
L(TX),

where L(TX) ∈ H4•
dR(X) is the L-class of X.

(iii) (Riemann-Roch-Hirzebruch theorem) Let X be a compact complex manifold (that is, local
charts are given by open subsets of Cm and the transition functions are holomorphic), we
assume that X is Kähler, then we have

dimC X∑
j=0

(−1)j dimHj(X,OX) =

∫
X
Td(ThX),

where Td(ThX) ∈ H2•
dR(X) is the Todd class for the holomorphic tangent bundle ThX, and

Hj(X,OX) is the j-th sheaf chomology group of the structure sheaf OX (of holomorphic
functions). Here we can replace Hj(X,OX) by the Dolbeault cohomology group H0,j(X).

Exercise 2.9 (Wedge products of cohomological classes). Let X be a manifold of dimension
m. Prove the following results:

(a) If α and β are closed forms, then α ∧ β is also closed.

(b) If α is closed and β is exact, then α ∧ β is exact.
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(c) Assume X to be compact and oriented: for any k ∈ {0, . . . ,m}, the bilinear form

ηk : Hk
dR(X)×Hm−k

dR (X)→ R

by

ηk(α, β) :=

∫
X
α ∧ β

is well-defined.

(d) For any smooth map f : Y → X between manifolds, the pull-back map f∗ on differ-
ential forms induces a linear map

f∗ : H•
dR(X)→ H•

dR(Y )

which preserves the degrees.

3 Connection, characteristic classes, and Chern–Weil theory

3.1 Connection and curvature

We recall the definitions of connection and curvature, which play the central role in the con-
struction of characteristic classes and Chern–Weil theory. We will often use the notation

Ω•(X,E) = C∞(X,Λ•(T ∗X)⊗ E)

for a vector bundle E → X.

3.1.1 Connection

Definition 3.1 (Connection). Let E → X be a vector bundle. A connection ∇E is a
linear operator:

∇E : C∞(X,E)→ Ω1(X,E) = C∞(X,T ∗X ⊗ E)

satisfying the Leibniz rule:

∇E(fs) = df ⊗ s+ f∇Es ∀f ∈ C∞(X), s ∈ C∞(X,E).

Remark 3.2. The definition of ∇E is equivalent to say that ∇E is a first order differential
operator from C∞(X,E) to Ω1(X,E) with principal symbol σ(∇E)(x, ξ) =

√
−1ξ∧.

Proposition 3.3 (Existence and affine structure). The space of connections A(E) of E is:

• non-empty, and

• affine: For ∇1,∇2 ∈ A(E), their difference ∇1 − ∇2 ∈ Ω1(X,End(E)), and we can
write A(E) = ∇+Ω1(X,End(E)) for any connection ∇.

Proof. (1) By Proposition 2.49, for the section
√
−1ξ∧ ∈ C∞(X,TX ⊗Hom(E, T ∗X ⊗E)) ( to

make it clear, we take a local frame {ej} of TX and the dual frame {ej} of T ∗X, then we write√
−1ξ∧ =

√
−1
∑

j ej ⊗ (ej ⊗ IdE) ), there always exists ∇ ∈ Diff≤1(E, T ∗X ⊗ E) such that
σ(∇) =

√
−1ξ∧.

(2) The difference A := ∇1−∇2 satisfies A(f s) = f A(s) for all f, s, so by Proposition 2.27,
A ∈ Ω1(X,End(E)). Moreover, adding A ∈ Ω1(X,End(E)) to any connection ∇ preserves the
Leibniz rule.
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On a trivializing chart U of X for E where E|U ≃ U × Cr:

∇E |U = d+ ΓE , ΓE ∈ Ω1(U,End(Cr)),

where d is the classical differential on functions. A local section s ∈ C∞(U,E) now becomes
(f1, . . . , fr)

T with each fj ∈ C∞, then

∇E |U

f1...
fr

 =

df1...
dfr

+ ΓE

f1...
fr

 .

Remark 3.4. Given a connection ∇E on E. For V ∈ Γ(TX) a smooth vector field on X, and for
s ∈ C∞(X,E), the covariant derivative of s along V is defined as ∇E

V s := ιV∇Es ∈ C∞(X,E),
where ιV means that we pair V pointwisely with the (T ∗X)-factor of ∇Es.

Definition 3.5 (Induced connections). Given (E,∇E) and (F,∇F ), we have induced con-
nections on:

• Dual Bundle E∗: For s∗ ∈ C∞(X,E∗), s ∈ C∞(X,E):

⟨∇E∗
s∗, s⟩ = d⟨s∗, s⟩ − ⟨s∗,∇Es⟩.

Locally: ∇E∗ |U = d− T (ΓE)

• Conjugate Bundle E: For s ∈ C∞(X,E),

∇E s̄ = ∇Es,

Locally: ∇E |U = d+ Γ
E
.

• Tensor Product E ⊗ F :

∇E⊗F (s1 ⊗ s2) = (∇Es1)⊗ s2 + s1 ⊗ (∇F s2).

Locally: ∇E⊗F |U = d+ ΓE ⊗ IdF +IdE ⊗ΓF .

• Similarly for E⊗k, SkE, ΛkE, and Home(E,F ).

Proposition 3.6. Given a vector bundle (E,∇E) on X and a smooth map f : Y → X: for
the pullback bundle f∗E, we have an induced connection ∇f∗E which is defined locally by

∇f∗E = d+ f∗ΓE .

It is the unique connection on f∗E → Y such that for s ∈ C∞(X,E), v ∈ TyY ,

(∇f∗E
v (s ◦ f))(y) = (∇E

dfy(v)
s)(f(y)) ∈ Ef(y).

Definition 3.7 (Adjoint connection). For a Hermitian bundle (E, hE), for a connection∇E ,
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the adjoint connection (∇E)∗ of ∇E with respect to hE is the unique connection satisfying

d⟨s1, s2⟩hE = ⟨(∇E)∗s1, s2⟩hE + ⟨s1,∇Es2⟩hE , ∀ s1, s2 ∈ C∞(X,E).

