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The main purpose of this minicourse

� We look at sequences (Sn)n∈N of random variables showing an exponential behaviour

P(Sn ≈ x) ≈ e−nI(x) as n→∞

for any x, with I(x) some rate function.

� The event {Sn ≈ x} is an event of a large deviation (strictly speaking, only if

x 6= E(Sn)).

� We make this precise, and build a theory around it.

� We give the main tools of that theory.

� We explain the relation with asymptotics of exponential integrals of the form

E
[
enf(Sn)] ≈ en sup[f−I] as n→∞

and draw conclusions.

� We give a number of fundamental and instrumental examples of sequences (Sn)n∈N.

� We show how to use them to analyse models from statistical physics.
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Introductory example: random walk

� Let (Xi)i∈N an i.i.d. sequence of real random variables, and consider the mean

Sn = 1
n

(X1 + · · ·+Xn). Assume that X1 has all exponential moments finite and

expectation zero. Then, for any x > 0, the probability of {Sn ≥ x} converges to zero,

according to the law of large numbers. This event is called a large deviation.

� What is the decay speed of its probability?

� It is even exponential, as an application of the Markov inequality (exponential Chebyshev

inequality) shows for any y > 0 and any n ∈ N:

P(Sn ≥ x) = P(eynSn ≥ eyxn) ≤ e−yxnE[eynSn ] = e−yxnE
[ n∏
i=1

eyXi
]

= e−yxnE[eyX1 ]n =
(

e−yxE[eyX1 ]
)n
.

� This may be summarized by saying that

lim sup
n→∞

1

n
log P(Sn ≥ x) ≤ −I(x), x ∈ (0,∞),

with rate function equal to the Legendre transform

I(x) = sup
y∈R

[yx− logE(eyX1)].
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Large-deviations principles

Definition

We say that a sequence (Sn)n∈N of random variables with values in a metric space X
satisfies a large-deviations principle (LDP) with rate function I : X → [0,∞] if the set function
1
n

log P(Sn ∈ ·) converges weakly towards the set function− infx∈· I(x), i.e., for any open

set G ⊂ X and for any closed set F ⊂ X ,

lim inf
n→∞

1

n
log P(Sn ∈ G) ≥ − inf

G
I,

lim sup
n→∞

1

n
log P(Sn ∈ F ) ≤ − inf

F
I.

� Hence, topology plays an important role in an LDP.

� Often (but not always), I is convex, and I(x) ≥ 0 with equality if and only if E[Sn] = x.

� I is lower semi-continuous, i.e., the level sets {x : I(x) ≤ α} are closed. If they are

even compact, then I is called good. (Many authors include this in the definition.)

� The LDP gives (1) the decay rate of the probability and (2) potentially a formula for deeper

analysis.
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Survey on this minicourse

� random walks (X = R), CRAMÉR’s theorem

� LDPs from exponential moments =⇒ GÄRTNER-ELLIS theorem =⇒ occupation times

measures of Brownian motions in a box B (X =M1(B)).

� exponential integrals, VARADHAN’s lemma =⇒ exponential transforms =⇒
CURIE-WEISS model (ferromagnetic spin system, X = [−1, 1])

� small factor times Brownian motion (X = C[0, 1]) =⇒ SCHILDER’s theorem

� empirical measures of i.i.d. sequences (X =M1(Γ)) =⇒ SANOV’s theorem =⇒
Gibbs conditioning principle

� empirical pair measures of Markov chains (X =M(s)

1 (Γ× Γ)) =⇒ one-dimensional

polymer measures

� continuous functions of LDPs (contraction principle) =⇒ randomly perturbed dynamical

systems (X = C[0, 1], FREIDLIN-WENTZELL theory)

� empirical stationary fields (X =M(s)

1 (marked point processes)) =⇒ thermodynamic

limit of many-body systems
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LDP for the mean of a random walk

Cramér’s theorem

The mean Sn = 1
n

(X1 + · · ·+Xn) of i.i.d. real random variables X1, . . . , Xn having all

exponential moments finite satisfies, as n→∞, an LDP with speed n and rate function

I(x) = supy∈R[yx− logE(eyX1)].

Proof steps for E[X1] = 0:

� The proof of the upper bound for F = [x,∞) with x > 0 was shown above.

� Sets of the form (−∞,−x] are handled in the same way.