Definition 3.8 (Metric connection or Hermitian connection). For a Hermitian bundle
(E, hE), ∇E is metric (or Hermitian ) if:

d⟨s1, s2⟩hE = ⟨∇Es1, s2⟩hE + ⟨s1,∇Es2⟩hE .

Equivalently, ∇E = (∇E)∗ (self-adjoint w.r.t. hE). In this case, we also say ∇E preserves
the metric hE .

Proposition 3.9. Every Hermitian bundle admits a metric connection.

Proof. Given any Hermitian vector bundle (E, hE), let ∇E be any connection on E. At first,
we take the adjoint connection (∇E)∗ of ∇E with respect to hE , then we put

∇u =
1

2
(∇E + (∇E)∗),

it is clear that ∇u ∈ A(E) preserves the metric hE .

3.1.2 Curvature

Any connection ∇E extends uniquely to a first-order differential operator ∇E : Ωk(X,E) →
Ωk+1(X,E) by the rule

∇E(α⊗ s) = dα⊗ s+ (−1)k α ∧∇Es,

for α ∈ Ωk(X), s ∈ C∞(X,E).

Definition 3.10 (Curvature). Given a connection ∇E , we define its curvature as:

RE := (∇E)2 : C∞(X,E)→ Ω2(X,E).

Note that since ∇E is first-order, a priori, RE ∈ Diff≤2(E,Λ2(T ∗X)⊗E), a direct calculation
shows that σ2(RE) = −ξ ∧ ξ ≡ 0, hence RE ∈ Diff≤1(E,Λ2(T ∗X)⊗ E).

Proposition 3.11. RE is a zeroth-order differential operator, that is RE ∈ Ω2(X,End(E)).

Proof. For f ∈ C∞(X), s ∈ C∞(X,E):

RE(fs) = ∇E(df ∧ s+ f∇Es) = ddf ∧ s− df ∧∇Es+ df ∧∇Es+ f(∇E)2s = fREs

Thus [RE , f ] = 0, then we apply Proposition 2.27.

Proposition 3.12. For any two vector fields U, V ∈ Γ(TX), we have

RE(U, V ) = ∇E
U∇E

V −∇E
V∇E

U −∇E
[U,V ]. (3.1)
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Proof. Let {ej}mj=1 be a local frame for TX with dual basis {ej} of T ∗X. Then we can write

∇E =
∑
j

ej ∧∇E
ej .

Therefore
(∇E)2 =

∑
j

dej ∧∇E
ej +

∑
j,k

ek ∧ ej∇E
ek
∇E

ej .

For vector fields U, V , we can write

U =
∑
j

ej(U)ej , V =
∑
j

ej(V )ej .

We also have
dej(U, V ) = Uej(V )− V ej(U)− ej([U, V ]).

Then

(∇E)2(U, V ) =
∑
j

dej(U, V )∇E
ej +

∑
j,k

(
ek(U)ej(V )− ek(V )ej(U)

)
∇E

ek
∇E

ej

=
∑
j

Uej(V )∇E
ej +

∑
j,k

ek(U)ej(V )∇E
ek
∇E

ej


−
∑
j

V ej(U)∇E
ej +

∑
j,k

ek(V )ej(U)∇E
ek
∇E

ej

−∇E
[U,V ]

=∇E
U∇E

V −∇E
V∇E

U −∇E
[U,V ].

The following result is important and clear by the definition of RE .

Proposition 3.13 (Bianchi identity). We have

[∇E , RE ] = 0

Proposition 3.14. For metric connection ∇E on a Hermitian vector bundle (E, hE), the
curvature is skew-adjoint, that is

RE ∈ Ω2(X,Endanti(E)),

where the fibers of Endanti(E) are the anti-hermitian endomorphism of E with respect to
hE.

Proof. For s1, s2 ∈ C∞(X,E), then we have

0 = d2⟨s1, s2⟩hE = d (d⟨s1, s2⟩hE )

= d
(
⟨∇Es1, s2⟩hE + ⟨s1,∇Es2⟩hE

)
= d

(
⟨∇Es1, s2⟩hE

)
+ d

(
⟨s1,∇Es2⟩hE

)
=
(
⟨REs1, s2⟩hE − ⟨∇Es1,∇Es2⟩hE

)
+
(
⟨∇Es1,∇Es2⟩hE + ⟨s1, REs2⟩hE

)
= ⟨REs1, s2⟩hE + ⟨s1, REs2⟩hE .

25



3.1.3 Parallel transport

Definition 3.15. Given a smooth curve γ : [0, 1]→ X and vector bundle (E,∇E)→ X, a
section s ∈ C∞([0, 1], γ∗E) is called parallel along γ with respect to ∇E if:

∇γ∗E
∂
∂t

s ≡ 0,

which is also denoted simply by
∇E

γ̇ s ≡ 0,

where γ̇ is the speed vector of the curve.

Proposition 3.16 (Existence & uniqueness of parallel transport). For any v ∈ Eγ(0), there
exists a unique parallel section s with s(0) = v. This defines the parallel transport:

τ0t : Eγ(0) → Eγ(t), v 7→ s(t)

which is a linear isomorphism and satisfies τ t1t2 ◦ τ
0
t1 = τ0t2 for t1 ≤ t2.

Proof. Let U0 be a local chart of X where γ(0) ∈ U0 and E|U0 ≃ U0 × Cr, moreover, we write

∇E |U0 = d+ ΓE
0 .

The the equation for a parallel section becomes a first-order ordinary differential equation:{
∂s(t)
∂t + ΓE

0,γ̇(t)(γ̇(t))s(t) = 0;

s(0) = v ∈ Eγ(0) ≃ Cr.

t→ 1

γ

γ(0)
•

U0

By the existence and uniqueness of the solution of the ODE, we get a parallel section s for
t ∈ [0, t1] whenever γ([0, t1]) ⊂ U0.

Now, as showed in the picture below, we take a sequence of local charts Uj to cover γ, since
γ([0, 1]) is compact, we only need finite number of them, say (k + 1) local charts:

γ([0, 1]) ⊂
k⋃

j=0

Uj

We then repeat the above arguments of ODEs on each chart consecutively, obtaining a sequence
of parallel sections: s|[0,t1], s|[t1,t2], . . ..

U0 U1 U2 Uk

•t = 0
t1• •t = 1

γ

•
t2
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Finally, by considering the parallel sections on the intersections of these local charts, we
conclude that they patch together smoothly as a parallel section s along whole γ, which is
uniquely determined by s(0) ∈ Eγ(0). The rest part of this proposition is clear.

Note that we can use the parallel transport to get a canonical local trivialization of a
vector bundle. Let

X =
⋃
α

Uα, Uα ≃ B(0, 1) ⊂ Rm,

where B(0, 1) denote the unit open ball. Given a vector bundle π : E → X with a connection
∇E , we can define the following identification of vector bundles

π−1(Uα) ≃ B(0, 1)× E0,

(x, τ0xv)←→ (x, v),

where E0 ≃ Cr is the fiber of E at the center point of Uα, and τ0xv denotes the parallel transport
of v to the point x along the path t 7→ tx in B(0, 1) with respect to the connection ∇E .

0

x
Uα

Example 3.17. Let S1 = R/Z, with coordinate t, and define the bundle E = S1 × C to be the
trivial bundle.

Let ∇E be the connection defined by

∇E = dt ∧ ∂

∂t
+ α(t) dt,

where α ∈ C∞(S1,C) is a smooth function. A parallel section S along the path R ∋ t 7→ γ(t) =
t ∈ S1 is a map

S : R→ C, such that
∂S(t)

∂t
+ α(t)S(t) = 0.

The solution is:

S(t) = S(0) · exp
(
−
∫ t

0
α(s) ds

)
.

Going from t = 0 to t = 1, the path is exactly one round of the circle - a primitive loop, we
see that the holonomy for this loop is given by

exp

(
−
∫ 1

0
α(s) ds

)
∈ C∗.

If α is purely imaginary, then exp
(
−
∫ 1
0 α(s) ds

)
∈ U(1). If

∫ 1
0 α(s) ds ∈ 2π

√
−1Z, then the

holonomy is trivial.

3.2 First Chern form and first Chern class of complex line bundles

Let (L,∇L) be a complex line bundle on X with connection (rankL = 1). The curvature is

RL = (∇L)2 ∈ Ω2(X,End(L)) ∼= Ω2(X,C),

where we have the canonical identification End(L)
∼−−−−−→
Tr

C.
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Definition 3.18. The first Chern form of (L,∇L) is defined as

c1(L,∇L) :=

√
−1
2π

RL ∈ Ω2(X,C)

Proposition 3.19. We have the following properties:
1) c1(L,∇L) is closed, that is dc1(L,∇L) = 0.
2) For two connections ∇L

1 −∇L
2 = A ∈ Ω1(X,C):

c1(L,∇L
1 ) = c1(L,∇L

2 ) +

√
−1
2π

dA

Thus the cohomology class [c1(L,∇L)] ∈ H2
dR(X,C) is well-defined and independent of the

connection ∇L.

Proof. 1) Locally on a trivializing chart U , we have ∇L = d + Γ. Since L is a line bundle, so
Γ ∈ Ω1(U,C) and Γ ∧ Γ = 0. Then locally, RL = dΓ, so dRL = ddΓ = 0.

2) Locally, we write ∇L
j = d+ Γj :

RL
1 −RL

2 = dΓ1 − dΓ2 = d(Γ1 − Γ2) = dA

Remark 3.20. If we have two complex line bundles L1 and L2 on X that are isomorphic as
vector bundles, then we can verify

[c1(L1,∇L1)] = [c1(L2,∇L2)] ∈ H2
dR(X,C).

Definition 3.21. For any complex line bundle L → X, the first Chern class c1(L) ∈
H2

dR(X,C) is defined as the cohomological class [c1(L,∇L)] for any connection ∇L. This
way, we get a map

c1 : {Complex line bundles on X}
/
∼ → H2

dR(X,C)

[L] 7→ c1(L) ,

where ∼ means the equivalence relation given by isomorphisms of complex line bundles.

Exercise 3.1 (First Chern class). Let L → X be a complex line bundle on a smooth
manifold:

• For any k ∈ N, prove that L⊗k is a complex line bundle on X.

• Prove the identity of first Chern class

c1(L
⊗k) = kc1(L) ∈ H2

dR(X,C).

• Show that L∗ ⊗ L is a trivial line bundle on X, and first Chern class of a trivial line
bundle is zero.

28



• Let L′ be another complex line bundle on X, we have

c1(L⊗ L′) = c1(L) + c1(L
′) ∈ H2

dR(X,C).

• Show that we always have the isomorphism L ∼= L∗, and

c1(L) = c1(L
∗) = −c1(L) ∈ H2

dR(X,C).

• For any smooth map f : Y → X, we have

f∗c1(L) = c1(f
∗L) ∈ H2

dR(Y,C).

Proposition 3.22. For a metric connection ∇L on (L, hL), we have

c1(L,∇L) ∈ Ω2(X,R),

therefore, we always have c1(L) ∈ H2
dR(X,R).

Proof. Locally on a trivializing chart, we have ∇L = d+
√
−1Γ, where Γ ∈ Ω1(U,R) is real since

∇L is a metric connection. Then locally

c1(L,∇L)|U = − 1

2π
dΓ,

which is clearly a real-valued differential form.