� The proof of the corresponding lower bound requires the Cramér transform:

P̂a(X1 ∈ A) =
1

Za
E
[
eaX11l{X1 ∈ A}

]
,

and we see that

P(Sn ≈ x) = Zna Êa
[
e−anSn1l{Sn ≈ x}

]
≈ Zna e−axnP̂a(Sn ≈ x).

Picking a = ax as the maximizer in I(x), then Êax(Sn) = x, and we obtain

lim
n→∞

1

n
log P(Sn ≈ x) = −[axx− logZax ] = −I(x).

� General sets are handled by using that I is strictly in/decreasing in [0,∞) / (−∞, 0].
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LDPs derived from exponential moments

Far-reaching extension of CRAMÉR’s theorem.

We call (Sn)n∈N exponentially tight if, for any M > 0, there is a compact set KM ⊂ X such

that

lim sup
n→∞

1

n
log P(Sn ∈ Kc

M ) ≤ −M.

GÄRTNER-ELLIS theorem

Let (Sn)n∈N be an exponentially tight sequence of random variables taking values in a

Banach space X . Assume that

Λ(f) = lim
n→∞

1

n
logE

[
enf(Sn)], f ∈ X ∗,

exists and that Λ is lower semicontinuous and Gâteau differentiable (i.e., for all f, g ∈ X ∗ the

map t 7→ Λ(f + tg) is differentiable at zero).

Then (Sn)n∈N satisfies an LDP with rate function equal to the Legendre transform of Λ.
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Comments on the GÄRTNER-ELLIS theorem

� The proof is a (quite technical) extension of the above proof of CRAMÉR’s theorem.

� This proof technique can derive only upper bounds with a convex rate function

(candidate).

� The assumption of Gâteau differentiability is much more than a regularity condition. It

ensures that the true rate function is convex. Otherwise, the proof of the lower bound

would work only with the largest convex minorant of the true rate function.

� Many applications concern mixtures of n (asymptotically) independent variables.

� For an application to the setM1(Q) of the probability measures on some box Q (see

next page), it is used that the dual of the set C(Q) of continuous bounded functions

Q→ R is the set of signed measures on Q.
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Occupation times measures of Brownian motion

Let B = (Bt)t∈[0,∞) be a Brownian motion in Rd, and let µt(A) = 1
t

∫ t
0

1l{Bs∈A} ds

denote its normalized occupation times measure.

DONSKER-VARADHAN-GÄRTNER LDP

For any compact nice set Q ⊂ Rd, the measure µt satisfies, as t→∞, an LDP on the set

M1(Q) under P(· ∩ {Bs ∈ Q for any s ∈ [0, t]}) with scale t and rate function

IQ(µ) =
1

2

∫
|∇f(x)|2 dx,

if f =
√

dµ
dx

exists and is smooth and satisfies zero boundary conditions in Q.

Indeed, an eigenvalue decomposition w.r.t. the spectrum of− 1
2
∆ + g shows that

lim
t→∞

1

t
logE[et〈g,µt〉1l{B[0,t]⊂Q}] = λ1(g,Q),

the principal eigenvalue of− 1
2
∆ + g in Q. The Rayleigh-Ritz formula

λ1(g,Q) = sup
‖f‖2=1

〈(− 1
2
∆ + g)f, f〉 = sup‖f‖2=1

(
〈g, f2〉+ 1

2
‖∇f‖22

)
.

shows that it is the Legendre transform of IQ (substitute f2 = dµ
dx

).
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Comments

� Here is the underlying eigenvalue expansion:

E[et〈g,µt〉1l{B[0,t]⊂Q};Bt ∈ dx]/dx =
∑
k

etλk(g,Q)vk(0)vk(x),

where 1(g,Q) > λ2(g,Q) ≥ λ3(g,Q) ≥ . . . are the eigenvalues of− 1
2
∆ + g in Q,

and (vk)k is an orthonormal basis of corresponding eigenfunctions.

� There is an analogous discrete version on fixed finite subsets of Zd for continuous-time

random walks.

� There is an version for increasing finite subsets of Zd for continuous-time random walks,

which interpolates between the two LDPs in the spirit of Donsker’s invariance principle.

� This makes it possible to find heuristics (and, with hard work, proofs) for the asymptotic

behaviour of self-attractive path measures.

� Examples are models with a high number of self-intersections of the path, or high number

of mutual intersections of several paths, or for random paths in a random potential (the

parabolic ANDERSON model, e.g.).
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Exponential integrals

VARADHAN’s lemma

If (Sn)n∈N satisfies an LDP with good rate function I in X , and if f : X → R is continuous

and bounded, then

lim
n→∞

1

n
logE[enf(Sn)] = sup

x∈X
(f(x)− I(x)).