Remark 3.23. If ∇L is any connection on L, we can write

c1(L,∇L) = cRe
1 (L,∇L) +

√
−1cIm1 (L,∇L),

where cRe
1 (L,∇L) and cIm1 (L,∇L) are real forms. Then by Proposition 3.22, we can conclude

c1(L) = [cRe
1 (L,∇L)] and cIm1 (L,∇L) is an exact form.

Exercise 3.2 (Complex line bundles on Riemann sphere). Let CP1 ∼= S2 be the Riemann
sphere, or called 1-dimensional complex projective space, with two standard charts:

• The north pole chart UN
∼= C with coordinate z = x+

√
−1y ∈ C

• The south pole chart US
∼= C with coordinate w = 1/z

Let O(−1)→ CP1 denote the tautological line bundle, i.e., O(−1) = {([z], λz) ∈ CP1 ×
C2, λ ∈ C}.

(a) Prove that O(−1)→ CP1 is a well-defined complex line bundle.

(b) Prove that CP1 is orientable, and we can take the orientation on CP1 induced by C
through the chart UN , US .

(c) On UN , we define a 1-form

A =
z̄ dz

1 + |z|2
,

where dz = dx +
√
−1dy. Define a Hermitian connection ∇ = d + A on O(−1)|UN

using the local frame eN (z) = (1, z) of O(−1). Show that ∇ can extend to a global
connection ∇ on O(−1)→ CP1.
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(d) Compute on local charts UN and US the curvature form R = ∇2, and then give a
formula for the first Chern form of c1(O(−1),∇).

(e) Prove that for any connection ∇ on O(−1), we have∫
CP1

c1(O(−1),∇) = −1.

Set the line bundle O(k) =

{
O(−1)⊗|k| for k ∈ Z and k < 0

(O(−1)∗)⊗k for k ∈ Z and k ≥ 0
, show that for any

k ∈ Z, ∫
CP1

c1(O(k),∇k) = k.

To conclude this section, we give a different point-view of the first Chern classes for the
complex line bundles. Recall that for a general topological space X, we have several cohomology
theories:

• by considering the injective resolution of an abelian sheaf F on X, we can define the sheaf
cohomology groups H•(X,F).

• by considering the open covers of X together with a sheaf F , we have the Čech cohomology
groups Ȟ•(X,F).

If X is a manifold (which is always Hausdorff and paracompact), then we always have

H•(X,F) ≃ Ȟ•(X,F).

Hence here it is not necessary to distinguish them.

Proposition 3.24. A complex line bundle L over X is completely determined by its tran-
sition functions {gαβ} with:

• gαβ ∈ C∞(Uα ∩ Uβ,C∗)

• Cocycle condition: gαβgβγ = gαγ on Uα ∩ Uβ ∩ Uγ

This data defines a cohomology class [L] ∈ Ȟ1(X,C∞,∗
X ) = H1(X,C∞,∗

X ) where C∞,∗
X is the

sheaf of non-vanishing smooth complex-valued functions.

Now we consider the exponential sheaf sequence on X,

0→ Z→ C∞
X

exp(2π
√
−1 • )−−−−−−−−−−−−→ C∞,∗

X → 0

where:

• Z is the constant sheaf of integers on X;

• C∞
X is the sheaf of smooth C-valued functions.

The above sheaf sequence is exact on X, therefore it induces a long exact sequence in sheaf
cohomology:

· · · H1(X,Z) H1(X,C∞
X ) H1(X,C∞,∗

X )

H2(X,Z) H2(X,C∞
X ) · · ·
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Since C∞
X is a soft sheaf, then Hp(X,C∞

X ) = 0 for p ≥ 1. Therefore, the connecting map
δ : H1(X,C∞,∗

X )
∼−−−−→ H2(X,Z) is an isomorphism, so that we define a topological version

of first Chern class
ctopo1 (L) = δ([L]) ∈ H2(X,Z).

For smooth manifolds, we have isomorphisms:

H•(X,Z)⊗ C ≃ H•(X,C) ≃ H•
dR(X,C)

Then we have the following correspondence, which says that the topological version of first Chern
class agrees with the one defined by the first Chern forms:

[L] ∈ H1(X,C∞,∗
X ) ctopo1 (L) ∈ H2(X,Z)

[c1(L,∇L)] ∈ H2
dR(X,C)

δ

⊗C ,

where we can replace C by R for the de Rham cohomology.

Exercise 3.3 (Poincaré Lemma and injective resolution). LetX be a smoothm-dimensional
manifold. We study the relationship between closed differential forms and sheaf cohomology
via the de Rham complex.

Prove that

(a) (Poincaré lemma for closed forms) Let U ⊆ X be a contractible open set (e.g., dif-
feomorphic to Rm). For any closed k-form ω ∈ Ωk(U) (i.e., dω = 0), show that there
exists η ∈ Ωk−1(U) such that ω = dη.

(b) Find a closed 1-form ω on X = R2 \ {0} that is not exact.

Assume X to be connected. Let R denote the constant sheaf of R on X, that means,
for each open subset U ⊂ X,

R(U) := {locally constant real functions on U}.

For k ≥ 0, define the sheaf Ωk as

Ωk(U) := {real-valued smooth k forms on U}.

For each x ∈ X, let Rx, Ωk
x denote the stalks at x, which are the germs of functions or

forms.
Consider the de Rham complex as a resolution:

0→ R ι−→ Ω0 d−→ Ω1 d−→ · · · d−→ Ωm → 0,

where ι is given by the inclusion R(U) ⊂ Ω0(U), and d is given by the exterior differential.

(c) (Exactness of sequence) For each x ∈ X, we have the sequence of spaces of germs:

0→ Rx
ι−→ Ω0

x
d−→ Ω1

x
d−→ · · · d−→ Ωm

x → 0,

Verify exactness at each Ωk
x for k ≥ 0, and show ι is injective. This means that the

de Rham complex gives an injective resolution for the constant sheaf R.
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This way, we identify the sheaf cohomology of R on X with the de Rham cohomology of X.

In subsequent sections, we will use the abbreviated notation:

Hk(X) := Hk
dR(X,C) ≃ Hk(X,C) ≃ Ȟk(X,C).

When working with smooth real-valued forms, we use Hk(X,R). We are not going to distinguish
different cohomology theories, since they are canonically isomorphic to each other.

3.3 Characteristic classes of vector bundles (topological version)

Based on the first Chern class class of complex line bundles, we will define several typical
characteristic classes for vector bundles, more precisely, we are going to define

• for complex vector bundles:


Chern class
Chern character
Todd class

• for real vector bundles:


Pontrjagin class
Â-class
L-class

• for oriented real vector bundles: Euler class.

Constructing the characteristic classes of vector bundles means to associate the cohomological
classes in H•(X) to those vector bundles that satisfy the functoriality property.

To get the constructions of these characteristic classes, we admit the Splitting Principle
for the vector bundles.

Theorem 3.25 (Splitting principle). For complex vector bundle E → X of rank r, there
exists a manifold M and a smooth proper submersion π :M → X such that:

π∗E ∼= L1 ⊕ · · · ⊕ Lr

with complex line bundles Lj →M , and the induced map π∗ : H•(X) ↪→ H•(M) is injective.
In this case, we will call M a split manifold for E.

Remark 3.26. The smooth map π :M → X is called a proper submersion if

• (submersion) for all p ∈M , the tangent map dπp : TpM → Tπ(p)X is surjective;

• (properness) for each x ∈ X, the preimage π−1(x) is compact subset of M .

Exercise 3.4 (Projectivization, universal line bundle, and splitting principle). Given a
complex vector bundle E → X of rank r ≥ 2 over a smooth manifold X, let P(E) denote
its projectivisation and π : P(E)→ X the natural projection. Specifically, for each x ∈ X,
π−1(x) = P(Ex) ≃ CPr−1 via Ex ≃ Cr.

(a) Prove that P(E) is a smooth manifold, in particular, to describe the local charts and
transition functions for P(E) based on the local charts of E and X.

(b) Prove that π : P(E)→ X is a smooth proper submersion.

(c) Show that the pull-back map: π∗ : Ω•(X)→ Ω•(P(E)) is injective.
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(d) Define the tautological line bundle OP(E)(−1) on P(E) whose fibre over [v] ∈ P(Ex)
is the line Cv ⊂ Ex. Show that OP(E)(−1) ⊂ π∗E is a subbundle of rank one.

(e) Based on the above results, show that there exists a proper submersion π : M → X
such that π∗E ≃ L1 ⊕ . . . Lr with each Lj being a complex line bundle on M .

Theorem 3.27 (Chern class). There exists a unique map

c : {complex vector bundles on X} → H2• = ⊕kH
2k(X)

E (up to isomorphisms) 7→ c(E)

for all smooth manifold X, such that

a) c(E) = 1 + c1(E) + . . .+ ck(E) + · · · with ck(E) ∈ H2k(X).

b) (Whitney sum) c(E ⊕ F ) = c(E)c(F ) (= c(E)∧ c(F ) = c(F )∧ c(E) since the degrees
are even).

c) (Functoriality) For any smooth map f : Y → X, we have

c(f∗E) = f∗c(E) ∈ H2•(Y ).

d) For a complex line bundle L → X, c(L) = 1 + c1(L), where c1(L) is the first Chern
class given by first Chern form c1(L,∇L).

This map c is called Chern class, and cj(E) is called j-th Chern class of E.

Proof. Uniqueness:
Suppose such map c exists. For any E → X, we can take a split manifold M of E such that

for π :M → X, we get π∗E ≃ L1 ⊕ . . .⊕ Lr. Then by properties a) – d), we have

π∗c(E) :=
r∏

j=1

(1 + c1(Lj)) ∈ H2•(M). (3.2)

This determines c(E) uniquely since π∗ is injective.
Existence: We sketch the idea. We can define c(E) by considering a split manifold M for

E and then take the definition (3.2). Consider the curvature

Rπ∗E
split = diag(RL1 , . . . , RLr),

which corresponds to the direct sum of the connections on each Lj . So that we can rewrite (3.2)
as

π∗c(E) := det

(
Idπ∗E +

√
−1
2π

Rπ∗E
split

)
∈ H2•(M), (3.3)

where we can use the properties of the elementary symmetric polynomials to understand
each cj(E).

If we have two split manifolds M1 and M2 for E (with the submersions π1 and π2 respectively
), then we can define M :=M1 ×X M2, which is a again a split manifold of E, this way, we can
identify π∗1c(E) and π∗2c(E) on M . So that (3.2) is independent of the choice of split manifolds.

Recall that π∗ : H•(X) ↪→ H•(M) is injective, then to get a well-defined c(E) ∈ H•(X)
from (3.2), it is enough to verify that

r∏
j=1

(1 + c1(Lj)) ∈ Im π∗.
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Let us explain it in a conceptual way. We will see from the Chern-Weil theory that this class
is independent of the choices of the connections or curvatures on π∗E, therefore, if we take any
connection ∇E on E with curvature RE , then

π∗c(E) = det

(
Idπ∗E +

√
−1
2π

π∗RE

)
= π∗ det

(
Idπ∗E +

√
−1
2π

RE

)
,

for the class det
(
Idπ∗E +

√
−1
2π RE

)
∈ H2•(X).

Remark 3.28. The collection {c1(Lj)}rj=1 is called the Chern roots of E. So each Chern class
cj(E) is a symmetric polynomials in terms of these Chern roots.

(1). For complex vector bundles

Definition 3.29 (Multiplicative class). For f : R→ R an analytic function with f(0) = 1.
The multiplicative class fm(E) ∈ H2•(X) for the complex vector bundle E → X is defined
by

π∗fm(E) =
r∏

j=1

f(c1(Lj)) =
r∏

j=1

( ∞∑
k=0

1

k!
f (k)(0)(c1(Lj))

k

)
,

for any split manifold π : M → X, and due to the degree’s reason, each sum in the above
is a finite sum.