This is a substantial extension of the well-known Laplace principle that says that
∫ 1

0
enf(x) dx

behaves to first order like enmax[0,1] f if f : [0, 1]→ R is continuous.

Corollary: LDP for exponential tilts

If (Sn)n∈N satisfies an LDP with good rate function I in X , and if f : X → R is continuous

and bounded, then we define the transformed measure

dP̂n(Sn ∈ ·) =
1

Zn
E
[
enf(Sn)1l{Sn∈·}

]
, where Zn = E

[
enf(Sn)].

Then the distributions of Sn under P̂n satisfy, as n→∞, an LDP with rate function

If (x) = I(x)− f(x)− inf[I − f ].
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Application: phase transition in the CURIE-WEISS model

A mean-field model for ferromagnetism:

� configuration space E = {−1, 1}N

� energy HN (σ) = − 1
2N

∑N
i,j=1 σiσj

� probability νN (σ) = 1
ZN,β

e−βHN (σ)2−N .

� mean magnetisation σN = 1
N

∑N
i=1 σi. Then−βHN (σ) = F (σ) with F (η) = β

2
η2.

� CRAMÉR =⇒ LDP for σN under [ 1
2
(δ−1 + δ1)]⊗N with rate function

I(x) = sup
y∈R

[
xy − log(

1

2
(e−y + ey))

]
=

1 + x

2
log(1 + x) +

1− x
2

log(1− x).

� Corollary =⇒ LDP for σN under νN with rate function I − F − inf[I − F ].

� Minimizer(s) mβ ∈ [−1, 1] are characterised by

mβ =
e2βmβ − 1

e2βmβ + 1
.

� Phase transition: β ≤ 1 =⇒ mβ = 0 and β > 1 =⇒ mβ > 0.
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LDP for Brownian paths

SCHILDER’s theorem

Let W = (Wt)t∈[0,1] be a Brownian motion, then (εW )ε>0 satisfies an LDP on C[0, 1] with

scale ε−2 and rate function I(ϕ) = 1
2

∫ 1

0
|ϕ′(t)|2 dt if ϕ is absolutely continuous with

ϕ(0) = 0 (and I(ϕ) =∞ otherwise).

Here is a heuristic proof: for ϕ ∈ C[0, 1] differentiable with ϕ(0) = 0, for large r ∈ N,

P(εW ≈ ϕ) ≈ P
(
W (i/r) ≈ 1

ε
ϕ(i/r) for all i = 0, 1, . . . , r

)
=

r∏
i=1

P
(
W (1/r) ≈ 1

ε
(ϕ(i/r)− ϕ((i− 1)/r))

)
.

Now use that W (1/r) is normal with variance 1/r:

P(εW ≈ ϕ) ≈
r∏
i=1

e−
1
2
rε−2(ϕ(i/r)−ϕ((i−1)/r))2

= exp
{
− 1

2
ε−2 1

r

r∑
i=1

(ϕ(i/r)− ϕ((i− 1)/r)

1/r

)2}
.

Using a RIEMANN sum approximation, we see that this is≈ e−ε
−2I(ϕ).
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LDP for empirical measures

SANOV’s theorem

If (Xi)i∈N is an i.i.d. sequence of random variables with distribution µ on a Polish space Γ,

then the empirical measure Sn = 1
n

∑n
i=1 δXi satisfies an LDP on the set X =M1(Γ) of

probability measures on Γ with rate function equal to the KULLBACK-LEIBLER entropy

I(P ) = H(P | µ) =

∫
P (dx) log

dP

dµ
(x) =

∫
µ(dx)ϕ

(dP

dµ
(x)
)
,

with ϕ(y) = y log y.

This can be seen as an abstract version of CRAMÉR’s theorem for the i.i.d. variables δXi :

Entropy = Legendre transform

For any ν, µ ∈M1(Γ),

H(ν | µ) = sup
f∈Cb(Γ)

[ ∫
Γ

f dν − log

∫
Γ

ef dµ
]
.