Example 3.30. • f(x) = 1 + x, we obtain Chern class c(E)

• f(x) = x
1−e−x , then it is called Todd class Td(E)

Definition 3.31 (Additive class). For f : R→ R real analytic, the additive class fa(E) ∈
H2•(X) is defined by

π∗fa(E) =

r∑
j=1

f(c1(Lj)).

Example 3.32. If f(x) = ex, fa(E) is called Chern character of E.

(2). For real vector bundles
At first, we need the following real version of the splitting principle. For real bundle F → X

of rank r, then there exists a smooth submersion π :M → X such that

π∗(F ⊗R C) ∼=

{
L1 ⊕ L1 ⊕ · · · ⊕ Lk ⊕ Lk r = 2k,

L1 ⊕ L1 ⊕ · · · ⊕ Lk ⊕ Lk ⊕ C r = 2k + 1,
(3.4)

Note that in the above splitting, we can not distinguish Lj with its conjugate Lj .

Lemma 3.33. For any complex line bundle L→ X, then

c1(L) = −c1(L) ∈ H2(X).

Proof. See also Exercise 3.1. We give a local proof. Fix a Hermitian metric hL and a metric
connection ∇L, in a local trivializing chart of L, we can write

∇ = d+
√
−1Γ,

where Γ is a real-valued 1-form.
Then ∇ = d −

√
−1Γ defines a connection on L. Locally, we have c1(L) = −[ 1πdΓ] =

−c1(L).
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Definition 3.34 (Multiplicative class). For f : R→ R a real even analytic function (f(x) =
f(−x)) with f(0) = 1. The multiplicative class fm(F ) ∈ H4•(X) for a real vector bundle
F → X is defined by

π∗fm(F ) =
r∏

j=1

f(c1(Lj)) =
r∏

j=1

( ∞∑
k=0

1

(2k)!
f (2k)(0)(c1(Lj))

2k

)
,

for any split manifold π : M → X, and due to the degree’s reason, each sum in the above
is a finite sum.

Example 3.35. • f(x) = 1 + x2, we obtain Pontrjagin class p(F ).

• f(x) = x/2
sinhx/2 , then it is called Â-class Â(F ).

• f(x) = x/2
tanhx/2 , then it is called L-class L(F ).

(3). Euler Class for oriented real vector bundle
When F is an oriented real vector bundle of rank r = 2k, the given orientation of F allows

us to distinguish Lj and Lj in (3.4). In fact, we have a split manifold π :M → X such that

π∗F ∼= F1 ⊕ . . .⊕ Fk

with Fj a real vector bundle on M of rank 2. Moreover, we have

Fj ⊗R C ∼= Lj ⊕ Lj .

Definition 3.36. For an oriented real bundle F of rank 2k, the Euler class

e(F ) =

k∏
j=1

c1(Lj) ∈ H2k(X,R).

Exercise 3.5 (Complex structure on real vector space). Denote V = R2n a real vector
space of real dimension 2n. Let e1, e2, . . ., e2n−1, e2n denote the canonical basis of V such
that the vector v = (x1, x2, . . . , x2n−1, x2n) =

∑2n
j=1 xjej . Define an endomorphism J of V

as follows, for j = 1, 2, . . . , n,

Je2j−1 = e2j ,

Je2j = −e2j−1.

Let gTR2n denote the standard Euclidean inner product on V , equivalently, we can write

gTR2n
=

2n∑
j=1

dxj ⊗ dxj .

a) We have the following identity:

J2 = −IdV , gTR2n
(J ·, J ·) = gTR2n

(·, ·).

b) Consider the action of complex number a+ b
√
−1 ∈ C( a, b ∈ R ) on v ∈ V via

(a+ b
√
−1)v := av + bJv ∈ V.

35



This way, we make (V, J) a complex vector space of dimension n with a C-basis given
by {e1, e3, . . . , e2n−1}.
For j = 1, . . . , n, set zj = x2j−1 +

√
−1x2j ∈ C, then (z1, . . . , zn) ∈ Cn denotes the

standard complex coordinate system on (V, J). More precisely, we have the following
identification

Cn ∋ (z1, . . . , zn) 7→
n∑

j=1

zje2j−1 ∈ V.

c) Set VC := V ⊗R C and JC := J ⊗R IdC ∈ End(VC). Here C acts on VC via the
second tensor factor C. Then JC has exactly two eigenvalues

√
−1 and −

√
−1. The

corresponding eigenspaces are given as follows:

V 1,0 := SpanC{e2j−1 −
√
−1e2j ; j = 1, . . . , n},

V 0,1 := SpanC{e2j−1 +
√
−1e2j ; j = 1, . . . , n}.

In particular, we have VC = V 1,0 ⊕ V 0,1.

d) Using the complex coordinates (z1, . . . , zn) for (V, J), set

ω =

√
−1
2

n∑
j=1

dzj ∧ dzj .

Then ω is a (1, 1)-form on V . Prove that ω = ω (that is ω is a real differential form),
moreover, we have

ω =

n∑
j=1

dx2j−1 ∧ dx2j ∈ Ω2(V ).

e) We have the following relation between gTR2n and ω: for v, v′ ∈ V , we have

ω(v, v′) = gTR2n
(Jv, v′).

In particular, for any 0 ̸= v ∈ V , ω(v, Jv) > 0 (that is, ω is positive).

f) gTR2n extends C-linearly on as an bilinear form on VC, forW,W ′ ∈ V 1,0, set hV 1,0
(W,W ′) :=

gTR2n
(W,W ′), then hV 1,0 defines a hermitian metric on V 1,0, an orthonormal basis is

given as follows:

f j :=
1√
2
(e2j−1 −

√
−1e2j), j = 1, . . . , n.