The minimizer is f = log dν
dµ

, if it is well-defined.
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The Gibbs conditioning principle

Here is an application of SANOV’s theorem to statistical physics. Assume that Γ is finite. We

condition (X1, . . . , Xn) on the event{ 1

n

n∑
i=1

f(Xi) ∈ A
}

= {〈f, Sn〉 ∈ A} = {Sn ∈ ΣA,f},

for some A ⊂ R and some f : Γ→ R. Assume that

Λ(ΣA,f ) ≡ inf
Σ◦
A,f

H(· | µ) = inf
ΣA,f

H(· | µ),

and denote byM(ΣA,f ) the set of minimizers. Then

The Gibbs principle

� All the accumulation points of the conditional distribution of Sn given {Sn ∈ ΣA,f} lie in

conv(M(ΣA,f )).

� If ΣA,f is convex with non-empty interior, thenM(ΣA,f ) is a singleton, to which this

distribution then converges.
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Empirical pair measures of Markov chains

Let (Xi)i∈N0 be a Markov chain on the finite set Γ with transition matrix P = (p(i, j))i,j∈Γ.

LetM(s)

1 (Γ2) denote the set of probability measures on Γ× Γ with equal marginals.

LDP for the empirical pair measures

The empirical pair measure L(2)
n = 1

n

∑n
i=1 δ(Xi,Xi+1) satisfies an LDP onM(s)

1 (Γ2) with

rate function

I(2)(ν) =
∑
γ,γ̃∈Γ

ν(γ, γ̃) log
ν(γ, γ̃)

ν(γ)p(γ, γ̃)
.

� There is a combinatorial proof. There are versions for Polish spaces Γ, e.g. under the

assumption of a strong uniform ergodicity.

� I(2)(ν) is the entropy of ν with respect to ν ⊗ P .

� There is an extension to k-tupels, L(k)
n = 1

n

∑n
i=1 δ(Xi,...,Xi−1+k) ∈M(s)

1 (Γk). The

rate function I(k)(ν) is the entropy of ν with respect to ν ⊗ P , where ν is the projection

on the first k − 1 coordinates.

� Using projective limits as k →∞, one finds, via the DAWSON-GÄRTNER approach, an

extension for k =∞, i.e., mixtures of Dirac measures on shifts, see below.
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Application to one-dimensional polymer measures, I.

� (Xn)n∈N0 = simple random walk on Z, `n(x) =
∑n
i=1 1l{Xi=x} local times,

Yn =
n∑

i,j=1

1l{Xi=Xj} =
∑
x∈Z

`n(x)2 number of self-intersections

�

polymer measure dPn,β =
1

Zn,β
e−βYn dP, β ∈ (0,∞),

� Discrete version of the RAY-KNIGHT theorem =⇒ in some situations,

`n(x) = m(x) +m(x− 1)− 1 with a Markov chain (m(x))x∈N0 on N with transition

kernel

p(i, j) = 2−(i+j−1)

(
i+ j − 1

i− 1

)
, i, j ∈ N.

Hence,

Zn,β(θ) := E
[
e−βYn1l{Xn≈θn}

]
≈ E

[
e−β

∑θn
x=1(m(x)+m(x−1)−1)21l{∑θn

x=1(m(x)+m(x−1)−1)=n}

]
≈ E

[
e−βθn〈L

(2)
θn
,ϕ2〉1l{〈L(2)

θn
,ϕ〉=1/θ}

]
, with ϕ(i, j) = i+ j − 1.
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Application to one-dimensional polymer measures, II.

Hence, the LDP for L(2)
n , together with Varadhan’s lemma, gives

lim
n→∞

1

n
logZn,β(θ) = −χβ(θ),

where

χβ(θ) = θ inf
{
β〈ν, ϕ2〉+ I(2)(ν) : ν ∈M(s)

1 (N2), 〈ν, ϕ〉 =
1

θ

}
.

The minimizer exists, and is unique; it gives a lot of information about the ‘typical’ behaviour of

the polymer measure. In particular, χβ is strictly minimal at some positive θ∗β , i.e., the polymer

has a positive drift.

(Details: [GREVEN/DEN HOLLANDER (1993)])
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Continuous functions of LDPs

An important tool:

Contraction principle

If (Sn)n∈N satisfies an LDP with rate function I on X , and if F : X → Y is a continuous map

into another metric space, then also (F (Sn))n∈N satisfies an LDP with rate function

J(y) = inf{I(x) : x ∈ X , F (x) = y}, y ∈ Y.