A similar result holds for V 0,1.

3.4 Characteristic forms by Chern–Weil theory

At first, we introduce the supersymmetric convention for the Chern–Weil theory. In fact, it is
not necessary to use the supersymmetric formulation from beginning, but it is more convenient
when we deal with the superconnection, Dirac operators and index theorem in later sections.

3.4.1 Supersymmetric formulation

Definition 3.37. A superspace is a Z2-graded vector space E = E+ ⊕ E−, where Z2 =
Z/2Z = {±}.
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A superalgebra is an associative Z2-graded algebra with unit such that A = A +⊕A −

as a superspace with 1 ∈ A + and

A +A −,A −A + ⊂ A − , A −A −,A +A + ⊂ A + .

A usual vector space E is a superspace as E = E ⊕ 0, that is E = E+. A usual associative
algebra with unit is a superalgebra as A = A + ⊕ 0.

Example 3.38. • A vector E has a Z-grading if we can write it as a direct sum

E = ⊕j∈ZE
j ,

then we have the induced superspace

E = E+ ⊕ E−

with E+ = Eeven = ⊕j∈ZE
2j , E− = Eodd = ⊕j∈ZE

2j−1.

• The differential forms Ω•(X) = Ωeven(X) ⊕ Ωodd(X) form a superalgebra with wedge
product.

• Let E = E+ ⊕ E− be a superspace, and then End(E) is naturally a superalgebra with

End+(E) = {f ∈ End(E) : f preserves the splitting E+ ⊕ E−} = End(E+)⊕ End(E−),

and
End−(E) = Hom(E+, E−)⊕Hom(E−, E+).

In the block matrix form, we can write(
A B
C D

)
=

(
A 0
0 D

)
+

(
0 B
C 0

)
∈ E+ ⊕ E−.

Definition 3.39. Let A = A + ⊕A − be a superalgebra. The supercommutator or super-
bracket is defined as:

[a, b]s := ab− (−1)|a|·|b|ba,

where |a| denotes the parity of a, that is 1 for a ∈ A − and is 0 for A +. If [a, b]s = 0 for all
a, b ∈ A , then the superalgebra is said to be supercommutative, or simply, commutative.
In the most case, we will omit the subscript s and denote it as [a, b]. Then we uniform the
notation for the usual algebra and superalgebra.

Remark 3.40. (i) For a, b, c ∈ A, the super-Jacobi identity holds:

[a, [b, c]] = [[a, b], c] + (−1)|a|·|b|[b, [a, c]].

(ii) Ω•(X) is commutative.

Exercise 3.6. Prove the results in Remark 3.40.

Definition 3.41 (Supertrace). Let A = A + ⊕ A − be a superalgebra. A C-linear map
α : A → C is called supertrace if for all a, b ∈ A :

α([a, b]) = 0.
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Proposition 3.42. Let E = E+ ⊕ E− be a superspace (of finite dimension). The super-
trace Trs : End(E)→ C is defined by:

Trs

[(
A B
C D

)]
:= TrE

+
[A]− TrE

−
[D].

Then we have
Trs [[M,N ]] = 0 ∀M,N ∈ End(E),

which makes Trs a supertrace on the superalgebra End(E).

Proof. Note that:

Trs

[[(
A 0
0 D

)
,

(
A′ 0
0 D′

)]]
= Trs

[(
AA′ −A′A 0

0 DD′ −D′D

)]
= 0,

Trs

[[(
A 0
0 D

)
,

(
0 B′

C ′ 0

)]]
= Trs

[(
0 ∗
∗ 0

)]
= 0.

The last case is that

Trs

[[(
0 B
C 0

)
,

(
0 B′

C ′ 0

)]]
= Trs

[(
BC ′ +B′C 0

0 CB′ + C ′B

)]
= TrE

+
[BC ′ +B′C]− TrE

−
[CB′ + C ′B] = 0.

Remark 3.43. Take τ =

(
IdE+ 0
0 − IdE−

)
, then for any M ∈ End(E), we have

Trs[M ] = TrE [τM ],

where TrE denote the usual trace on E without Z2-grading.

Definition 3.44. Let A , B be two superalgebras, then the super tensor product A ⊗̂B is
a superalgebra defined as the space A ⊗B with the Z2-grading

[A ⊗̂B]+ = A + ⊗B+ ⊕A − ⊗B− , [A ⊗̂B]− = A + ⊗B− ⊕A − ⊗B+.

The product is given as follows: for a, a′ ∈ A , b, b′ ∈ B,

(a⊗̂b)(a′⊗̂b′) = (−1)|a′|·|b|(aa′)⊗̂(bb′).

We also write a ⊗ b if there is no confusion. If A − = 0 or B− = 0, then it is the same as
the usual tensor product.

Definition 3.45. Let A be a superalgebra over C, and let E = E+⊕E− be a superspace,
then we define a supertrace

Trs : A ⊗̂End(E)→ A
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by
Trs[a⊗M ] = aTrs[M ], for a ∈ A , M ∈ End(E).

Proposition 3.46. Let A be a commutative superalgebra and E be a superspace. For
A,B ∈ A⊗̂End(E),

Trs
[
[A,B]

]
= 0

Proof. Write A = a⊗M1, B = b⊗M2 where a, b ∈ A and M1,M2 ∈ End(E). Then:

[A,B] = (−1)|b|·|M1|ab⊗ [M1,M2],

since A is supercommutative.
Note that Trs vanishes on supercommutators in End(E), the result follows.