� Markov chains: The (explicit) LDP for empirical pair measures

L(2)
n = 1

n

∑n
i=1 δ(Xi,Xi+1) of a Markov chain implies a (less explicit) LDP for the

empirical measure L(1)
n = 1

n

∑n
i=1 δXi of this chain, since the map ν 7→ ν (marginal

measure) is continuous. There is in general no better formula than

I(1)(µ) = inf
{
I(2)(ν) : ν ∈M(s)

1 (Γ× Γ), ν = µ
}
.
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Randomly perturbed dynamical systems

This is an application of the contraction principle to SCHILDER’s theorem. It is the starting point

of the FREIDLIN-WENTZELL theory.

Let B = (Bt)t∈[0,1] be a d-dimensional Brownian motion, and consider the SDE (randomly

perturbed ODE)

dX(ε)

t = b(X(ε)

t ) dt+ εdBt, t ∈ [0, 1], X(ε)

0 = x0,

with b : Rd → Rd Lipschitz continuous. That is,

X(ε)

t = x0 +

∫ t

0

b(X(ε)
s ) ds+ εBt, t ∈ [0, 1].

Hence, X(ε) is a continuous function of B. Hence, an application of the contraction principle to

SCHILDER’s theorem gives that (X(ε))ε>0 satisfies an LDP with scale ε−2 and rate function

ψ 7→ 1

2

∫ 1

0

|ψ′(t)− b(ψ(t))|2 dt, if ψ(0) = x0 and ψ is absolutely continuous.
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Empirical marked stationary fields

This is a far-reaching extension of the LDP for k-tuple measures for Markov chains:

� k =∞.

� d-dimensional parameter space instead of N.

� continuous parameter space Rd instead of Nd

� reference measure is the Poisson point process (PPP) instead of a Markov chain.

� we add marks to the particles.

Let ωP =
∑
i∈I δ(xi,mi) be a marked PPP in Rd ×M with intensity measure λLeb⊗m.

For a centred box Λ, let ω(Λ) be the Λ-periodic repetition of the restriction of ω to Λ.

empirical stationary field: RΛ(ω) =
1

|Λ|

∫
Λ

dx δθx(ω(Λ))

This is a stationary marked point processes in Rd.

LDP for the field [GEORGII/ZESSIN (1994)]

As Λ ↑ Rd, the distributions ofRΛ(ωP) satisfy an LDP with rate function

I(P ) = H(P | ωP) = lim
Λ↑Rd

1

|Λ|HΛ(P |Λ | ωP|Λ),

which is lower semi-continuous and affine.
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Application: thermodynamic limit of a many-body system, I.

� N independent particles X1, . . . , XN in a centred box ΛN ⊂ Rd of volume N/ρ.

� pair interaction energy

V (x1, . . . , xN ) =
∑

1≤i<j≤N

v(|xi−xj |), with v : (0,∞)→ R and lim
r↓0

v(r) =∞.

� Parameters: β ∈ (0,∞) inverse temperature and ρ ∈ (0,∞) particle density.

�

Partition function: ZN,β,ΛN =
1

N !

∫
ΛN
N

dx1 . . .dxN e−βV (x).

(Mark-dependent models also within reach in general)

� We seek for a formula for the free energy per volume

f(β, ρ) = − 1

β
lim
N→∞

1

|ΛN |
logZN,β,ΛN .

Large-deviations theory · Cologne, 15 June 2018 · Page 22 (23)



Application: thermodynamic limit of a many-body system, II.

Strategy:

1. Rewrite ZN,β,ΛN in terms of a PPP(ρ), ωP.

2. Use that it has N i.i.d. uniform particles, when conditioned on having N particles in ΛN .

3. Rewrite the energy as |ΛN |〈RΛN (ωP), βF 〉 with suitable F and the conditioning event

as {〈RΛN (ωP),NU 〉 = ρ}.
4. Use the LDP and obtain a variational formula

5. (Try to squeeze some information out ...)

The functionals are (for ω =
∑
i∈I δxi , using the unit box U = [− 1

2
, 1

2
]d),

F (ω) =
1

2

∑
i 6=j : xi∈U

v(|xi − xj |) and NU (ω) =
∑
i∈I

1lU (xi).

Hence, we should obtain

f(β, ρ) = inf
{
〈P, F 〉+

1

β
I(P ) : P ∈M(s)

1 (Ω), 〈P,NU 〉 = ρ
}
.

A number of open questions: percolation, statistics of cluster sizes, phase transitions, ...

Particularly interesting if marks with unbounded mark space are added.
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