3.4.2 Chern–Weil theory for characteristic forms

In this subsection, we consider a usual vector bundle E = E ⊕ 0 on a smooth manifold X,
we always use our supersymmetric convention on the differential forms on X. The analogous
constructions and proofs presented in this subsection always hold for a superbundle E = E+⊕E−

(that means, fiberwisely a superspace, see next section).
Let X be a manifold and E → X a vector bundle. For each x ∈ X, Λ•T ∗

xX be a commutative
superalgebra. By taking the (usual) trace on End(Ex) = End(E)x, we have

Tr : Λ•T ∗
xX ⊗ End(Ex)→ Λ•T ∗

xX,

which vanishes on the commutators. Based on this pointwise version, we have the global versions:
we have commutative superalgebra Ω•(X), a superspace Ω•(X,E) := C∞(X,Λ•(T ∗X) ⊗ E),
and an associated superalgebra Ω•(X,End(E)), where the Z2-gradings are induced from the one
of Λ•(T ∗X).

We also have the trace map

Tr : Ω•(X,End(E))→ Ω•(X)

given by the pointwise trace map on X. Moreover,

• (connection) ∇E : Ω•(X,E) → Ω•+1(X,E) is an odd operator (which exchanges the ±-
components of a superspace);

• (curvature) RE = (∇E)2 = 1
2 [∇

E ,∇E ] is an even operator (preserving the ±-components
of a superspace).

Proposition 3.47. For any A ∈ Ω•(X,End(E)), we have

dTr[A] = Tr[[∇E , A]] ∈ Ω•(X).

Proof. Consider a local trivializing chart U of E, the connection∇E = d+ΓE is an odd operator.
Then on U ,

[∇E , A] = [d,A] + [ΓE , A],

and thus:
Tr[[∇E , A]] = Tr[[d,A]] + Tr[[ΓE , A]],

where we always have Tr[[ΓE , A]] = 0.
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For A ∈ C∞(X,End(E)), and on U , End(E) is identified with the square matrices, then
[d,A] = dA, and:

Tr[dA] = d(Tr[A]).

If A = α ∧B with α ∈ Ω•(X), B ∈ C∞(X,End(E)), then:

[d,A] = dA = dα ∧B + (−1)|α|α ∧ dB,

so
Tr[[d,A]] = dα ∧ Tr[B] + fdTr[B] = d(Tr[A]).

The proof is complete.

Definition 3.48. Let (E,∇E) → X be a complex vector bundle with connection. Let
f : R→ R be an analytic function. Then define:

fa(E,∇E) := Tr[f(

√
−1
2π

RE)] ∈ Ω•(X),

where f(
√
−1
2π RE) is defined by Taylor series of f . Such forms are called additive character-

istic forms associated to f and E, the word additive is used in the sense

fa(E ⊕ F,∇E ⊕∇F ) = fa(E,∇E) + fa(F,∇F ).

Theorem 3.49 (Chern–Weil theory). Let f be as in the above definition. Then

a) fa(E,∇E) is a closed form on X.

b) If ∇0,∇1 are two connections on E, then:

fa(E,∇0)− fa(E,∇1) = dη

for some differential form η ∈ Ω•(X). That is, the difference is exact.

c) The cohomological class [fa(E,∇E)] ∈ H•(X) is independent of the choice of connec-
tion ∇E.

d) We have [fa(E,∇E)] = fa(E) defined by the splitting principle (the topological ver-
sion).

Proof. a). This is a consequence of the Bianchi identity and Proposition 3.47.

dfa(E,∇E) = dTr[f(

√
−1
2π

RE)]

= Tr[[∇E , f(

√
−1
2π

RE)]] = 0

b). Let ∇t = (1 − t)∇0 + t∇1 be a smooth one-parameter family of connections for t ∈ R.
Denote the corresponding curvature forms by Rt ∈ Ω2(X, ,End(E)).

Now we set X ′ = X × R and the projection p1 : X ′ → X. We consider the vector bundle
p∗1E on X ′, and set a connection on X ′

∇p∗1E = dt ∧ ∂

∂t
+∇t.
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Then the curvature
Rp∗1E ∈ Ω2(X, p∗1 End(E)),

and we write
Rp∗1E = dt ∧ αt + p∗1Rt,

where αt :=
∂
∂t∇t ∈ Ω1(X,End(E)).

Take the differential form on X ′,

Trp
∗
1E [f(

√
−1
2π

Rp∗1E)] = dt ∧ βt + p∗1Tr[f(

√
−1
2π

Rt)],

where βt ∈ Ω•(X) that depends smoothly on t ∈ R. By a), we know Trp
∗
1E [f(

√
−1
2π Rp∗1E)] is a

closed form on X ′.
Using the fact dX′

= dt ∧ ∂
∂t + dX Hence:

(dt ∧ ∂

∂t
+ dX)(dt ∧ βt + p∗1Tr[f(

√
−1
2π

Rt)]) = 0,

Then
∂

∂t
Tr[f(

√
−1
2π

Rt)]) = dXβt.

As a consequence, we obtain

Tr[f(

√
−1
2π

R1)])− Tr[f(

√
−1
2π

R0)]) = dX
∫ 1

0
βt ∈ Ω•(X),

so we just take η =
∫ 1
0 βt to complete the proof of b).

c). Result c) is a consequence of a) and b).
d). Let π :M → X be a split manifold for E so that

π∗E ≃ L1 ⊕ . . .⊕ Lr.

Then
π∗fa(E,∇E) = fa(π

∗E, π∗∇E)

= fa(L1 ⊕ . . .⊕ Lr, π
∗∇E)

∼ fa(L1 ⊕ . . .⊕ Lr,∇L1 ⊕ . . .⊕∇Lr)

= Tr



f(

√
−1
2π RL1) 0 . . . 0

0 f(
√
−1
2π RL2) . . . 0

...
...

...
...

0 0 . . . f(
√
−1
2π RLr)




=
r∑

j=1

f(c1(Lj ,∇Lj )) = π∗fa(E),

where ∼ means cohomologous, and the last equation is in the cohomology group H•(X). This
way, we obtain π∗[fa(E,∇E)] = π∗fa(E), and the result d) follows from that π∗ : H•(X) →
H•(M) is injective.
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